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Abstract: Ferromanganese nodules grow by precipitation of metals from seawater and/or sediment
pore water. The formation of different genetic types depends on the composition and redox
conditions of the water and upper sediment layers, water depth, and primary productivity in
surface waters. Many characteristics of nodules have been used to investigate their genesis.
In this paper, we compare nodules from different environments using Computed Tomography,
Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy, and Micro X-ray Fluorescence
data to better understand how geochemical differences are linked to different morphological
features. We use representative samples of purely hydrogenetic nodules and mixed-type nodules
with various proportions of hydrogenetic and diagenetic growth laminae. Our results show a
micrometric alternation between high-absorbance massive Mn-enriched (Mn/Fe up to 40) laminae
and low-absorbance dendritic Mn-depleted (Mn/Fe about 1) laminae in mixed-type nodules,
suggesting the rhythmic alternation of hydrogenetic oxic conditions and suboxic diagenetic input.
This micro-rhythmic alternation is absent in purely hydrogenetic nodules, which are homogenous
both chemically and morphologically. A conceptual model is proposed to account for these
geochemical and morphological differences in terms of the vertical migration of the oxic-suboxic
front relative to the base of the nodules.
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1. Introduction

Marine ferromanganese (hereafter Fe–Mn) nodules are Fe and Mn oxides precipitated
concentrically around a nucleus [1–3]. Deep-ocean Fe–Mn nodules are generally found at the
sediment-water interface on abyssal plains [1,4,5]. Nodules form in different sedimentary settings,
from oxic red clays to suboxic organic carbon-rich sediments [6,7].

Iron and manganese oxides precipitated from oxic seawater are called hydrogenetic, and those
from sediment pore water are called diagenetic. Both are accompanied by the sorption of trace and rare
earth elements (REE) on the Fe and Mn oxides [5,8–10]. The precipitation occurs concentrically around
a nucleus, which is any hard material available in the environment, e.g., rock fragments, pumice,
consolidated sediments, pieces of biological material like bone fragments and shark’s teeth, and old
nodule fragments [11]. The precipitation rate of Fe–Mn oxides is of the order of a few mm per Myr
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(million years) for hydrogenetic nodules and because the extent of reactive surface in the nanophase
materials is large, they acquire high contents of economically important metals from ocean water
and pore waters such as Ni, Cu, Co, Mo, Zr, REE, and Li. Many of these elements, especially those
important to future low-carbon societies, are being considered for deep-ocean mining [12–18].

Three classes of Fe–Mn nodules have been recognized: hydrogenetic, diagenetic and mixed-type.
Hydrogenetic nodules derive all elements from oceanic bottom waters, whereas diagenetic nodules
derive elements from redox cycling during early diagenetic reactions of organic matter in the
sediment [19–23]. The transition from diagenetic to hydrogenetic processes depends on the redox
conditions in the environment of formation [11,19,24], including the depth of the oxic/suboxic redox
front (OSF) in the sediment. Oxic diagenesis plays only a minor role in nodule formation, if any. This is
a conclusion that is supported by X-ray photoelectron spectroscopy measurements [25]. Mixed-type
nodules are composed of various proportions of the diagenetic and hydrogenetic end-member
laminae [4,26]

In order to classify nodules according to these three types, some studies have relied on chemical
proxies such as Mn/Fe ratio, trace elements, and REE contents [7,8,11,24,27]. Other studies relied on
morphological characteristics such a shape, size, surface texture, internal lamination, and nucleus
type [4,28–31]. These parameters reflect the sedimentary environment of formation, and provide
insight into nodule genesis [1,32,33]

Redox conditions affect nodule chemistry. For example, during anoxic diagenesis in the sediment,
Mn-oxide reduction releases Mn, Ni, Cu, and Li into the pore water that then diffuses up into the
adjacent suboxic diagenetic zone [34–36]; in contrast, Co is acquired by the nodules solely through
sorption from seawater under oxic conditions [23]. Fe occurs predominantly as Fe3+ complexed with
OH in oxic seawater [33]. The redox potential determines in which oxidation state Fe and Mn will
occur in the nodules. Fe3+ precipitates predominantly as FeO(OH) in oxic environments, Mn generally
precipitates as Mn4+ and Mn3+ mixed oxides under oxic conditions, while minor Mn2+ may be present
in nodules under suboxic conditions [37,38] depending on the location of the oxic-suboxic redox
boundary. Environmental conditions may change during nodule formation, therefore impacting their
genesis. Geochemical information combined with morphological and internal structural data provide
an integrated approach to better understand these processes of nodule formation.

Here, we apply Computed Tomography (CT), Scanning Electron Microscopy–Energy Dispersive
X-ray Spectroscopy (SEM-EDS), and Micro X-ray Fluorescence (µXRF) analysis to better understand the
genesis of Fe–Mn nodules and how geochemical differences match different morphological features.
We use representative samples from well-known Fe–Mn nodule deposits previously described in
the literature (Table 1): Typical mixed-type nodules from the Clarion-Clipperton Zone (CCZ) [39,40];
typical mixed-type nodules from the Central Indian Basin (CIB) [7,21], typical oxic hydrogenetic
nodules from the Mascarene Basin (MB) [41]; and a hydrogenetic Fe–Mn-coated pebble from the
Rio Grande Rise (RGR) (this paper). Our results indicate that an integration of geochemical and
morphological features is best suited to genetically characterize Fe–Mn nodules.



Minerals 2018, 8, 488 3 of 16

Table 1. Provenance, geographic coordinates, genetic type, and main characteristics of nodules analyzed here.

Samples ID Latitude Longitude Depth (m) Genetic Type Characteristics References

Clarion-Clippertone Zone

JC120-104A 13◦ 30.700′ −116◦ 35.166′ 4130

Mixed-type Discoidal shape with rim marking the
water-sediment interface.

[39,40]
JC120-104B 13◦ 30.700′ −116◦ 35.166′ 4130
JC120-104C 13◦ 30.700′ −116◦ 35.166′ 4130
JC120-104D 13◦ 30.700′ −116◦ 35.166′ 4130

Central Indian Basin

AAS40-308 −12◦ 03.642′ 74◦ 29.844′ 5060

Mixed-type
Nodules from the CIB vary from diagenetic to
hydrogenetic depending on type of sediments
(red clays, carbonate ooze, siliceous ooze, etc.).

[7,21]
AAS21-17 −12◦ 30.204′ 75◦ 54.936′ 5410
AAS21-19 −12◦ 25.098′ 75◦ 50.178′ 5350

SS4-280 −12◦ 00.000′ 76◦ 30.540′ 5400
F8-398A −15◦ 29.040′ 75◦ 59.460′ 5150

Mascarene Basin

SK35-24 −15◦ 02.400′ 55◦ 04.000′ 4420
Hydrogenetic Spheroidal to sub-spheroidal shape, 2–4 cm in size,

smooth surface, Fe-Co-REE-enriched.
[41]SK35-27 −17◦ 00.400′ 56◦ 01.500′ 4528

SK35-26 −16◦ 00.000′ 55◦ 59.500′ 4130

Rio Grande Rise

RGR - - - - - Hydrogenetic - (This paper)
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2. Materials and Methods

2.1. Samples

This work is based on four sets of Fe–Mn nodule samples representative of different genetic
conditions (Table 1); (1) Four mixed-type Fe–Mn nodules from the CCZ in the Pacific Ocean were
collected during cruise JC120 aboard the RRV James Cook (Table 1); (2) Five mixed-type nodules from
the CIB were collected during cruises of RV Akademic Alexander Sidorenko, R.V. Farnella, and RV
Skandi Surveyor; (3) Three hydrogenetic nodules from the MB in the Indian Ocean were collected
during cruise SK35 on the ORV Sagar Kanya (Ministry of Earth Sciences (MoES)), Delhi, India);
and (4) one hydrogenetic Fe–Mn coated pebble from Rio Grande Rise (RGR) in the southwest Atlantic
was collected during cruise Iatá-Piuna aboard the RV Yokosuka.

The bulk chemical composition of nodules from the CCZ is uniform across the whole region
according to analyses of more than 300 nodules, all pointing to a mixed-type genesis, with variable
influence of hydrogenetic and diagenetic precipitation [25,39]. Bulk analysis of nodules from the
CIB show a predominant hydrogenetic origin with variable proportions of diagenetic input [22].
Bulk analysis of nodules from the MB on small, spheroidal, Fe–Co-REE-rich nodules with a smooth
surface show typical characteristics of hydrogenetic nodules [21,41]. Fe–Mn deposits from the
RGR have not been studied so far, however recent scientific expeditions to the RGR have found
ferromanganese crust, evincing that hydrogenetic precipitation occurs in the area. This is the first
study showing geochemical and morphological data for that region.

The nodules were photographed, sized, and scanned using CT. Next, thin sections with
approximately 100 µm thickness were prepared from nodules JC120-104B, AAS21-DR19, SS4-280G,
SK35/24B, and SK35/26A to be used for SEM-EDS and µXRF. The thin sections were prepared by
impregnating a slice of nodule with a mixture of Epoxiglass 1204 resin, Epoxiglass 1604 hardener,
and alcohol to promote the mixture penetration, followed by heating on a hot plate at 50 ◦C to
evaporate the alcohol, and then cutting, grinding, and polishing the slice to 100 µm.

2.2. Computed Tomography

Three-dimensional CT scans were run using Versa XRM-510 Xradia equipment from Zeiss at
the Technological Characterization Laboratory from Escola Politécnica, University of Sao Paulo.
Each nodule was scanned for 2 h while turning under a 160 kV 10 W X-ray source. Voxel size was
55 µm and detector resolution was 1024 × 1024 pixels, with a transmission of 8% to 19%. The movies
are available in Supplemental Data.

2.3. SEM-EDS

SEM was performed using a Leo 440i from Leo Electron Microscopy Ltd (São Paulo, Brazil) at
the Laboratory of Scanning Electron Microscopy (LabMEV), Instituto de Geociências, Universidade
de São Paulo, São Paulo, Brazil. Analyses were performed at high vacuum condition with Electron
High Tension (EHT) of 20 keV, Work Distance (WD) of 25 mm and Iprobe of 1.0–2.0 nA (probe current).
EDS was performed using a Si (Li) solid state detector with INCA 300 software from Oxford
Microanalysis group. Both Backscatter Electron (BSE) and Secondary Electron (SE) modes were
acquired but only the BSE mode data are used in the results section.

2.4. Micro-X-ray Fluorescence (µ-XRF)

Synchrotron radiation analyses applied in this work included µ-XRF performed at the Brazilian
Synchrotron Light Laboratory (LNLS, Campinas, Brazil), Beamline XRF. µXRF measurements were
acquired at 10 keV in triplicate at selected points in order to obtain element composition. Next, 0.1 mm
wide transects across the nodules were performed at steps of 0.02 mm and count time per point of
600 ms, with a velocity of 0.0328 mms−1 to get maps of element distribution. Filters of Fe 3 µm plus
Fe 6 µm were used because of the high content of Fe in the samples, which caused dead time of
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nearly 100%. After adding the filters, the dead time dropped to less than 10%. The spectra were then
processed using the open software PyMCA Software Version 5.1.2, downloaded from the PyMCA
website [42], where the curves were calibrated, Excel files generated, and color maps obtained.

3. Results

3.1. Morphology of Nodules

Nodules from the CCZ have an average length of 8 cm. The shape is discoidal and some nodules may
exhibit a pronounced rim marking the transition between a botryoidal top-surface texture and a rough
bottom-surface texture (Figure 1 JC120-104A to JC120-104D), reflecting their mixed-type genesis. The rim
corresponds to the boundary between the buried and the exposed portion of the nodules. The mixed-type
nodules from the CIB are 3–6 cm long (Figure 1 AAS21-19 to F8-398A), with spheroidal to elongate shape,
except for nodule F8-398A that is faceted. These nodules have a rough to smooth surface with no obvious
pattern. Hydrogenetic nodules from the MB are 4 cm long on average, strongly spheroidal or elongate,
and have a micro-botryoidal surface (Figure 1 SK35-27 to SK35-24). The coated pebble from the RGR is
2 cm long, spheroidal, with a micro-botryoidal surface (Figure 1 RGR).
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The hydrogenetic nodules from MB show a bright, dense, and homogeneous Fe–Mn oxide layer, 
contrasting with the dark material of the nuclei (Figure 2A,B); some are poly-nodules (Figure 2A). 
The nuclei shape is rounded or irregular and variable in size, from 5 mm to 40 mm, and corresponds 
to about 10% the nodules volume in sample SK35-26 and 90% of the nodules volume in sample SK35-
24 (Figure 2A,B). In both cases, the nuclei are composed by sedimentary rocks, most likely carbonates. 
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Figure 1. Mixed-type nodules from the Clarion-Clippertone Zone (JC104-120A to JC104-120D) and the
Central Indian Ocean Basin (AAS21-19 to F8-398A); hydrogenetic nodules from the Mascarene Basin
(SK35-27 to SK35-24) and hydrogenetic Fe–Mn oxide-coated pebble from the Rio Grande Rise (RGR).
Yellow dashed lines mark the pronounced rim.

3.2. Texture and X-ray Absorbance

The computed tomography videos (Supplementary Material Videos S1–S4) reveal the internal
structures of the nodules in three dimensions. In these images, bright color means high absorbance
of X-rays and corresponds to denser material, while dark color means low absorbance of X-rays and
corresponds to less dense materials.

The hydrogenetic nodules from MB show a bright, dense, and homogeneous Fe–Mn oxide layer,
contrasting with the dark material of the nuclei (Figure 2A,B); some are poly-nodules (Figure 2A).
The nuclei shape is rounded or irregular and variable in size, from 5 mm to 40 mm, and corresponds to
about 10% the nodules volume in sample SK35-26 and 90% of the nodules volume in sample SK35-24
(Figure 2A,B). In both cases, the nuclei are composed by sedimentary rocks, most likely carbonates.
Laminae are distinguishable at the scale of micrometers, as revealed by SEM photomicrographs
(Figure 2C). The laminae are columnar, 0.2–0.5 mm thick, alternating between bright and light grey,
which indicate a weak density contrast in the nodule. The columnar fabric has a minor amount of
micropores, generally smaller than 50 µm. The tomography also reveals the presence of pervasive
fractures in a spherical nodule (Figure 2A).
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Figure 2. Internal structures of Fe–Mn nodules as revealed by Computed Tomography (left) and
back-scatter Scanning Electron Microscopy (right). (A,B) Hydrogenetic Fe–Mn nodules SK35-26 and
SK35-24 from the Mascarene Basin; (C) columnar texture of sample SK35-26; (D) layer of hydrogenetic
Fe–Mn coating of sample RGR from Rio Grande Rise; (E) hydrogenetic Fe–Mn coated pebble RGR
from the Rio Grande Rise; (G) mixed-type nodule SS4-280 from the Central Indian Basin, white
arrow indicates the transition between massive and dendritic textures detailed in images (F) to (H);
(I) mixed-type nodule JC120-104B from the Clarion-Clippertone Zone, in which the yellow arrow shows
the growth direction; (F) massive texture in nodule SS4-280; (H) dendritic texture in nodule SS4-280;
and (J) massive texture in nodule JC120-104D. For = foraminifer test, Col = columnar, Den = dendritic
and Mas = massive.



Minerals 2018, 8, 488 7 of 16

The tomography of the coated pebble from RGR shows a bright, thin oxide layer formed around
a relatively large nucleus of 1.8 cm long and faceted in shape, which accounts for more than 90% of
the sample volume (Figure 2E). Because of this, it can be best classified as a coated pebble instead of a
Fe–Mn nodule. The pebble is composed of limestone (cemented carbonate ooze) in which foraminifer
tests are seen (Figure 2D). The Fe–Mn coating is composed of a single laminated to columnar oxide
layer 0.5 to 0.3 mm thick (Figure 2D) and may represent the first stage of a growing nodule.

The internal structure of the mixed-type nodules differs markedly from the hydrogenetic ones.
The former have 1–3 mm thick laminae with a strong density contrast (Figure 2G,I), indicating a
difference in composition. The tomography reveals two types of laminae: bright, dense, massive
laminae alternating with gray and porous laminae. SEM photomicrographs confirm that the bright
laminae of high absorbance are massive, with no growth structures (Figure 2J). On the other hand,
the gray laminae of low absorbance show a dendritic fabric, where precipitation occurred at points
of preferred growth and converged afterwards, leaving behind abundant pore spaces, as large as
1.5 mm (Figure 2H). The transition between a massive-dendritic texture to a dendritic one is seen in
Figure 2F–H.

Nodules from the CCZ show a contrast between the nucleus and adjacent laminae, and structural
differences between the inner (older) and outer (younger) layers (Figure 2G). The older layers show
alternation between 1–3-mm thick porous dendritic laminae with massive laminae. This portion of
the nodule apparently grew in a preferred direction, resulting in a conical geometry indicated by the
yellow arrow in Figure 2G. The younger layers, in contrast, alternate between thin (50–200 µm) bright
laminae and gray laminae that wrap around the internal portion of the nodule, which most likely
served as a nucleus for the external portion. This way, the nuclei of the samples from the CCZ are
composed by fragments of older manganese nodules that are rounded in shape and 5 cm long on
average, which correspond to about 70% of the nodules volume (Figure 2I).

Nuclei of nodules from the CIB are rounded, 3–8 mm long, and correspond to up to 30% of the
nodules volume (Figure 2G). They are most likely composed of sedimentary rocks.

3.3. Chemical Composition across the Nodules

SEM-EDS element mapping of the outer margin part of mixed-type CCZ nodule JC120-104D
(Figure 3) shows a clear anti-correlation between porous Mn-rich laminae (green) and massive Fe-rich
laminae (blue). Mn-rich laminae show higher abundance of Ni (orange), while Fe-rich laminae show
higher abundance of Ti (gray). High Si content occurs within the pore spaces where detrital material is
more likely to be present.

Similarly, µ-XRF element distributions reveal a distinct alternation between Mn-rich and Fe-rich
laminae in mixed-type nodules (Figure 4, samples JC120-104B, AAS21-19, SS4-280). This Mn versus Fe
alternation is not observed in hydrogenetic nodules (Figure 4, samples SK35-26, SK35-24) or in the
coated pebble from RGR (Figure 4, sample RGR). Nevertheless, Mn/Fe ratios from 1 to 40 show that
Fe is not completely absent in Mn-rich laminae and vice versa.

A mixed-type nodule from the CCZ (sample JC120-104B) exhibits Mn/Fe ratios varying between
two and 40 with a mean value of 10. The highest Mn/Fe ratios (up to 40) are found in the massive
laminae in the older parts of the nodule. Both mixed-type nodules from the CIB (samples AAS21-19 and
SS4-280) show Mn/Fe ratios between 0.5 and 10, with the lowest value in the Fe–Mn oxide layer closest
to the nuclei. On the other hand, the hydrogenetic nodules (samples: SK35-26 and SK35-24) show clear
differences from the mixed-type nodules because they exhibit Mn/Fe ratios close to 1 through most of
the growth laminae. The coated pebble from RGR shows Mn/Fe ratios of <1.

Element distribution maps of Cu, Ni, and Co reveal that Ni and Cu follow the distribution of
Mn, while Co follows the distribution of Fe in the mixed-type nodules (Figure 4, samples JC120-104B,
AAS21-19, SS4-280). In the maps, Cu is indicated in red and Ni in blue, which results in a purple color
where both elements are present. Therefore, fractionation occurred between Cu + Ni and Co in these
nodules. In contrast, the hydrogenetic nodules (Figure 4, samples SK35-24, SK35-26) and the coated
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pebble from RGR differ from the mixed-type nodules in that they are significantly and homogeneously
enriched in Co, instead of Cu and Ni.
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corresponds to the mutual presence of the elements indicated by red (Cu) and blue (Ni), and light blue
corresponds to the mutual presence of the elements indicated by blue (Mn) and green (Fe).

4. Discussion

4.1. Geochemistry, Texture, and X-ray Absorbance of Laminae

The geochemical and morphological characterization presented here for the nodules from the
CCZ, CIB, MB, and RGR allows for a rigorous and integrated characterization of Fe–Mn nodules that
provides another dimension to previously established classification methods.

Data from CT and SEM-EDS suggest homogeneity for hydrogenetic nodules and a complex
heterogeneity for the mixed-type nodules. X-Ray absorbance, for both CT and SEM data, seems
to result from the amount of pore space (i.e., material density) instead of the chemical composition
(i.e., atomic mass) of the laminae. This explains why both massive Mn-rich laminae from the mixed-type
nodules and columnar laminae from the hydrogenetic nodules present high absorbance.

The bright, dense, and columnar laminae of the hydrogenetic nodules are associated with a
relatively homogeneous chemical composition, with Fe and Mn present in the same amount and with
no variations in trace element contents, all pointing to a single source of metals. The same result
is also observed for the hydrogenetic Fe–Mn coated pebbled from RGR, which is an example of a
purely hydrogenetic Fe–Mn oxide, precipitated in an oxic environment. This is in line with previous
work showing that hydrogenetic nodules form on a firm sediment substrate such as red clays or
within unconsolidated oxic sediment. Under these conditions, pore water has a chemical composition
equal to that of bottom seawater, which rules out significant contributions of diagenetic reduced Mn
species [4,8,11,14,41]. We suggest that the supply of Mn, Fe, and trace elements from bottom seawater
may have been constant during the time of formation of the hydrogenetic nodules studied here.
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The characteristics of mixed-type nodules are more complex. The rough surface suggests that
they may have formed partially or totally buried in the sediment [4]. Still, the internal portions of
the CCZ nodules likely correspond to a former nodule that experienced environmental conditions
different from the ones during which the more recent layers formed. An abrupt contact between the
older and younger portions indicates that the older nodule may have undergone partial dissolution
before being covered by a second episode of oxide precipitation that resulted in the formation of the
younger layers.

The CIB nodules show alternation between massive to laminated Mn–Ni–Cu-rich laminae and
dendritic Fe–Co-rich laminae (Figure 5). The laminated Mn–Ni–Cu-rich laminae have Mn/Fe ratios
between 5 and 10, which is indicative of diagenetic precipitation [7,33,43,44], while the dendritic
Fe–Co-rich laminae have Mn/Fe ratios close to 1, which suggests that these nodules experienced
episodes of hydrogenesis under oxic conditions and diagenesis under suboxic conditions. Dendritic
fabric has largely been associated to diagenetic precipitation because the pore space of the sediments
leads to formation of isolated rosette-like structures that eventually merge together, capturing sediment
particles [25]. However, every layer formed in contact with sediments is not diagenetic. The same
process can occur if hydrogenetic precipitation occurs within the upper oxic sediment, leading to
dendritic hydrogenetic laminae. Dendritic patterns in hydrogenetic columnar laminae were previously
observed in mixed-type nodules [30].

The flux of Mn3+ and Mn4+ to diagenetic nodules is greater than their flux from ocean water to
purely hydrogenetic nodules. This occurs because Mn3+ and Mn4+ are oxidized from Mn2+ that is
supplied by anaerobic diagenesis of organic matter within the sediments. Under reducing conditions
within the sediment, Mn2+, as well as Ni2+ and Cu2+, are released from Mn oxides [20]. This occurs
below the suboxic-anoxic front, centimeters to meters below the sediment surface where the nodules
formed. However, these divalent cations diffuse upwards and may reach the oxic sediment if the
suboxic zone in which they diffuse to is near the seafloor [11,32,35]. Because Ni2+ and Cu2+ are stable
in the oxic and suboxic environments, they remain in the 2+ oxidation state, while Mn2+ is oxidized
and made available for nodule formation as Mn3+ and Mn4+ [33,45].

Similarly, the mixed-type nodules from CCZ also show alternating hydrogenetic and diagenetic
laminae. Nevertheless, the latter have Mn/Fe ratios of up to 40, which have been attributed
to precipitation of Mn oxides in a suboxic environment [11,24], where a higher flux of Mn2+ is
supplied to the pore water and can therefore contribute to further nodule formation after oxidative
precipitation [19]. Wegorzewski and Kuhn (2014) described the influence of suboxic diagenesis in
mixed-type nodules from the same region, in which they found laminae with Mn/Fe ratios up to
800 and a massive texture alternating with laminae with low Mn/Fe ratios of 1 to 4. These authors
concluded that episodes of suboxic conditions occurred during nodule formation. Here, we found
the high Mn/Fe ratio is associated with several millimeters thick massive and bright laminae from
tomography data.

Mixed-type nodules from the CIB have been described as those containing higher proportions of
hydrogenetic phases in contrast to about 80% of diagenetic proportions in the eastern CCZ nodules [25],
from where the samples used here come. The CIB sediments contain more terrigenous material [46],
which dilutes the supply of organic matter to the seafloor and reduces the amount of mobilized metals
from diagenesis [25].
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Figure 5. Mixed-type nodule SS4-280 from the Central Indian Basin. (A) Detail from computed
tomography image and (B) µ-XRF mapping (blue = Mn, green = Fe, and light blue shades
means presence of both). Insets in (A) show transition from (D) massive to (C) dendritic texture.
SEM micrographs were obtained in BSE mode. Den = dendritic and Mas = massive.

4.2. The Role of the Oxic-Suboxic Front (OSF)

The geochemistry and internal structure of the nodules studied reflects the location of the OSF
within the sediment where they formed. For the hydrogenetic nodules, the OSF is either too deep in
the sediment to contribute to nodule growth, in which case the dissolved Mn2+ that migrated into the
suboxic sediment does not reach the surface sediment oxic zone where the nodules are forming; or the
OSF is absent, such as in red clay environments (Figure 6A). In mixed-type nodules, however, the OSF
is of fundamental importance.

Periods of hydrogenetic precipitation within the sediment are only possible when the OSF is deep
in the sediment and hence the metals coming from seawater are dominant (Figure 6B). For the eastern
CCZ, the OSF has recently been measured to occur at about 2–3 m depth in the sediment within areas
where mixed-type nodules occur [35], which concurs with hydrogenetic current growth laminae of
the nodules form from precipitation in that area. On the other hand, diagenetic precipitation is only
possible when the OSF is close to the seafloor, so that the metals can diffuse up-section to reach the
nodules (Figure 6C,D). At the Peru Basin, where nodules are known to have a predominant diagenetic
origin, the OSF is currently located at 10 cm below the sediment surface [47] although it may have
been shallower in the past.
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Figure 6. Schematic model suggesting the environmental conditions of formation of different genetic
types of ferromanganese nodules. OSF = oxic-suboxic front. (A) Stiff sediment or organic matter-free
oxic sediment where metals come from seawater only (blue); (B) Oxic sediment with a relatively deep
OSF, with metals mainly sourced from seawater. (C) OSF is closer to the sea floor and the availability
of metals from diagenetic reactions Mn, Ni, and Cu (yellow) increases; (D) OSF is near the base of the
nodule and the main source of metals is pore water within suboxic sediment.

A third scenario occurs when the OSF is shallow enough that suboxic sediments are closer to the
base of the nodules. In this case, the source of Mn2+ from below the OSF (lower suboxic zone) is more
important to nodule formation, and Mn2+ will directly undergo oxidative precipitation on the nodule
surface (Figure 6D). The heterogeneity within the mixed-type nodules, as well as the relative role of
hydrogenetic and diagenetic process, will depend on the vertical migration of OSF, which reflects the
input of organic material and therefore productivity in surface waters. Many studies attributed the
OSF depth fluctuation to changes in oceanic primary productivity, which directly affect the flux of
organic matter to the sediment [19,24,33,35,48].

This variability has been documented in the literature, in terms of micro-rhythmic alternation of
Mn/Fe ratios and trace element content in nodules [24,49,50]. Here, we show that the micro-rhythmic
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alternation can be observed also by CT tomography, SEM, and µ-XRF analyses. This alternation
of Mn/Fe ratios is ultimately linked to fluctuations in the OSF depth. For example, the Mn-redox
boundary fluctuated between 5 and 25 cm over the past 400 kyr in the MANOP site H (nodule field),
in the eastern equatorial Pacific [51].

The mixed-type nodules from the eastern CCZ seem to be more strongly influenced by the OSF
fluctuation compared to the nodules from the CIB. Since the CCZ lies just north of the surface high
primary productivity zone of the equatorial Pacific Ocean, it should be impacted by fluctuations in the
flux of organic matter to the seafloor. In fact, the OSF location in the sediment have been fluctuating
due to long-term (glacial/interglacial) and short-term (ENSO system) oscillations of surface-water
primary productivity in the Peru Basin [52], located just south of the high surface-water primary
productivity zone of the equatorial Pacific Ocean. Consequently, we infer that surface-water primary
productivity fluctuation occurred frequently in the CCZ.

5. Conclusions

We present new insights into the genesis of deep-ocean Fe–Mn nodules based on computed
tomography, SEM-EDS, and µ-XRF analyses, demonstrating how these techniques can be used to infer
fluctuations in the oxic-suboxic front that occurred during the growth history of nodules. From these
analyses, we conclude that:

1. The proportion of hydrogenetic and diagenetic processes in mixed-type nodules is reflected by
their geochemistry, texture, and X-ray absorbance. High-absorbance areas correspond to massive
Mn-rich laminae, while low-absorbance areas correspond to dendritic Mn-depleted laminae.
The ratio of these laminae types ultimately reflects changes in the location of the OSF within the
sediment, which in turn reflects variations in surface-water productivity.

2. Mixed-type eastern CCZ nodules show a higher suboxic diagenetic influence than mixed-type
CIB nodules;

3. The micro-rhythmic distribution of Mn, Fe, Ni, Cu, and Co in the mixed-type nodules show
micrometer- to millimeter-thick laminae that are chemically and texturally heterogeneous
compared to their uniform bulk chemistry. In contrast, oxic hydrogenetic nodules are
compositionally homogeneous, which reflects comparable seawater and pore-water compositions;

4. Changes in oceanographic conditions such as fluctuation of surface-water primary productivity,
changes in sediment accumulation-erosion rates, and fluctuation of deep-ocean ventilation are
possible drivers of depth variations in the sediment of the OSF, which controls the availability of
Mn, Ni, and Cu to nodule growth. This process ultimately results in micro-rhythmic alternation
in chemical composition and textures in mixed-type nodules.

5. Fluctuations of surface-water primary productivity probably occurred more frequently in the CCZ
compared to the CIB, driving the formation of massive up to 3-mm thick, strongly Mn-enriched
laminae (Mn/Fe up to 40) in the CCZ nodules; whereas detrital accumulation rates were higher
and more varied as reflected in CIB nodule laminae.

Supplementary Materials: The following are available online at https://zenodo.org/record/1471960#
.W9LcfVLFKJ0, Video S1: Three-dimensional computed tomography of sample JC120-104B; Video S2:
Three-dimensional computed tomography of sample SS4-280; Video S3: Three-dimensional computed tomography
of sample SK35-26; Video S4: Three-dimensional computed tomography of sample RGR.
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