
Contents lists available at ScienceDirect

Field Crops Research

journal homepage: www.elsevier.com/locate/fcr

Establishing the precision and robustness of farmers’ crop experiments

Ben Marchanta,⁎, Sebastian Rudolpha,b, Susie Roquesc, Daniel Kindredc, Vincent Gillinghamd,
Sue Welhame, Colin Colemanf, Roger Sylvester-Bradleyc

a British Geological Survey, Keyworth, Nottinghamshire, NG12 5GG, UK
b Johann Heinrich von Thünen Institute, Institute of Rural Studies, Bundesallee 50, Braunschweig, Germany
c ADAS Boxworth, Cambridge, CB23 4NN, UK
d AgSpace, Dorcan Business Village, Swindon, SN3 5HY, UK
e VSN International Ltd., Software for Bioscientists, 2 Amberside, Wood Lane, Hemel Hempstead, Herts, HP2 4TP, UK
f Trials Equipment (UK) Ltd., Hudson’s Hill, Hedingham Road, Wethersfield, Essex, Braintree, CM7 4EH, UK

A R T I C L E I N F O

Keywords:
Yield monitor
NDVI
Field-scale trials
Geostatistics

A B S T R A C T

Precision farming technologies such as global positioning, input placement technologies and on-the-go yield
monitoring now provide farmers with the means to conduct their own experiments at scales relevant to their
decisions with minimal disruption. However, these experiments are generally incompatible with conventional
statistical methods and alternative models of response variables (e.g. yield) must be estimated if the effect of the
management decision is to be distinguished from other sources of variation. We explore the precision and ro-
bustness of such experiments using four sources of data and experimental designs of different degrees of com-
plexity. We see that there is a trade-off between the precision of the experiment and its complexity and hence
implementation cost. In yield experiments with small-grain cereals, standard errors of treatment effects in yield
of less than 0.05 t/ha can potentially be achieved when the treatment is varied along the field traffic row and
standard errors of less than 0.1 t/ha can potentially be achieved when single treatments are applied in each row
but the experiment includes multiple disconnected repetitions of each treatment. Simpler split-field designs are
less robust since it can be difficult to distinguish treatment effects from independent spatial trends and dis-
continuities in the response variable. In some instances, the potential precision is not realised because the data
include noise or artefacts that are unrelated to crop performance. Further yield sensor developments are required
to minimise these occurrences. The model-based statistical analyses of these experiments require assumptions
regarding the variation of the response variable. We see that when these assumptions are inappropriate (e.g. if
the correlation between response variable measurements is poorly modelled) then the inferences from the ex-
periments can be unreliable. In particular, we see that the spatial correlation amongst yield measurements tends
to be greater along the farm traffic row than perpendicular to it. Standard isotropic models of spatial correlation
do not accommodate this feature and led to substantial under-estimation of the standard errors.

1. Introduction

Learning and progress in farming have, for centuries, occurred
through sharing of experiences arising from ‘trial and error’ across
multiple farms within a locality (Sylvester-Bradley, 1991). Through the
last century, as farming became more sophisticated and farms became
larger and less numerous, farmers have become increasingly reliant on
more formal small-plot experiments and theories (‘recommendations’
e.g. AHDB, 2017) provided by their suppliers or advisors, or by the
broader agricultural science community. However, the extensive ex-
trapolations required in deriving broad-scale recommendations from
small-plot experiments incur large uncertainties, particularly

concerning the influence of soil variation, but also the effects of
weather, farming system, and farming skill, which are all difficult to
mimic and control at the small-plot scale. Thus, farmers are increas-
ingly questioning whether these recommendations are relevant to their
own farms or whether local factors might confound the experimental
results (e.g. Pannell et al., 2006) and farmers are increasingly making
field-scale comparisons of their own husbandry options.

In studies of within-field variation, Kindred et al. (2015) found that
the optimal nitrogen fertiliser rate could vary by more than 100 kg/ha
within a 4 ha wheat experimental area and Bramley et al. (2005) de-
monstrated how the choice of location for a viticulture plot trial could
markedly impact the results. There is a strong case for farm-led
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experimentation at scales relevant to commercial decision-making so
that bespoke guidelines specific to farm, field or management zone can
be determined (Griffin et al., 2008). Indeed, MacMillan and Benton
(2014) advocate a move away from the ‘one-size-fits-all’ approach of
centralized research and a move towards research at a more local-scale,
conducted by farmers. They describe case studies where networks of
farmers share their experimental findings to determine more locally-
specific management recommendations.

The implementation and analysis of agricultural experiments are
not without challenges. Conventional small-plot experiments generally
include a number of different treatments or management interventions
that are allocated to different plots according to a randomized design
(Fisher and Wishart, 1930; Little and Hills, 1978; The University of
Reading, 2000). The same treatments are replicated on multiple plots so
that classical statistical methods can be used to partition the variability
of the response variable(s) and to draw reliable inferences. This ap-
proach requires few assumptions about the variation of the response.
However, the work of applying treatments and collecting response data
is laborious, requires specialist staff and equipment and interferes with
the standard work practices of farms. Collecting yield data can be
particularly disruptive when farmers are under pressure to complete the
harvest in limited windows of appropriate weather conditions (Griffin
et al., 2014).

Farmers’ crop experiments tend to follow simpler, more systematic
designs (Hicks at al., 1997). These designs are incompatible with the
classical statistical methods so more elaborate statistical models of the
variation of the response variable are required (Brus and De Gruijter,
1997), which entail specific assumptions about the variation of the
response (Webster and Oliver, 2007). Treatments are applied using the
existing farm equipment and yield measurements are often made using
yield monitors built into the harvester (Grisso et al., 2009). This can
lead to noisier or more variable experimental data and less certain
conclusions. New skills are also required of the interested parties
(farmers, advisors, suppliers, or scientists), to design the experiments,
and collect, pre-process, analyse, interpret and store the experimental
data. The design, implementation, analysis and interpretation of
farmers’ crop experiments generally require a collaboration between
these interested parties who we collectively refer to as ‘the experi-
menters’.

These challenges are being addressed through various research
projects and initiatives in the UK (Sylvester-Bradley et al., 2017) and
elsewhere (Cook et al., 2013). For example, farmers’ networks and
workshops are being organised to teach the required skills and facilitate
the sharing of experiences and results. Other projects are concerned
with determining the precision of farmers’ crop experiments and es-
tablishing best practice. There is a trade-off between the complexity of
the experimental design and the precision of the results (Whelan et al.,
2012). For example, researchers have successfully used chess- or
checker-board experiments (Pringle et al., 2004) to quantify the re-
sponse of crop yields to different nitrogen fertiliser rates and to explore
the spatial variation of these responses (Kindred et al., 2015). However,
farmers often cannot accept the disruption that arises from accom-
modating such large and intricate experiments (Griffin et al., 2014).
They generally prefer simpler designs where, for example, non-standard
treatments are applied to a small number of strips across the field
(Hicks et al., 1997). Alternatively, different uniform treatments are
applied to large contiguous regions of a field. Also, whilst researchers
would be likely to recognise and account for known spatial trends when
designing field experiments, farmers are less certain of how best to
optimise plot layouts, and require advice regarding the interpretation of
the data and the conclusions that can be drawn. If farmers’ crop ex-
periments are to help drive farming progress it will be important to
establish the most appropriate level of complexity for an experiment so
that reliable management recommendations can be developed with
minimal disruption to the farm.

Farmers’ crop experiments are generally used to estimate the

expected yield across the field under each treatment (e.g. Hicks et al.,
1997) in order to test decisions and innovations that might be adopted
on the farm. However, in some circumstances (e.g. when there are
zones of distinct soil types in the field) it can be cost effective to vary
the management plan within the field. In these circumstances the ex-
periment must provide information about the within-field variation of
the effectiveness of each treatment. When a chess-board experimental
design is applied then multivariate kriging methods can be used to map
the variation in the treatment effect (e.g. Kindred et al., 2015). Lawes
and Bramley (2012) considered how simpler designs could be used to
learn about such within-field variation. In an otherwise uniformly
treated field, Lawes and Bramley (2012) positioned a single strip with a
luxury N treatment such that it traversed management zones. They then
looked at how the difference in yield between the treated strip and the
adjacent control strip varied along the strip and determined the sta-
tistical significance of the differences through a series of t-tests.
Rudolph et al. (2016) modified this approach to include a parametric
model of the correlation amongst the measurements of the response
variable. In an analysis of a nitrogen fertiliser strip trial they were able
to identify significant jumps in a vegetation index at the boundary
between different treatments.

The objectives of this study are to critically review the effectiveness
of farmers’ crop experiments with reference to examples from UK farms.
We consider four types of sensor measurements of crop performance.
These are yield monitors on commercial combine harvesters, a yield
monitor on a plot combine harvester, Normalized Difference Vegetation
Index (NDVI) measurements from an airborne multispectral sensor and
NDVI measurements from a handheld sensor. We consider the practical
limitations of each sensor, including the presence of artefacts within the
data they produce, and the degree to which they can be overcome. We
develop and describe a statistical framework for the analysis of farmers’
experiments and use this to determine the precision and robustness of
the exemplar experiments.

2. Methods

2.1. Overview

We explore the issues of farmers’ experimentation with reference to
six experiments on UK arable fields. The crop performance sensors,
especially the yield monitors, tend to lead to noisy datasets that include
artefacts and variation that is unrelated to the actual yield variation.
We develop strategies that can be used to remove such artefacts and the
statistical methods required to analyse the data. If classical statistical
methods were applied the uncertainty associated with the results would
be underestimated since these methods do not account for the spatial
correlation amongst the data (Griffin, 2010). We describe model-based
statistical methods (Diggle and Ribeiro, 2007) that can account for this
correlation and determine the confidence with which we can interpret
the results. In the case of data from yield monitors there tends to be
stronger correlation in the longitudinal (along the swath) than the
lateral direction. A product sum model (De Cesare et al., 2001), more
commonly used to represent correlation in space and time, is used to
account for this. After comparing statistical methodologies, we de-
termine the precision that is achieved from different experimental de-
signs.

2.2. Data types and pre-processing

2.2.1. Grain yield data from commercial harvesters
The sensor data which are most pertinent to farmers are georefer-

enced yield data, as measured for cereal crops by yield monitors fitted
to commercial combine harvesters. We intended the yield data collected
for this study to reflect the quality of data that might be expected from
UK farmers’ crop experiments. Therefore, data were received directly
from the farmers concerned. No special requests were made to the
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farmers regarding the calibration or operation of their combine har-
vesters. The combine harvesters were all fitted with a global positioning
system (GPS) to record its location and to enable conversion of mea-
surements of the grain flow or volume per unit time to a mass of har-
vested grain per unit area.

There are many processes or practices that can lead to noise ap-
pearing in maps of yield measurements. These may be inherent for any
particular monitoring system or arise through differences in their op-
eration. Errors introduced by the GPS can distort the area over which
the yield is averaged and lead to the locations of yield measurements
being poorly assigned. Other errors relate to poor calibration of the
yield monitor or the operation of the combine harvester. Yield values
will be erroneously small where the harvested swath width is less than
the combine harvester header width (unless the operator and/or the
yield monitoring system has automatically corrected or even over-cor-
rected the width and yield). Artefacts can appear in the yield maps if
the velocity of the combine harvester varies. Particularly extreme ar-
tefacts occur if the combine harvester stops since in this circumstance a
flow of grain might still be recorded but the GPS signal indicates that an
area of 0m2 is being harvested. At the start of each combine harvester
run it can take a number of seconds (15 according to Grisso et al., 2009)
until grain reaches the tank inside the combine harvester and a stable
yield is registered. Similar delays continue to occur as the combine
harvester progresses along the swath leading to errors in the locations
at which yield measurements are assigned. Grain mixing within the
harvesting mechanism also causes smoothing of any abrupt changes in
yield along the swath. When adjacent runs of the combine harvester
occur in opposite directions these location errors can lead to distortions
to features in the yield maps that cross multiple passes.

Farmers and their advisors are generally aware of these potential
artefacts in yield maps (Griffin, 2010). Different filters have been de-
signed to identify and remove erroneous measurements (e.g. Sudduth
and Drummond, 2007; Sun et al., 2012). We established a similar set of
filters to remove artefacts from the yield monitor data collected in this
study. These filters removed measurements:

1 flagged as headland or as erroneous by the combine harvester op-
erator or experimenters.

2 within 15m of a change in experimental treatment within a row
3 where the combine harvester velocity was outside of the normal
operating range.

4 where the combine harvester was not moving in the expected di-
rection. All of the experiments in this paper relate to parallel farm
traffic rows.

5 at locations where the combine harvester has already cut the grain.
This filter also serves to identify where rows are less than the
combine harvester width apart and therefore the swath is not a full
header width.

6 within a specified number of seconds of when the GPS time signal
indicated that there was a break in the recorded data. Such a break
might have resulted from one of the first four filters. This filter also
served to remove data from the start and end of each row.

7 from rows where the average yield was less than expected.
8 which were outside of the expected yield values.
9 that are extreme relative to their neighbours. The method for
identifying such local outliers is described by Marchant et al.
(2010).

Many of these filters required specified thresholds (e.g. the ranges of
combine harvester velocity or yield values that could be expected in
normal operating conditions). These thresholds varied from field to
field. They were chosen to remove measurements that the experimenter
believed to be implausible and were based on knowledge of the ex-
periments and fields concerned and then adjusted by trial-and-error to
produce realistic yield maps. Ideally the majority of removed mea-
surements would be as a result of the first six filters where the cause of

the artefacts can be explained in terms of the operation of the combine
harvester. However, extreme values which can potentially lead to
misleading experimental results can still remain after the application of
these filters.

The final step in the data pre-processing procedure was to apply a
time-shift to the data to compensate for the time-delay in grain reaching
the yield monitor sensor. A series of time shifts ranging between minus
30 and plus 30 s was applied to the data. The average correlation be-
tween proximal measurements from adjacent rows harvested in op-
posing directions was then calculated. The time-shift which led to the
largest correlation was applied to the data. Both positive and negative
time shifts were permitted because the yield monitor software might
have already applied an overly severe time delay to the data. Further
details of this time delay correction are provided by Muhammed et al.
(2017).

2.2.2. Yield monitor data from a plot combine harvester
A combine harvester yield monitor typically records the crop yield

every few seconds. Each datum does not relate to the yield at a precise
location but instead relates to the average yield across a small region
traversed by the combine harvester during this time interval. We refer
to this region as the spatial ‘footprint’ of the measurement. One might
assume that the footprint is a rectangle with width equal to the swath
width and length equal to the distance the combine harvester has
moved within the time interval. In reality, the footprint is likely to
correspond to a shape with curved ends since grain cut by the edge of
the header might take longer to reach the yield sensor than grain that is
cut at the middle of the header (Lark et al., 1997; Whelan and
McBratney, 2002). In either case, the spatial precision of the yield
monitor data is limited by the width of the combine harvester. Com-
mercial combine harvesters in the UK typically have header widths of at
least 9 m and one method to increase the precision of a farmers’ crop
experiment is to reduce this width.

A Sampo 2010 plot combine harvester with a header width of 2.1m
was therefore modified by Trials Equipment Limited (www.trialseq.co.
uk) for continuous yield monitoring. Two hoppers were attached to the
side of the combine harvester (Fig. 1). After the grain had been cut, it
was transported by a conveyor-belt to one of these hoppers. Each
hopper was supported by calibrated load cells which recorded the mass
of grain within the hopper 10 times every second. Each hopper had a
capacity corresponding to around 10 kg of grain; once a hopper was
full, a flap switched the supply of grain to the second hopper and the
grain in the first hopper was emptied into the main tank of the plot
combine harvester. The time series of recorded weights from each
hopper were merged to produce one continuous signal corresponding to
the hopper that was receiving grain at any instant. The difference in
successive weight measurements was then calculated and this

Fig. 1. The Sampo 2010 plot combine harvester adapted for the continuous
collection of harvested grain weights, locations and hence grain yields.
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corresponded to the mass of grain entering a hopper within the 0.1 s
time period. A GPS with 1 Hz uptake rate was also fitted to the plot
combine harvester. As with commercial combine harvester yield
monitors, the GPS was used to determine the area covered during each
time interval and the location from which the grain had been cut.

The plot combine harvester typically operates at a speed of around
1 km/h. Thus, in 0.1 s it moves around 0.03m. One might therefore
hope that it could produce yield measurements with a spatial footprint
of × =2.1m 0.03m 0.063 m2. However, these raw yield measurements
were very noisy. Much of this noise was mechanical and resulted from
the large vibrations as the combine harvester moved and threshed the
grain. Further noise resulted from the GPS being insufficiently precise
to measure the few centimetres traversed in 0.1 s. Therefore, it was
necessary to smooth the data and the average yield was calculated for
3m long blocks. Thus, each smoothed measurement corresponded to a
footprint of 6.3m2.

This smoothed yield data was then pre-processed using the series of
filters applied to the yield monitor data from the commercial combine
harvester.

2.2.3. Normalized difference vegetation index data
The NDVI relates to the greenness or ground cover of a crop and is

calculated from multispectral reflectance data. The NDVI is the ratio of
the reflectance in the near-infrared region of the measured spectrum
minus the reflectance in the visible region, and the sum of the re-
flectance from these two regions. Thus, it varies between -1 and 1, with
a NDVI of 1 corresponding to a green crop with full ground-cover.

The NDVI does not relate directly to the final yield and hence to the
profitability of the crop. However, the NDVI can be used during the
growing season to assess the fertiliser requirements of the crop. It can
also be used as an indicator of whether an experimental management
intervention has increased or decreased progress towards full ground
cover.

We consider two sources of multispectral and hence NDVI data. One
source is a handheld sensor that measures the average NDVI for an area
of about 0.2–0.5m2 beneath the sensor. The exact area varies according
to the height of the crop. The second is an airborne multispectral sensor
which can be used to measure the NDVI across a field with a pixel size
of< 10 cm. This airborne NDVI image was obtained when there was no
cloud cover.

Many of the difficulties in obtaining spatially accurate yield data do
not apply to NDVI data, therefore, there is no need to apply the ex-
tensive series of yield monitor filters described above. However, arte-
facts can occur in NDVI images, particularly those obtained from air-
borne sensors due to factors such as the observation angle, the speed of
the vehicle, the angle of solar incidence and within field variation of
slope, humidity and canopy structure. The majority of such artefacts are
not easily identifiable within an image and therefore would add to the
unexplained variation in the data and the uncertainty of the final results
of experiments. Artefacts in uncropped areas can generally be identi-
fied. The handheld measurements were limited to areas where there
was good crop cover. The airborne image did include uncropped areas
(e.g. the farm traffic wheelings), so these pixels were removed from the
image by setting a lower threshold on the NDVI measurements.

2.2.4. Experimental data
We consider data from farmers’ crop experiments at six sites in

England. Our focus is on the precision of these experiments rather than
their findings. We are not concerned with the relative merits of the
different experimental treatments and the specific local conditions that
might influence their effectiveness. With this in mind, and to protect the
anonymity of the farms involved, we only give the most general in-
formation about the experimental protocols, treatments and sites
(Table 1 and Figs. 2–11). The quoted approximate site areas refer to the
areas from which data were gathered and do not include headlands but
do include other portions of data that were removed in the pre-

processing steps. In each case, the data relate to a winter wheat crop.
The experiment at Site D formed part of the ‘LearN’ project (Kindred
and Sylvester-Bradley, 2014).

3. Statistical theory

The aim of each of the experiments was to determine whether the
experimental treatments had an effect (positive or negative) on the
response variable. In the description that follows we refer to the re-
sponse variable as yield although we note that other variables, such a
NDVI, might be used. To simplify our discussion of the effectiveness and
precision of the experiments we designate one treatment as the stan-
dard or control treatment, numbered treatment 1 in the equations that
follow. In experiments with a nil treatment (e.g. the fungicide and
phosphorus-input trials) we designate this as the standard treatment. In
the other experiments we designate the treatment covering the largest
area as the standard. We then ask whether any of the other treatments
have an effect relative to this standard.

The major challenge in answering this question is in separating the
underlying variation in crop yield from that caused by the experimental
treatments. In standard field trials, each treatment is replicated and
allocated at random to different plots within the experimental area and
classical or design-based statistical methods can be used to determine
the probability that any difference in the measured yields under each
treatment could have occurred by chance (The University of Reading,
2000). The underlying variation in the field is assessed by quantifying
the variability between yields measured in plots under the same treat-
ment.

In contrast, farmers’ crop experiments tend to follow a more sys-
tematic design which is inconsistent with the design-based statistical
methods (Brus and De Gruijter, 1997). Also, there might be too few
plots to assess the underlying yield variability and this variability is
likely to be spatially correlated. Thus there might be large and con-
tiguous portions of the experimental area where the underlying yield is
larger than the norm. If we conduct a split-field design and record the
average yield for each half of the field, we have insufficient evidence to
assess whether the observed difference between the two portions of the
field has occurred because of the underlying variation or because of the
different treatment.

We therefore need to use a model-based statistical approach (Diggle
and Ribeiro, 2007). Here the variation and correlation between the
individual yield measurements are quantified in a statistical model. We
use a linear mixed model (LMM; Lark et al., 2006) that divides the
spatial variation of yield into fixed and random effects. The fixed effects
correspond to the treatment effects. The random effects correspond to
the underlying variation or the residual variation that has not been
explained by the fixed effects. Once we have estimated such a model we
can use it to determine whether any observed difference between yields
under different treatments could be explained by the underlying yield
variation in the field.

The LMM is written:

= +z β εM , (1)

where z is the length n vector of response variable measurements, n is
the number of measurements, M is the size ×n t fixed effects design
matrix, β is a length t vector of fixed effects coefficients, ε is the length
n vector of random effects and t is the number of different experimental
treatments. The product βM constitutes the fixed effects. All of the
entries of the first column of M are equal to 1. For the remaining col-
umns, the i th entry of the j th column of M is 1 if the i th yield ob-
servation underwent treatment. Otherwise the entries of these columns
are 0. Thus β1, the first entry of β, corresponds to the mean of the fixed
effects for the standard treatment and the other βj correspond to the
adjustment to this mean for each of the other treatments.

The elements of ε are generally assumed to be realized from a
second order stationary Gaussian random function with zero mean and
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covariance matrix Σ. The random effects can be spatially correlated. We
assume that the covariance for any two elements of the vector of
random effects is a function of the distance between the locations of the
two yield measurements. Many suitable covariance functions exist but
we focus on the flexible nugget and Matérn function (Webster and
Oliver, 2007):

= ⎧
⎨⎩

+ =
>

c h
c c h
c G h h

( )
if 0

( ) for 0
,0 1

1 (2)
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⎝

⎞
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ν
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Here, Γ is the Gamma function and Kν is a modified Bessel function
of the second kind of order ν and h is the distance separating the two

measurements. This function has four parameters which must be esti-
mated from the data. These are the nugget variance c0, the sill variance
c1, the distance parameter a and the smoothness parameter ν. The
covariance function is often expressed as a variogram:

= + −γ h c c c h( ) ( ).0 1 (4)

There are two commonly used approaches to estimate the para-
meters. The method of moments (Webster and Oliver, 2007) allocates
pairs of observations to a series of lag bins based upon their separation
distance. The average semi-variance for the pairs in each bin is then
calculated and the covariance function is fitted to these averages,
generally using a least squares estimator. The method is undemanding
to compute and can therefore be applied quickly. It does however re-
quire the practitioner to make a series of subjective decisions about how
the data are arranged into different lag bins. We favour the maximum
likelihood estimator (Diggle and Ribeiro, 2007; Lark et al., 2006) which

Table 1
Details of the six experimental sites. Sensors include commercial combine yield monitor (CCYM) and plot combine yield monitor (PCYM).

Field Area (ha) Experiment type Design Data sources

A 16 Variety Split-field CCYM and airborne NDVI
B 11 P fertiliser Alternate rows receive zero P; other rows receive one of four P rates. CCYM
C 8 Fungicide Three fungicide treatments allocated at random within six replicate blocks. Includes treatment variation

within-rows
CCYM

D 9 N fertiliser rate Standard N rate applied for majority of field. Standard rate plus 60 kg/ha and standard minus 60 kg/ha
applied to sets of adjacent rows.

CCYM

E 0.4 Fungicide Random allocation of three treatments within six replicate blocks PCYM and handheld NDVI
F 0.3 Fungicide Random allocation of three treatments to three replicate blocks PCYM and handheld NDVI

Fig. 2. (a) scatter plot of raw commercial yield monitor data from Experiment 1 (t/ha); (b) histogram of raw commercial yield monitor data from Experiment 1; (c)
scatter plot of cleaned commercial yield monitor data from Experiment 1; (d) histogram of cleaned commercial yield monitor data from Experiment 1.
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is considerably more computationally demanding and time-consuming
but fully accounts for the spatial configuration of the data without re-
quiring subjective choices. This estimator finds the parameter values
which lead to the largest achievable value of L, the likelihood or
probability that the observed data would be realised from the statistical
model. Once these random effects parameters have been estimated it is
possible to calculate the correlation between the random effects for any
pair of locations and hence the size ×n n covariance matrix Σ.

Then the random effects parameters can be estimated using the
formula:

= − − −β zM Σ M M Σ( )T 1 1 T 1 (5)

and the covariance matrix of these estimates is:

= − −C M Σ M( )T 1 1 (6)

In summary, the expected effect of treatment = …j t2, , is equal to
βj and this estimate has standard error =σ Cj jj where Cjj is entry j j, of
matrix C. If we assume that these βj are realised from a Gaussian dis-
tribution then this is sufficient information to calculate the probability
density function of the treatment effect and the probability that the βj
are positive or larger than a threshold that would indicate it is worth-
while to adopt treatment j rather than the standard treatment.

The statistical significance of the treatment effect can be assessed
using the z-score:

=ζ
β
σ

,j

j (7)

to determine the probability that such an extreme estimate of the
treatment effect might have occurred by chance. If there is no treatment
effect then we would expect ζ to be realized from a random variable
with a Gaussian distribution, zero mean and unit variance. We can find
the probability that an extreme treatment effect would be estimated in
the absence of a treatment effect by finding the probability that such an
extreme ζ would be realised from a standardised Gaussian distribution.
For example, if our null hypothesis is that the treatment has no effect on
yield (i.e. if we conduct a two-sided test) then a >ζ| | 1.96 would in-
dicate that the probability of the observed data occurring under this
hypothesis is less than 0.05. Similarly, if our null hypothesis is that the
treatment effect is zero or negative (i.e. a one-sided test) then a

>ζ| | 1.64 would indicate that the probability of the observed data oc-
curring under this hypothesis is less than 0.05. In this paper, we are
primarily interested in the precision of the different experiments and
the magnitude of the treatment effect which we can expect to identify.
We use the σj as measures of the precision of the experiment. Statistical
power is defined as the probability that the null hypothesis will be
(correctly) rejected when it is false. It depends on the size of the
treatment effect that is present. For a one-sided test, a statistical power
of 0.8 can be achieved for a treatment effect of size σ2.48 j.

Fig. 3. Removed yield monitor observations (red dots) and remaining observations (grey dots) by the following filters (a) flagged by operator, (b) combine harvester
velocity, (c) direction of travel, (d) already harvested location, (e) break in signal, (f) yield by line, (g) global threshold on yield and (h) local yield outliers. ‘r’ value
indicates number of observations removed and the total number of observations was 4524. Coordinates are in m.

Fig. 4. (left) cleaned and rotated commercial yield monitor data from Experiment 1 (t ha-1); (centre) experimental treatments; (right) estimated variograms in
direction of travel (black) and perpendicular to direction of travel (grey). Coordinates are in m.
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The estimated βj and their uncertainty can be used to test the effects
of decisions and treatments across the field. Rudolph et al. (2016) used
a different statistical test, referred to as spatial discontinuity analysis, to
conduct more localised studies of the effects of the different treatments.
They particularly considered the boundary between the portion of the
field under the standard treatment and that under treatment j for each.
They used the estimated LMM and the observations from where the
standard treatment was applied to predict the expected yield at the sites
of observations under treatment j that were immediately adjacent to
the boundary. They used the LU simulation method (Webster and
Oliver, 2007) to simulate 1000 realisations of the yield that could have
occurred at these sites if the standard treatment been applied. This
approach ensured that in each realisation, the simulated values at each
site were correlated according to the LMM. They then compared the
observed value at each site to the set of simulated values. If the ob-
served value was greater than 95% of the simulated values then this
would indicate that the positive treatment effect was significant at the

=p 0.05 level. When Rudolph et al. (2016) applied such a series of tests
to the individual pixels adjacent to a treatment boundary in an image of
a vegetation index for a field undergoing a nitrogen fertiliser trial, they
did not see any significant treatment effects. This reflected the con-
siderable noise in the image. However, when they compared the

average simulated yields in blocks of multiple pixels along the
boundary and compared these to the average observed values for these
pixels, then a treatment effect was evident.

In some circumstances, additional terms must be included in the
fixed effects to achieve reliable results. The use of the LMM implies that
the random effects are stationary (Webster and Oliver, 2007). This
means that the same mean and spatial covariance function are applic-
able throughout the field. This assumption is inconsistent with a trend
in the underlying yield and, if such a trend is present, it must be in-
cluded in the fixed effects. We would hope that the inclusion of the
additional terms in the fixed effects will reduce the unexplained var-
iation in the model and hence improve the precision of the experiment.
However, it is also possible that the underlying trend coincides with
and confounds the treatment effects. For example, consider the split-
field design. It is possible that the same partition of the field was used
for an experiment in a previous year. In this circumstance, it would be
almost impossible to distinguish between the effect of this year’s ex-
periment and any continuing effect of the experimental treatment from
the previous year. When a term is added to the fixed effects that ac-
knowledges the potential for such a continuing effect we would there-
fore expect the standard errors of the treatment effects to increase. The
localised test described by Rudolph et al. (2016) is particularly sensitive

Fig. 5. (left) cleaned and rotated commercial yield monitor data from Experiment 2 (t ha-1); (centre) experimental treatments; (right) estimated variograms in
direction of travel (black) and perpendicular to direction of travel (grey). Coordinates are in m.

Fig. 6. (left) cleaned and rotated commercial yield monitor data from Experiment 3 (t ha-1); (centre) experimental treatments; (right) estimated variograms in
direction of travel (black) and perpendicular to direction of travel (grey). Coordinates are in m.
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to violations of the assumption that the same special covariance func-
tion applies everywhere. If the random effects close to the treatment
boundary are more variable than implied by the second order stationary
model then this can lead to significant treatment effects being falsely
identified.

We have thus far assumed that the spatial correlation amongst the
observed yield measurements is isotropic (i.e. the covariance functions
are the same in all directions). In reality, greater spatial correlation is
often observed amongst yield monitor measurements collected on the
same row than is observed perpendicular to the row. The variation in
yield measurements along a row can be smoothed because the grain cut
at different points on the header can take different amounts of time to
reach the sensor. Conversely, various factors can cause additional var-
iation in measurements from different rows. For example, the combine
harvester might be travelling uphill for one row and downhill for the
other, the swath might not be a full header width for one of the rows or
one row might have reduced yield because it contained farm traffic
wheelings. Therefore, an anisotropic spatial covariance model is re-
quired. The most commonly used anisotropic models stretch or contract
the range of spatial correlation in certain directions (Webster and
Oliver, 2007). However, this approach is rather restrictive since the sill
variances in all directions are still identical. Li et al. (2016) demon-
strated that the product sum covariance model (De Cesare et al., 2001)
can lead to a more general representation of anisotropic spatial varia-
tion. The product sum model is more commonly used to represent
spatial and temporal variation. It permits different covariance functions
in time and space. Li et al. (2016) used it to distinguish between the
correlation of soil salinity measurements separated vertically and hor-
izontally. Here, we use the product sum model to represent the varia-
tion along and perpendicular to a combine harvester row. We rotate the

coordinates so that the combine harvester is moving in the y direction.
Then the product sum model is written:

= + +c h h c h c h kc h c h( , ) ( ) ( ) ( ) ( ).x y x x y y x x y y (8)

Here, hx is the separation lag perpendicular to the combine har-
vester direction of travel and hy is the corresponding lag in the direction
of travel. The cx and cy are different covariance functions for each di-
rection and < <k c c0 1/(max { (0), (0)})x y is an additional parameter
which gives flexibility to model the spatial covariance when both hx
and hy are non-zero. If both cx and cy are nugget and Matérn functions
then the product sum model has nine parameters. The nugget in the x
direction reflects the difference between the within-row variance of the
response variable in comparison to variance throughout the experi-
ment. Small fluctuations in the x caused by inaccuracies in the GPS can
prevent this parameter being estimated. Therefore, prior to estimating
the product sum model we adjust the x so that each row runs in an exact
straight line.

The Akaike Information Criterion (AIC; Akaike, 1973):

= −AIC p L2 2 (9)

where p is the number of model parameters, can be used to test whether
the use of the product sum leads to a significantly better model fit than
the isotropic model. The preferred model is the one with the smallest
AIC value and thus this criterion penalizes the additional parameters of
the product sum model.

The experimenters should also confirm that the observed random
effects are consistent with the Gaussian assumption (e.g. by making a
visual inspection of the histogram of the random effects). When the
assumption is inappropriate the data can be transformed so that they
more closely resemble the Gaussian distribution or a more general LMM

Fig. 7. (left) cleaned and rotated commercial yield monitor data from Experiment 4 (t ha-1); (centre) experimental treatments; (right) estimated variograms in
direction of travel (black) and perpendicular to direction of travel (grey). Coordinates are in m.

Fig. 8. (left) cleaned and rotated plot combine harvester yield monitor data from Experiment 5 (t ha-1); (centre) cleaned and rotated handheld NDVI data from
Experiment 5 (right) experimental treatments. Coordinates are in m.
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that can accommodate non-Gaussian residuals can be applied
(Marchant et al., 2011). This approach of analysing farmers’ crop ex-
periments also requires that there are sufficient observations to be able
to model accurately the underlying variation of the response variable.
Webster and Oliver (2007) suggest that at least 100 observations of a
soil variable located on a regular grid are required to estimate a stan-
dard variogram model. Yield monitors produce much larger datasets
than this, but we do require that a sufficient number of rows of data are
collected to calculate an accurate variogram in the direction perpen-
dicular to travel of the combine harvester.

3.1. Analysis of the farmers’ crop experiments

The six sites and four sensors provided nine distinct farmers’ crop

experiments (Table 2). For each experiment, we estimated the differ-
ence between the response variable for the control treatment and each
of the other treatments featured in the experiment. We calculated the σj
as described above and interpreted these as measures of the precision of
the experiments. The precision of any single experiment will depend on
the underlying variability of the response variable, the noisiness of the
measured data and the experimental design. We recalculated the σj for
each commercial yield monitor experiment using the spatial model that
was fitted to the experiment with the least variable yield data. This
permitted comparison of the precision of the different experimental
designs for similarly variable data and we interpreted the resultant σj as
the precision that could potentially be achieved from good quality yield
monitor data.

We are also concerned about the robustness of the results of each

Fig. 9. (left) estimated variograms in direction of travel (black) and perpendicular to direction of travel (grey) for plot combine harvester yield monitor data from
Experiment 5; (right) estimated variogram for handheld NDVI data from Experiment 5.

Fig. 10. (left) cleaned and rotated plot combine harvester yield monitor data from Experiment 6 (t ha-1); (centre) cleaned and rotated handheld NDVI data from
Experiment 6 (right) experimental treatments. Coordinates are in m.
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experiment. We therefore adjusted the LMM by adding a linear trend,
perpendicular to the direction of travel of the combine harvester, to the
fixed effects and then recalculated the σj. Any increase in the σj would
indicate that the experimental design was not robust to such a linear
trend. In the yield experiments we accounted for potential anisoptropy
in the random effects by using the product sum model. We refitted these
models using the isotropic covariance function (Eqn. 2) and in-
dependent random effects to explore the consequences of miss-speci-
fying the random effects model. The isotropic covariance function was
used in the random effects of the NDVI data and the consequence of
miss-specifying independent random effects was explored.

The localised analysis method described by Rudolph et al. (2016)
was specifically designed to identify and quantify the step changes in

response that can be visually evident (e.g. Kindred et al., 2015) at the
boundary between different management practices. We demonstrate
and discuss this methodology in relation to one experiment where such
a step change is evident.

4. Results

4.1. Pre-processing of commercial combine harvester yield data

The raw commercial grain yield data from Experiment 1 are shown
in Fig. 2. It is clear that many of the observed yield values are con-
siderably smaller than would be expected in UK conditions. Two rec-
tangular areas within the field were not harvested by the combine
harvester. They were instead used to test the plot combine harvester.
Many of the artefacts result from leaving suitable crop for this test.

The observations removed by each filter and the cleaned data are
shown in Figs. 3 and 4. Most of the artefacts were flagged by the
combine harvester operator or experimenter, primarily because they
were located in the headlands. A similarly large number of artefacts
were the result of the combine harvester revisiting a site where the crop
had already been harvested. Many of these observations occur where
the combine harvester is tidying up around the area of the crop which
was left to be harvested by the plot trial combine harvester. The di-
rection filter removed a substantial number of observations at the end
of rows. These observations would also have been removed by a sub-
sequent filter because they occur soon after or before a break in the
data. The number of observations removed purely because the yield
was extreme was fairly small and these observations were dispersed
across the field. Therefore, it seems unlikely that the filtering of the
data led to the removal of observations from a genuinely low yielding
portion of the field. The clean data are shown in the lower plots of
Fig. 2. The histogram of the yield observations is consistent with the
Gaussian assumption required by the statistical model.

The cleaned data from the other commercial yield monitor experi-
ments are shown in Figs. 5–7. Again a substantial number of mea-
surements have been removed from the headlands but otherwise there
are few other regions in the fields where a large proportion of data are
missing. Some complete rows of data were removed from Experiment 4
because the swath width was less than that of the combine harvester
header. Also one patch of unusually low yields was removed (to the
right of the treated area in Fig. 7).

Fig. 11. (left) estimated variograms in direction of travel (black) and perpendicular to direction of travel (grey) for plot combine harvester yield monitor data from
Experiment 6; (right) estimated variogram for handheld NDVI data from Experiment 6.

Table 2
Comparisons between responses to various experimental treatments in com-
parison to the response to the standard treatment for each experiment.
Treatment reference (Tj), Treatment effects (βj), standard errors (σj), standard

errors when a lateral trend is accommodated in the fixed effects (σj incl. trend),
standard errors using isotropic random effects (σj isotropic), standard errors
using independent and identically distributed random effects (σj iid) and
standard errors using the linear mixed model fitted to yield measurements from
Experiment 4 (σj using M4). The highlighted standard errors correspond to the
model that achieves the smallest AIC.

Exp. Field Tj βj σj σj incl. trend σj isotropic σj iid σj using M4

Commercial combine harvester yield monitor (t/ha)
1 A 2 −0.48 0.21 0.32 0.12 0.05 0.07
2 B 2 0.45 0.32 0.32 0.07 0.05 0.14
2 B 3 0.90 0.27 0.27 0.06 0.04 0.11
2 B 4 0.98 0.27 0.27 0.06 0.04 0.11
2 B 5 0.88 0.27 0.27 0.06 0.04 0.11
3 C 2 0.04 0.03 0.03 0.06 0.02 0.03
3 C 3 0.00 0.03 0.04 0.06 0.02 0.03
4 D 2 −0.93 0.13 0.13 0.08 0.03 0.13
4 D 3 0.40 0.13 0.13 0.08 0.03 0.13
Plot combine harvester yield monitor (t/ha)
5 E 2 1.30 0.23 0.24 0.13 0.12 NA
5 E 3 1.64 0.23 0.23 0.13 0.12 NA
6 F 2 1.30 0.26 0.26 0.20 0.19 NA
6 F 3 1.64 0.26 0.26 0.20 0.18 NA
Aerial NDVI (dimensionless × −10 2)
7 A 2 0.04 NA 0.95 0.94 0.09 NA
Handheld NDVI (dimensionless × −10 2)
8 E 2 3.82 NA 0.56 0.55 0.55 NA
8 E 3 4.96 NA 0.56 0.56 0.55 NA
9 F 2 6.12 NA 0.47 0.47 0.43 NA
9 F 3 6.13 NA 0.47 0.46 0.41 NA
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4.2. The precision of farmers’ crop-experiments using commercial combine
harvester yield monitor data

The pre-processed data from the commercial combine harvester
yield monitors and the models of residual variation are shown in
Figs. 4–7. In each case, the histograms of the yield data were judged to
be consistent with the Gaussian assumption and in all cases the product
sum covariance function led to the smallest AIC (Eqn. 9) and hence best
fit to the data. The experiments differed in the magnitude of the
variability contained in the random effects. Experiment 4 had the least
residual variation. The sill variance of the estimated variogram function
was around 0.3 (t/ha)2 in both directions. In contrast, in Experiment
3 the variogram sill parallel to the swath was less than 0.2 (t/ha)2

whereas perpendicular to the swath it was almost 0.6 (t/ha)2. This was
reflected by the stark differences (unrelated to treatments) that were
evident in the yield measurements from the different rows of Experi-
ment 3 (Fig. 6). The largest residual variation was observed in Ex-
periment 1.

The precision of the experiments based on commercial combine
harvester yield data are compared in Table 2. The largest σj of around
0.3 t/ha were recorded in Experiment 2 whereas the smallest σj of
0.03 t/ha was recorded in Experiment 3. When the linear trend was
accommodated in the split-field design (Experiment 1) the σj increased
from 0.21 to 0.32 t/ha. In the other experiments there was no sub-
stantial increase in σj indicating that they were more robust to the
presence of such a trend.

When the covariance function was miss-specified to be isotropic, the
σj for Experiments 1, 2 and 4 decreased by a factor of up to four and a
further smaller decrease occurred when the random effects were treated
as independent and identically distributed (iid in Table 2). Thus, the
wrong choice of covariance function can lead to the uncertainty in the
experiments being hugely under-estimated. In Experiment 3 where the
treatments varied within rows the use of the isotropic covariance
function led to an increase in the σj.

When a common spatial model was applied to each experimental
design, the largest σj of 0.13 t/ha was seen for Experiment 4 which
consisted of two sets of treated rows amongst the standard treatment.
The σj decreased to around 0.11 t/ha for Experiment 2 where there
were repeated strips of each treatment and further decreases to 0.07 t/
ha for the split-field design which occupied the largest area. The
smallest σj of 0.03 t/ha was seen for the block design where the treat-
ment varied within each row.

4.3. The precision of experiments using plot combine harvester yield monitor
data

The pre-processed and rotated yield monitor data from the experi-
ments where the plot combine harvester was used are shown in Figs. 8
and 10. Differences in yield that reflect the different experimental

treatments were clearly evident. In each case the product sum covar-
iance function led to the lowest value of the AIC (Eq. (9)) and hence
best fit to the data. The random effects appeared to be more variable
than the corresponding data from the commercial combine harvester.
The variograms attained a sill variance of around 1.5 (t/ha)2 (Figs. 9
and 11). However, it should be remembered that the plot combine
harvester measurements were based on a smaller footprint having a
width of 2.1 m compared with the approximately 10m width of the
commercial combine harvester swath. The σj from the two experiments
were around 0.25 t/ha which is comparable to the least precise com-
mercial combine harvester experiments. Again, the smaller area of the
plot combine harvester experiments should be taken into account when
assessing the effectiveness of these experiments. The miss-specification
of an isotropic covariance function led to the σj being substantially
underestimated. The increases in σj when the fixed effects included a
trend perpendicular to the swath were relatively small.

4.4. The precision of experiments using NDVI data

Treatment effects were evident in the handheld NDVI data from
Experiments 8 and 9 (Figs. 8 and 10). In contrast, the patterns of var-
iation in the aerial NDVI data from Experiment 7 were not obviously
related to the different treatments (Fig. 12). In fact, the most obvious
feature within the data ran perpendicular to the treatment boundary.
The random effects for both the handheld and aerial NDVI data were
similarly variable with a variogram sill of around 1.5× 10−3. The σj
from Experiments 8 and 9 were larger than that from Experiment 7
reflecting the larger area of the split-field design.

4.5. Localised analyses of treatment effects

A jump in the observed yield is evident at the boundary between the
standard treatment and the low nitrogen treatment (Treatment 2) in
Experiment 4 (Fig. 7). Therefore, this boundary was used to demon-
strate the localised analysis method of Rudolph et al. (2016). The
shaded regions in Fig. 13 show the 90% prediction interval for yield at
the measurement locations to the left of this boundary using the yield
measurements and LMM corresponding to the standard treatment. The
measured yields at these sites (where Treatment 2 was applied) are
marked in red. The upper plot treats each measurement location se-
parately whereas the lower plot averages the measured and observed
yield across blocks of five adjacent locations. When the locations are
considered individually around half of the measured values fall below
the 90% prediction interval indicating that these measurements are
significantly smaller than would be expected under the standard
treatment. When the averages of blocks of five locations are considered,
the prediction interval narrows and all of the measured yields fall below
it. The exceptions to this occur at the start of the row. Fig. 14 shows
how the standard deviation of the simulated measurements for each

Fig. 12. (left) cleaned and aerial NDVI data from Experiment 1; (centre) experimental treatments; (right) estimated variogram. Coordinates are in m.
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block decreases as the block length increases reflecting the improve-
ment in precision as the area of which the treatment effect is assessed
increases.

5. Discussion

5.1. Different sources of data for farmers’ crop experiments

In common with many other authors (e.g. Griffin, 2010) we have
seen that yield monitor data are inherently noisy and contain artefacts
which have the potential to confound the results of farmers’ crop ex-
periments. Many of these artefacts can be identified fairly easily and
removed using the sort of filters described in this paper and by others
(Sudduth and Drummond, 2007; Sun et al., 2012). However, this
practice is not ideal since the decision about whether to remove an
observation will always be subjective to some degree and there is a risk
that some observations that relate to genuinely extreme yields will be
erroneously removed. Also, any removal of observations corresponds to
a loss of information from the experiment.

In our experiments, it was possible to determine the cause of the
vast majority of extreme measurements that were removed from the
datasets. They often arose from headlands, the combine harvester
header not being full, erroneous measurements at the start and end of
each row and changes of direction to avoid obstacles such as trees in the
field. Where the causes of outliers can be explained it does lead to
confidence that extremely high or low yielding portions of the field are
not being removed in error.

There are further concerns about more subtle artefacts within the
data. For example, the degree of smoothing of the yield observations
along a single row is likely to vary with small fluctuations in the speed
of the combine harvester but perhaps not to the extent that could be
identified by filters. Some of the artefacts within the yield monitor data
could be prevented through more careful calibration or operation of the
combine harvester. However, such measures are likely to increase the
time required to harvest the crop and could then represent a direct cost
to the farmer (Griffin et al., 2014).

Our results do indicate that some sets of yield monitor data contain
more noise than others once the actual yield variability has been taken
into account. This suggests that further research into the sources of
noise in yield monitor data is required. The results of such research
could indicate why they differ and the extent to which improvements to
the design of yield monitoring systems is likely to lead to more accurate
yield maps and confidence in farmers’ crop experiments. Often, the
smoothing effects of the yield monitor on data collected within the
same row mean that standard isotopic models of spatial correlation are
inappropriate. More complex models, such as the product sum model
(de Cesare et al., 2001), are required to quantify the larger variation in
observations from different rows. Otherwise the model is likely to lead
to overstated inferences about the significance of the yield differences
in different rows. Noise and artefacts are also evident in yield data from
the plot combine harvester. The noise here is possibly further ex-
aggerated since smaller masses of grain are being measured. It appears
inevitable that, at least in the short term, experimenters must accept
that yield monitor data are imperfect.

Less noise was evident in the NDVI data. The main identifiable
source of noise in NDVI measurements was inclusion of non-cropped
regions within the image. In fine scale aerial images the corresponding
readings can be easily identified. Other sources of noise resulting from
the manner in which the airborne vehicle was flown and the weather
conditions cannot be so easily identified and will therefore increase the
amount of residual variation in the spatial model and the standard er-
rors of the estimated treatment effects. A further disadvantage of NDVI
data is that they do not relate directly to the yield or profitability of the
crop. In some instances differences in NDVI might merely reflect dif-
ferences in crop maturity that could disappear before harvest.

5.2. The precision of farmers’ crop experiments

We have seen that the precision of farmers’ crop experiments varies
according to the experimental design, the experimental area and the
inherent unexplained variability or noise amongst the experimental
data. The sources of this unexplained variation are often not apparent.
They could be the result of within-field variation in crop performance

Fig. 13. Ninety percent prediction interval of
yield at sites adjacent to treatment boundary
under the model for the standard treatment
(shaded area) and observed values at these
sites under treatment 2 (red) for Experiment 4.
Upper plot shows individual yield measure-
ments and predictions whereas lower plot
shows averages of five measurements.

Fig. 14. Standard deviation of predictions of yield at sites adjacent to treatment
boundary under the model for the standard treatment against the length of the
block over which they are averaged.
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or imperfections in the sensor used to measure crop performance. In
either case this variability can be modelled and accounted for when
assessing the uncertainty of the experimental results. When the same
model of spatial variability is applied to different experimental designs
we see the benefit of having different experimental treatments within a
single row and to a lesser extent the benefit of disparate repetitions of
each experimental treatment within the experiment. Split-field designs
can also yield reasonably small standard errors provided the experi-
menters can be confident that the fixed effects do not vary between the
two portions of the experiments. Such experiments were demonstrated
to be compromised by any underlying trend in the fixed effects in a
direction perpendicular to the experimental boundary, as commonly
occurs in yield data from grain harvesters. Experiments where a treat-
ment only appears in one continuous region, perhaps consisting of a few
adjacent traffic-rows across the centre of the field, also have relatively
large standard errors since in these circumstances it can be difficult to
distinguish a treatment effect from underlying variation in the yield.
However, such experiments are more robust to a lateral trend than the
split-field design.

Yield experiments where the treatment does not vary within a row
are particularly susceptible to substantially underestimated σj when the
anisotropy in the measurements is not accounted for. This is because
these experiments base estimates of the treatment effect on compar-
isons between measurements from different rows and therefore require
that the between-row covariance is accurately estimated.

Many decisions considered by farmers have near-zero cost, so the
level of precision achieved in their experiments is important to them,
enabling them to accumulate increasing numbers of small yield gains.
We have seen that, in ideal circumstances, it is possible to achieve
standard errors in yield of less than 0.05 t/ha for experiments with
multiple treatments in a row and less than 0.1 t/ha for experiments with
multiple rows of each treatment. The largest standard error recorded in
an experiment using the commercial combine harvester was 0.32 t/ha.
This degree of precision is similar to that obtained from agricultural
small-plot trials in the UK. For example, the least significant differences
recorded in the Agriculture and Horticulture Development Board’s re-
commended list experiments in 2017 (AHDB, 2017) were in the range
0.33–0.42 t/ha and Sylvester-Bradley et al. (2004) observed least sig-
nificant differences ranging from 0.22 to 1.00 t/ha but generally be-
tween 0.4 and 0.5 t/ha for a series of nitrogen fertiliser trials. The
standard errors quoted in this paper can be converted to least sig-
nificant differences by multiplying by 1.96.

Standard errors of close to 0.25 t/ha were observed for experiments
using the modified plot combine harvester but these experiments re-
quired a smaller area. The corresponding handheld NDVI experiments
achieved standard errors of approximately 0.005 and a smaller standard
error was achieved for the split-field NDVI experiment which occupied
a larger area.

The precision of the localised analysis (Figs. 13 and 14) increased as
the spatial resolution was reduced. When comparisons were made at
individual observation sites then a standard error of 0.58 t/ha was es-
timated for the effect of the low nitrogen treatment in Experiment 4. A
comparison over a 100m block had estimated standard error of 0.2 t/
ha.

Researchers often follow the scientific convention of assigning sig-
nificance to a treatment effect when the probability of the estimate
occurring in the absence of a real treatment effect is less than 0.05.
Farmers seldom recognise this benchmark (McCown, 2002; Whelan
et al., 2012) and are likely to be primarily concerned about the ex-
pected profitability of applying a particular management intervention
and the uncertainty associated with this estimate. The probability
density function that results from the statistical methods described here
can be used to calculate the probability that the βj are positive or
greater than a threshold that signifies profitability. Hence these results
can support farmers in their decision making process.

5.3. Recommendations for farmers’ crop experiments

There is often a trade-off between the precision and the complexity
and hence cost of a farmers’ crop experiment. Precision can be im-
proved by varying treatments within rows but this requires careful and
potentially time-consuming application of the treatments. There is a
similar trade-off associated with including disparate repetitions of each
treatment within the experiment. More complex designs can also ac-
commodate a larger number of hypothesis tests (e.g. comparisons be-
tween a larger number of treatments or interactions between treat-
ments). In yield trials, careful operation of the combine harvester can
also lead to improved precision, but this can increase the time required
to harvest the crop. The experimenters must consider the costs and
benefits of different approaches when deciding upon the appropriate
level of complexity of the experiment. Griffin et al. (2014) describe a
framework for determining the cost-effectiveness of farmers’ crop ex-
periments. The experimenters must also ensure that the experimental
design is sufficient to produce accurate spatial models of the underlying
variation of the response variable. We would recommend that the ex-
perimenters aim to include at least 10 rows of yield monitor data for the
standard treatment and that each region of the non-standard treatment
is bounded on at least one side by a row of the standard treatment.

The combine harvester operator should take all precautions to im-
prove the quality of the yield data without unduly increasing harvest
time (e.g. ensuring that the header is full for each combine harvester
row and not cutting with the header straddling across treatment
boundary). It can also be helpful if the operator flags any portions of the
data which he or she knows to be unrepresentative of the true yield.
Alternative sources of data, such as aerial NDVI surveys, cause fewer
detrimental effects on the farm operation but the cost of performing the
survey must be considered. Also, these data are less directly related to
the profitability of the different treatments. Such ancillary data can
however be very useful in confirming spatial trends in yield data and
identifying anomalous areas that should be excluded from analyses.

The estimated standard errors of the experiment can decrease when
the analysis accounts for underlying trends in the yield within the field.
Such trends could be quantified through the application of digital soil
mapping methodologies (Minasny and McBratney, 2016) or the use of
crop yield models and simulation techniques (Carberry et al., 2009). If
such trends are ignored then the precision of the experiment can be
overstated. These problems are particularly likely to occur when the
trends are in a direction perpendicular to the treatment strips or if they
coincide with the experimental design. Experimenters should take care
to ensure that such trends do not occur. They might consult yield maps
from previous years in addition to other sources of spatial information
such as soil maps. They should avoid conducting experiments in the
same field each year in case the treatment effects persist. They should
also use designs with disparate repetitions of one or more treatments
since these are less likely to be confounded by an underlying trend.

The analysis of the farmers’ crop experiments requires advice from
expert statisticians to ensure that appropriate models have been fitted
to the data and that therefore the estimated precision of the estimated
treatment effects is accurate. Additionally, we have found value in
ensuring a close and objective visual inspection of yield maps before
yield data are analysed; spatial patterns may well be evident which are
not identified by the spatial model.

If it appears appropriate from visual inspection, the localised ana-
lysis approach of Rudolph et al. (2016) can be used to assess whether
there is a jump in the response at the boundary between two different
treatments. The level of precision of these tests is comparable with the
field-scale analyses and the tests are not unduly influenced by variation
away from the boundary which is unlikely to result from the treatments
being compared. However, experimenters should be aware that these
tests are reliant on the assumption that the same spatial covariance
function is applicable across the field and should not be applied if there
is evidence that the variability of the response varies within the field.
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Also, the approach can encourage experimenters to make a large
number of comparisons between predicted and realised yields. For a
single comparison, the measured response falling outside the prediction
interval can indicate a significant treatment effect. However, if 100
comparisons are made it is not unreasonable to expect that five of the
observations would fall outside the 95% prediction interval purely by
chance and this false discovery rate (Benjamini and Hochberg, 1995)
should be accounted for. Therefore, we recommend that the localised
approach is only used to test a small number of focussed hypotheses
(e.g. that there is a significant jump in the response for all of the points
on the boundary where there is a particular soil type).

The problems resulting from confounding variation or trends within
the field do not occur if a traditional plot experiment with appropriate
randomisation and replication is performed. However, few farmers
possess the skills, time or equipment to conduct such an experiment and
the results might not be appropriate at the scale that is appropriate to
farm management decisions. When analysing farmers’ crop experiments
the experimenters could choose to explore the treatment effect for
specific management zones or soil types by including these factors in
the fixed effects of the LMM. Such analyses of the interaction between
the treatment effect and other environmental covariates are generally
not possible with conventional random plot trials unless the design was
specially adapted to accommodate such a comparison (Bramley et al.,
2013).

We note that farmers’ crop experiments can facilitate and be fa-
cilitated by the farmers’ networks advocated by MacMillan and Benton
(2014). If they address the same questions, and plan ahead, farmers in
the same locality can share the results of the experiments that they have
conducted. The results of farmers’ experiments are also amenable to
more formal meta-analyses to derive more generally applicable man-
agement recommendations.

6. Conclusions

Farmers’ crop experiments can provide the agri-food industry with
evidence at a relevant spatial scale regarding the most appropriate farm
management practices. Such experiments are simpler and less time
consuming to implement than traditional replicated plot trials.
However, they do require assumptions about the spatial variation of the
response variable of interest and expert statistical guidance is required
to ensure that these assumptions are appropriate. Noise within yield
monitor data can reduce the precision of the experimental results.
Further research is required to determine how this noise can be mini-
mised. There is a trade-off between the complexity of an experiment
and its precision. Farmers and researchers must decide the most cost
effective level of effort to devote to experimentation.
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