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Highlights 

 Tryptophan-like fluorescence (TLF) in groundwater is a novel in-situ approach to rapidly 
detect faecal contamination risk, which often leads to diarrheal disease, a leading cause of 
death for children under the age of 5 years. 

 TLF has been tested against slower conventional plate counting methods in 5 countries 
(India, Kenya, Malawi, Uganda, and Zambia) and at >500 groundwater sources. 

 TLF is most accurate in waters with low dissolved organic carbon and low-turbidity, so is 
particularly well suited for monitoring groundwater sources.  

 TLF is strongly correlated with current methods for measuring thermotolerant coliforms. 

 TLF technology is a commercially available, easy-to use, presents results in real-time and 
requires no chemical supplies. 

Motivation 

Faecally contaminated drinking water, a leading 
cause of diarrhoeal diseases, is currently 
consumed by an estimated 1.8 million people 
globally1. Diarrhoeal diseases are a leading cause 
of death for children under five years old2,3.  The 
United Nations’ Sustainable Development Goal 
(SDG) 6 calls for universal access to safe drinking 
water. Groundwater is a major source of drinking 
water globally1 – in many regions it is the only 
source of drinking water in the dry season – and 
faecal contamination of groundwater remains a 
major concern. 

There is now strong evidence for the suitability of tryptophan-like fluorescence (TLF) for assessing the 
risk of faecal contamination in groundwater. TLF provides a robust and rapid in-situ screening tool to 
enable more rapid monitoring of drinking water quality to help assess progress towards SDG 6.  

Background 

Faecal contamination of drinking-water sources is typically assessed using bacterial indicators such as 
Escherichia coli or thermotolerant coliforms (TTCs). These culture-based indicators are time-
consuming, taking up to 24 hours to report results, and are impractical for rapid surveys. 

The evidence base for using TLF to assess contamination risk in groundwater in the peer-reviewed 
literature has grown considerably in the last 3 years4-10. TLF has been systematically compared with a 
range of conventional technologies and tested in a range of climatic and hydrogeological settings to 
assess its ability to identify microbiological contamination, based on WHO risk categories of colony 
forming units (cfu) per 100 mL11 (whereby 0 = very low risk; 1-9 = low risk; 10-99 = intermediate risk; 
100-999 = high risk; and >1000 = very high risk).  

TLF is most accurate in waters with low dissolved organic carbon (DOC) and low-turbidity, such as 
groundwater. It is strongly correlated with current methods for measuring TTCs and is effective to 
infer faecal contamination by TTCs above 10 cfu, i.e. for intermediate risk sources and above.  



                       

 

Results are generated real-time, with stable readings are usually obtained after 1 minute. Results can 
also be recorded and captured digitally with some sensors. A day of field-based training is generally 
adequate to understand the methodology and good sampling protocols are essential to obtain robust 
results12. TLF technology is commercially available and reagent-less. As such, it does not generate 
potentially hazardous waste, unlike many alternative techniques. 

Evidence 

Tryptophan is an amino acid associated with cellular activity and extracellular material, which 
fluoresces at low excitation and emission wavelengths. TLF sensors target the approximate excitation-
emission wavelength pair, Ex280 nm/Em350 nm, in the region where the tryptophan signal is greatest. 

Summary results presented here are from a standardised multi-country assessment including India, 
Kenya, Malawi, Uganda, and Zambia where TLF was tested against time-consuming culture-based 
methods for TTCs at >500 groundwater sources.  

Correlation with TTCs: There is a strong correlation between TLF and TTCs (ρ = 0.78, Spearman’s 

rank correlation coefficient). Figure 1 shows 
a comparison of TLF with TTCs obtained using 
culture-based methods, with TLF data 
grouped based on WHO risk categories11. 
Significant differences exist between median 
TLF in different WHO risk categories.  

TLF is best applied for groundwater 
assessments: Variables that can 

attenuate or enhance the TLF signal in water 
include dissolved organic carbon (DOC), 
turbidity, temperature and pH. In most 
groundwaters, these do not vary appreciably 
and have minimal interference with the TLF 
measurements. However, in some 
groundwater and many surface waters, these 
variables can vary substantially for which 
corrections to fluorescence data may be a 
possible solution13. 

TLF threshold to infer contamination risk: Based on the current groundwater data (Figure 

1), a threshold of 1.3 parts per billion tryptophan (corresponding to 10 cfu/100 mL) has been tested 
and validated using logistic regression and false positive and false negative rates to assess TTC 
contamination8. This threshold is equivalent to being able to differentiate between sites classed as 
medium risk or greater (using TTC results) based on WHO risk categories11, but was not able to classify 
contaminated sources with <10 TTC cfu/100 mL. This groundwater threshold matches that reported 
by Sorensen et al. (2018), which also included surface water data and E. coli results8.  

Recommendations for future development 

Commercial TLF sensors are already available on the market, yet, a key barrier to wider operational 
use is the relatively high capital cost of these sensors. Lower cost systems (c. £1000) are currently 
being developed and other improvements needed include better field calibration standards, improved 
stability of sensor standards, and employment of cuvette-based systems for sample analysis. Further 



                       

 

case studies applying this technique in new settings are needed to test the suitability more widely, 
particularly in groundwater systems with high DOC (either due to anthropogenic pollution or natural 
sources). The method could also be further compared to other new techniques for microbiological risk 
assessment as they become available, such as field based real-time polymerase chain reaction (PCR) 
methods.  

Conclusions 

Relying exclusively on standard culture-based methods for assessing faecal contamination in 
groundwater sources limit the ability to monitor progress towards SDG6 for improved drinking water 
quality. TLF provides a rapid screening tool for groundwater quality, which could help monitor and 
assess water quality risks at drinking water sources, water point integrity and the impact of specific 
interventions. 

For further details please contact: 
Dan Lapworth, British Geological Survey, Wallingford, Oxfordshire, OX10 8BB djla@bgs.ac.uk 
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