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Abstract The Panama Basin serves as a laboratory to investigate abyssal water upwelling. The basin has
only a single abyssal water inflow pathway through the narrow Ecuador Trench. The estimated critical inflow
through the Trench reaches 0.34 ± 0.07 m/s, resulting in an abyssal water volume inflow of 0.29 ± 0.07 Sv.
The same trench carries the return flow of basin waters that starts just 200 m above the bottom and is
approximately 400-m deeper than the depth of the next possible deep water exchange pathway at the
Carnegie Ridge Saddle. The curvature of temperature-salinity diagrams is used to differentiate the effect of
geothermal heating on the deep Panama Basin waters that was found to reach as high as 2,200-m depth,
which is about 500 m above the upper boundary of the abyssal water layer.

1. Introduction

The contribution of geothermal heating to global abyssal water transformation is currently highly debated,
and estimates range from insignificant to over 30% (Adcroft et al., 2001; de Lavergne et al., 2016; Emile-Geay
& Madec, 2009; Hofmann & Morales Maqueda, 2009). In addition, the thermodynamic effect of the geother-
mal heating on bottom waters is predicted by models to be significant, exceeding 0.1 ∘C (Downes et al., 2016).
In observational studies, the geothermal heating signature on abyssal water hydrography is clearly demon-
strated for waters over hydrothermal plumes, the hot springs with source temperatures of several hundred
degrees, discharged from the oceanic crust (e.g., Baker & Massoth, 1987; Murton et al., 2006). Over plumes, a
temperature-salinity (TS) anomaly can extend several hundreds of meters above the bottom. However, away
from active hydrothermal vents, it is often difficult to attribute enhancement of bottom temperatures to weak
geothermal heating. As a result, the geothermal heating effect on the large-scale hydrography of ocean basins
is poorly documented in observations.

The Panama Basin is a perfect laboratory to investigate the geothermal heating effect on abyssal water
upwelling. It is relatively small, has a single narrow abyssal water inflow passage, the Ecuador Trench about
2,900 m deep, but is completely closed below 2, 300 m from the rest of the tropical Pacific Ocean and is the
site of stronger than average geothermal heating.

In the early 1970s, the Panama Basin was singled out to investigate geothermal heating. Having 24 full
depth profiles, Laird (1971) mapped the basins hydrography, noting the presence of horizontal temperature
gradients in the bottom water, but failed to observe the bottom salinity gradients. As salinity is decreas-
ing with height for abyssal waters in the basin, he argued that increase in bottom temperature with no
observed decrease in bottom salinity is a consequence of strong geothermal heating. In addition, Detrick et al.
(1974) inferred that active spreading ridges in the basin might induce a substantial hydrothermal circulation
from observations of large temperature anomalies just meters above the ridge, even though they found no
anomalies in the range of 50 m to 200 m above the bottom.

Believing that the deep Panama Basin waters can only escape from the basin through the shallow and broad
Carnegie Ridge Saddle located at 86∘W and 2,300-m depth, Detrick et al. (1974) compared the heat advected
out of the basin with the total geothermal heat gain estimate. They raised the hypothesis of geothermal heat-
ing being the driver for abyssal overturning. However, current meter measurements showed no significant
outflow at the Carnegie Ridge Saddle (Lonsdale, 1977). On the contrary, sediment ripple marks downstream of
this passage indicated that deep waters could inflow into the basin, at least occasionally. However, the inflow
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Figure 1. The bathymetry of the Panama Basin. Red dots show locations of conductivity-temperature-depth casts
collected between December 2014 and March 2015, blue diamonds show locations of moored acoustic Doppler current
profilers. Bathymetry contours mark the depths of 2,000 m and 3,000 m. The thick, brown line marks the location of
geothermal heating larger than 500 mW/m2.

must also be weak judging from the current meter evidence (Lonsdale, 1977) and higher silica values inside
the basin than upstream of the Carnegie Ridge Saddle (Tsuchiya & Talley, 1998).

In this study, we investigate the hydrographic evidences for the geothermal heating of deep waters in the
Panama Basin. For this purpose, we analyze the hydrographic data near two deep water exchange passages:
the Ecuador Trench and the Carnegie Ridge Saddle. The inflow estimates are computed using the methodol-
ogy of (Lonsdale, 1977), who lacked salinity measurements, while evidence for deep water inflow through the
Carnegie Ridge Saddle is investigated with the oxygen data (section 3). Positive anomalies of temperature and
salinity, the signatures of geothermal heating, are observed below 2,200 m in the Panama Basin (section 4).

2. Data

All observational data used in this study were collected from December 2014 to March 2015 in the cruises
JC112 on RRS James Cook and SO238 on FS Sonne, as part of the multidisciplinary research project OSCAR
(Oceanographic and Seismic Characterization of heat dissipation and alteration by hydrothermal fluids at
an Axial Ridge), which aims to investigate the coupling of hydrothermal flow between the ocean and the
lithosphere; its impact on the evolution of the oceanic crust and on basin-scale circulation.

During JC112, the western side of the basin was sampled. This is a region of intensive geothermal heat released
by several oceanic spreading ridges (Figure 1). Overall, there were 87 conductivity-temperature-depth (CTD)
casts, all taken down to approximately 5 m above the bottom. SO238 focused on the eastern part of the
basin, which is the region of densest bottom waters with the single abyssal water inflow pathway through
the Ecuador Trench. In total, there were 45 full depth CTD casts in this second cruise. The vertical distributions
of temperature, salinity, and dissolved oxygen down to the bottom were measured with a SBE911plus CTD
system (Sea-Bird Electronics, Inc.). The accuracy of the sensors was 0.001 ∘C, 0.0003 S/m, 1 dB, and 0.1 ml/L
(4.47 μmol/kg) for temperature, conductivity, pressure, and oxygen, respectively. The temperature and salin-
ity in this study are reported as Conservative Temperature and Absolute Salinity as computed using the Gibbs
SeaWater (GSW) Oceanographic Toolbox of TEOS-10 (McDougall & Barker, 2011).
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A 75-kHz upward looking acoustic Doppler current profiler (ADCP) was moored on the crest of the sill of the
Ecuador Trench for 24 hr at a depth of 2,921 m. Another 75-kHz ADCP was moored on the central saddle of
Carnegie Ridge for about 2 months at a depth of 2,300 m (Figure 1).

3. Geography of the Basin
3.1. Topography
The Panama Basin is separated from the rest of the tropical Pacific Ocean by the Cocos Ridge, the Galapagos
Platform, and the Carnegie Ridge (Figure 1). The ridges form a complete barrier below about 2,300 m, except
for the narrow trench near the coast of Ecuador with a sill at 2,930 m. The Carnegie Ridge Saddle, approxi-
mately 2,300-m deep and located at 86∘W, allows deep water exchange with the surrounding tropical Pacific
Ocean. Inside the Panama Basin, two small ridges, Coiba and Malpelo, divide the basin into eastern and west-
ern parts. The Costa Rica, Ecuador, and Galapagos rifts, located on the western part of the Panama Basin,
release geothermal heating as high as 1 W/m2, with the basin average being 220 mW/m2. The geothermal
heatflux in the basin was estimated from the age map of the ocean floor (Müller et al., 1997), as a proxy for
the heat flow using the Stein and Stein (1992) formula, which links the age of the bedrock to the heat flow
through the crust: q(t) = 510t−0.5, where t is crust age in Myr (million years) and q is the heat flow in mW/m2

(milliwatt per square meter).

3.2. Deep Water Exchange Through the Ecuador Trench
The Ecuador Trench was described in detail by Lonsdale (1977) as being terraced with steep fault scarps
that channel deep waters in a zigzag fashion. He estimated the abyssal water inflow rate through the pas-
sage by applying hydraulic critical control theory, but used only temperature data. Here we employ our
high-resolution data to recalculate the inflow parameters for the Ecuador Trench.

Hydraulic theory of rotating and nonrotating flow past topographic constrictions such as dams, weirs, and
channels has been described by Whitehead et al. (1974). For the Ecuador Trench, the maximal transport deriva-
tion for nonrotational flow over a weir can be applied, because the Trench is situated within a degree of the
equator and the internal Rossby radius is much larger than the width of the Trench (about 6 km at 2,700 m
depth). The maximum velocity (v0) of abyssal water inflow then is expressed as

v0 =
√

g′h0,

where

g′ = g(𝛾b − 𝛾u)∕(𝛾b)

is reduced gravity, 𝛾b is neutral density (Jackett & McDougall, 1997) at the bottom of the Trench (or bottom
of the inflow), while 𝛾u marks the top of the inflow at the Trench. Thus, an estimate of maximum velocity of
bottom waters entering the Panama Basin depends on the estimate of density and pressure of the top layer of
the inflow. The OSCAR data set has one profile placed directly at the crest, two casts upstream and two casts
downstream from the crest (Figure 2).

At the crest of the Ecuador Trench, the highest density of the inflow was found to be 𝛾b = 28.016 kg/m3 at the
depth of 3,050 m. The high-resolution ship-based multibeam echo sounder reveals that the shallowest part of
the Ecuador Trench is located at 0.36∘S at a depth of 2,930 m (Figure 3). The CTD profile at this location shows
that the water between 2,200 and 2,680 m is more weakly stratified than the water below. This is the first
indication that there is an outflow of homogenized Panama Basin water through the trench. That the water
at 2,200 m is denser inside the basin than out also supports this assertion. Consequently, we set the upper
boundary of the inflow at 2,680 m with corresponding neutral density 𝛾u = 27.967 ± 0.002 kg/m3 (Figure 2).
Upstream of the sill, the neutral density surface 𝛾u is positioned at the higher depth of 2,510 m.

Thus, the thickness of abyssal inflow at the crest is estimated to be h0 = 2,930 − 2,680 = 250 (m), while
upstream it is: hu = 2,930 − 2,510 = 420 (m). For hydraulically controlled flows the height of the top
of the inflow at the crest (h0) is lower than upstream (hu) by approximately one-third (Whitehead et al.,
1974): the criterion that is observed in our data as well. Taking the ’reduced gravity’ as: g′ = 9.81×
(1,028.016 − 1,027.967)/1,028.016 = 0.47 × 10−3 (m/s2), the maximum inflow velocity is estimated to be:

v0 =
√

0.47 × 10−3 × 250 = 0.34(m/s).
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Figure 2. Stratification profiles at the Ecuador Trench, where a cluster of five stations are situated directly at the crest of
the Trench. Crosses mark the density and depth of the top of the inflow layer directly at the crest (red curve) and
upstream (blue curves). Profiles from the rest of the basin are marked in gray.

In comparison, Lonsdale (1977) found the upper boundary of the inflow to be 60 m shallower, at 2,620 m, with
the upstream depth of the same isotherm extending to 2,500 m (similar to our observation). However, his
estimates of the average depth of the Ecuador Trench is also shallower by about 80 m and taken as 2,850 m.
Using the modern topography data, the critical flow height is recomputed to be 310 m at the crest and 430 m
upstream. Furthermore, due to a lack in salinity measurements, Lonsdale (1977) estimated reduced gravity
to be almost half that observed in our study. With our estimate of g′ and a critical height estimate corrected
for the depth of the Trench, the historical data of Lonsdale (1977) results in a critical flow velocity of 0.39 m/s,
which is larger than his original estimate of 0.25 m/s, but also closer to our estimate of 0.34 m/s. Furthermore,
his current meter measurements yielded the average inflow velocity of 0.33 m/s, which is in a good agreement
with our critical flow estimate.

To get a feeling of the uncertainty of v0 estimated using the hydraulic control method, we set the uncer-
tainty of the total height of the inflow at 100 m. This leads to an uncertainty of 20%, or 0.07 m/s, for v0.

Figure 3. (a) The maximum depth along multiple zonal transects derived from echo sounding data, where gray vertical
lines mark a 3-km distance centered at the crest of the Ecuador Trench. (b) Ensemble of 50 zonal multibeam profiles
within the region bound by the vertical lines shown in (a). Horizontal line marks the depth of the estimated upper
boundary of the abyssal inflow.
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Figure 4. 24 hour velocity measurements by bottom moored ADCP at the crest of the Ecuador Trench: (left)
instantaneous velocities, (right) isobarically averaged velocities.

The cross-section area of the trench at the crest of the sill below 2,680 m is 0.84 ± 0.05 km2 (Figure 3).
The cross-section area uncertainty was computed from 50 multibeam profiles, as shown in Figure 3 (b). The
resulting total inflow of abyssal waters through the Ecuador passage is 0.29 ± 0.07 Sv.

Additional evidence for the deep water inflow and outflow through the Ecuador Trench comes from velocity
measurements of bottom ADCP moored directly at the crest of the trench. The 75-kHz upward looking ADCP
measured currents for 24 hr (Figure 4). The strongest measured northward velocities in the lower 100 m were
above 0.3 m/s. Similar maximum speeds were measured 300 m above the bottom for the southward currents
(outflow). The average velocities during a short measurement period were less than 0.2 m/s for both north-
ward and southward currents. Even though a much longer ADCP deployment period is needed for a more
robust estimate of the flows, the observations reasonably well agree with the velocity estimate derived using
hydraulic control theory.

Finally, support for the outflow through the Ecuador Trench comes also from the TS identity of those waters.
Directly at the crest of the Trench, the TS profiles shift toward higher temperatures in the depth range
between 2,700 m and 2,200 m (marked by black crosses in Figure 5). In other words, in this density range, the
water masses observed directly at the crest resemble waters downstream from the crest. We note that Lons-
dale (1977) also found substantial velocities for this water layer, but did not explicitly state its direction, nor
importance as a route for deep Panama Basin waters to leave the basin.

3.2.1. Inflow Through the Carnegie Ridge Saddle
Above 2,300 m, the topography allows for the first deep water exchange other than through the Ecuador
Trench. The flow through the Carnegie Ridge Saddle from current meters was found to be very weak (Lonsdale,
1977), and only geological evidence suggests the direction of the flow to be into the basin (Lonsdale & Malfait,
1974). We looked at oxygen profiles to search for evidence of the inflow (Figure 6).

The Panama basin, as part of the eastern tropical Pacific Ocean, has a hypoxic zone in the thermocline at about
400-m depth, where oxygen concentrations drop below 2 μmol/kg. Farther down, oxygen concentrations are
gradually increasing. Unlike temperature or salinity, oxygen is a nonconservative tracer as it is consumed by
aerobic respiration; the higher the age of the water mass the less oxygen it contains. Thus, a new source of
deep waters entering the basin, such as an inflow over the Carnegie Ridge, is expected to have an elevated
oxygen concentration when compared with the waters inside the basin.

BANYTE ET AL. 7386
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Figure 5. Temperature-salinity diagram at the inflow region. Shown in gray are all other profiles collected during OSCAR
cruises.

In the vicinity of the Carnegie Ridge, the oxygen concentrations are elevated above the 𝛾27.97 isopycnal
(Figure 6). An especially strong oxygen signal is observed in the density range 𝛾 = [27.96 27.95] kg/m3,
corresponding to the depth range of 2,300–2,600 m. However, just 100 km away from the ridge, the oxy-
gen concentration peak disappears for that water mass as seen in the profiles along the 1∘N transect. Lateral
advection and turbulent mixing effectively destroy a sharp oxygen gradient. A tongue of high oxygen con-
centrations is an evidence for the water inflow through the shallower deep water passage. The higher
oxygen signal is also accompanied by a lower salinity signal. Hence, the southern boundary is the source for
low-salinity waters.

Figure 6. Temperature-salinity diagram (left) and oxygen-density profiles (right) inside the basin (gray), in the vicinity of
the Ecuador Trench (blue), along a section centered at 1∘N (black), and in the vicinity of the Carnegie Ridge Saddle (red).
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Figure 7. Hydrographic properties of bottom water: (a) conservative temperature, (b) absolute salinity, (c) oxygen, (d)
neutral density. The data of bottom moist 50 m were averaged and then gridded to 0.5∘ × 0.5∘ spatial grid. The green
contours show the 2,200-m depth isobath.

However, the moored ADCP instrument installed directly at the crest for almost 2 months failed to provide evi-
dence for a persistent inflow, similarly to measurements of Lonsdale (1977). Alternating northward/eastward
velocities of up to 0.1 m/s1 and on average less than 0.02 m/s1 were recorded (not shown). While we can
not deduce the volume flux through the Carnegie Ridge Saddle, but from the weak persistent velocity
measurements we judge the volume flux to be weak.

4. Abyssal Hydrography
4.1. The Positive Anomaly of Temperature and Salinity
Abyssal waters in the Panama Basin originate as overflow through the narrow Ecuador Trench at the southeast
corner of the basin. As was estimated above, the abyssal water layer is bound in the vertical by the bottom and
the 𝛾 = 27.967 kg/m3 isopycnal, which is located at a depth of 2,680 m in the vicinity of the Ecuador Trench,
but at 3,000 m in the western side of the basin. Over a distance of 200 km downstream of the trench, abyssal
waters experience extreme water mass transformation as the densest waters become rapidly lighter by about
0.028 kg/m3 (Figure 2). This corresponds to a warming of 0.15∘C, which is the most intense abyssal water
warming than anywhere else observed in the interior of the basin. Hydraulic flow theory of narrow passages
predicts hydraulic jumps and resulting strong mixing downstream of such channels (e.g., Alford et al., 2013; St
Laurent & Thurnherr, 2007). Hence, the observed intense warming of densest waters is a signature of critical
flow, even though hydraulic jumps were not directly observed in our data.

Once they have passed through the intense mixing region of the Ecuador Trench, abyssal waters spread from
the eastern to the western side of the basin, gradually becoming lighter and older (Figure 7). In general, lighter
waters have higher temperatures and lower salinities (Figure 5), a common characteristics of Pacific Ocean
deep waters. In addition, older waters are depleted of oxygen, even though the oxygen consumption at depth
is much weaker than at the surface. Hence, from the east to the west, the bottom waters become lighter,
warmer, fresher, and less oxygenated. While a similar pattern was reported by Laird (1971), poor quality salinity
data did not allow him to observe the reduction in bottom salinities in the western side of the basin.

However, it is not the salinity decrease for bottom waters, but salinity increase along the density surfaces,
that is the main indication of geothermal heating. Geothermal heating, unlike turbulent mixing, is an external
forcing; it introduces salinity as well as temperature anomalies in abyssal waters. The temperature and salin-
ity anomalies, introduced by the raising water parcels heated at the bottom, depend on the water column
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Figure 8. Temperature-salinity diagram (a) and oxygen versus neutral density profiles (b) at the source of abyssal waters
(blue) and over the region where abyssal waters are the oldest (red). Shown in gray are all other profiles located inside
the basin. The three neutral densities are marked, where 27.967 kg/m3 is the upper boundary of abyssal water layer.

stability ratio (e.g., Bindoff & Mcdougall, 1994; Speer & Rona, 1989). In the Pacific, with a stable background
salinity gradient, the purely heated water parcel rises and mixes with surrounding waters that are colder, but
also fresher. When a heated water parcel reaches its height of neutral buoyancy, it is still warmer, but also
saltier than the surroundings. Hence, basal heating of the deep Panama Basin waters introduces positive both
temperature and salinity anomalies.

When following water properties along density surfaces, the positive temperature anomaly of deep basin
waters is accompanied by a positive salinity anomaly on the western side of the basin (Figure 8). A positive
temperature anomaly of 0.0074 ∘C, a positive salinity anomaly of 0.0015 g/kg, and a negative oxygen anomaly
of 6.57 μmol/kg are observed on the western side of the basin along the isopycnal 𝛾 = 27.967 kg/m3, which
is the upper boundary of the abyssal water layer. The above lying deep waters are warmer and fresher; hence,
the positive salinity anomaly cannot be explained by diapycnal turbulent mixing. In the absence of lateral
inflows, the positive salinity anomaly can, therefore, only be explained by the geothermal heating.

4.2. Vertical Extent of the Geothermal Heating Effect
The geothermal heating from the bottom is transported upward either through small-scale turbulent mixing
or water transport across density surfaces. The most distinct signal of upward propagating TS anomalies is
found directly over hot spots of geothermal heating, such as the Costa Rica Rift. Directly over the Costa Rica
Rift, the distinct TS anomalies extend about 500 m upward starting from the upper boundary of the abyssal
water layer, up to the isopycnal 𝛾 = 27.960 kg/m3 (Figure 9), corresponding to the depth of 2,500 m. Impor-
tantly, though, in the bottom mixed layer the local water properties over the Costa Rica Rift fully comply with
the TS properties of the surrounding abyssal waters, indicating that spatial mixing at the bottom mixed layer
is very intense, as expected. Above the bottom mixed layer, the water stratification is still very weak allowing
for the heating signal to reach extensive height. However, the distinct concave signature in the TS diagram
caused by extensive geothermal heating is not seen in the profiles just 50 km away. Both isopycnal and diapy-
cnal mixing effectively tend to smooth out local TS anomalies, by spreading those anomalies both laterally
and vertically.

However, the large-scale accumulative effect of geothermal heating can be observed by comparing deep
Panama Basin waters with surrounding tropical Pacific waters. Tsuchiya and Talley (1998) find a divergence of
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Figure 9. Temperature-salinity diagram for all inner basin profiles (gray), directly at the Costa Rica Rift with 50-km radius
(black), and in the vicinity of the Rift with 100-km radius (red).

hydrographic properties inside the Panama Basin, when crossing from the Guatemala Basin to the Peru Basin.
Below about 2,200 m, much lighter density, warmer and fresher waters are found within the Panama Basin
than outside the basin. Here we look at the hydrographic properties of the outflow waters at the Ecuador
Trench. The outflow was identified by the change in stratification in the depth range 2,200–2,700 m. Above
this depth range, up to isopycnal 𝛾 = 27.825 kg/m3 (1,700 m), the TS profiles are almost linear, while farther
up—they gain a prominent convex form. At the range of estimated deep water outflow, the TS profiles are
concave: bent to higher temperatures and salinities (Figure 10). Hence, assuming no significant inflow into
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Figure 10. Temperature-salinity diagram at the Ecuador Trench with a linear fit for the data below 1,700 m
(CT = 2.64 ∘C).
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the basin below 2200-m depth, other than through the southern boundary, the TS anomalies caused by the
geothermal heating in the Panama Basin extend at least 500 m above the upper boundary of the abyssal
water layer, which we estimated to be the neutral density surface of 27.967 kg/m3 located at the depths
2,680–3,000 m. As thickness of the abyssal water layer varies with topography from several hundreds to over
thousands of meters, the TS anomaly caused by the geothermal heating extends much higher than 500 m
when viewed from the bottom.

5. Summary and Conclusions

The Panama Basin is a perfect location to investigate the effect of geothermal heating on abyssal water trans-
formation, as geothermal heating in the basin is about 3 times the global average. Laird (1971) was the first
to argue that the increase of bottom temperature within the basin must be the result of geothermal heat-
ing, although this study did not observe the accompanying bottom salinity changes. Previous attempts to
constrain the deep heat balance of the basin found large geothermal heatfluxes in comparison to the heat
outflow through the Carnegie Ridge Saddle (Detrick et al., 1974). However, ours as well as historical studies
(Lonsdale, 1977; Tsuchiya & Talley, 1998) indicate that deep water exchange through the saddle is very weak.
Instead, most of the abyssal water that becomes lighter by accumulating geothermal heating in the basin
flows out through the Ecuador Trench.

We have recalculated the heat budget for the Panama Basin. An estimated 0.29 ± 0.07 Sv of abyssal waters
pass into the basin through the Ecuador Trench and have a neutral density range, Δ𝛾 , between 28.016 kg/m3

and 27.967 kg/m3. The total area enveloped by the upper boundary of abyssal water layer (𝛾u = 27.967) is
estimated to be S = (3.8 ± 0.2) × 105 km2 and gains the total geothermal heatflux of Q = (84 ± 4) × 109 W
with the average geothermal heatflux rate of 220 mW/m2. With thermal expansion coefficient of 𝛼 = (1.5 ±
0.15) × 10−4/K and a heat capacity of seawater of Cp = 3,992 J⋅kg−1⋅K−1, geothermal heatflux contributes
about 0.13 Sv to the total abyssal water transformation, using a formula 𝛼∕Cp × Q∕Δ𝛾 , which is about 50% of
the total estimated inflow.

However, geothermal heating effect is very unequally distributed among different water masses. This study
shows that about 65% of the total inflow is already transformed in the first 200 km downstream of the Ecuador
Trench due to intense mixing accompanying the critical flow. Hence, the basin is filled with abyssal waters of
a much narrower density range, [27.988 27.967] kg/m3, than inflow waters directly at the Ecuador Trench.
Furthermore, the densest bottom waters have much smaller access to the bottom, compared to the lighter
abyssal waters which have much larger bottom intercept areas (incrops) (Banyte et al., 2018). Large incrops
result in a much larger total geothermal heating effect. As a result, while turbulent mixing downstream of
the narrow passage can transform more than half of the densest abyssal waters into lighter waters, on the
western side of the basin, where the lightest abyssal waters reside, geothermal heating contributes most of
the abyssal water transformation.

Finally, the intense geothermal heating in the Panama Basin introduces new water masses with anomalous
positive temperatures and salinities, revealed by the concave TS diagrams. All deep Panama Basin waters
below 2,200 m have a characteristic geothermal heating-induced TS concave signature. Above 2,200 m the
basin becomes much better ventilated by exchange pathways both through the southern as well as the east-
ern boarder. In conclusion, the thermodynamic effect of geothermal heating in the Panama Basin extends
high up in the water column: at least 500 m above the abyssal water layer which is several hundred meters
thick in most of the basin.
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