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Abstract We study how the probability distribution functions of power input to the magnetosphere Pα
and of the geomagnetic ap and Dst indices vary with averaging timescale, τ, between 3 hr and 1 year.
From this we develop and present algorithms to empirically model the distributions for a given τ and a given
annual mean value. We show that lognormal distributions work well for ap, but because of the spread of Dst
for low activity conditions, the optimum formulation for Dst leads to distributions better described by
something like the Weibull formulation. Annual means can be estimated using telescope observations of
sunspots and modeling, and so this allows the distributions to be estimated at any given τ between 3 hr and
1 year for any of the past 400 years, which is another important step toward a useful space weather
climatology. The algorithms apply to the core of the distributions and can be used to predict the occurrence
rate of large events (in the top 5% of activity levels): they may contain some, albeit limited, information
relevant to characterizing the much rarer superstorm events with extreme value statistics. The algorithm for
the Dst index is the more complex one because, unlike ap, Dst can take on either sign and future
improvements to it are suggested.

Plain Language Summary This is the third in a series of three papers aimed at developing a
climatology of space weather that applies to all solar conditions between grand solar minimum and grand
solar maximum. We generate empirical models to enable us to predict the probability of a given level of
space weather disturbance, as quantified by either the ap of the Dst geomagnetic indices, in a year with a
given average level of disturbance. The models can be used with averaging/integration times anywhere
between 3 hr and 1 year.

1. Introduction

This paper is the third of a series of three that is aimed at putting in place some of the key elements that will
be needed to build a space weather climatology that covers both grand solar maximum and grand solar
minimum conditions. As discussed in the introductions to Papers 1 and 2 (Lockwood et al., 2018a, 2018b),
information on space climate over an interval long enough to cover both a grand solar minimum and a grand
solar maximum (of order 400 years) is available only in the form of modeled annual means of some key vari-
ables (Owens et al., 2017). Hence, developing a climatology giving the probability of space weather events of
a given geoeffectiveness that covers both these extremes of the long‐term solar variation requires us to
develop an understanding of relationships between these annual means and the distributions of event ampli-
tudes, quantified over the relevant timescales. Because space weather events come in bursts, the integrated
value of any activity index X over the most relevant timescale τ, IX, is a useful metric (Borovsky, 2017; Echer
et al., 2008; Lockwood et al., 2016; Tindale et al., 2018), and this equals the arithmetic mean value times τ
(i.e., IX = τXdt = τ <X>τ). Hence, it is important to study how <X>τ varies with τ and how it relates to the
annual arithmetic mean value <X>τ=1year. Lockwood, Owens, et al. (2018) have demonstrated how annual
means can be used to quantify the frequency of geomagnetic disturbance events above a given (large but not
extreme) threshold for the past 400 years, but they studied only hourly and daily means (τ = 1 hr and
τ = 1 day) which, in general, will not be the most relevant timescales for all space weather phenomenon.
For example, Lockwood et al. (2016) recently studied that the interplanetary conditions leading to large geo-
magnetic storms as detected in theDst index and found τ≈ 6 hr (with a 2σ uncertainty range of 4–12 hr) were
optimum for predicting the maximum of the storm (i.e., the minimum Dst), but τ ≈ 4.5 days was needed to
best predict the integrated Dst over the duration of the storm. Paper 1 (Lockwood et al., 2018a) studied
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energy coupling from the solar wind into the magnetosphere and showed that neglecting the effects of gaps
in interplanetary data has, in the past, introduced serious errors into derived solar wind‐magnetosphere cou-
pling functions. Paper 1 also used near‐continuous data to show that there is no evidence that the coupling
function varies with averaging timescale τ between 1 min and 1 year. Paper 2 (Lockwood et al., 2018b) used
this result to study the distribution of power input into the magnetosphere Pα (Vasyliunas et al., 1982) and
why the probability density function (pdf) of <Pα >τ (i.e., Pα averaged over intervals of duration τ) has the
form it does at τ = 1 min. Paper 2 also showed how this pdf evolves with increasing τ up to 3 hr, giving
the observed pdfs of 3‐hourly geomagnetic indices. In the present paper, we study how the distributions of
power input into the magnetosphere, and of the geomagnetic indices, continue to evolve with increasing τ
between 3 hr and 1 year, allowing us to study the relationships of the pdf at any relevant τ to the annual
mean. These are key relationships that can make it possible to construct a climatology of space weather
events based on observations of solar variability over the past 400 years.

1.1. Core Distributions of Space Weather Variables and Extreme Events

In this section, we make clear the distinctions between the core distribution of space weather events, large
events (e.g., Lockwood et al., 2017; Lockwood, Owens, et al., 2018, studied events in the top 5%) and
extreme events. Our aim is to investigate how much information on the extreme events could potentially
be gleaned from the annual means and the core distribution. We use the 3‐hourly ap planetary
geomagnetic range index that is available continuously since 1932. This index is used because of the
longevity of the data series and because it is more robust than the aa index in that it employs more than
just two observatories. Appendix B shows that the ap index has a marked tendency to exaggerate the semi‐
annual variation in average values by having a larger response to events occurring at the equinoxes and
also has a lower response to large events during Northern Hemisphere winter. We here use a version of
ap, apC, which includes a correction for the effect of this uneven response in ap, as described in
Appendix B. To compare to any events before 1932, we use the aa geomagnetic index, using intercalibra-
tion curves that are also presented in Appendix B.

Allen (1982) pointed out that averages of ap over a calendar day (by convention referred to as
Ap = <ap>τ=1day) are not appropriate for defining storm days because an isolated storm that spans 24 hrs
UT would be recorded as two moderately disturbed days rather than a single large storm day. Hence,
Allen proposed using 24‐hr boxcar (running) means of ap, which he termed Ap*. These have been employed
by Kappenman (2005) and Cliver and Svalgaard (2004). For the purposes of identifying and ranking storm
days we take the largest value of the eight such running means of the corrected ap index in each calendar
day, [ApC*]MAX. A rank‐order listing of the largest events defined this way is given in the supporting
information, along with available references.

Many papers have found variables of near‐Earth interplanetary space and the magnetosphere approxi-
mately follow a lognormal (or similar) distribution for the great majority of the time (Dmitriev et al.,
2009; Farrugia et al., 2012; Hapgood et al., 1991; Lockwood & Wild, 1993; Lotz & Danskin, 2017; Love
et al., 2015; Riley & Love, 2017; Vaselovsky et al., 2010; Vörös et al., 2015; Weigel & Baker, 2003; Xiang
& Qu, 2018). This mathematical formulation describes the core of the distribution but often fails to match
the occurrence of very large or extreme events (e.g., Baker et al., 2013; Cliver & Dietrich, 2013; Lotz &
Danskin, 2017; Riley, 2012). Hence, such cases are often described by substituting a distribution to the
large‐event tail that is different to that which fits the core of the distribution. Extreme value statistics (EVS,
e.g., Beirlant et al., 2004; Coles, 2004; Kotz & Nadarajah, 2000) has been widely applied, initially in studies
of hydrology but subsequently to extreme terrestrial weather events and many other areas such as in engi-
neering, insurance, and finance. The extremal types theorem (also called the Fisher‐Tippett‐Gnedenko theo-
rem, Coles, 2004), states that extreme maxima follow one of three types of distribution (Gumbel, Fréchet,
and [negative] Weibull), which are encapsulated in a family of continuous probability distributions called
the generalized extreme value distribution. In the block maxima approach to extreme values, the observa-
tion period is divided into nonoverlapping periods of equal size and attention given to the maximum obser-
vation in each period to which the GEV distribution applies. In the peaks‐over‐threshold approach,
observations that exceed a certain high threshold are selected. The second theorem in extreme value theory
is the Pickands‐Balkema‐de Haan theorem and states that the threshold excesses have an approximate dis-
tribution within the generalized Pareto distribution family. EVS has been applied to geomagnetic indices
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(e.g., Chapman et al., 2018; Mourenas et al., 2018; Siscoe, 1976; Silbergleit, 1996, 1999; Tsubouchi & Omura,
2007), to the occurrence of very large geomagnetically induced currents (GICs, Lotz & Danskin, 2017;
Thomson et al., 2011), and to the fluxes of energetic magnetospheric particles (Koons, 2001; O'Brien
et al., 2007).

Figure 1 places into context the relationship of the extreme event tail to the core distribution for geomagnetic
activity as measured by the (corrected) ap index, apC. The plot shows (top) some selected annual
distributions of the ApC* index and (bottom) the corresponding distributions of ApC* as ratio of the annual
mean value, ApC*/<apC>τ=1year. The gray histograms are for all available ApC* data (i.e., covering the years
1932–2016). Note that we here quote ap, and hence apC, ApC* and [ApC*]MAX, as indices without units (the
standard ap values are an index in units of 2 nT and hence the values in nanotesla would be double those
given here Menvielle & Berthelier, 1991). The black vertical dashed line shows Apo, the 95th percentile of
all available samples. The year 1960 (shown in red) was 1 year after themaximum of the largest sunspot cycle
(number 9) of the recent grand solar maximum (Lockwood et al., 2009) and gave the largest annual mean

Figure 1. Distributions of apC, the ap index corrected for the annual variation in its response function, (see Appendix B).
Annual distributions of (top) eight‐point running (boxcar) means of the 3‐hourly apC values, ApC*, and (bottom) of those
means as a ratio of the annual mean value for the calendar year in queetion, ApC*/<apC>τ=1year, for (red) 1960; (blue)
2009; (green) 2012; and (orange) modeled for 1859. The gray histograms in the background are the distributions for all
248368 ApC* values available from the interval 1932–2016. The vertical orange lines mark the estimated value for the
peak of the 1859 Carrington event: The solid orange line is estimate 1, [ApC*]MAX, whichmakes allowance for the time‐of‐
year response of the ap index (also marked by an orange triangle), the dash‐dotted orange line is [Ap*]MAX, which does
not make this correction (estimate 2, also marked by an orange square). The uncertainty bars arise only from the con-
version ofAa* toAp* and do not include the uncertainty in theAa* estimate. The distributions for 2012 are shown because
in that year an event, which is estimated would have caused an extreme event almost as large as the Carrington event,
passed over the STEREO A craft but missed the Earth: The vertical green lines show the estimated maximum for that
event, had it hit Earth: the solid green line and green triangle are for the [ApC*]MAX (estimate 1) value, and the dash‐
dotted green line and green square are for the [Ap*]MAX (estimate 2) value. The vertical colored dashed lines give the 95th
percentile of the annual distributions, using the same color scheme, and the vertical black dashed lines are the equivalent
for Apo, the 95th percentile of all ApC* values. The short vertical cyan lines show the top 100 (0.32%) of the maximum
ApC* values in a calendar day, [ApC*]MAX, and the short vertical mauve lines [ApC*]MAX values are the 6 days in the top
0.02%. The top 100 events, with further details, are listed in Part 3 of the supporting information.
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value since ap measurements began (<apC>τ=1year = 23.65) and also contained the largest observed event
since 1932, as determined by a daily [ApC*]MAX value of 249 on 13 November of that year. The year 2009
(in blue) that was at the low sunspot minimum (between cycles 23 and 24) gave the smallest annual mean
in the record (<apC>τ=1year = 3.93). The year 1859 (in orange) has been chosen because between 28 August
and 5 September of that year, the Carrington event took place (see contemporary reports by E. Loomis, col-
lected together by Shea & Smart, 2006), which is thought to be the largest terrestrial space weather event to
have been observed as it happened (Cliver & Dietrich, 2013; Nevanlinna, 2006; Ngwira et al., 2014). The
mean <ap>τ=1year for 1859 has been estimated to have been 10.98 by Lockwood, Owens, et al. (2018). The
distribution of daily Ap occurrence for 1859 shown in Figure 1 has been generated from the estimated mean
value for that year using a model that will be developed in the present paper and is described in Appendix A.
The distribution for 2012 is included (in green, <apC>τ=1year = 9.20) because on 23 July of that year a very
large and very rapid coronal mass ejection erupted, an event which would have generated extreme terrestrial
space weather (a superstorm) had it hit the Earth. It was observed as it passed over the STEREO‐A spacecraft
and, from modeling based on the measurements taken by that craft and by solar instruments, it is estimated
it would have caused a terrestrial event as large as the Carrington event, had the eruption taken place just
1 week earlier such that the coronal mass ejection would have hit Earth's magnetosphere instead of
STEREO‐A (Baker et al., 2013; Ngwira et al., 2013). From available magnetometer data, Nevanlinna
(2006) has estimated that the daily aa geomagnetic index reached Aa = 400 nT during the Carrington event.
This estimate allows for missing data but may still be an underestimate, and Cliver and Svalgaard (2004) esti-
mated the peak value of the running mean of a corrected version of the aa index over 24 hr of Aa* to be
425 nT. The aa index was designed by Mayaud (1972, 1980) to act as an equivalent to the ap index using data
from just two stations: however, the data since 1932 show that the two are not linearly related, with ap at
large aa being significantly lower than would be obtained from a linear fit. Polynomial fits of daily means,
Ap, as a function of the daily means in aa (by convention termed Aa) are given in Appendix B for the four
quarter‐year intervals around the equinoxes and solstices. Taking the peak Aa to be 425 nT for the
Carrington event, the relevant equation (B3) gives an estimated maximum Ap* value of 284 ± 30. Because
it is considered that the STEREO event would have given a storm comparable to the Carrington event, we
here take this Ap* to apply to it as well. These values of [Ap*]MAX of 284 are shown by the vertical dash‐
dotted lines. Applying the time‐of‐year correction given in Appendix B, this yields [ApC*]MAX of 215 ± 23
and 211 ± 23, respectively, for these two events. These estimated [ApC*]MAX values for the Carrington
and STEREO events are shown in Figure 1a by, respectively, the solid vertical orange and green vertical
lines. By way of comparison, the largest daily mean in the observed [ApC*]MAX record (since 1932) is 249,
recorded on 13 November 1960.

The list of storm days, since 1932 ranked by their [ApC*]MAX values, is given in the supporting informa-
tion. It has similarities to other such lists (e.g., Cliver & Svalgaard, 2004; Kappenman, 2005; Nevanlinna,
2008), but there are differences because we have made allowance for the variation with time of year of the
Ap* response and, in the case of the Carrington event, the relationship between the Aa* and Ap* indices.
Even quite small changes in the estimated magnitude of the storm day can have a large effect on its rank-
ing order. The major surprise is that the positions of both the Carrington and STEREO events in the list is
somewhat lower than in other lists if we correct for the time‐of‐year dependence of ap (estimate 1, [ApC*]

MAX). This raises the question as to whether this correction should be applied to these events or not.
Logically, there is no doubt that it should be as equation (B3) converts the Aa* estimate into an Ap* value
that should then need correcting to become ApC*. The main argument for not applying the correction is
that the original Aa* estimate is a proxy compiled from other sources. That these sources are largely
European sector midlatitude observatories and Ap is heavily weighted to midlatitude European station
data does argue that this correction should indeed be applied. However, there remains great uncertainty
in the true magnitude of the Carrington event. We also note that [ApC*]MAX is almost certainly not a fully
adequate metric of this superstorms because it does not take account of the fact that the Carrington event
on 3 September was in the middle of an extended interval of very high geomagnetic activity between 28
August and 5 September, and this almost certainly drove excessively large negative Dst values through the
integrated effect on the ring current population, giving the large (–700 nT) persistent negative deflection
recorded at the lower‐latitude Colaba observatory in Mumbai following the short‐lived and huge
(–1500nT) initial impulse.
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Lockwood et al. (2017) estimated the annual mean power input into
the magnetosphere <Pα>τ from the reconstructed solar wind and
interplanetary field variables derived by Owens et al. (2017), and from this
Lockwood, Owens, et al. (2018) have estimated that the annual mean of ap
for 1859 was 10.98. Hence, the estimated peak [ApC*]MAX/<apC>τ=1year

for the Carrington event is 19.5 ± 2.1 (shown by the solid orange line in
the lower panel of Figure 1) for the corrected data and [Ap*]MAX/
<apC>τ=1year = 25.9 ± 2.7 for the uncorrected value (the orange dash‐
dotted line). From the observed <apC>τ=1year of 9.20 for 2012 the [ApC*]

MAX/<apC>τ=1year for the STEREO event would have been 23.0 ± 2.5
(shown by the green line in the lower panel of Figure 1) and [Ap*]MAX/
<apC>τ=1year = 30.9 ± 3.3 for the uncorrected data (green dash‐dotted
line). These ratio estimates are much larger values than for the observed
13 November 1960 event, for which [ApC*]MAX/<apC>τ=1 year is consider-
ably lower, being 10.51 because it occurred during themost active geomag-
netic year on record. Table S7 of the supporting information shows that the
largest value of [ApC*]MAX/<apC>τ=1year in the observational record (since
1932) is 16.27 for 8 February 1986 (for which [ApC*]MAX = 203, the seventh
largest value). This is the outstanding example in the observational record
of a big storm being observed very close to sunspot minimum; however, its
[ApC*]MAX/<apC>τ=1year ratio is still very much smaller than that esti-
mated for the Carrington and STEREO events. In their absolute corrected
ApC* values or uncorrected Ap* values, the Carrington and STEREO
events appear to be comparable with, or somewhat larger than, the largest
events seen since 1932; however, they arose in years of relatively low aver-
age activity and so are wholly exceptional in their ApC*/<apC>τ=1year and
Ap*/<apC>τ=1year values.

Figure 1 demonstrates why the description of superstorms requires more
than an extrapolation of the core and hence needs the application of EVS.
However, there may still some valuable information on extreme events to

be obtained from the core distribution, as Love (2012) and Love et al. (2015) have demonstrated for large geo-
magnetic storms (as defined and quantified using the Dst geomagnetic index). The points in Figure 2 show
the available 31040 24‐hr [ApC*]MAX samples as a function of the annual mean of the year in which they
occur: the cyan points are the top 100 days (0.32%) in terms of [ApC*]MAX value (shown by the short vertical
cyan lines in Figure 1); themauve points are the top 6 days (0.02%, shown by the short vertical mauve lines in
Figure 1); and the gray points are the remaining 99.68%. Figure 2 stresses howmuch our understanding rests
rather critically on the estimates of the 1859 and 2012 superstorm values (the orange and green squares being
the uncorrected values and the triangles being the corresponding corrected values). If we do not consider
these two events and look just at the observed record since 1932, we see a quite strong relationship between
the largest value seen in the year and the average value for that the year with the data points falling in the
bottom right half of the plot. The corrected [ApC*]MAX values for the 1859 and 2012 superstorms (the orange
and green triangles) are close to being in line with this relationship, especially the lower values of the uncer-
tainty range. These values suggest that the occurrence of extreme superstorms is (weakly) related to the aver-
age activity in those years and that the extreme events are forming something like the negative Weibull
distribution pileup toward a maximum possible value not much greater than that for the November 1960
event. However, the uncorrected values, [Ap*]MAX (shown by the green and orange squares), appear to be
a completely different class of event from the events seen after 1932 and not obeying any sort of relationship
between the peak and mean values. We should here also note that it is possible that even these uncorrected
values are underestimates (being based on the Cliver & Svalgaard [2004] estimate ofAa*) that have been lim-
ited by procedure of quantizing the available data into k‐index bands (see Lockwood, Chambodut, et al.,
2018). Thus, the uncertainty in the estimated severity of the Carrington and STEREO events becomes cru-
cial. On the other hand, the lower estimates for the Carrington and STEREO events suggest that the annual
mean value and the core distribution could be helpful in quantifying the probability of the extreme events.

Figure 2. The largest ApC* values in a calendar day, [ApC*]MAX, as a func-
tion of the annual mean for the calendar year of that day <apC>τ=1year for
1932–2016 (inclusive). The gray points make up 99.68% of the available
31047 daily [ApC*]MAX samples, the cyan points being in the top 100 days in
terms of their [ApC*]MAX value (also shown by the short vertical cyan lines
in Figure 1), and the mauve points the 6 days in the top 0.02% (shown by
the short vertical mauve lines in Figure 1). The top 100 days are listed in the
supporting information. The orange and green triangles show the estimated
[ApC*]MAX values for the Carrington and STEREO‐A events (in 1859 and
2012, respectively, see text for details), and the orange and green squares
show the corresponding uncorrected [Ap*]MAX values. The uncertainty bars
arise only from the conversion of Aa* to Ap* and do not include any
uncertainty in the Aa* estimate. The horizontal dashed line is Apo, the 95th
percentile of all ApC* values. The colored tickmarks along the x axis mark
the annual means of the four annual distributions shown in Figure 1 (from
left to right 2009, 2012, 1859, and 1960), using the same color scheme.
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Even if the former proves to be the case and annual means are of no assistance in predicting superstorms,
characterizing the core of the distribution (as opposed to the extreme tail) is, however, still important in
space weather applications where the integral of the space weather activity is of relevance and the threshold
to the effect is not in the extreme tail. Examples would include the effect of GICs on pipeline corrosion
(Boteler, 2000; Cole, 2003; Gummow, 2002; Ingham & Rodger, 2018; Pirjola, 2005; Pirjola et al., 2005;
Pulkkinen et al., 2001; Viljanen et al., 2006); the effect of GICs on power grid transformer degradation
(Gaunt, 2016; Kappenman & Radasky, 2005); the effect of energy deposition in the upper atmosphere on
the orbits of LEO satellites and space debris (Doornbos & Klinkrad, 2006); and the effect of integrated radia-
tion dose on the degradation of spacecraft electronics (Baker, 2000; Fleetwood et al., 2000). In all these exam-
ples, although the extreme superstorm events have a large effect, they are rare and a much larger number of
smaller events, described by the core distribution, can also have a significant integrated effect. Lastly, we
note that Chapman et al. (2018) have recently studied the extreme event tails in several terrestrial distur-
bance indices during recent maxima of the solar cycle and fitted generalized Pareto distributions. They found
that if the mean and variance of the large‐to‐extreme observations can be predicted for a given solar maxi-
mum, then a relationship between the core distribution and the extreme tail can be found giving a descrip-
tion of the full distribution. Thus, it does appear possible that the study of the core of the distributions
presented here could be extended to characterize the extreme tails: this will be the subject of a future study.

As mentioned above, the [ApC*]MAX values are unlikely be the best indicators of all storm characteristics, in
particular in relation to the ring current and the Dst geomagnetic index. This gives another reason why we
should study the core of the distributions, associated with storm preconditioning and the fact that the best
predictors of large Dst storm occurrence are time integrated over long intervals (several days, Borovsky,
2017; Lockwood et al., 2016). The largest andmost disruptive geomagnetic storms tend to be the longest lived
(Balan et al., 2016; Echer et al., 2008; Mourenas et al., 2018). Many large and long‐lived storms show a two‐
step development (Tsurutani et al., 1999; Xie et al., 2006); however, these multistep storms have been shown
not originate from just a simple superposition of individual events (Chen et al., 2000; Kozyra et al., 1998,
2002) and it is not yet fully clear how the implied preconditioning originates. Kozyra et al. (1998) argued that
prior energetic particle injections are swept out of the dayside magnetopause as the second population from
the plasma sheet moves into the inner magnetosphere and so suggested that the preconditioning occurs in a
multistep storm through the cumulative effects of the successive storms on the population in the source
plasma sheet (Chen et al., 2000; Kozyra et al., 1998, 2002). Alternatively, it has been suggested that prior
storms prime the inner magnetosphere through O+ ions injected from the ionosphere (Daglis, 1997;
Hamilton et al., 1988). Lockwood et al. (2016) have shown that the key element in driving the largest storms
(as measured by the Dst index) is not so much the peak magnitude of the interplanetary coupling function,
rather the timescale over which it applies—large storms being a response to forcing that is both large and
sustained over several days. (In other words, very large interplanetary coupling function values do not drive
major storms if they persist for only short intervals). Borovsky (2017) reached the same conclusion in rela-
tion to the damaging relativistic electron fluxes generated in the largest storms. Thus, there is likely to be
some information in the core of the distributions that could be exploited to predict the occurrence of the
long‐lived and extreme events. Lastly, we also note that Kauristie et al. (2017) have also looked at the core
distributions of ap, Dst (as well as am and dDst/dt), not with a view to identifying highly disturbed periods
and large and extreme events, rather the opposite—to find the quietest intervals that could be used to gen-
erate an empirical model of the undisturbed main field.

1.2. Construction of a Space Weather Climatology

A number of techniques that have been developed and refined for terrestrial meteorological and climate
studies are now being deployed in the field of space weather. In addition to EVS discussed above, these
include Numerical Weather Prediction (Pizzo et al., 2015); data assimilation (Barnard et al., 2017; Lang
et al., 2017; Lang & Owens, 2018; Siscoe & Solomon, 2006; Schunk et al., 2014); cost‐loss analysis (Henley
& Pope, 2017; Owens & Riley, 2017); ensemble forecasts (Knipp, 2016); climate analog forecasts (Barnard
et al., 2011); ensemble climate reconstructions (Owens et al., 2016a, 2016b); skill scores (Balch, 2008); and
several others. In meteorology, many of these techniques are used in conjunction with a climatology that
describes statistically the probability of a relevant variable at key locations having one of the full potential
range of values. Climatological forecasts assume that the future of a system can be determined from these
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statistical properties of the past behavior of that system. These will clearly often be rendered invalid by long‐
term changes in the system that are not covered by the climatology. This limitation to climatological forecasts
can actually be useful because deviations from climatological forecasts (anomalies) can be used to detect and
quantify the effects of the long‐term changes. Note that long‐term changes can also generate false conclusions
about, for example, skill scores or event occurrence, if they are neglected (e.g., Hamill & Juras, 2006).

There are four elements that we need to generate a useful climatology of space weather for each of the key
variables: (1) the mean value (over a convenient period such as a year), (2) the core distribution of values
about that mean, (3) the extreme tail of the distribution (giving the repeat period of superstorms), and (4)
the autocorrelation function, ACF. All these would be available to us, if we possessed the time series at high
enough temporal resolution and over an interval long enough that adding any more data does not signifi-
cantly alter the distribution. This approach has been employed by Matthes et al. (2017) to build a space cli-
matology using the aa index geomagnetic that extends back to 1868. Unfortunately, as discussed below, this
does not include the grandminima conditions such as existed during theMaunder minimum (Usoskin et al.,
2015) that we know from cosmogenic isotopes to have prevailed for extended periods roughly 30 times in the
last 9000 years (e.g., Barnard et al., 2011). These four elements would enable us to evaluate integrated dete-
rioration of systems influenced by space weather, the probability of an event over a certain size and the prob-
ability of multiple events that may have a greater effect than the sum of the effect of the events individually.
There is great emphasis in space weather on protecting systems from the largest events or, at least, evaluat-
ing the risk posed by those events. However, evaluating the distribution core and mean and the probabilities
of quiet conditions is also important to avoid the cost and other wasted resources associated with overengi-
neering systems (such that they become obsolete long before they are lost or degraded) and so ensuring that
the designs are cost effective. As pointed out by Henley and Pope (2017), the development of a useful space
weather climatology, as with forecasting procedures, requires a detailed dialog with the system design engi-
neers and end users.

The biggest problem in trying to assemble a space weather climatology is the long timescales of the varia-
tions (Henley & Pope, 2017). The primary periodicity in space weather is the solar cycle oscillation the period
of which averages about 11 years. Since in situ observations of the near‐Earth space environment began, we
have accrued direct space weather data for just four such cycles. To put this in context, consider a terrestrial
tropospheric weather climatology: the dominant periodicity is 1 year and a climatology based on just 4 years
would not be of much value for most applications. Hence, as pointed out by Lockwood (2003), we need to
extend the interval by using other measurements and inferring the space weather variables, rather than just
using the direct measurements.

The most direct way of doing this is to employ geomagnetic activity observations, as used by Matthes et al.
(2017). In theory these could extend back to 1832, when Gauss established the first well‐calibrated geomag-
netic observatory in Göttingen. Reviews of the development of the observation of geomagnetic activity have
been given by Stern (2002) and Lockwood (2013). Some composites have used geomagnetic activity data
from soon after the establishment of Gauss' observatory; for example, Svalgaard and Cliver (2010) used
regressions with different types of geomagnetic data to extend the sequence back to 1835. However, there
are concerns about the calibration, stability, and homogeneity of the earliest data (Lockwood, 2013).

Geomagnetic activity on annual timescales depends on both the solar wind speedVSW and the interplanetary
magnetic field (IMF) field strength, B, and the first separation of the two was made by Lockwood et al. (1999)
using two different geomagnetic indices (the aa index and Sargent's recurrence index derived from aa). Later,
Lockwood et al. (2014) used four different pairings of different indices to derive VSW, B and the open solar
flux, with a full Monte Carlo uncertainty analysis, back to 1845. From this date, the geomagnetic data give
us almost 17 full solar cycles, considerably more useful than the 4 available in direct observations but still
not enough for a full climatology that allows for centennial scale solar change. Crucially, this interval does
not include the Maunder minimum (or even the lesser Dalton minimum) and hence a climatology based
on geomagnetic data would not cover grandminimum conditions or even periods like the Dalton minimum.

Recent advances allow us to start to construct a climatology based on sunspot numbers which are available
with reasonable regularity from about 1612, soon after the invention and patenting of the telescope in 1608.
Owens et al. (2017) have used the sunspot number data in conjunction with modeling to reconstruct the
solar wind number flux NSW, as well as B and VSW from 1615 onward. This has enabled Lockwood et al.
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(2017) to reconstruct the annual mean power input into the magnetosphere from 1615 and from this
Lockwood, Owens, et al. (2018) have estimated the annual means of the ap index. These advances make it
possible to construct elements of a climatology which extends over 30 clear solar cycles as well as the 50‐year
break to normal solar cycles during the Maunder minimum. During the Maunder minimum, the modeling
predicts 8 small‐amplitude, smaller‐period cycles which show a different phase relationship with the weak
cycles in sunspot numbers. Owens et al. (2012) have shown evidence for these small Maunder‐minimum
cycles in galactic cosmic ray fluxes.

In addition to the increased number of solar cycles, these reconstructions that extend back to the early 17th

century cover both a grand minimum (the Maunder minimum [Usoskin et al., 2015]) and the recent grand
solar maximum (Lockwood et al., 2009). There is also potential to even extend the climatology to cover up to
9000 years, covering 24 grandmaxima and 30 grandminima, using cosmogenic isotope abundance measure-
ments which generally require decadal averages or which are smoothed by the time constants of the isotope
deposition into the terrestrial reservoirs where they are measured. Barnard et al. (2011) have discussed a
method for temporal scale changing from these decadal‐scale data to annual means. At the present time
we are lacking one key element, namely a way to determine the times of solar cycle minimum and/or max-
ima and hence the phase of the solar cycle of each year.

In paper 1 of this series of 3 papers (Lockwood et al., 2018a), we showed that the total power input into the
magnetosphere Pα can be computed using a constant coupling exponent α that does not depend on the aver-
aging timescale τ (previous studies that had suggested it did were adversely influenced by data gaps). Paper 2
(Lockwood et al., 2018b) studied how the core distributions of Pα on timescales of 3 hr and less arise. In the
current paper we study how and why these distributions in Pα evolve with averaging timescale τ and the sub-
sequent evolution with τ of the ap (section 2.3) and Dst (section 2.4) geomagnetic indices. In each of these
two sections we develop an algorithm that allows the core distribution for that geomagnetic index to be eval-
uated for a given mean value and at a required timescale, τ. The formulae required to implement these algo-
rithms are given in Appendix A.

2. Distributions of Power Input to theMagnetosphere and Geomagnetic Indices

Figure 3 studies the evolution with averaging timescale τ of the distribution of three space weather indica-
tors. The left‐hand panels show the power input into the magnetosphere, computed from the
near‐continuous interplanetary data for 1996–2016 (inclusive) and normalized to the mean value over the
calendar year, <Pα>τ/<Pα>1year. The central panels show the normalized geomagnetic ap index,
<ap>τ/<ap>1year from the full data set available (for 1932–2016) and the right‐hand panels how the
normalized negative geomagnetic Dst index, <Dst′>τ/<Dst>1year, (where Dst′ is defined below), again
using all the available data (for 1957–2016).

The coupling function of α= 0.44, shown in Paper 1 (Lockwood et al., 2018a) to apply at all τ, is used with the
equation of Vasyluinas et al. (1982) to generate Pα (described in Lockwood et al., 2017, Lockwood, Owens,
et al., 2018; Lockwood et al., 2018b). The ap index responds primarily to the substorm current wedge (see
Lockwood, 2013) and the Dst index primarily to the ring current. However, Dst is importantly also influ-
enced by other currents (e.g., Turner et al., 2000) such as the Chapman‐Ferraro currents in the magneto-
pause and so also varies with compressions of the dayside magnetosphere by solar wind dynamic pressure
enhancements. The ring current effect dominates meaning that Dst is increasingly negative as activity
increases but the dynamic pressure effect mean that positive Dst value can occur. Corrections for the effect
of solar wind dynamic pressure on Dst, via magnetopause currents, have been developed (Consolini et al.,
2008; O'Brien &McPherron, 2000) but we do not use them here, mainly because it reduces the available data
set to after 1996 (when quasi‐continuous interplanetary data are available) but also because a great many
papers have used the uncorrected Dst index to characterize magnetic storms in the past. The fact that Dst,
unlike ap (or Pα), can have either sign generates a fundamental difference between the ap and Dst indices
when trying to formulate a long‐term climatology: when activity is low ap tends to a limiting value of zero
whereas Dst tends toward a distribution of values spread around zero. Half‐wave rectifying Dst so that posi-
tive values are put to zero is not an option as this generates a large number of samples at zero that distorts the
distribution. Instead we here treat Dst ≥ 0 as data gaps (we here call the index so derived Dst′) which yields
an index that correlates much better with multiplicative interplanetary coupling functions (Lockwood,
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2013). However, such samples are still included in the total number when computing the occurrence
probability of a large negative Dst value. Note that using Dst′ instead of Dst is purely a measure that gives
us a unipolar activity index to work with (which makes the modeling required much less complex) and is
not, in any way, a correction for magnetopause currents. Of course, even strongly negative Dst values will
still be influenced by magnetopause currents to some extent, which is why Dst is an imperfect metric of
ring current storms. In a later paper we will present a separate model for predicting the distributions of
the pressure‐corrected index, Dst*, as a function of τ. Note that Dst* also has both positive and negative
values (see Figures 1 and 2 of Consolini et al., 2008) and so the same sort of techniques will be required
for the construction of a model for Dst* as are used here for Dst.

To summarize the procedure employed here: we make normalized values of the variable X for 1966–2017
(inclusive), where X is one of the observed variables Pα, ap, and Dst′ for a given averaging timescale τ (also
done for the synthesized variables XR and XRF that are used below to clarify the behavior of the observed

Figure 3. Distributions of (left‐hand panels) normalized power input into the magnetosphere, <Pα>τ/<Pα>1year; (central panels) normalized geomagnetic ap
index, <ap>τ/<ap>1year; and (right‐hand panels) normalized negative geomagnetic Dst index, <Dst′>τ/<Dst>1year. The coupling function of α = 0.44,
shown in Paper 1 to apply at all τ, is used to generate Pα. The distributions are of the means taken over intervals τ long, divided by the annual mean of all samples in
that year. The blue histograms are the observed distributions, with samples binned into 150 contiguous bins centered on k.x98/100 where k is varied between 0.5
and 149.5 in steps of 1 and x98 is the 98th percentile of the cdf, and the numbers of samples n are then normalized such that (x98/100)Σn is unity. The black
lines shows the best fit lognormal distributions, and the mauve lines are the best fit Weibull distributions (with mean value m = 1 in the cases of Pα and ap and
m = Rm(τ) for Dst′). Fits are made using Maximum Likelihood Estimation (see supporting information). The total number of available samples, N, is given in each
panel. (a–c) For τ = 1 year; (d–f) for τ = 0.5 year; (g–i) for τ = 27dy; (j–l) for τ = 7 day; (m–o) for τ = 1 day; and (p–r) for τ = 3 hr. The Pα data are from 1996 to
2016 (inclusive), the ap data for 1932 to 2016 (inclusive) and the Dst′ data are for 1957 to 2016 (inclusive). <Dst>τ≥0 samples are omitted giving Dst′ (so because all
<Dst>1year values are negative, these give <Dst′>τ/<Dst>1year ≥ 0) in histograms and distribution fits. As a result, N for Dst′ is 100%, 99.17%, 94.08%, 88.42%,
80.60%, and 78.48% of all Dst samples for τ of, respectively, 1 year (c), 0.5 year (f), 27 days (i), 7 days (l), 1 day (o), and 3 hr (r). The best fit distribution parameters,
goodness‐of‐fit metrics, and cdf and pdf plots are given in the supporting information for these two fitted distributions and five others. cdf = cumulative distribution
function; pdf = probability density function.
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variables). We normalize by dividing by the arithmetic mean for the calendar year of the sample <X>τ=1year.
From these normalized values we derive the distribution of X/<X>τ=1year for all 22 years studied. This dis-
tribution has an arithmetic mean m = 1 which is the grand mean or (the mean‐of‐means) of the 22 annual
normalized data subsets and which applies because we have, to a good approximation, the same number of
samples in each year. We then fit model pdfs so that we can empirically model the probability of
X/<X>τ=1year which is the probability of X for a given <X>τ=1year, that is, P(X|<X>τ=1year). Hence this
enables us to achieve our goal of empirically modeling the distribution of X for a given <X>τ=1year. We wish
this fitted distribution to reproduce the observed one as closely as possible so we use model distributions of
means of μ = m = 1 and find the optimum variance v using Maximum Likelihood Estimation. Some of the
distributions fitted are described by shape and scale parameters instead of μ and v and these are constrained
so that μ is unity. The procedure is repeated for the full range of averaging timescales, τ.

The blue histograms in Figure 3 are the observed distributions, the black lines shows the best fit lognormal
distributions and the mauve lines are the best fit Weibull distributions (both with mean value μ = 1 in the
cases of Pα and ap and μ = Rm(τ) for Dst′, where Rm deviates from unity because in Dst′ we treat each
<Dst>τ ≥ 0 sample as a data gap: the factor Rm(τ) is discussed further later). The blue histograms were gen-
erated by counting the number of samples in 150 contiguous bins centered on k.x98/100, where k is varied
between 0.5 and 149.5 in steps of 1 and x98 is the 98th percentile of the distribution. The numbers of samples
n in each bin then normalized so that Σn(x98/100) is unity. Fitting directly a distribution to these histograms
gives results which, in general, depend on the bin width adopted (e.g., Woody et al., 2016) and so we here fit
distributions usingMaximumLikelihood Estimation (MLE) which does not require prior binning of the data
into bins of arbitrarily chosen width. A basic description of MLE fitting, and of goodness of fit metrics (both
absolute and relative) is given in the supporting information. Plots of best fit pdfs and cumulative distribu-
tion functions, and tables of best fit distribution parameters and goodness of fit metrics are also given in the
supporting information for seven standard distribution forms: the normal (Gaussian) distribution, the log-
normal distribution, the Weibull distribution; the Burr distribution, the Gamma distribution, the Log‐
logistic (Fisk) distribution, and the Rician distribution. For all these distributions the number of degrees
of freedom is df = 2, except the Burr for which df = 3.

The top row in Figure 3 is for averaging timescale τ = 1 year and the rows beneath are, successively for τ of
0.5 year, 27 days, 7 days, 1 day and 3 hr (0.125 day). The omission of positive <Dst>τ samples has no effect for
τ = 1 year (as all values are negative), but the number of Dst′ samples is 99.17%, 94.08%, 88.42%, 80.60%, and
78.48% of allDst samples for τ of, respectively, 0.5 year, 27 days, 7 days, 1 day and 6 hr. Because of the normal-
ization, the distributions for τ = 1 year are, by definition, delta functions at unity. At general τ, the distribu-
tions for <ap>τ/<ap>1year are always close to lognormal in form (the black lines) the variance increasing
with decreasing τ (see supporting information for goodness‐of‐fit evaluations). At the larger τ, the low var-
iance lognormal distributions are essentially Gaussian in form. On the other hand, the Dst′ distributions
are equally well fitted by the Weibull, Gamma or Log‐logistic families of distributions (see supporting infor-
mation) and in Figure 3 we show theWeibull distributions (the mauve lines), again with variance increasing
with decreasing τ. Note that for Dst′, significantly better fits could be obtained using a distribution with an
extra degree of freedom, such as the Burr (see supporting information). The difference between ap andDst′ is
caused by the flatter and broader distribution at small <Dst′>τ/<Dst>1year values. The <Pα>τ/<Pα>1year dis-
tributions are lognormal in form for τ greater than about 2 days, but at lower τ these distributions are increas-
ingly Weibull like in form. The origin of a Weibull form at low τ was discussed in Paper 2 (Lockwood,
Bentley, et al., 2018b) and is associated with the variability of the IMF orientation factor on these timescales,
via the quasi half‐wave rectification effect of the southward component of the IMF on solar wind‐
magnetosphere coupling. Note that because of the smoothing effect of the magnetospheric energy
storage/release system, theWeibull distribution of power input to the magnetosphere for small τ yields a log-
normal distribution in power input on the timescales relevant to ap and hence in ap itself.

The evolution of the distributions shown by the different rows of Figure 3 reveals the Central Limit Theorem
(hereafter CLT) in action (Heyde, 2006; Fischer, 2011; Wilkes, 1995). This states that when independent ran-
dom variables are added, their properly normalized sum tends toward a normal distribution. It applies in this
context because the key operation in taking an average value is summation and because, as τ is increased in
relation to the correlation timescale, an increasing fraction of the samples is independent.
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2.1. The Evolution of the Distributions With Timescale for ap and Pα

Figure 4 looks in more detail at the evolution of the distributions of <Pα>τ/<Pα>1year (for α= 0.44) as a func-
tion of the logarithm of the averaging interval. The upper plot shows the pdf color coded as a function of
log10(τ) and <Pα>τ/<Pα>1year such that the distributions shown in the left‐hand plots of Figure 3 are vertical
slices of Figure 4. The blue line in the lower panel shows the corresponding variation of the distribution var-
iance v (also on a logarithmic scale). Figure 5 is the corresponding plot for <ap>τ/<ap>1year.

In the supporting information, the distributions shown in Figure 3 are fitted with seven distribution forms,
six or which are characterized by two parameters (either the mean, m, and variance, v, or a pair of para-
meters that are defined by m and v; note the seventh distribution form used, the Burr, has an additional
shape parameter and is included to test if this gives a statistically significant improvement to the fit). Two
of the distributions, the Gaussian and the Rician, do not give good fits at low τ but do quantify the evolution
of the distributions toward a Gaussian‐like form as τ is increased toward 1 year. Because we here look at the
distributions of normalized disturbance metrics <X>τ/<X>1year (in this paper we consider X of Pα, ap, and
Dst) the mean m is, by definition, always unity, and hence, we only need to study the behavior of the var-
iance, v, shown in Figure 4b for <Pα>τ/<Pα>1year and in Figure 5b for <ap>τ/<ap>1year.

2.2. The Effect of Autocorrelation on the Evolution of Distributions

To help understand Figures 4 and 5, Figure 6 shows the evolution with increased τ for a synthesized variable
XR that is selected at random at time resolution τ = 3 hr from aWeibull distribution with k of 1.0625 and λ of
1.0240 (giving a mean m = 1), which in Paper 2 (Lockwood et al., 2018b) was shown to be good fit to the
distribution of <Pα>τ/<Pα>1year at that timescale. The general pattern of evolution of the pdfs of
<XR>τ/<XR>1year in Figure 6a is like that in Figures 4a and 5a, other than that the distributions evolve
toward a delta function at unity with increasing τ rather more rapidly for XR. This is also reflected by the

Figure 4. (a) The variation of the observed distributions of the normalized power input into the magnetosphere <Pα>τ/<Pα>1year for α = 0.44 as a function of
the logarithm of the averaging interval, log10(τ). The left‐hand edge of the plot is at τ = 3 hr, the right‐hand edge at τ = 1 year, and the vertical black lines
show τ of 6 hr, 1 day, 7 days, 27 days, and 0.5 year. (b) The logarithm of the best fit variance of the lognormal distribution (of mean valuem = 1), log10(v), also as a
function of log10(τ). cdf = cumulative distribution function; pdf = probability density function.
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mauve line in Figure 6b, which shows that the variance, v, falls more rapidly than the blue and red lines in
Figures 4b and 5b for Pα and ap, respectively. The initial distribution in Figure 6 is aWiebull form but even at
τ as low as 9 hr it has evolved into a lognormal form, which it keeps at all greater τ (but the variance falls so it
approaches a Gaussian near τ = 1 year). This evolution of the distribution form is the same sequence that
Pα follows.

The mauve line in Figure 7 shows the ACF (the autocorrelation at lags of 3 hr and the resolution of the syn-
thetic data) of the random variable XR employed in Figure 6. It can be seen that XR is indeed completely ran-
dom as the ACF falls to zero at lag 1. To investigate the effect of autocorrelation, we generate a second
random distribution that we then pass through a smoothing filter to give it autocorrelation. This generates
a synthetic data series XRf. Because the filter has a similar effect on the distribution as averaging we have to
draw the original random distribution from a higher‐varianceWeibull. By iteration we find that for the filter
we use, an initial Weibull random distribution with k of 0.2800 and λ of 0.0778 (giving m = 1) generates an
almost identical distribution at τ = 3 hr after filtering to that of XR used in Figure 6. The filter used is a
triangular‐weighting moving‐average filter with two response peaks. The first is a [1‐3‐5‐3‐1], around lag
δt = 0 that adds short‐range correlation into the XRf data series. The second is a [1‐2‐3‐4‐5‐6‐7‐8‐7‐6‐5‐4‐3‐
2‐1] × (5/8) triangular response peak centered on lag 216 (for the 3‐hr resolution XRf data series, this second
peak is at lag 27 day). The black line in Figure 7 shows the ACF of XRf, and it can be seen that the filter has
introduced short‐term autocorrelation on lags up to about 1 day and a 27‐day (the mean solar rotation period
seen from Earth) recurrence.

Figure 8 shows the equivalent plot to Figure 6 for the XRf data series. Figure 8a shows that the effect of the
autocorrelation is to slow the progression toward the delta function at unity. This is expected from the CLT
because the autocorrelation means that larger averaging timescales are needed before samples are suffi-
ciently uncorrelated for the CLT to apply. Figure 8b shows the variation of the variance v for XRf in black
and compares it with that for XR (inmauve) from Figure 6b. It can be seen that at the τwhere autocorrelation
has been introduced into the XRf series by the filter, the variance falls less quickly than for the random series,

Figure 5. Same as Figure 4 for the normalized ap geomagnetic index, <ap>τ/<ap>1year. The distributions for τ< 9 hr are not shown as the quantization of 3‐hourly
ap levels becomes a factor.
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XR. At all τ the distribution of XRf is lognormal in form and mirrors the
evolution for ap. Note that Figures 7 and 8, and the results for a random
and a smoothed‐random data series (XR and XRf), are included here
only to illustrate how autocorrelation influences the form of the
evolution of the distribution with τ and also influences the dependence
of variance v on τ. They are not used again in the derivation of a model
of the distribution at a given τ. Instead, we fit the v(τ) variation derived
directly from data with a polynomial in τ.

2.3. Modeling the Evolution of Distribution of ap With
Increasing Timescale

The section describes how we model the evolutions of the distributions of
<ap>τ/<ap>1year with increasing τ, and Figure 9a presents the results for
that modeling, aimed at reproducing Figure 5a. Figure 9b shows the log‐
log plots of variance v, as a function of τ from Figures 4b, 5b, and 6b using
the same color scheme, that is, for Pα in blue, for ap in red, and for the ran-
dom variable, XR, in mauve. Also shown, in cyan, is the variation for the
150‐year data series of the aa geomagnetic index. The black line is a poly-
nomial fit to the ap variation, given by equations (A11) and (A12) of
Appendix A that yield the variance, v(τ). The maximum likelihood analy-
sis given in the supporting information (on which Figure 3 is based) shows
that for <ap>τ/<ap>1year the observed distribution at all τ is best fitted
with a lognormal formwith meanm= 1. (That is until τ approaches 1 year
when the distribution becomes nearly Gaussian in form and the goodness‐

Figure 6. The same as Figure 4 for a random variable XR of the same length and time resolution as the Pα data series and which for τ= 3 hr is drawn from aWeibull
distribution with k of 1.0625 and λ of 1.0240, which in Paper 2 (Lockwood et al., 2018b) was shown to be good fit to the distribution of Pα at that timescale.
pdf = probability density function.

Figure 7. The autocorrelation functions (ACFs) of (in mauve) the random
variable XR employed in Figure 6 and (in black) the filtered random vari-
able XRf employed in Figure 8. The ACF, a(Δt), is computed for lags Δt
between zero and 1 year in steps of the data resolution (δt = 3 hr) and are
shown as a function of log10(Δt + δt) where Δt and δt are both in units of
days. (the δt is added to Δt to allow the zero lag point to be shown on a
logarithmic scale). The left‐hand edge of the plot is at Δt = 0 and the right‐
hand edge at Δt = 1 year, and the vertical gray lines are at lags Δt of 1 day,
7 days, 27 days, and 0.5 year. Lag 1 (Δt = δt) is at −0.602 on the x axis.
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of‐fit metrics for all seven distributions become very similar). Figure 9a shows the modeled lognormal
distributions using the polynomial fit to the variance variation shown in Figure 9b. The equations for
reproducing the distribution for a given τ are given in section A1.. From this, the pdf of <ap>τ (and hence
that of the time integral of the activity τx<ap>τ) at a given τ can be computed for a known annual
mean <ap>1year.

The cyan line in Figure 9b is for all the full aa index data set that covers the interval 1868–2017. The close
similarity of the v(τ) relationship to that for the ap data (1932–2017, the red line) strongly indicates that this
relationship has not varied significantly over the past 150 years. To check this in more detail, the aa data
have been divided into three 50‐year intervals (1868–1917, 1918–1967, and 1968–2017, inclusive), and the
v(τ) relationship for these three data subsets are plotted in Figure 10b as green, blue, and red lines, respec-
tively, and can be seen to be very similar (and to that for the overall aa plot in Figure 9b). Figure 10a studies
the ACF of the aa/<aa>τ=1year data for these three intervals. The three are again very similar showing the
persistence effect at low τ (up to about 5 days), a recurrence peak at 27 days, plus some weak harmonics of
the 27‐day variation, and hence are very similar to that for the smoother random variable, XRf, in Figure 7. In
fact, the ACF for XRf could easily be made to match the observed ACFs for aa shown in Figure 10 very clo-
sely, if the smoothing filter used were adjusted to give slightly lower persistence at low τ (< 1 day) and the
response peak around 27 days were to be broadened somewhat. There is also a small but marked and persis-
tent diurnal signal visible in Figure 10a. The main difference between the three intervals is that the 27‐day
peak is a little bit larger for the earliest interval (1868–1917) and the low‐τ persistence a little bit weaker.
These differences cannot be identified in the v(τ) plots. The only other data that are continuous and high
enough time resolution to potentially investigate this further back in time are the daily values international
sunspot number R, which are almost continuous since 1818. However, sunspot numbers behave very differ-
ently to geomagnetic activity indices, showing sudden increases/decreases as spot groups rotate onto on/off

Figure 8. The same as Figure 6 for a random variable XRf that has been drawn from a Weibull distribution and then passed through a filter to generate the short‐
term persistence and the 27‐day recurrence shown by the autocorrelation function in black in Figure 7 (see text for details of the filter). In order that the
distributions of XRf and XR have the same variance at τ = 3 hr (with unity mean), the effect of the filter means that before filtering the distribution must be drawn
from a higher‐variance Weibull distribution (with unity mean) than XR with k of 0.2800 and λ of 0.0778. The black line in Figure 8b shows the evolution of the
variance, v, (on a logarithmic scale) with τ for XRf, and the mauve line is the same variation for XR, as shown in Figure 6b. pdf = probability density function.
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the visible disk of the Sun and rises and falls as the groups wax or wane
as they rotate across the visible solar disc: they do not have the bursty
nature of Earth‐directed interplanetary disturbances and hence of
geomagnetic disturbances. Hence, they cannot help us investigate the
ACF and the associated v(τ) relationship for near‐Earth space and
geomagnetic activity before the start of regular, well‐calibrated
geomagnetic observations.

Figure 11 investigates if ACFs and variances for aa shown in Figure 10
vary with sunspot number. We use the international sunspot number, R,
derived and distributed by WDC‐SILSO (World Data Center for Sunspot
Index and Long‐term Solar Observations), Brussels. We take 3‐year
averages of the data to keep sample numbers high. For each period we
evaluate the mean sunspot number, <R>τ=3 year, and the ACF of aa/
<aa>τ=1year. These ACFs were then averaged together for contiguous bins
of <R>τ=3year that are centered on values between 10 and 200 in steps of
20. In addition, the variance v of the distribution of all
<aa>τ/<aa>τ=1year samples in each band of <R>τ=3year was computed
for each averaging timescale τ. The top panel of Figure 11 shows a surface
plot of the ACF as a function of log10(τ) and <R>τ=3year. On timescales
below about τ = 25 days the ACFs hardly varies at all with the sunspot
number. The major effect is on the peak at 27 days (and its harmonics)
that has a larger amplitude when the sunspot number is low. The lower
panel gives the corresponding surface plot of log10(v): note that sample

Figure 9. Same as Figure 5 for a model X based on lognormal distributions and a sixth‐order polynomial fit to the variance of ap, v(τ). In Figure 9b the red line
shows v(τ) for ap (on a logarithmic scale), and the black line is the polynomial fit (see Appendix A for the polynomial coefficients and formulae for the lognor-
mal distribution family). Also shown are the v(τ) variations for other variables using the same color scheme as used in Figures 4b, 5b, and 6b: Pα (in blue); random
variable, XR (in mauve), plus the aa geomagnetic index (in cyan). pdf = probability density function.

Figure 10. (top) The autocorrelation function of the 3‐hourly aa index,
divided into three 50‐year intervals: (red) 1968–2017 (inclusive); (blue)
1918–1967; and (green) 1868–1917. The lower panel shows the relationship
of the variance v of the lognormal distribution of <aa>τ/<aa>τ=1year as a
function of the averaging timescale (on the log‐log plot format used in panel
b of Figures 4–9).
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Figure 11. Surface plots of (top) the autocorrelation function, ACF, and (bottom) the logarithm of the variance, log10(v),
for all the aa index data (1868–2017) as a function of the logarithm of the averaging timescale, log10(τ), and the mean
international sunspot number, averaged over a 3‐year interval, <R>τ=3years.

Figure 12. Predictions by the model fit to the ap distributions with τ shown in Figure 9. (a) The points show probability
that 3‐hr values of ap are in the top 5% of the overall distribution (for 1932–2016, 252152 samples), f [ap>apo] (i.e., ap
exceeds its 95th percentile of all 3‐hourly ap values, apo = 47.91), as a function of the annual mean value <ap>τ=1year.
The mauve line is the model prediction for τ = 3 hr. (b) The family of model predictions of f [ap > apo] as a function of
<ap>τ=1year for timescales τ of 3 hr (in mauve), 1 day (in blue), 7 days (in orange), and 27 days (in black).
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Figure 13. Same as Figure 4 for the normalizedDst geomagnetic index, <Dst′>τ/<Dst>1year whereDst′ is the subset ofDst values that are negative. pdf = probability
density function.

Figure 14. The variation with averaging interval τ of (top) the fraction of Dst samples that are negative (the subset termed
Dst′) and (bottom) the mean of the ratio of the mean value of Dst′ in intervals of duration τ, to the annual mean values
of Dst. (Top) fneg = NDst′/NDst is shown as a function of log10(τ), where NDst′ is the number of samples at that τ for which
Dst ≤ 0 and NDst is the number of Dst samples of either sign. The red line is the mean for all Dst samples (from 1957
to 2016), the black line is best polynomial fit (see Appendix A for details). (Bottom) Rm=<Dst>τ/<Dst>1year is shown as a
function of log10(τ). The green line shows the result for all the data (from 1957 to 2016); the black line is best polynomial fit
(see Appendix A for details).
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numbers do not allow this analysis to extend to as great a sunspot number as for the ACF analysis. As would
be expected from the ACFs, there is almost no variation in the v‐τ relationship with sunspot number at τ
below about 25 days but above this the larger ACF peak at 27 days for low sunspot number causes v to
fall with τ slightly less rapidly than it does at higher sunspot numbers. There are some slight but
persistent ridges and dips in the surface shown in Figure 11b at certain <R>, but the surface is
remarkably independent of R. Note that the lack of any dependence of the v‐τ relationship on sunspot
number (at low τ) was also revealed by Figure 8c of Lockwood, Owens, et al. (2018), which plots
distributions of <aa>τ=1day/<aa>τ=1 year as a function of year and no solar cycle variation can be detected.

It is tempting to argue that we shouldmodify themodel form of the v‐τ relationship at τ> 25 days to allow for
the (weak) sunspot number variation seen at large τ in the lower panel of Figure 11. The major reason is that
during the Maunder minimum the persistently low sunspot number might make this a factor. However, this
is not necessarily the case because a prolonged (grand) sunspot activity minimum is in many ways quite dif-
ferent to a sunspot activity minimum between solar cycles: one major reason being that for the cycle minima
there is residual open flux generated during the previous cycle out of which fast solar wind flows. The 27‐day
ACF peak is largely caused by CIRs (corotating interaction regions) caused by fast solar wind emanating
from coronal holes reaching down to low latitudes, catching up with Earth‐bound slow solar wind of the
streamer belt. Modeling for the Maunder minimum predicts that the streamer belt will have been consider-
ably wider than in modern times with coronal holes restricted to high heliographic latitudes (Lockwood &
Owens, 2014a, 2014b; Owens et al., 2017), making CIRs that hit Earth less, rather than more, common.
Hence, it is not at all clear that the effect noted in low sunspot years at τ> 25 days in Figure 11 will also apply
to the Maunder minimum. For the present paper we assume that the v(τ) relationship does not change, and
we fit it with a single polynomial form. However, should a long‐term changes in the v(τ) relationship be

Figure 15. Same as Figure 9 for a model X based onWeibull distributions and a sixth‐order polynomial fit to the variance ofDst′, v(τ). Note that by only considering
the negative Dst values (Dst′) the mean values of the fitted distributions are Rm(τ) rather than unity and pdfs have also been multiplied by fneg to allow for
existence of positive values In both cases, the values used here are from the polynomial fits shown in Figure 14. In Figure 15b the green line shows v(τ) forDst′ (on a
logarithmic scale), and the black line is the polynomial fit (see Appendix A for the polynomial coefficients and formulae for the Weibull distribution family).
Also shown are the v(τ) variations for other variables using the same color scheme as used in Figures 4b, 5b and 6b: Pα (in blue); ap (in red); random variable,
XR (in mauve). pdf = probability density function.
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discovered at some point in the future, it could be readily accommodated by making the fit polynomial
coefficients a function of time.

Figure 12 shows that themodeled distributions shown in Figure 9a can explain the variation of occurrence of
large events, as a function of the annual means discussed in Paper 2. The points in Figure 12a show probabil-
ity that 3‐hourly values of ap are in the ap top 5% of the overall distribution (for 1932–2016, 252152 samples),
f[ap>apo] (i.e., ap exceeds its 95th percentile of all 3‐hourly ap values, apo = 47.91), as a function of the
annual mean value <ap>τ=1 year. The mauve line is the prediction for τ= 3 hr for the model values displayed
in Figure 9a. The fit can be seen to be close. The family of model predictions of f[ap>apo] as a function of
<ap>τ=1 year is shown in Figure 12b for timescales of 1 day (in blue), 7 days (in orange), and 27 days (in
black). Hence, the model is reproducing the behavior noted in Figure 1 of Paper 2, namely that, with some
scatter, the number of events in any 1 year that is in the top 5% of the overall distribution increases hyper-
bolically with the mean value for that year.

2.4. The Evolution of the Distributions With Timescale for Dst′

Figure 13 is the equivalent plot to Figure 4 for the Dst′ data that extend from 1957 to 2016. Here the pdf is
shown as a function of τ and <Dst′>τ/<Dst>1year. Generating amodel fit to this plot is more complex because
Dst does not converge to zero for low activity and we have to use Dst′ instead, where Dst′ is the same as Dst,
but all positive values are treated as data gaps. In annual mean data, this makes no difference, because all
annual means are negative, but with decreasing τ the number of Dst′ samples falls compared to the number
of Dst samples, and the mean Rm of the distribution of <Dst′>τ/<Dst>1year, although unity at τ = 1 year, is
greater than unity at lower τ because negative values of <Dst′ >τ/<Dst>1year (i.e., positive values of <Dst′>τ)
are neglected. Figure 14a shows in red the variation with log10(τ) of fneg (= NDst′/NDst), the fraction of Dst
samples that are negative (the subset termed Dst′). The black line is a polynomial fit to this variation, which
is given by equation (A12) of Appendix A. The green line shows the corresponding variation of Rm, the mean

Figure 16. Same as Figure 12 for predictions by the model fit to the Dst distributions with τ shown in Figure 15. (a) The
points show the observed probability that 1‐hr values of Dst are in the top 5% of the overall distribution of Dst disturbance
levels (for 1957–2016, 525960 samples), f[Dst<Dsto] (i.e., Dst is less than its 5th percentile of 1‐hourly values,
Dsto = −55.14 nT), as a function of the annual mean value of Dst values <Dst>τ=1year. The mauve line is the model
prediction for τ= 1 hr. (b). The family of model predictions of f[Dst<Dsto] as a function of <Dst>τ=1year for timescales τ of
1 hr (in mauve), 1 day (in blue), 7 days (in orange), and 27 days (in black).
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of < Dst′>τ/<Dst>1year. Again the black line is the best polynomial fit given by equation (A13) of Appendix
A. Section A2. gives the algorithm for computing the pdf of Dst′ for a given Dst and timescale τ that allow for
these two factors. Figure 15 corresponds to Figure 9 for theDst index. As shown by Figure 3, the distributions
of < Dst′>τ/<Dst>1year follow the Weibull family of distributions and these are derived from the best fit to
the observed log10(v)‐log10(τ) variation (shown in green in Figures 13b and 15b), using the polynomial fit
given in black that is given by equations (A10) and (A11) of Appendix A. For comparison, Figure 15b also
shows the log10(v)‐log10(τ) variations for Pα (in blue), ap (in red), and the random variable, XR (in mauve).

Figure 16 corresponds to Figure 12 and shows how the model can reproduce the occurrence of Dst below its
overall 95th percentile value (Dsto =−55.142 nT), as a function of the annual mean value. Figure 16b shows
the family of such variations for different values of τ.

3. Discussion and Conclusions

It is noticeable that the log10(v)‐log10(τ) variation for ap (in red in Figure 9b) flattens off as averaging time-
scale τ falls below about 1 day, whereas the variance v continues to rise with decreasing τ for power input into
the magnetosphere, Pα (in blue). Using a synthesized random time series and a filter, we have demonstrated
how the flattening off is caused by autocorrelation in the time series. Hence, there is autocorrelation in the
ap time series at τ between 3 hr and 1 day that is greater than that in Pα. As Pα is the driver of ap, this means
that the geomagnetic response seen in ap is a smoothed response. This is not surprising, given the currents
that the index is sensitive to and their associated time constants. The ap index is primarily influenced by the
substorm current wedge (Lockwood, 2013) that is initiated only after a substorm growth phase lasting typi-
cally 30–40 min. Hence, the rapid variations in the energy input into the magnetosphere, which are mainly
associated with IMF orientation changes, are smoothed as energy (and open magnetic flux) is accumulated
in the tail.

The same effect is even clearer for Dst, for which v flattens off as τ falls below about 3 days (the green line in
Figure 15b which is again compared to the behavior for Pα in blue). Hence, the smoothing effect on the
response of Dst has a longer time constant than that for ap. The (negative) Dst index is responding primarily
to the ring current (Turner et al., 2000) that shows greater time constants, responding to the integral of solar
wind forcing on timescales of order of a day or more (Borovsky, 2017; Lockwood et al., 2016; note that below
we discuss the implications of the fact that even large negative Dst can be influenced by other factors, in par-
ticular, the magnetopause currents). This is not to say that Pα is the best coupling function explaining the
solar wind influence on the ring current, not least because the coupling exponent α has been tuned to
0.44 to make Pα reproduce ap, not Dst. Nevertheless, the importance of southward IMF in driving disturbed
Dst means that the same conclusions would be valid for any other coupling function that might better
predict Dst.

Breaking down the power input into the magnetosphere Pα into its component factors, Paper 2 showed that
the factors dependent on solar wind velocity and mass flux and on the IMF (FV, FN, and FB) do not vary
much on short timescales and the distribution of power input into the magnetosphere is set by the variation
in the IMF orientation factor Fθ that, although it can stay stable for several days, is typically changing on
minute timescales. Thus, the shape of distribution is set by Fθ, at very short timescales, much shorter than
the timescale of the geomagnetic index response—it then evolves with τ according to the CLT, making
the shape of the distribution a function of τ only.

A climatology is a statistical description that would enable us to evaluate the probability of space weather
events of a given magnitude, and we are working toward one that applies to the full range of solar conditions
from grand solar minimum to grand solar maximum. In particular, there is value in knowing the integrated
level of activity over an extended period τ, which equals the average value times the duration. Hence, we
investigate algorithms that can give us the probability of a given average value for a given τ. These algorithms
will be of great value in generating a long‐term climatology because they can compute the probabilities for a
given annual mean and we have annual means from the past 400 years from recent modeling work based on
telescopic sunspot observations (Owens et al., 2017). The approach outlined in this paper is based on the
finding that the shape of the distribution of the normalized values (normalized by dividing by the annual
mean value) only depends on the averaging timescale τ. This was used by Lockwood, Owens, et al. (2018)
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to look at the occurrence of large events (defined as in the top 5% since records began) over 400 years. The
constancy of the shape of the distributions was just taken by Lockwood, Owens, et al. (2018) as an empirical
observation that could be exploited. The present series of three papers provide greater understanding of why
this empirical result applies and why the distributions have the form that they do. This is important because
it means the result can be applied with greater confidence to periods when inferences is only made from
proxy data and, in particular, to grand minima like the Maunder minimum.

We have developed methods that enable computation of the core distribution of both the ap and (negative)
Dst geomagnetic indices for a given annual mean value at a required averaging timescale τ. The algorithms
for doing this are detailed in sections A1. and A2., respectively. The complications caused by the fact that the
Dst index, unlike ap, does not tend to zero when activity is quiet have led to the algorithm forDst being some-
what more involved than that for ap, and the distributions are best fitted with a Weibull family of distribu-
tions, as opposed to the lognormal family for ap.

The model distributions for the ap index make use of the lognormal form which, as shown in the supporting
information, gives the best MLE fit of all the distribution forms with two free parameters. The Burr distribu-
tion gives slightly better fits according to the absolute goodness‐of‐fit metrics (least squares and modified
Kolmogorov‐Smirnov), but the relative metrics that allow for the degrees of freedom (Akaike information
criterion, AIC and Bayesian information criterion, BIC) show that the extra degree of freedom is not
justified. (Note that as τ approaches 1 year and the observed distribution tends toward a Gaussian, all the
distributions are good fits and differences are minimal). Thus, there is no question that the ap model
employs the best form of distribution (i.e., the lognormal). The model is also relatively straightforward
because the ap index is unipolar and tends to zero at the quietest activity levels. The largest uncertainty in
using themodel in even theMaunderminimum relates to the occurrence of CIRs and recurrent disturbances
that may influence the model at averaging timescales τ greater than about 25 days.

For the Dstmodel these considerations are less straightforward. First, the Weibull, Gamma, and log‐logistic
distributions all perform similarly, and none of them are ideal fits to the observed distribution. Furthermore,
the extra degree of freedom of the Burr distribution gives fits that are better by a statistically significant
degree. This means the added complexity of using two shape parameters (in addition to the mean m = 1)
would be worthwhile. However, at this point it is worth remembering that the Dst index is intrinsically
and imperfect metric, and hence, the additional fit accuracy is unlikely to justify the additional complexity.
Hence, we propose, in a later paper, to generate a model for the pressure‐corrected index Dst*. Because Dst*
can, like Dst, have both positive and negative values and approach similar to that adopted here for Dst will
be needed.

Appendix A: Probability Distributions of ap and Dst
In the paper, we make use of two distribution forms, the lognormal and the Weibull

A1. The Equations of the Lognormal Distribution

For the lognormal distribution the two parameters that are usually used to specify the distribution are μ and
σ. These are, respectively, the mean and standard deviation of the normal distribution in logn(x) where x is
the variable that is lognormally distributed. These are related to the mean m and variance v of x by

m ¼ exp μþ σ2=2
� �

(A1)

v ¼ exp σ2−1
� �� �

× exp 2μþ σ2
� �

(A2)

or conversely expressing μ and σ in terms of m and v we have

μ ¼ logn m= 1þ v=m2
� �1=2� �

(A3)

σ2 ¼ logn 1þ v=m2
� �

(A4)

Hence, specifying a lognormal distribution using μ and σ is precisely the same as specifying it usingm and v.
The advantage of using μ and σ is that the equation for the probability distribution of a lognormal is simpler:
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f xð Þ ¼ 1=xf g× 1= 2πσ2
� �1=2n o

× exp − logn xð Þ−μð Þ2= 2σ2
� ��

(A5)

For any one combination of m and v, we compute μ and σ using equations (A3) and (A4) and hence deter-
mine the full distribution using (A5).

A2. The Equations for a Weibull Distribution

For Weibull distribution (also called the Rosin Rammler distribution), the two parameters used to describe
the distribution are a scale parameter λ and a shape parameter k. (Note that both λ and k are always positive).

The mean and variance of the distribution in x are again m and v, where

m ¼ λΓ 1þ 1=kð Þ (A6)

v ¼ λ2 Γ 1þ 2=kð Þ− Γ 1þ 1=kð Þð Þ2� 	
(A7)

where Γ is a gamma function. The converse equations for λ and k cannot be derived analytically and we solve
them iteratively by varying the shape parameter k until

λ ¼ m= Γ 1þ 1=kð Þf g (A8)

and

Γ 1þ 2=kð Þ ¼ vþm2
� �

=λ2 (A9)

and then checking the full range of allowed k for a given v and m that the solution is unique.

The Weibull distribution is

f xð Þ ¼ k=λð Þ× x=λð Þk−1× exp − x=λð Þk
n o

for x≥0

f xð Þ ¼ 0 for x<0
(A10)

Hence, as for the lognormal, the distribution is described by two parameters (μ and σ for a lognormal and k
and λ for a Weibull) and in both cases specifying that pair is fully equivalent to specifying the mean and the
variance. Note that in the paper we fit variables of the form X/<X> and so the mean value ism = 1 and the
one fit variable is the variance v. The remainder of this Appendix gives the models used to generate the prob-
ability distribution functions, as a function of averaging timescale, τ, for the ap and Dst geomagnetic indices,
shown in Figures 9 and 15, respectively.

A3. Model for ap

The polynomial fit to the variation of the logarithm of the variance, v, with timescale τ for the ap index,
shown by the black line in Figure 9b, gives

log10 vð Þ ¼ β ¼ −0:0471τ6 þ 0:1309τ5 þ 0:0954τ4−0:3554τ3−0:1651τ2−0:2124τ þ 0:2048 (A11)

such that the model variance is

v τð Þ ¼ 10β (A12)

By normalizing the ap values by the annual mean <ap>τ/<ap>τ=1 year, the annual distributions have a
mean m = 1 at all τ.

For ap the best fit is with the family of lognormal distributions.

η ¼ 1þ v=m2
� �

(A13)

μ ¼ logn m=η0:5
� �

(A14)

σ ¼ logn
0:5 ηð Þ (A15)
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x ¼ <ap>τ=<ap>τ¼1year (A16)

a ¼ xσ 2πð Þ0:5� �−1
(A17)

b ¼ exp − logn xð Þ−μ2� �
= 2σ2
� �� 	�

(A18)

f x; τð Þ ¼ ab; f 0; τð Þ ¼ 0 (A19)

The equations (A11)–(A19) allow the computation of the p.d.f. f for a value of ap for an averaging timescale τ,
<ap>τ, if we know its annual mean, <ap>τ=1year.

Comparison of Figures 5a and 9a of the main text demonstrates the fit of the family of distributions to the
ap data.

A4. Model for Dst

The polynomial fit to the variation of the logarithm of the variance, v, with timescale τ for the Dst index,
shown by the black line in Figure 15b, gives

β ¼ −0:0158τ6 þ 0:0353τ5 þ 0:0462τ4–0:1283τ3–0:1387τ2–0:0318τ−0:1060 (A20)

such that the model variance is

v τð Þ ¼ 10β (A21)

The fraction of Dst′ samples (with Dst ≤ 0), as a function of timescale τ, is given by the polynomial (the black
line in Figure 14a)

f neg ¼ −0:0003τ8 þ 0:0004τ7 þ 0:0035τ6−0:0039τ5−0:0161τ4 þ 0:0052τ3 þ 0:0461τ2 þ 0:0578τ

þ 0:8226 (A22)

(Note that such a high‐order polynomial is needed to capture the observed variation with
sufficient accuracy).

The polynomial fit to the ratio of the means of Dst′ for intervals of length τ, <Dst′>τ (where Dst′ is the subset
of Dst values that are negative), and the annual mean of Dst, <Dst>1year given by the black line in Figure 14
b is

Rm ¼ <Dst′>τ=<Dst>1year ¼ 0:0003τ6−0:0024τ5 þ 0:0033τ4 þ 0:0145τ3−0:0215τ2−0:0770τ−1:1319 (A23)

For Dst′, the best fit is with the family of Weibull distributions, the variance of which is

v kð Þ ¼ λ2 Γ 1þ 2=kð Þ− Γ 1þ 1=kð Þð Þ2� 	
(A24)

where Γ is a gamma function. The best method is to find the factor k is by iteration to the value that gives

vm τð Þ ¼ v kð Þ (A25)

Note that the mean of the distribution is, unlike for the ap case, not in general unity because of the exclusion
of the positive Dst values. Rather, the mean is Rm given by equation (A23). This yields

λ ¼ Rm=Γ 1þ 1=kð Þ (A26)

x ¼ <Dst′>τ=<Dst>τ¼1year (A27)

a ¼ k=λ (A28)

b ¼ x=λð Þk−1 (A29)
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c ¼ exp − x=λð Þk
� �

(A30)

fW x; τð Þ ¼ f neg:a:b:c always valid as x≥0ð Þ (A31)

The normalizing factor fneg (given by equation (A22) for a given τ) is needed because the product of the terms
a, b, and c gives the p.d.f. of Dst′, but they are only a fraction fneg of the whole Dst sample.

The equations (A10)–((A21)) allow the computation of the pdf f for a negative value of Dst for an averaging
timescale τ, <Dst′>τ, for an annual mean of Dst, <Dst>τ=1year.

Comparison of Figures 13a and 15a demonstrates the fit of the family of distributions to the Dst data.

Appendix B: Relationship of Daily Means of aa and ap and Correcting ap
Figure B1, 1 shows scatterplots of 24‐hr, 8‐point running means of the ap index (by convention referred to as
Ap*) in 3‐month intervals a function of the simultaneous corresponding mean of the aa index (Aa*). This
plot is restricted to data from between 1932 (the start of the ap index data) and 1956 (inclusive). The end date
is because in 1957 there is a calibration error in aa introduced by the move of the Northern Hemisphere aa
station from Abinger to Hartland. This has been corrected using the ap index by Lockwood et al. (2014) and
Matthes et al. (2017). Hence, it is not appropriate to use data for 1957 and after, either with or without that
correction. There is considerable scatter about the trend in Figure B1, 1, much of which is introduced by dif-
ferent annual responses of the two indices associated with the different geographic distribution of stations.
Note there are also considerable diurnal differences, but they are averaged out by taking 24‐hr means. The
relationship between Aa* and Ap* depends on time of year (see Figure B1, 1), and the best fit polynomials to
the data for four fraction of year intervals, each covering a quarter of a year and centered on the times of the
March equinox, June solstice, September equinox, and December solstice, are

Figure B1. Scatterplots of 24‐hr means of the ap geomagnetic index, Ap*, as a function of the corresponding means of the
aa index, Aa*, for 1932–1956 (inclusive) for 0.25‐year intervals around (a) March equinox; (b) June solstice; (c) September
equinox, and (d) December solstice. Black squares are means over Aa* bins 40‐nT wide. The solid lines are third order
polynomial fits, and the dashed lines are plus and minus the best fit 2‐sigma error.
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0:09≤F≤0:34 Ap* ¼ 7:241×10−7
� �

Aa*3− 1:351×10−3
� �

Aa*2 þ 1:108Aa*−8:410 (B1)

0:34≤F≤0:59 Ap* ¼ 8:959×10−7
� �

Aa*3− 1:597×10−3
� �

Aa*2 þ 1:182Aa*−9:236 (B2)

0:60≤F≤0:85 Ap* ¼ 7:131×10−7
� �

Aa*3− 1:344×10−3
� �

Aa*2

þ 1:127Aa*−8:539 (B3)

F≤0:12 or F≥0:8 Ap* ¼ 6:621×10−7
� �

Aa*3− 1:156×10−3
� �

Aa*2

þ 0:907Aa*−4:969 (B4)

These polynomial fits and plus and minus their 2‐sigma errors are shown
in Figure B1, 1 (as solid and dashed lines, respectively). For the estimated
Aa* of the Carrington event (Cliver & Svalgaard, 2004), these fits yieldAp*
of 275 ± 24, 277 ± 44, 283 ± 30, and 224 ± 33 for the March equinox, June
solstice, September equinox, and December solstice data, respectively.

Our research into the response functions of geomagnetic indices (the col-
lective response of the network of stations used to generate them and of
the compilation algorithm used to combine the data from them) using
the model of Lockwood, Chambodut, et al. (2018) and Lockwood,
Finch, et al. (2018) has shown that the am geomagnetic index has a very
flat, almost ideal, time‐of‐day/time‐of‐year response. This is achieved
because this index employs relatively uniform rings of midlatitude sta-
tions in both hemispheres and uses weighted means to account for any
spatial nonuniformity of the station network. On the other hand, the com-
pilation of the ap index employs an irregular network of predominantly
Northern Hemisphere (mainly European) stations and lookup tables to

Figure B2. The Ap* correction factor Cap = (Am*/Ap*) (<ap>/<am>) as a function of the time of year, F, and the ap level (shown here on a logarithmic scale)
derived from all the coincident ap and am index data (for 1959–2017, inclusive).

Figure B3. The effect of correcting 24‐hr means of the ap index for its
dependence on time of year, F: a scatterplot of ApC* (eight‐point running
means of the corrected apC = ap.Cap) as a function of the corresponding
runningmeans of the original ap values,Ap*. The plot is for all ap index data
to date (1932–2017, inclusive).
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convert the observations from each into the value that would be seen at the reference Niemegk station before
combining them by averaging. The lookup tables are specific to the station location and depend on time of
day (UT), time of year (F), and the level of the activity. Cliver and Svalgaard (2004) recognized the value of
the am index, compared to indices derived from less‐ideal distributions of stations, and used it to correct for
the false time‐of‐day variation in the aa index (and so created what they termed aam). However, they did not
correct for the associated spurious time‐of‐year variation in aa (Lockwood, Finch, et al., 2018) and then used
the suggestion of Allen (1982) of 24‐hr running means of aam (which they termed Aam*) that largely sup-
presses the false UT variation anyway. We here apply the same philosophy that Cliver and Svalgaard
(2004) adopted but use am to correct for any false time‐of‐year variation in ap. We do this because the am
index data only extends back to 1959, whereas the ap index is available from 1932 onward.

We have generated a corrected ap index, apC, which allows for effects as a function of the fraction of each
year (F) and the ap level using the formula

apC Fð Þ ¼ ap Fð Þ×Cap F; apð Þ (B5)

where the correction factor is given by

Cap F; apð Þ ¼ <am F; apð Þ>bin=<am>allð Þ= <ap F; apð Þ>bin=<ap>allð Þ
¼ <am F; apð Þ>bin=<ap F; apð Þ>binð Þ× <ap>all=<am>allð Þ (B6)

The subscript all refers to the averaging of all coincident ap and am data for 1959–2017 (inclusive), and the
subscript bin refers to the averaging of data in a given F and ap bin during the same interval. Multiplying by
the ratio of the all‐over means of ap and ammeans that we correct for the variation with F but do not change
the average levels of ap. In practice, the data were divided into 40 equal‐size bins of the overall ap
distribution, giving 6,282 samples in each ap bin; the values of Cap(F,ap) were then fitted with a sixth‐order
polynomial in F. The derived correction factor Cap(F,ap) is shown as a function of F (x axis) and log10(Ap)
(y axis) in Figure B1, 2. Note that we are not concerned with any limitations in the UT dependence of the
response of ap because we use averages over 24‐hr intervals, as discussed below. This correction is only
approximate because the network of stations used to generate the ap index has changed several times
since 1932. However, we do not find any detectable discontinuities in Cap(F,ap) at any of the changes
since 1959 and so we use the assumption that effects of changes before this date also have negligible
effect. The effect of the correction is not great (see Figure B1, 3) but is largest for the most active days.
Many of these storm day values are hardly altered by the correction but those in Northern Hemisphere
winter, in particular, are underestimated in ap, and this is corrected in apC.

We follow the procedure of Allen (1982) to make 24‐hr boxcar means of apC, ApC*. For the purposes of iden-
tifying and ranking storm days we take the largest value of the eight such running means in each calendar
day [ApC*]MAX. The 100 largest values of [ApC*]MAX since 1932 are given in rank order in Table S7 of the
supporting information. Although there are similarities, this list has a somewhat different ranking order
to previous studies (e.g., Cliver & Svalgaard, 2004; Kappenman, 2005; Lefèvre et al., 2016; Nevanlinna,
2006, 2008), largely because of the allowance we make for the variation of the ap index response with time
of year. Note that even quite small changes in the estimatedmagnitude of the storm day can have a very large
effect on its position in the ranking order.
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