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Abstract The determination of effective diffusion coefficients of gases or solutes in the water-saturated
pore space of mudrocks is time consuming and technically challenging. Yet reliable values of effective
diffusion coefficients are important to predict migration of hydrocarbon gases in unconventional reservoirs,
dissipation of (explosive) gases through clay barriers in radioactive waste repositories, mineral alteration of
seals to geological CO2 storage reservoirs, and contaminant migration through aquitards. In this study,
small-angle and very small angle neutron scattering techniques have been utilized to determine a range of
transport properties in mudrocks, including porosity, pore size distributions, and surface and volume fractal
dimensions of pores and grains, from which diffusive transport parameters can be estimated. Using a fractal
model derived from Archie’s law, we calculate effective diffusion coefficients from these parameters and
compare them to laboratory-derived effective diffusion coefficients for CO2, H2, CH4, and HTO on either the
same or related mudrock samples. The samples include Opalinus Shale from the underground laboratory in
Mont Terri, Switzerland, Boom Clay from a core drilled in Mol, Belgium, and a marine claystone cored in
Utah, USA. The predicted values were compared to laboratory diffusion measurements. The measured and
modeled diffusion coefficients show good agreement, differing generally by less than factor 5. Neutron or
X-ray scattering analysis is therefore proposed as a novel method for fast, accurate estimation of effective
diffusion coefficients in mudrocks, together with simultaneous measurement of multiple transport
parameters including porosity, pore size distributions, and surface areas, important for (reactive)
transport modeling.

1. Introduction

Molecular diffusion is the dominant transport mechanism in low-permeability sedimentary rocks, controlling
fluid mobility on vast scales, regional diagenesis, reservoir seal capacity, source rock potential, and
production from tight gas reservoirs. Early studies on molecular diffusion in geosystems focused on
diffusional leakage of natural gas from reservoirs via the caprock (Krooss, 1988; Krooss & Schaefer, 1987;
Leythaeuser et al.,1980), providing insight into the significance of this process over geological timescales.
Subsequently, experimental studies have broadened to include different argillaceous rocks and various gas
species, such as CH4, N2, or CO2 (Schlömer & Krooss, 1997, 2004). Diffusion of gases or solutes is also
important for the disposal of radioactive waste in geological repositories (Altmann et al., 2012; Maes et al.,
2004, 2008; Rebour et al., 1997; Rubel et al., 2002; Van Loon et al., 2003), where knowledge of diffusion of
radionuclides and hydrogen is required to predict dispersion, pressure evolution, and long-term containment
(Jacops et al., 2013, 2015a, 2015b).

For geological CO2 storage, caprock diffusion has been studied: (i) as a leakage mechanism (Busch et al.,
2008), demonstrating that diffusion is only relevant over geological timescales; (ii) as a controlling parameter
for mineral reactions (Kampman et al., 2016); and (iii) as a rate-limiting mechanism for CO2-induced swelling
of clay minerals (Wentinck & Busch, 2017). For unconventional hydrocarbon reservoirs, CH4 diffusion
experiments in (partially) water-saturated gas shale samples are rare or absent, with some measurements
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of diffusion coefficients using equilibration curves from gas sorption data (Yuan et al., 2014). Diffusion
experiments are typically performed on sample plugs by creating a concentration gradient across the
water-saturated sample. The effluent concentration is measured over time until a steady state is reached.
However, this requires long measurement times of weeks to months and/or small sample sizes of ≪1-cm
thickness due to the low diffusion coefficients in mudrocks.

In order to overcome the difficulty of time-intensive plug measurements (if plugs are even available),
attempts have been made to relate the transport properties (such as pore network tortuosity) to the fractal
dimensions of the aggregated mass, pore space, and pore surfaces in soils or mudrocks (Ahl & Niemeyer,
1989; Gimenez et al., 1997; Radlinski, 2006). The mass and pore structure of sedimentary rocks, like sandstone
or mudrocks, have been shown to exhibit self-similar scaling relationships, within certain limits of scale
(Krohn, 1988; Radlinski et al., 1999; Thompson, 1991). Mathematical fractals are constructed from an initial
object by the application of a repeating generator pattern. Cumulative application of the repeating pattern
n times can result in either accretion or reduction of the initiator, and the final fractal object exhibits a
number-size scaling relationship

N rð Þ ¼ κr�D (1)

where N(r) is the number of elements of length equal to r, κ is the number of initiators of unit length, and D is
the fractal dimension, which describes the power law scaling. The nature of the initiator determines the
dimensionality (e.g., line, surface, or volume). Mathematical fractals are described as deterministic fractals
because the same operation is repeated at all scales, whereas natural materials, such as rocks, include ran-
domness in the processes, which generate these patterns and are better described as statistical fractals.
The fractal nature of a natural material can in part be tested by measurement of a repetitious property of that
material with units of regular shape and different characteristic size, l. If the scaling of the property is fractal,
the number of units of a certain characteristic size N(l), is related to l according to equation (1) such that

N lð Þ∝l�D (2)

and the fractal dimension of the measured property is related to its dimensionality by

N lð ÞlDT∝lDT�D (3)

where DT is the topological dimension of the measuring units (DT = 1, 2, and 3 for a line, surface, or volume,
respectively). The minimum requirements for a natural material to be considered fractal are that it is nowhere
differentiable, able to have a fractal dimension, poses statistical self-similarity, fine or detailed structure at
arbitrary small scales and irregularity locally and globally such that it is not easily described by traditional
Euclidean geometry (Falconer, 2004); the structure of sedimentary rocks is generally accepted to satisfy these
criteria, over certain limits of scale. The fractal nature of sedimentary grains, pores, and grain surfaces arises
from a variety of processes related to sedimentary transport, sorting, weathering, mineral dissolution, and
crystal growth. For example, the porosity of clay rich rocks is fractal in part as a result of the nature of the
growth kinetics of coalesced fractal aggregates during the flocculation of mineral particles during sedimen-
tation (Meakin, 1991; Sterling Jr et al., 2005).

These different fractal dimensions can be used to characterize the geometry of a porous medium in relation
to transport processes (Ghanbarian et al., 2017; Yang et al., 2014; Zhang et al., 2017). Data to compute fractal
dimensions can be obtained from various techniques, for example, 2-D optical microscopy or 3-D fluid intru-
sion data such as N2 or CO2 low-pressure sorption, or from nondestructive particle-scanning methods, such
as small-angle scattering using neutrons or X-rays. The small pore sizes of mudrocks generally limit imaging
of the pore networks to high-resolution techniques such as X-ray tomography (Backeberg et al., 2017) or
Focused Ion Beam Scanning Electron Microscopy (Keller et al.,2013). Small-angle neutron scattering (SANS)
techniques afford the opportunity to study the pore structure of mudrocks using a technique that allows
rapid measurement of porosity, pore size distribution, pore surface areas, and the fractal dimensions of the
material in a single measurement (Radlinski & Hinde, 2002).

Laboratory measurements of pore structure are typically conducted at the core plug or thin section scale
(centimeters to tens of centimeters), whereas transport at the field scale integrates properties and processes
over greater distances (meters to kilometers). The transport properties that govern effective diffusion rates
are pore network tortuosity and porosity. Laboratory measurements integrate small-scale heterogeneities
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(i.e., at the scale of laminae or sedimentary structures). Suchmeasurements are generally thought to be repre-
sentative of matrix transport properties at large scales because these properties typically converge (i.e., reach
uniformity) over scales of a few centimeters, as has been shown for soils (Anderson et al., 2000; Crawford
et al., 1993; Crawford & Matsui, 1996). Larger-scale heterogeneities (i.e., at the bedding or unit scale) are
not integrated by the laboratory measurements but are also generally demarked by sharp and/or contrasting
properties (i.e., changes in facies), which can be characterized with discrete measurements, and the effects
integrated via numerical simulations (Cui et al., 2009). Field-scale diffusive transport in low-permeability rocks
may be scale dependent, but this is thought to be a result of fine fracture networks that lead to scale-
dependent transport properties as a result of the hierarchical nature of fracture networks and an increase
in the fracture-matrix interface with scale (Liu et al., 2007).

In this study, we compare a compilation of matrix effective diffusion coefficients for different solutes (CO2, H2,
CH4, and HTO) with a fractal model developed by Liu and coworkers (Liu et al., 2004; Liu & Nie, 2001). Data
used originate partly from published literature and partly from new data presented here. We show that
the effective diffusion coefficients can be successfully predicted based on measurements of the surface
and volume fractal of the pore network using SANS, providing a newmethod to recover the transport proper-
ties of low-permeability rocks.

2. Samples

We study three sample sets from different locations, depositional environment, and age. Mineralogical and
petrophysical data are provided in Table 1, an overview on the origin of the experimental diffusion and
SANS data in Table 2. Quantitative mineralogical composition was analyzed by means of powder X-ray dif-
fraction. Mineralogical compositions were quantified by Rietveld refinement (Ufer et al., 2008). Cation-
exchange capacities of bulk materials were determined using the Cu-triethylenetetramine complex (Cu-
Trien) method (Stanjek & Künkel, 2016). Full details on both methods have been published previously
(Seemann et al., 2017; Zeelmaekers et al., 2015).

Generally, mechanical unloading of the samples after coring and sample dehydration is considered irrelevant
in this specific study that addresses the pore space of relatively small samples.

2.1. Opalinus Shale

Opalinus Shale samples were obtained from the shaly facies of the Opalinus Clay formation at the Mont Terri
underground rock laboratory, St. Ursanne, Switzerland. The Opalinus Clay was deposited in the Aalenain
(Dogger-α, ca. 174 Ma) in a shallow marine setting of an epicontinental sea at water depths of around 10–
30 m and is high in clay content (~65%), containing mainly illite and kaolinite. In Mont Terri, samples are cur-
rently at a depth of 230 m but underwent a maximum burial of about 1,350 m (Bossart & Thury, 2008). From
an ~2-m core section, ~1-cm disks were cut in 10-cm intervals. From these disks, samples for neutron scatter-
ing measurements have been prepared for this study and other petrophysical properties and mineralogy
have been published previously (Busch et al., 2017).

2.2. Carmel Claystone

This sample was obtained from a scientific drilling campaign near Green River, Utah. The geological setting
and depositional environment has been described previously (Kampman et al., 2013, 2014, 2016). The
Carmel Formation is a 50-m-thick sequence of complex, laterally gradational lithofacies, comprising inter-
bedded red and gray shale and bedded gypsum, red and gray mudstone/siltstone, and fine-grained sand-
stone. These are interpreted as Mid-Jurassic marine sediments deposited in quiet, subtidal conditions
under the influence of periodic hypersaline water and form a regional seal (Blakey et al., 1996). For the diffu-
sion experiments using CO2 as a solute we used a plug drilled from a depth of 180.7 m, which mainly consists
of illite as the only clay type (36%), calcite (22%), quartz (20%), and minor fractions of K-feldspar, dolomite,
and hematite.

2.3. Boom Clay

The Boom Clay samples were taken from the ON-Mol1 borehole, drilled in 1997, near Mol, Belgium (Jacops
et al., 2017). Since their retrieval in 1997, the cores have been stored under anoxic conditions at 4 °C. More
specifically, samples were sealed in PVC tubes and packed in aluminium-coated PE foil under vacuum. In
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total, five samples have been used for the neutron measurements and compared to experimentally derived
values from the same samples (Jacops et al., 2017). The Boom Clay is a marine sediment, which was deposited
in the early Oligocene (Rupelian) at water depths between 50 and 100m, under reducing conditions. Samples
were recovered from a depth of 168 to 246 m (Jacops et al., 2017), while maximum burial depth was slightly
deeper of about 30m (Beerten et al., 2013). It consists of different lithological subunits; specifically, a rhythmic
alteration of silty and more clay-rich layers has been observed, as well as organic-rich and carbonate-rich
layers. Based on these lithological variations, the Boom Clay has been subdivided in four members: the
Boeretang Member, the Putte Member, the Terhagen Member, and the Belsele-Waas Member. Samples
used in this study originate from the Putte and Boeretang Members and are classified as clayey (K2, K9,
and K4) and silty (K10 and K11). Diffusion experiments were performed perpendicular to the bedding,
except for sample K4, which was oriented parallel to the bedding. The mineralogy is dominated by quartz
and illite/smectite, with minor fractions of muscovite, kaolinite, and K-feldspar. Total clay content varies
between 53% and 65%.

3. Methods
3.1. Diffusion Measurements on Sample Plugs

Diffusion coefficients for Opalinus Shale and Boom Clay are taken from the literature. Opalinus Shale samples
used previously were not identical to the ones used in the neutron scattering experiments but are from the
same (shaly) facies. BoomClay samples used for diffusion and neutron scattering tests originate from the same
material and are directly comparable. A new set of diffusion experiments was performed on the Carmel
Claystone andwill be presented and discussed in a later section. All diffusion tests are comparable in the sense
that samples used are of similar size and from shallow depths of a few hundred meters. The formation tem-
peratures are ~20 °C, and pore water salinity is below seawater for all samples. A variety of different diffusing
species have been used in the experiments, including different gases (CO2, CH4, and He) and tritiated water
(HTO). The experimental design also varies; however, the overarching principle of such tests of establishing
a zero pressure gradient and only a concentration gradient for the diffusing species is given.
3.1.1. Opalinus Shale
Diffusion coefficients based on the (V) SANS data have been obtained from plugs cut parallel to bedding.
Experimental diffusion measurements have been summarized previously and are mainly based on a study
by van Loon (Van Loon et al., 2003). For these experiments, a radial diffusion approach was chosen, where
the water-saturated sample plug (d = 25.4 mm, l = 11 mm) is placed between porous stainless steel plates
in a triaxial cell. Diffusion experiments are performed using the so-called Pearson water with a salinity of
~9.4 g/L (Pearson et al., 2003). The samples were water saturated over several weeks using artificial formation
waters. After saturation, circulating fluids were exchanged with fluids containing a tracer (HTO, 36Cl� and
125I�), of which HTO is of interest for comparison with our model. In addition, different confining pressures
have been applied (1 and 5MPa) to test the effect of sample compressibility. The solute is introduced through
a central hole (d = 6.7 mm). These are steady state experiments that directly determine the effective
diffusion coefficient.
3.1.2. Boom Clay
Diffusion coefficients on Boom Clay samples were used from Jacops et al. (Jacops et al., 2017). The basis is the
double through-diffusion technique for dissolved gases, in which two water reservoirs with dissolved gases
are placed on opposite sides of a saturated test core (d = 80 mm, l = 30 mm). The Boom Clay core was sealed
in a stainless steel diffusion cell (constant volume), but no additional confining pressure was applied. It was

Table 2
Overview of Samples and Measurements and Origin of Data

Sample Diffusion experiments SANS experiments

Opalinus Shale Literature data
(Pearson et al., 2003)

Literature data by the same authors on different samples
than diffusion data (Busch et al., 2017)

Boom Clay Literature data
(Jacops et al., 2017)

This study on the same samples used for diffusion experiments

Carmel Claystone This study This study on the same samples used for diffusion experiments
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then connected via stainless steel filter plates to two water vessels containing oxygen-free synthetic pore
water and 0.014 mol/L NaHCO3 (salinity of 1.18 g/L) in order to mimic the composition of the Boom Clay
pore water (De Craen et al., 2004). Both water vessels were pressurized, each with a different gas at the
same total pressure (circa 500 ml gas at 1 MPa). In this way, no advective flux could occur and the clay
sample remained fully water saturated. The waters at both sides were then circulated over the filters,
which were in contact with the clay core, allowing the dissolved gases to diffuse through the clay core,
toward the reservoir on the opposing side. The changes in gas composition in both reservoirs were
measured as a function of time by gas chromatography. More information on the modeling of the gas and
HTO diffusion experiments can be found in (Jacops et al., 2017).
3.1.3. Carmel Claystone
A CO2 diffusion experiment was performed at the Transport Properties Research Laboratory, British
Geological Survey. The basic permeameter (Figure 1) consists of five main components: (1) a sample assem-
bly, (2) a 15-MPa rated pressure vessel and associated confining pressure system, (3) a fluid injection system,
(4) a backpressure system, and (5) a PC-based data acquisition system. A large volume accumulator was
placed at the downstream end of the system to maintain a fixed concentration gradient (Figure 1a) and
placed on a magnetic stirring plate to promote mixing of the back-pressuring fluid, reducing the potential
for solution gradients as the gas diffused into the downstream accumulator. To ensure that the apparatus
performed as required, the system was modeled using existing data from Busch et al. (2008). This analysis
was used to define the volume of the downstream accumulator.

Figure 1. (a) Schematic showing configuration of apparatus. (b) Photo of diffusion cell assembly containing the Carmel
sample. The red arrow marked on the sample denotes the direction of gas diffusion.
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The sample was sandwiched between two stainless steel end caps and
jacketed in heat-shrink Teflon to exclude the confining fluid. The inlet
and outlet zones for gas/water flow contained porous filter discs matched
to the diameter of the sample. These acted as either source or sink for the
injection of test permeants. Large diameter tubing (6.35-mm outer dia-
meter) was used to connect inlet and outlet filters to their respective
test systems.

To limit osmotic swelling of the specimen, a synthetic pore water solution
was prepared for use as the back-pressuring fluid. Details of the hydro-
chemistry of the interstitial fluid were provided by Cambridge University,
based on the in situ fluid sample DFS001 in contact with the caprock
(Kampman et al., 2014). A stock solution with the following composition
was used as the test fluid in all hydraulic and consolidation test stages:
Ca2+ (25.31 mmol�1); Mg2+ (10.54 ᶰmol�1); Na+ (52.58 mmol�1); K+

(5.17 mmol�1); SO4
2� (16.57 mmol�1); Cl (33.60 mmol�1); SiO

2+ (288.33 mol�1); Sr
2 (119.70 mol�1); Fe2+

(0.27 mol�1); Mn2+ (103.84 mol�1), Li+ (0.07 mol�1); B+ (0.10 mmol�1); Al3+ (1.60 mol�1); total salinity
~5 g/L; alkalinity 50.62 mEql�1; pH (in situ) 5.30.

Prior to measuring the diffusion coefficient, the core was equilibrated under in situ conditions of effective
stress to ensure that the sample was fully saturated and in equilibrium with the prevailing stress state. To
measure the diffusion coefficient, CO2 gas was placed in a reservoir connected to a second pump and
allowed to equilibrate with the injection fluid prior to testing (Figure 1a). This ensured that the system was
both leak tight and the pump fluids fully saturated with CO2 prior to testing. Once complete, the injection
pump was connected to the sample, and the intervening pore water flushed from the tube work to leave
CO2 in contact with the injection face of the sample. Pressure in each test circuit was maintained at a con-
stant, zero differential pressure across the specimen. Fluxes in and out of the system were monitored over
time to allow definition of the steady state diffusion coefficient. The key operational and sample properties
are listed in Table 3.

Data in Figure 2 show cumulative CO2 inflow for the Carmel test sample. The rate of transfer of CO2 through
the sample can be obtained from the slope of the cumulative flux response. According to Fick’s law, the rate
of transfer is given by

Rate
mol
s

� �
¼ ADeΔc

L
(4)

where A is the sample area (m2), De is the effective diffusion coefficient (m2/s), Δc is the difference in CO2 con-
centration across the sample (mol/m3), and L is the sample length (m). The rate is obtained from the volu-

metric flow rate by reducing to standard pressure and temperature
conditions and dividing by the volume of 1 mole of gas at STP (22.4 L).

The concentration Δc of CO2 in the upstream reservoir is given by Henry’s
law with the Henry coefficient for CO2 being 34 mol · m�3 · atm�1. Since
the sample area and length are known, De for the Carmel sample was cal-
culated to be 6.3E�11 ± 0.32E�11 m2/s.

3.2. Small-Angle and Very Small Angle Neutron Scattering

Combining small-angle (SANS) and very small angle (VSANS) neutron scat-
tering provides nondestructive information on the pore space of
micrometer- to nanometer-sized pore systems, such as in mudrocks. It
has the advantage that the method requires relatively small sample
volumes, in our case about 20 × 20 × 0.2 mm, which is a volume that is still
considered to be representative for mudrocks when considering porosity
or pore size characteristics, so a volume that is considerably larger than
the representative elementary volume of mudrocks (up to lower

Table 3
Sample Depth, Orientation, Stress Conditions, and Geotechnical Properties

Formation Unit Carmel

Depth m 180.4–180.9
Orientation Perpendicular to bedding
Injection pressure MPa 2.0
Backpressure MPa 2.0
Confining pressure MPa 4.9
Moisture content % 2.2
Dry density g/cm3 2.58
Bulk density g/cm3 2.63

Note. The parameters given should be considered as estimates because of
the sensitivity of the calculated values to the very low porosity and moist-
ure content of these materials.

Figure 2. Cumulative CO2 flow into Carmel sample under steady state
conditions.
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micrometer range; Ma et al., 2017). A larger thickness might cause secondary scattering; a smaller thickness
would lead to longer measurement times to obtain the same statistics in terms of total scatterers. Larger
thicknesses might, however, be suitable for samples with a smaller pore density. The method provides infor-
mation on fluid accessible and fluid nonaccessible pores; these can be differentiated by filling the pore space
with deuterated water or deuterated methane and comparing with the air-filled measurement. Neutron scat-
tering data provide important information on porosity, specific surface area, and pore size distribution, and
depending on the instrument and instrument setting used, the pore size range can vary from 5 Å to
100 μm (Busch et al., 2017; Melnichenko, 2015). Despite the valuable data and information that can be gath-
ered from such measurements, access to nuclear research facilities is limited to a few places worldwide only.
This prohibits broad access to neutron scattering data and a comparison of statistically relevant datasets.

SANS experiments on Boom Clay were carried out using the General Purpose SANS (GP-SANS) instrument at
Oak Ridge National Lab’s High Flux Isotope Reactor facility, USA; SANS measurements on Carmel and
Opalinus Shale samples were conducted at the KWS-1 instrument (Feoktystov et al., 2015; Frielinghaus
et al., 2015) operated by the Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum in
Garching, Germany. All VSANS measurements were conducted at the KWS-3 instrument at JCNS (Pipich &
Zhendong, 2015). Results for Opalinus Shale have been reported earlier (Busch et al., 2017). With the excep-
tion of one Boom Clay sample (K4), all samples were cut parallel to bedding, fixed on quartz glass carriers, and
polished to a thickness of about 200 m. Samples were dried at room temperature, and measurements were
performed under ambient pressure and temperature conditions.

In (V) SANS, a collimated neutron beam is elastically scattered by the sample (Guinier & Fournet, 1955;
Radlinski, 2006). Position-sensitive detectors measure the scattering intensity I (Q) as a function of the scatter-
ing angle, which is defined as the angular deviation from the incident beam. The momentum transfer Q (Å�1)
is related to the scattering angle θ by Q = (4π/λ) sin (θ/2), where λ is the wavelength of the neutron beam.
Thus, the size range of features accessible with neutron scattering depends on the neutron wavelength λ
and the collected range of the scattering angle θ.

SANS data at KWS-1 (JCNS) were collected at a wavelength of λ of 6 Å. Measurements were performed at
sample-to-detector distances of 1.2, 7.7, and 19.7 m, covering a Q-range of 0.002–0.35 Å�1. The detector
was a 6Li glass scintillation detector with an active area of 60 × 60 cm2. SANS data at GP-SANS (Oak Ridge
National Lab) were measured at sample to detector distances of 1, 8, and 20 m. A neutron wavelength of
4.75 Å was selected for the short and medium distance, while 12-Å neutrons were used for measurements
at the long sample-to-detector distance. These combined measurements cover a Q-range between 0.0008
and 0.8 Å�1. Data at KWS-3 were collected at λ = 12.8 Å, Δλ/λ = 0.16, and a sample-to-detector distance of
9.5 m, covering a Q-range from 0.0024 to 0.00016 Å�1. A 6Li scintillation detector was used with a detector
diameter of 9 cm. Hence, pore radii for the combined SANS and VSANS measurements range between
r ≈ π/Q = 3 Å and 1.5 μm. The data were corrected for background and empty slide scattering, detector pixel
efficiency, and solid angle and normalized to transmission. Scattering was isotropic for all samples, and inten-
sities were radially averaged to produce I (Q) versus Q curves. The lower pore sizes were cut off at Q = 0.2 Å�1

or r ~ 12.5 Å during background subtraction to remove analytical artifacts arising from ordered stacking of
clay minerals and errors from background values due to possible incoherent scattering on hydrogen atoms,
which become significant at high Q.

The data processing and evaluation were carried out using the PRINSAS software (Hinde, 2004). The sensitiv-
ity to various input parameters and boundary conditions has been tested. Specific surface area and pore size
distribution have been calculated for the entire sample set. In a first step, SANS data were entered into
PRINSAS and displayed as I versus Q curves. Within the Porod limit, the curves are expected to be linear
(on a log-log scale). Deviations from this linearity toward higher Q values indicate incoherent scattering back-
ground or presence of pores smaller than the cutoff range. A built-in routine can be used to determine the
background by calculating the deviation of the last defined data point (set Q range) from the regression of
the linear part of the curve. Background-corrected SANS data were merged with VSANS data by matching
VSANS range intensities to the corresponding SANS data in the overlap region (Hinde, 2004). The PRINSAS
model assumes spherical pore geometries, which is a simplification of the real geometries. Pores can be sphe-
rical, slit-shaped, or ellipsoidal or have more complex geometries, as has been shown in previous studies
(Desbois et al., 2009; Leu et al., 2016; Loucks et al., 2009). We have used the spherical model in a previous
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study on Opalinus Shale and demonstrated that porosity calculations originating from this approach match
porosity determinations using Helium pycnometry or water porosimetry (Busch et al., 2017). Furthermore,
using a different approach (e.g., ellipsoid pores) would not have an impact on the fractal dimension or the
slope of the scattering intensity versus pore radius and we are therefore confident that the approach used
in this study is suitable. Details on the calculation steps to obtain pore volume, specific surface area, and pore
size distribution have been described previously (Busch et al., 2017; Kampman et al., 2016).

4. Fractal Model for the Prediction of Effective Diffusion Coefficients From
Scattering Data

The surface fractal dimensionDsmeasures the roughness or tortuosity τ of a line or plane. A line embedded in
a plane results in values for Ds between 1 (topological dimension of a straight line; τ = 1) and 2 (topological
dimension of a plane) and can be as high as 3 when embedded in a volume. In relation to the pore system of
sedimentary rocks, Ds increases with any irregularity introduced at the solid/pore interface, and especially
when these irregularities occur at increasingly fine scales (Mandelbrot, 1982). In the past, various studies have
examined surface fractal dimensions in soils and its relationship to the tortuosity of pore networks or
fractures (Ahl & Niemeyer, 1989; Young & Crawford, 1992). The volume (or mass) fractal dimension Dv in
sedimentary rocks describes the heterogeneity and spatial occupation of pore volumes in a 3-D object.
Volume fractals are directly related to the mass fractals, that is, the space within the object not filled by pores,
but by mineral grains. The value of Dv is always<3 since it needs to be smaller than the embedding volume,
which has a dimensionality of 3 (Anderson et al., 1996).

The fractal model used here is based on a scaling law developed previously (Gimenez et al., 1997; Liu et al.,
2004; Liu & Nie, 2001), utilizing Archie’s law for its derivation. The model relates the pore surface fractal
dimension to the effective mean path length of a diffusing particle and the grain volume fractal to the
effective porosity along the diffusing path. Since these parameters are accessible with small-angle scattering
measurements, the model affords a method for relating the transport properties to SANS measurements.

The effective diffusion coefficient is directly related to the geometric factor G and the effective porosity ϕe by

De ¼ Daqϕe

G
; (5)

with Daq the aqueous diffusion coefficient. Since the experiments involved in this study use fully water or gas
saturated experiments, the effective porosity equals the total porosity φtot. Although the geometric factor is a
fitting parameter, it is often written as

G¼ τ
δ

(6)

with the tortuosity τ [�] defined as the square of the ratio of the effective mean path length le of a diffusing
particle to the linear distance l between beginning and end of the path (Epstein, 1989; Grathwohl, 1998):

τ ¼ le
l

� �2

(7)

and constrictivity δ [�], which accounts for the reduction of the effective diffusion coefficient due to drag at
the pore walls. It depends on the ratio of the solute diameter to the pore diameter (Grathwohl, 1998). It is
assumed here that the constrictivity term equals one because the pore sizes probed are significantly larger
than the molecule diameters of the gas species analyzed. This leads to

Deff ¼ ϕe
Daq

τ
(8)

According to Archie’s law (Archie, 1942)

Deff ¼ Daqϕe
m (9)

wherem [�] is the cementation factor. The applicability of Archie’s law tomodel diffusion has been described
in Van Loon and Mibus (2015). Comparison of (8) and (9) leads to a relationship between tortuosity and
porosity:
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τ ¼ ϕe
1�m (10)

The porosity follows from the scaling relationship between pore size and the grain volume fractal dimension
as (Katz & Thompson, 1985):

ϕe ¼
l1
l2

� �3�Dv

(11)

where l1 is the lower limit of the self-similar region, l2 the upper limit, and Dv the fractal dimension of the pore
solid interface. The upper limit l2 is defined as the largest pore or grain and the lower cutoff as the smallest
building block (e.g., an atom or molecule), that is, the smallest measurable pore. In our case, l2 is the largest
measurable pore size (3 μm) and l1 the limit where the SANS curve is cut off to eliminate artifacts from inco-
herent scattering (12.5 Å). Expression (12) can be rewritten as

l2
l1
¼ ϕe

� 1
3�Dv (12)

According to Liu et al. (2004),

l ¼ l2
l1

� �2

(13)

and

le ¼ l2
l1

� �Ds

(14)

where Ds is the surface fractal dimension. Substituting expressions (13) and (14) in expression (7) gives

τ ¼ le
l

� �2

¼ l2
l1

� �2 Ds�4

(15)

Combining expressions (12) and (15) leads to

τ ¼ ϕe

2 2�Dsð Þ
3�Dv (16)

and considering expression (10)

m ¼ 1þ 2 Ds � 2ð Þ
3� Dv

(17)

5. Results and Discussion

The surface fractal dimension Ds can be obtained directly from the log-log plot of scattering intensity (I (Q))
versus momentum transfer (Q), which is he exponent C in the power law fit. The volume fractal dimension
is derived from a pore frequency distribution f (r) versus pore radius plot (Figure 3); see, for example, Hinde
(2004) for further details on the pore frequency distribution. The power law exponent in the I-Q curve
typically has a value close to 3 but ranges from 3 < C < 4. In a polydisperse system, Ds = C � 1 (Cherny
et al., 2017; Martin, 1986). All fractal dimensions, as well as the scaling exponent m derived from
SANS/VSANS data, are summarized in Table 4. Figure 4 shows a comparison for surface and volume fractal
dimensions for the samples studied here and values provided by Liu et al. (2004). Note that Ds values
generally decrease with an increase in Dv and show a similar behavior to those summarized previously
(Liu et al., 2004).

The fractal dimensions are used to calculate the exponent m (equation (17)), providing values between 2.16
and 2.60 for Boom Clay, 2.04 for the Carmel sample, and 2.29–3.13 for the Opalinus Shale samples (Table 2).
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Calculation of effective diffusion coefficients from this exponent to compare with experimental values
requires knowledge of total porosity. For Carmel and Opalinus samples we used the porosity values
obtained from (V) SANS data in earlier work (Busch et al., 2017; Kampman et al., 2016). The same approach
to determine porosity for Boom Clay samples from scattering data was used in this study, resulting in
porosity values between 13 and 30%. These porosities are lower than those reported in the literature,
which range between 34 and 40% on the same samples. The reason for this difference is that Boom Clay
holds quite significant amounts of porosity in pore sizes >1 μm (Hemes et al., 2015). This is not the case
for Opalinus Shale as has been discussed earlier (Busch et al., 2017), and no reference values are available
for the Carmel sample. These porosity differences are taken into consideration when presenting the
comparison data between calculated and measured diffusion values below. Diffusive transport in clay
interlayers is also neglected (e.g., Appelo et al., 2010). Aqueous diffusion coefficients of the different
species were calculated following available models (Boudreau, 1997).

Comparison of the fractal-based diffusion coefficients with experimentally determined De in Figure 5 and
Table 5 reveals a good agreement between the two values. All values are tabulated in Figure 5. All deviations
are smaller than factor 5 for De values varying over 1.5 orders of magnitude. Note that no difference in match-
ing the experimental values exists for samples cut parallel compared to perpendicular to bedding. All neutron
scattering measurements were performed on samples cut parallel to bedding, that is, when the neutron
beam hits the samples perpendicular to bedding. In plug-scale laboratory experiments, diffusive transport

perpendicular to bedding reflects a harmonic averaging of effective dif-
fusivities of individual laminae, whereas the neutron scattering measure-
ments more closely approximate a volume weighted average. This may
be a source of the small systematic difference between parallel versus
perpendicular samples.

For Boom Clay samples, different diffusion coefficients were measured for
different gas species, as well as different subsamples. Figure 5 shows that
the modeled diffusion coefficients slightly underpredict the measured
values when using porosities from SANS and slightly overpredict the
measured values when using porosities provided by Jacops et al.
(2017). For these samples, differences between diffusion coefficients
measured perpendicular and parallel to bedding are similar, and the dif-
fusing species has a larger control on the difference between measured
and fractal model-derived De values. We speculate that the low aniso-
tropy of Boom Clay results from its immaturity and the limited level of
compaction and diagenesis. If there is a larger discrepancy for other
types of mudrocks, maybe those that experience a higher degree of
compaction remain to be tested. As a consequence, anisotropy is rela-
tively small when comparing diffusion between parallel and perpendicu-
lar to bedding. Additionally, the diffusing species has a small, yet obvious
impact on the quality of the reproducibility of the experimental data

Figure 3. Log-log plots of the background-subtracted I-Q curves of (left) the combined SANS and VSANS data and (right)
pore frequency distribution versus pore radius for Carmel, Opalinus, and BoomClay samples. The slope of the curves is used
to calculate the pore surface Ds and the pore volume Dv fractals and is ~3 for all samples.

Table 4
Surface and Volume Fractals Used for the Calculation of Effective Diffusion
Coefficients and Tortuosity

Sample orientation to bedding Ds Dv m

Boom Clay
K2 || 2.141 2.824 2.602
K9 || 2.133 2.743 2.035
K10 || 2.216 2.643 2.210
K11 || 2.192 2.672 2.171
K4 ∟ 2.135 2.768 2.164
Carmel Claystone
Carmel || 2.142 2.728 2.044
Opalinus Shale
CCP1 || 2.173 2.817 2.891
CCP4 || 2.214 2.752 2.726
CCP5 || 2.257 2.681 2.612
CCP6 || 2.159 2.808 2.656
CCP7 || 2.146 2.862 3.116
CCP9 || 2.047 2.927 2.287
CCP12 || 2.114 2.893 3.131
CCP14 || 2.200 2.811 3.116
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using the fractal model. While the fit for CH4 is marginally better than for
HTO and H2, the difference is small and the fit is markedly good for all
species.

The Carmel sample shows slightly lower modeled versus measured
effective diffusivity. The difference might be caused by a small
underestimation of porosity, but we lack a large number of reference
values due to the limited availability of the sample material.

For Opalinus Shale, measured De and fractal-based diffusivity show good
agreement, although the fractal-based diffusivity has marginally higher
values. Very good agreement of SANS-derived porosities with values
obtained from other methods (such as helium pycnometry or water poro-
simetry) was found. It should be noted here that for Opalinus Shale a sig-
nificant anisotropy has been determined for samples cut parallel
compared to perpendicular to bedding (Van Loon et al., 2004). In this study
we only compared with the parallel to bedding samples. This anisotropy
can be more than 1 order of magnitude, demonstrating that orientation

is important and sample orientation should be chosen with great care when selecting samples for SANS mea-
surements. Since laboratory measurements of heterogeneous samples perpendicular to bedding reflect a
harmonic averaging of diffusivity in contrasting layers, while the neutron scattering measurements reflect
a volume weighted average, care should be taken when assessing the applicability of the scattering method
to layer perpendicular measurements.

All laboratory diffusion tests have been performed on sample plugs saturated with aqueous solutions of
different total salinity reflecting the original pore water (~1.18 g/L for Boom Clay, ~5 g/L for Carmel, and
~9.4 g/L for Opalinus). While the formulation we used to estimate bulk aqueous diffusion coefficients
(Boudreau, 1997), used in the calculation of effective diffusivities, is independent of salinity, there is some
experimental evidence that suggests that this may not be the case and that bulk aqueous CO2 diffusion
coefficients might, for instance, decrease by a factor 1.7 when increasing the salinity from 0 to 350 g/L
NaCl (Belgodere et al., 2015). The maximum salinity used in this study is, however, 9.4 g/L, which would
result in a decrease in aqueous diffusion coefficient that is marginal, and this effect can therefore
be neglected.

Figure 4. Ds versusDv values for the three data sets investigated in this study
and compared to values provided by Liu et al. (2004) for clayey soils.

Figure 5. Measured versus modeled effective diffusion coefficients for the three different sample sets used in this study.
For Boom Clay, the large symbols relate to calculated diffusion coefficients based on SANS porosity, the small symbols
to those using porosities from Jacops et al. (2017). Dashed lines represent factors 5 higher or lower than the 1:1 line.
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6. Conclusions

This study provides, for the first time, experimental verification of a fractal diffusion model in mudrocks. This
study demonstrates that the complete pore network characterization, from nanometers to micron scales, can
be performed using small-angle scattering techniques, which provides measurements of the fractal
dimensions, porosities, surface areas, etc., even for samples with very low porosities.

Effective diffusion coefficients were calculated from SANS pore network characterization using a fractal
model (Liu et al., 2004). Verification of the model is obtained by comparison to experimental measurements,
using the same samples (Carmel and Boom Clay) or samples from the same location and sedimentary facies
(Opalinus Shale).

The agreement between measured and modeled De values for samples cut parallel to bedding is good, with
deviations between the two techniques being generally less than factor 5. For samples cut perpendicular to
bedding a systematic offset in the agreement between measured and modeled data is observed, meaning
that all measured data have higher De than the corresponding calculated data. We posit that this is because
in plug-scale laboratory measurements, diffusive transport perpendicular to bedding reflects a harmonic
averaging of effective diffusivities of individual laminae (layers of different mineralogy and pore size
distribution), weighting layers with the lowest effective diffusivities, whereas the neutron scattering
measurements more closely approximate a volume-weighted average. In general, diffusion is more rapid
parallel rather than perpendicular to bedding due to anisotropy in pore connectivity and the high sensitivity
of layer-perpendicular diffusion to layers with low effective diffusivity.

We conclude that laboratory diffusion measurements are the most reliable method to obtain effective diffusion
coefficients for low-permeability rocks. However, small-angle neutron scattering measurements provide a

Table 5
Summary of Diffusion Coefficients Calculated Using the Fractal Model and Experimentally Obtained on Plug Samples

Fractal model Experimental

Solute Daq (m2/s) Φ (�) τ De (m
2/s) De (m

2/s)

Boom Clay
K2 He 7.3E�09 0.30 6.9574 3.1E�10 4.7E�10
K9 He 7.3E�09 0.17 6.0847 2.1E�10 4.5E�10
K10 He 7.3E�09 0.20 7.1278 2.0E�10 5.0E�10
K11 He 7.3E�09 0.24 5.2420 3.4E�10 5.1E�10
K4 He 7.3E�09 0.27 4.6295 4.2E�10 7.5E�10
K2 CH4 1.8E�09 0.30 6.9574 7.9E�11 9.7E�11
K9 CH4 1.8E�09 0.17 6.0847 5.3E�11 8.8E�11
K10 CH4 1.8E�09 0.20 7.1278 5.1E�11 1.1E�10
K11 CH4 1.8E�09 0.24 5.2420 8.5E�11 8.4E�11
K4 CH4 1.8E�09 0.27 4.6295 1.1E�10 1.6E�10
K2 HTO 1.6E�09 0.30 6.9574 6.9E�11 1.8E�10
K9 HTO 1.6E�09 0.17 6.0847 4.6E�11 1.6E�10
K10 HTO 1.6E�09 0.20 7.1278 4.4E�11 2.1E�10
K11 HTO 1.6E�09 0.24 5.2420 7.4E�11 1.8E�10
K4 HTO 1.6E�09 0.27 4.6295 9.3E�11 2.5E�10
Carmel Claystone
Carmel CO2 2.45E�09 0.13 8.71 3.5E�11 6.3E�11
Opalinus Shale
CCP1 HTO 1.60E�09 0.23 16.4753 2.2E�11 5.4E�11
CCP4 HTO 1.60E�09 0.20 15.6732 2.1E�11 5.4E�11
CCP5 HTO 1.60E�09 0.25 9.4208 4.2E�11 5.4E�11
CCP6 HTO 1.60E�09 0.19 15.0950 2.1E�11 5.4E�11
CCP7 HTO 1.60E�09 0.27 16.0750 2.7E�11 5.4E�11
CCP9 HTO 1.60E�09 0.20 8.0759 3.9E�11 5.4E�11
CCP12 HTO 1.60E�09 0.25 19.8377 2.0E�11 5.4E�11
CCP14 HTO 1.60E�09 0.27 16.5682 2.6E�11 5.4E�11

Note. Experimental Boom Clay values from Jacops et al. (2017), Opalinus Shale values from Pearson et al. (2003), and
Carmel value from this study.
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reliable method to retrieve not only effective diffusion coefficients but also simultaneously a suit of parameters
(porosity, pore surface areas, and pore size distributions) important for (reactive) transport modeling. The tech-
nique enables measurements at different scales and orientations, thus allowing the relationship of these trans-
port properties to other rock properties, such asmineralogy ormechanical properties, to be investigated further.
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