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Abstract7

Growing Season Length (GSL) indices derived from surface air temperature are fre-8

quently used in climate monitoring applications. The widely used Expert Team on Climate9

Change Detection and Indices (ETCCDI) de�nition aims to give a broadly-applicable mea-10

sure of the GSL that is indicative of the duration of the mild part of the year. In this paper11

long-term trends in that index are compared with an alternative measure calculated using a12

time-series decomposition technique (Empirical Ensemble Mode Decomposition [EEMD]).13

It is demonstrated that the ETCCDI index departs from the mild-season de�nition as its14

start and end dates are determined by temperature events operating within the synoptic15

timescale; this raises the interannual variance of the index. The EEMD-derived index16

provides a less noisy and more realistic index of the GSL by �ltering out the synoptic-17

scale variance and capturing the annual-cycle and longer timescale variability. Long-term18

trends in the GSL are comparable between the two indices, with an average increase in19

length of around 5 days decade-1 observed for the period 1965�2016. However, the results20

using the EEMD index display a more coherent picture of signi�cant trends than has21

been previously observed. Furthermore, the EEMD-derived growing season parameters22

are more closely related to variations in seasonal-mean hemispheric-scale atmospheric cir-23

culation patterns, with around 57% of the interannual variation in the start of the growing24

season being connected to the North Atlantic Oscillation and East Atlantic patterns, and25

around 55% of variation in the end of the growing season being associated with East26

Atlantic/West Russia-type patterns.27
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1 Introduction30

The thermal growing season length (GSL) is a measure derived from surface air temperature31

data and is widely used in climate monitoring to indicate the length of time that vegetation32

growth is theoretically possible for a given year. Numerous de�nitions of the GSL exist, and33

these often necessarily vary depending on the region under consideration (Linderholm, 2006).34

A common way of de�ning the GSL is to calculate the length of time between the �rst and35

last frost of the year, where frost is determined from daily minimum air temperatures at or36

below 0°C (e.g. Robeson, 2002; Kunkel et al., 2004; Yu et al., 2014; Strong and McCabe, 2017;37

Wypych et al., 2017). Although the frost-free period has relevance for certain regions and38

for many types of vegetation, a more broadly applicable de�nition � particularly for mid- to39

high-latitude areas (Walther and Linderholm, 2006) � is used by the Expert Team on Climate40

Change Detection and Indices (ETCCDI). In the Northern Hemisphere the ETCCDI de�ne41

the GSL for a given year (1st Jan to 31st Dec) as the number of days between the �rst span42

of at least six days when daily mean temperature is greater than 5°C and the �rst span after43

1st July when temperature is below 5°C. In the southern hemisphere the year runs from 1st44

July to 30th June of the following year (Zhang et al., 2011).45

The span of six consecutive days is used in the ETCCDI GSL de�nition to reduce the e�ect46

of high-frequency, weather-related variability on the index. As such the index is intended to47

provide a measure of the duration of the mild part of the year with the start and end dates48

loosely indicative of general phenological phase-changes (Zhang et al., 2011). However, the49

index remains susceptible to weather-related variance because the start and end dates are50

determined from synoptic-scale temperature events that are typically operating on timescales51

of up to around 11 days. This is potentially one reason behind the observation that growing52

season (GS) statistics tend to be very noisy on an interannual basis (Robeson, 2002).53

The susceptibility of the ETCCDI GSL index to synoptic-scale variability is demonstrated54

in Figure 1 where the GSL has been calculated for the year 2013 using the daily Central55

England Temperature (CET) series (Parker et al., 1992). March 2013 was particularly cold56

across England, with persistent, easterly winds and frequent falls of snow experienced; it was57

the coldest March since 1962 (Eden, 2013). However, for 2013 the ETCCDI GSL index starts58

on 1st January, due to a week of mild temperatures at the start of the year, and ends on59
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the 31st December, due to an absence of consecutive days above the 5°C threshold after 1st60

July. Hence the GSL for 2013 was 365 days, despite a signi�cant delay to agriculture being61

widely reported; a similar, although less extreme, situation occurred in January 2018. These62

are typical examples of false-springs (Davis, 1972) and the use of a re�ned GSL index that63

takes into account the occurrence of frost, along with the 5°C criterion, may provide a more64

realistic index of GS onset (Jones et al., 2002; Walther and Linderholm, 2006). However, as65

demonstrated in Figure 1, a better index of the GSL could be developed using a time-series66

decomposition technique such as Empirical Ensemble Mode Decomposition (EEMD), which67

�lters the higher-frequency, weather variability from the lower frequency annual cycle. This68

way of calculating the GSL was proposed by Qian et al. (2009), who used the technique to69

calculate the timing of spring onset in the long Stockholm temperature series. In this paper we70

examine trends and variability in the thermal GSL across Europe by comparing the ETCCDI71

index against an EEMD-derived metric. The EEMD method is particularly suitable for this72

type of calculation since the low-frequency annual cycle and longer-term component (ALC)73

are captured using a temporally local and adaptive low-pass �lter (Qian et al., 2011b).74

2 De�ning the Growing Season Length75

2.1 Datasets76

The daily mean, blended temperature series from the ECA&D database (Klein Tank et al.,77

2002; Klok and Klein Tank, 2009) are used in this paper. The data have been homogenized78

using the method described by Squintu et al. (2018). Since there are relatively few stations that79

extend earlier than 1950 in the database, the analysis is restricted to the period 1965�2016.80

To provide a longer context we also calculate the GSL parameters from three multi-centenary81

time series: the daily Central England Temperature (CET) series (which covers the period82

1772�2017, Parker et al., 1992), the Stockholm temperature series (1722�2017, Moberg et al.,83

2002) and the St Petersburg temperature series (1805�2017, Jones and Lister, 2002). The latter84

series has been extended to 2017 from the original 1999 cuto� using data for St Petersburg85

contained in the ECA&D database. Although the series stretches back to 1743, there are too86

many missing values in the early part of the series to compute the indices before 1805.87
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2.2 The EEMD method88

EEMD is a time-series decomposition technique that extracts a set of oscillation components89

from a time series (Wu and Huang, 2009). These components are termed Intrinsic Mode90

Functions (IMF) and they represent a sequence of frequencies from high-frequency through to91

a low-frequency, long-term trend. EEMD is an extension of Empirical Mode Decomposition92

(EMD) (Huang and Wu, 2008), which is calculated from only one decomposition of a time93

series. EMD often su�ers from �mode mixing�, where a given IMF contains a range of frequen-94

cies, and the EEMD method was developed as a way of reducing this e�ect. This is achieved95

by adding white noise to the data series, and conducting the EMD on this new series. This96

process is repeated a large number of times, with the arithmetic mean taken across the result-97

ing set of trials. In this analysis, 1000 trials were conducted and white noise with a strength98

of 0.2 times the standard deviation of the time series was used after Qian et al. (2009).99

A subjective decision needs to be made when using EEMD as to which IMFs represent the100

frequency of interest. The sum of the seventh through to the �nal IMF (which is set to 12) are101

taken to represent the annual cycle and longer timescale component (ALC) of temperature.102

This follows the general method of Qian et al. (2009). However, their analysis took the sum of103

the �rst six IMFs as the ALC, and hence our ALC is slightly smoother than their de�nition;104

this further reduces the possibility of multiple crossings of the 5°C threshold in the spring105

and autumn periods by the ALC. The higher-frequency variability represented by the �rst six106

components are taken to represent the supra-annual cycle variability, including synoptic-scale107

variability, that we wish to remove from the time series. It should be noted that the annual108

cycle de�nition used here is di�erent to the Modulated Annual Cycle (MAC) that has been109

used in several previous analyses (Wu et al., 2008; Qian et al., 2011a,b; Qian and Zhang, 2015;110

Cornes et al., 2017), as the MAC removes the long-term trend from the series. In the annual111

cycle calculations used here the long-term trend is retained.112

Since the EEMD requires a complete data sequence, missing values in the time series were113

�lled using a cubic spline interpolation, up to a maximum span of 10 days. This in�lling is114

done over the temporal dimension and the length of 10 days was chosen as we are interested115

in this analysis in removing synoptic-scale noise from the time series and retaining the lower116

frequency variability. As a consequence however, any series with a consecutive span of missing117

days longer then 10 days could not be processed using this method.118
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The GSL calculated using EEMD (GSLeemd) is de�ned as the number of days between119

the �rst and last crossing of the 5°C threshold by the ALC in a given calendar year. This120

threshold is commonly used in GSL calculations (Qian et al., 2011b), including the ETCCDI121

de�nition. As with the index of the GSL de�ned by the ETCCDI, in years where the annual122

cycle remains above the threshold on the 1st January, then the start of the GSL is set to one.123

Similarly, where the annual cycle remains above the threshold at the end of the year, then the124

end of the season is set to the number of days in the year (Nyr). In this analysis the 29th125

February values have been removed to ensure a consistent number of days per year in the126

EEMD analysis, and hence Nyr = 365. See Cornes et al. (2018) for the underlying GSL data.127

3 Trends and Variability in the GSL128

Trends in the GSL indices were calculated using the Theil-Sen estimator. This is derived as the129

median of the slopes through all pairs of lines of the data points and is therefore less sensitive130

to outliers in a data series than least-squares regression. The statistical signi�cance of the131

trends was calculated using the pre-whitening method described by Zhang et al. (2000); Wang132

and Swail (2001), which takes into account lag-1 autocorrelation in the signi�cance estimates.133

3.1 The long temperature series134

Long-term trends in the GSL calculated from the three multi-century time series all display a135

strong positive trend over the last ∼200 years, of between 1 and 2 days decade-1 (see Tables136

S1, S2 and S3, Suppl. Info.). As has been previously noted, a higher rate of change occurred137

in the GS parameters over the last 30 years (Linderholm, 2006). This is also observed in these138

results, with the most striking example occurring in the St Petersburg series where a trend of139

4 days decade-1 (95% CI [1.9�5.9]) occurred in the GSLeemd series over the period 1960�2013140

compared to 1.3 days decade-1 (95% CI [1.0�1.6]) over the period 1805�2013. This disparity141

arises because of a number of anomalously short growing seasons occurring during the 1960�142

70s (see Section 3.1 and Table S5 Suppl. Info.). The trends over the 1805�2015 period in the143

CET and Stockholm series are predominately due to earlier starts of the GS, in accordance144

with the �ndings of Prior and Perry (2014); for St. Petersburg the trends in the start and end145

of the GS calculated using the EEMD method are comparable.146
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The trends in the GSLeemd and GSLetccdi indices are practically indistinguishable in the St147

Petersburg and Stockholm series (Table S2, Suppl. Info.). A larger di�erence is evident in the148

CET series, with a trend over the 1772�2016 period of 1.9 days decade-1 (95% CI [1.1�2.7])149

evident in the GSLeemd index compared to 1.6 days decade-1 (95% CI [1.0-2.2]) in GSLetccdi150

(Figure 2 and Table S1). This di�erence occurs as a result of a larger trend in the end of151

the GS in the GSLeemd index; there is not a signi�cant di�erence in the start of the GS.152

Nonetheless, as with the other two temperature series the di�erence in GSL trends from the153

two indices is not signi�cant in the CET series. Signi�cance in these trend-di�erences was154

determined by calculating the trend in the di�erence series (GSLetccdi minus GSLeemd) after155

Santer et al. (2000) (see Tables S1 and S2, Suppl. Info.).156

Despite the trends not being signi�cantly di�erent in the two indices, values of the GSL for157

individual years can be substantially di�erent in the three temperature series analysed here.158

This is particularly the case in the CET series, as is apparent from Figures 1 and 2. The year159

2013 had the third largest di�erence in GSL values, and was 94 days shorter in the GSLeemd160

index. The largest di�erence occurred in the year 1785 (104 days shorter in GSLeemd), with the161

second largest di�erence occurring in 1855 (101 days shorter, see Table S4 Suppl. Info.). Both162

of these years were analogous to 2013 in that an exceptionally cold and dry spring season was163

preceded by a short mild spell in January (Kington, 2010). Di�erences in the decadal averages164

calculated from the two indices can also be large (see Table S5 Suppl. Info.).165

Since the higher-frequency variance is removed from the temperature data in the EEMD-166

derived GS parameters, the relationship to seasonal mean temperatures is also much higher in167

these data. For example, the regression coe�cient between the start of the GS and the mean168

December to March temperature is r2 = 0.28 for the ETCCDI-derived parameters, compared169

to r2 = 0.61 for the EEMD series (Table S7, Suppl. Info.). As a further re�ection of the170

closer association to the low-frequency seasonal cycle, the start of the GS estimated using the171

EEMD method has a much stronger relationship (r2=0.28) to the Oak bud-burst dates in the172

Robert Marsham series from Norfolk 1772�1958 (Thompson and Clark, 2008) compared to the173

ETCCDI method ( r2=0.05).174
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3.2 Trends across Europe175

On average the thermal GS has lengthened at a rate of around 5 days decade-1 since 1965 across176

Europe (Figure 3). The average in trends calculated from either the GSLetccdi or GSLeemd177

index is very similar, and is in accordance with the �ndings of Menzel et al. (2003). That178

study used a version of the GSLetccdi index to calculate the GSL and their results indicated179

considerable station-to-station variability in the trends. A much more coherent picture emerges180

from the results here using the GSLeemd index. Most of the trends (80%,181

n=645) across central and northern Europe in GSLeemd are signi�cant at p<0.05. In182

contrast only 29% are signi�cant at that level in the GSLetccdi index. This occurs as a result of a183

lower degree of interannual variability in the GSLeemd index at most stations, as a consequence184

of the �ltering-out of variability beyond the annual cycle. This variance-di�erence can also185

be seen in the results from the multi-centenary series, but only for the Stockholm and St.186

Petersburg series; in the CET the series the interannual variance in the parameters is slightly187

higher in the EEMD-derived parameters (Table S6 Suppl. Info.). This is likely a re�ection of188

the CET being a regional average of temperature, as opposed to a point-value as is the case189

in the other series.190

4 The Response of the GSL to Large-Scale Dynamics191

Several previous studies have related the GSL, and the related frost-free period or spring onset,192

to atmospheric circulation at both the hemispheric and regional scales (Jones et al., 2002; Qian193

et al., 2009; Wypych et al., 2017; Strong and McCabe, 2017). Such studies are particularly194

important as any attempt to forecast the GSL is dependent on understanding the linkages195

with large-scale, low-frequency, atmosphere-ocean forcing mechanisms. However, Jones et al.196

(2002) achieved very poor correlations between an index representative of zonal �ow across197

northwest Europe and growing season lengths calculated from four long daily temperature198

series from across Europe. In the GSLetccdi index calculated from the CET series we also �nd199

no signi�cant correlation to the winter NAO index of Jones et al. (1997). Conversely, the200

relationship with the GSLeemd index is relatively strong ( r2=0.23, p<0.001 two-tailed test,201

calculated over the period 1821�2007). Similar results (r2=0.26) are found when using the202

Paris-London westerly index (Cornes et al., 2013), which provides a localized measure of zonal203
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�ow across northwest Europe. The relationship of the GS to the NAO is attributable to the204

strong relationship of the NAO to the start of the GS ( r2=0.36) since there is no correlation205

to the end of growing season. This is the case even if the NAO values for the autumn season206

(SON) are used.207

To further investigate the relationship of the GS parameters to large-scale atmospheric208

forcing, we have performed a Principal Component Analysis (PCA) using de-trended and209

standardized values of the start and end of the GS calculated from the ECA&D data (see210

Section 2.1) over the period 1965�2016. Stations are only used where the variance in the211

GS parameters is greater than zero over the 1965�2016 period. The PC time series have212

been regressed against the 500hPa geopotential height anomalies (relative to the 1961�1990213

period) from the NCEP/NCAR reanalysis dataset (Kanamitsu et al., 2002) and sea-surface214

temperature anomalies from the COBE2-SST dataset (Hirahara et al., 2014). The start of215

the GS values are related to the prior winter (DJF) ocean-atmosphere conditions, while the216

concurrent autumn season (SON) mean anomalies are used for the end of the GS.217

4.1 The start of the growing season218

The �rst two components of the PCA applied to the start of the GS calculated using the219

EEMD method collectively explain around 57% of the interannual variability (Figure 4). Sim-220

ilar results are achieved when the start of the GS is calculated using the ETCCDI method221

(Figure S3, Suppl. Info.). However, in that case the results are less coherent and the �rst two222

components only explain 34.7% of the variance.223

PC1 represents a zonal mode of variability, and in a positive phase is associated with an224

advance in the start of the GS (negative anomalies) across most of Europe but particularly so225

across central/northeastern regions. The slope coe�cient of the regression of the PC time series226

against 500hPa geopotential heights (Figure 4 a) indicates that this component is associated227

with an NAO-type pattern of atmospheric circulation, with a clear annular shape across the228

Northern Hemisphere indicating a connection to the Northern Annular Mode. However, in229

contrast to the canonical NAO pattern (e.g. Barnston and Livezey, 1987) the southern node is230

situated eastward of its more usual position. This appears to re�ect the mobility in the nodes231

of the NAO across the North Atlantic region that has been described in several previous studies232

(Cassou et al., 2004; Moore et al., 2013). These studies have indicated that an asynchronous233
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pattern exists between di�erent states of the NAO, with the southern node situated over the234

Iberian peninsula during positive phases, and in a more westerly position during negative235

phases. The concurrent (DJF) SST anomalies for this mode (Figure 4 b) display an expected236

NAO tripole relationship across the Atlantic region. The strongest relationship, however, is237

with SST anomalies across the North Sea and southern Baltic coasts. To some extent this may238

re�ect the uneven sampling across Europe in this selection of stations, with the highest density239

being across Germany and Sweden. The PC time series (Figure 4 c) indicates no long-term240

trend in the occurrence of this pattern.241

PC2 displays a distinct zonal pattern of PC loadings. In a positive phase this component242

represents earlier GS starting dates across Scandinavia and later dates across the rest of243

Europe (Figure 4 e), and is related to an anticyclonic ridge in the eastern Atlantic. This244

pattern is related to the second most dominant mode of atmospheric variability across the245

Atlantic region, the East-Atlantic pattern (Cassou et al., 2004), and is strongly associated246

with positive SST anomalies across the central Atlantic but especially across the Norwegian247

Sea (Figure 4 e). A clustering of strong negative phases of this pattern occurred in the late248

1990s. This was preceded in the mid 1980s by a high frequency of strong positive states of the249

East-Atlantic pattern (Figure 4 f).250

4.2 The end of the growing season251

The �rst two components of the PCA for the end of the GS collectively explain 55% of the252

variation in the data (Figure 5). As with the start of the GS, similar results are achieved253

using the ETCCDI method of calculating the end of the GS (Figure S4, Suppl. Info.). Again,254

however, a less coherent picture emerges from these data, with the �rst two components255

collectively only explaining 35.2% of the variance.256

In a positive mode PC1 represents a later end to the growing season (positive loadings)257

particularly across central and northern regions of Europe, whereas PC2 represents a split258

across the domain with advancement (retardation) across Scandinavia (central Europe). Both259

of these PCs are connected to an atmospheric circulation con�guration reminiscent of the East-260

Atlantic/West Russia (Eurasia-type 2) teleconnection pattern (Barnston and Livezey, 1987).261

Relative to PC1, the North Atlantic and Russian nodes are stronger and more elongated in262

PC2, and the sub-polar node is weaker and more con�ned. This di�erence appears to have a263
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profound e�ect on the pattern of the end of the GS anomalies.264

The time series for PC1 indicates two strong positive occurrences of this component. The265

year 2006 experienced the highest PC loadings, and conditions during the Autumn season266

were extraordinarily warm across most areas of Europe (van Oldenborgh, 2007). A similarly267

strong example of this pattern occurred in Autumn 2000 (Blackburn and Hoskins, 2001).268

In their analysis of variations in the frost-free period across the conterminous United States,269

Strong and McCabe (2017) highlighted the prominent in�uence of the Paci�c-North America270

pattern on the GS start/end dates; their results reveal a weak association with the NAO.271

While direct comparison against their results is hindered by very di�erent methods of analysis,272

the results in this section indicate that it is the Atlantic-centred NAO and East-Atlantic273

patterns that have the most in�uence on the interannual variance of the GS parameters across274

Europe, regardless of the GSL index used. Of note in this analysis is the distinction between275

zonal(meridional) patterns that a�ect the start(end) of the GS.276

5 Conclusions277

We have compared long-term trends and interannual variability across Europe in two indices278

of the GSL: the widely used ETCCDI de�nition and an alternative de�nition using the EEMD279

time-series decomposition method. Despite substantial di�erences in GS lengths for individual280

years, the long-term trends in the GSL across Europe are broadly similar in the two indices,281

and show an advancement of around 5 days decade-1 over the last 50 years. However, a much282

more coherent pattern of signi�cant trends are found in the EEMD index as a result of the283

removal of the high-frequency, synoptic-scale variability. Furthermore, since the EEMD index284

captures the seasonal-cycle of temperature, it's connection to seasonal-mean hemispheric-scale285

atmospheric forcing mechanisms is more clearly de�ned. Around 57% of the interannual286

variability in the start GS can be explained by the NAO-type and East-Atlantic-type modes287

of atmospheric circulation variability during the winter season. Similarly around 55% of the288

variation in the end of the GS can be explained by East Atlantic/West Russia-type patterns289

during the autumn. Although we use the EEMD method in this analysis, other low-frequency290

�lters, such as those reviewed by Deng and Fu (2018), could likely produce similar results.291

The key feature is that the synoptic-scale variability is removed from the GSL calculation, and292
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the annual cycle and longer-term variability is retained.293

In many phenological applications knowledge about the occurrence of synoptic-scale events,294

such as frost, are critical and metrics such as the Spring Indices (Schwartz et al., 2006, 2013)295

that are able to capture such events � and which are calibrated against phenological data �296

are key indicators. However, in climate monitoring applications a temperature-based index is297

required that captures the length of the GS and which broadly applies to a range of species298

and at a variety of locations; this would appear to be best achieved through the quanti�cation299

of the low-frequency seasonal cycle of temperature by an index such as the EEMD metric.300

Further analyses are required to determine the relationship of this index to phenological data.301

However, a simple test carried out in this paper suggests that the start of the GS derived from302

the EEMD index has a closer relationship with the budburst dates in an Oak series at one303

site in England compared to the ETCCDI-related index. Further analyses are required to see304

if this is the case for other species and at di�erent locations.305
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Figure 1: The daily mean Central England Temperature series for the year 2013. The black line marks
the annual cycle extracted using EEMD, with the colouring indicating daily values above or below this
line. The duration of the GSL using the two di�erent methods are indicated.
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Figure 2: Trends in the GSLeemd and GSLetccdi indices calculated from the CET daily mean temper-
ature series 1772�2017. The trend and 95% con�dence intervals are indicated.
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Figure 3: Trends in the station series across Europe (1965�2016). Open circles indicate trends that
are not signi�cant at p<0.05 (two-tailed test), after adjustment of the p-values to account for false
detection following Benjamini and Hochberg (1995). Stations are excluded where the GSL=365 for all
years. Outliers (trends>=18 days decade-1) are coloured grey (one value).
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Figure 4: The teleconnection patterns associated with the �rst two Principal Components (PC) of the
start of the growing season. In a) and d) the slope coe�cient from the regression of the respective PC
time time series against winter average (DJF) 500hPa geopotential height anomalies are plotted. In b)
and e) a similar slope coe�cient is calculated using SST anomalies. In those �gures the PC loadings
at each of the European stations are also indicated. In c) and f) the PC time series (in standardized
units) are plotted.
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Figure 5: As Figure 4 but for the end of the growing season and using 500hPa height/SST anomalies
from the autumn season (SON).
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