
Faults Geometry and the Role of Fluids in the 2016–2017
Central Italy Seismic Sequence
C. Chiarabba1 , P. De Gori1 , M. Cattaneo1, D. Spallarossa2, and M. Segou3

1Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy, 2DIPTERIS, Università di Genova, Genoa, Italy, 3British Geological
Survey, Nottingham, UK

Abstract The 2016–2017 Central Italy seismic sequence ruptured overlapping normal faults of the
Apennines mountain chain, in nine earthquakes with magnitude Mw > 5 within a few months. Here we
investigate the structure of the fault system using an extensive aftershock data set, from joint permanent and
temporary seismic networks, and 3-D Vp and Vp/Vs velocity models. We show that mainshocks nucleated on
gently west dipping planes that we interpret as inverted steep ramps inherited from the late Pliocene
compression. The two large shocks, the 24 August, Mw = 6.0 Amatrice and the 30 October, Mw = 6.5 Norcia
occurred on distinct faults reactivated by high pore pressure at the footwall, as indicated by positive Vp/Vs
anomalies. The lateral extent of the overpressurized volume includes the fault patch of the Norcia
earthquake. The irregular geometry of normal faults together with the reactivated ramps leads to the
kinematic complexity observed during the coseismic ruptures and the spatial distribution of aftershocks.

Plain Language Summary In this study we present refined earthquake locations and tomographic
images of the upper crust to investigate the mechanisms of the 2016 Amatrice and Norcia destructive
earthquakes. We find that earthquakes ruptured distinct segments of the fault system, partially reutilizing
preexisting faults inherited from the previous compressional phase. Overpressurized fluids within the
carbonate rocks facilitate the reactivation of faults during the large ruptures.

1. Introduction

In the Apennines, large earthquakes occur along the NW-SE trending normal faulting system, which
accommodates about 2–3 mm/year of extension across the mountain range (Figure 1a). The recent Central
Apennines sequence initiated in August 2016 covering within few months 60 km of the regional normal fault
system (Barani et al., 2017; Chiaraluce et al., 2017; Tinti et al., 2016) between the 1997 Colfiorito and
2009 L’Aquila sequences (Chiarabba et al., 2009; Chiaraluce et al., 2004). Nevertheless, before the recent
events seismicity was less pronounced in the epicentral area (Figure 1a).

During the sequence, this section of the fault system experienced a cascade of nine earthquakes larger than
Mw> 5.0 on major and adjacent segments. The large events nucleated at the base of the southwest dipping
normal fault system (Chiaraluce et al., 2017), with deeper hypocenters in the southern section (Figure 1b). The
delayed activation of secondary faults with large magnitude aftershocks resulted in strong shacking on
already damaged structures (Galli et al., 2017; QUEST Working Group, 2016; Tertulliani & e Azzaro, 2016).

The two largest mainshocks, the 24 AugustMw = 6.1 Amatrice and the 30 OctoberMw = 6.5 Norcia, ruptured
adjacent normal faults with ancillary structures (Cheloni et al., 2017, Livio et al., 2016) and with overlapping
slip on shallow faults surfacing on the western slope of the Vettore mountain range (Galli et al., 2017; Pucci
et al., 2017). While some authors have modeled the 24 August shock, as continuous slip on a single fault
(Huang et al., 2017), others proposed bilateral rupture with hypocenter located in between two separate
faults (Liu et al., 2017; Ren et al., 2017; Tinti et al., 2016). The relatively young normal faults accommodate
the 2–3 mm/year of extension across the mountain range. The NNW trending extensional belt crosscuts
large-scale thrust units developed during the Neogene compression and expressed by east verging thrusts
with a progressive eastward migration (Bigi et al., 2011; Pierantoni et al., 2013; Scisciani et al., 2014; see
Figure 1a). Such inherited structures are thought to play the role of lateral barriers during the coseismic
propagation of earthquakes ruptures (Pizzi et al., 2017). Recent studies on the strongest earthquakes of the
sequence (Calderoni et al., 2017) confirm that along-strike rupture directivity is a persistent feature of normal
faulting earthquakes in the Apennines.
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Key Points:
• The two large shocks of Amatrice and

Norcia nucleated on distinct and
parallel faults reactivated by high
pore pressure in the footwall

• The irregular geometry of normal
faults and reactivated ramps feeds in
the complexity observed during
coseismic ruptures and aftershocks

• Rapid definition of overpressurized
volumes along the fault system has
implications for the a priori
identification of nucleation locations
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Here we focus on the structure of the fault system and the role of fluids in the nucleation of mainshocks and
evolution of the Amatrice sequence. We use about 50,000 aftershocks in order to image the Vp and Vp/Vs
upper crustal structure by means of local earthquake tomography. We find multiple shallow splays rooting
on gently west dipping faults that we interpret as preexisting ramps, inverted by high overpressure within
the Sibillini thrust unit.

2. Data Analysis and Tomographic Inversion

In this study, we use earthquake arrival times recorded by 50 permanent and 20 temporary seismic stations
deployed soon after the occurrence of the first, 24 August 2016 mainshock (Moretti et al., 2016).
Three-component seismograms are automatically analyzed to determine the P and S wave phases for
earthquake detection (Scafidi et al., 2016; Spallarossa et al., 2014). The automatic procedure resulted in about
100,000 earthquake detections for the time period from 24 August 2016 to June 2017 that were located using
the most recent 1-D regional velocity model (Di Stefano et al. 2011). Especially for the 3-D inversion, we
selected events with hypocentral solutions that have (1) a minimum number of 10 P and 5 S phases, (2)
minimum distance of 10 km from the hypocenter to the closest station, (3) location errors less than 1 km,
and (4) azimuthal gap less than <180°. In addition, we retained for each cell of a 2-km cube a maximum
number of 10 events to optimize ray coverage within the investigated volume (see the supporting
information). After that, a total of 44,177 earthquakes with 748,197 Pwave and 656,484 S-P arrival times were
inverted with the Simulps14 code (Haslinger, 1998). The iterative damped least squares algorithm solves for
Vp and Vp/Vs in a 3-D grid with velocity values linearly interpolated through the medium and
hypocentral/velocity parameters estimates progressively updated after parameter separation
(Eberhart-Phillips & Michael, 1998; Um & Thurber, 1987). The tomographic model is discretized by a 3-D grid
of nodes with dx = dy = 5 and dz = 3 km to optimize resolution and image fidelity. For each node, the initial Vp
and Vp/Vs (= 1.85) were taken from the 1-D Vpmodel of Di Stefano et al. (2011) and the result of the Wadati
regression, respectively. After five iteration steps, we obtained a final rms of 0.22 s corresponding to a
variance improvement of 32%. See the supporting information for details on inversion statistics and errors.

Figure 1. Map view of the seismicity in the central Apennines: (a) 1981–2016 (before 24 August), locations from the CSI
catalog (Castello et al., 2006; Chiarabba et al., 2015). Main structural elements taken from Pierantoni et al. (2013) and
Chiaraluce et al. (2005) are plotted (we only plot a subset of normal faults that is relevant for the paper discussion). The NW
trending normal faulting system experienced multiple high-magnitude sequences over the past decades. Past decades
seismicity is relatively poorer close to the 24 August and 30 October 2016 mainshocks (red stars); (b) 24 August 2016 to
June 2017, as relocated in this work, focal mechanisms of the Mw > 5.0 earthquakes from Time Domain Moment Tensor
solutions (see http://cnt.rm.ingv.it/tdmt). Hypocenters are shallower in northern portion of the fault system. Traces of cross
sections in Figure 3 are shown.
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To assess the reliability of the tomographic model, we analyzed, for each node, ray sampling and the full
resolution matrix. We computed the Spread Function (SF) to quantify the compactness of each parameter
averaging vectors and the Derivative Weight Sum to quantify the ray density around each node (Toomey
& Foulger, 1989). We determined that a SF = 3 is the maximum limit below which the tomographic features
could be considered reliable. The latter value is further confirmed by the analysis of the smearing directions
by contouring, at each node, the volume where the resolution is 70% of the diagonal element (Reyners et al.,
1999). We find that nodes having SF smaller than, or equal to, 3 have compact averaging vectors with
negligible smearing effects.

3. Velocity Anomalies and Aftershocks Relocation

The Pwave velocity (Figure 2) shows a main central NNW-SSE trending positive body that corresponds to the
carbonate rocks that extensively outcrop in the area. The structural architecture of the Neogene
compressional stage is largely evident in tomographic images (Figures 2 and 3). The high velocity
Ceno-Mesozoic sedimentary rocks are deformed within the east verging thrust units that form the Sibillini
and Laga mountain ranges (Pierantoni et al., 2013; Scisciani et al., 2014). To the east of the carbonate
mountain range, a broad negative anomaly is found at shallow depth (Figure 2, layer at 3-km depth in green),
associated with the presence of Pliocene synorogenic formations on top of the carbonates thrust units (see
Bigi et al., 2011). The Vp anomalies mark a first-order discontinuity between the Sibillini and Laga thrust units,
that is, the Sibillini ramp (Centamore & Rossi, 2009), with the uplifted sedimentary units developing along
distinct thrust faults. The spatial extent of the very high Vp/Vs anomalies at 3- and 6-km depth (Figure 2) is
controlled by the frontal and lateral ramps of the Sibillini unit. Southeast of the Sibillini thrust and close to
the hypocenter of the Amatrice event, low Vp/Vs anomalies are present. Vp/Vs anomalies can be related to
different factors including lithology or pore pressure (Dvorkin et al., 1999; Lin et al., 2015). According to the
relation between Vp/Vs and porosity (Castagna et al., 1985), lateral anomalies in the shallowest region could
be explained in terms of lithological contrast between the hanging wall and footwall of the thrust juxtaposing
carbonate (Vp/Vs = 1.9) and turbidites (Vp/Vs = 1.6). However, since the thrust below 2-km depth crosscuts
carbonate units (see Bigi et al., 2011, and Figure 3), we favor the interpretation of high pore pressure (high
Vp/Vs), based on the attitude of cracks that remain open while internally pressurized (Nur, 1972).

Figure 3 shows that seismicity aligns on gently west dipping planes, rooted on an east dipping plane at about
6- to 9-km depth, whereas shallow seismicity (3–4 km) on the deep segment connects with the surface
expression on the western slope of the Vettore Mountain.

In order to gain higher location accuracy for early aftershocks, we have relocated those events occurring in
the periods 24 August to 30 September and 30 October to 31 December (after the first and second
mainshocks, respectively), by using the 3-D model and allowing the model parameters to iterate further
along with hypocenter relocation. The two relocated aftershocks data sets include 9,540 and 34,0279 Pwave,
and 83,304 and 305,778 S-P from 6,412 and 16,870 earthquakes, respectively, yielding a further 6% of
variance improvement after four iterations. Figure 4 shows the final hypocentral distribution of early
aftershocks along and across the fault system. The Mw6.0 and Mw6.5 mainshocks occurs on two fault
segments separated by the Sibillini lateral ramp.

4. Discussion

The 2016 Central Apennines sequence involved several distinct SW dipping segments of the Apennines
normal faulting system (Chiaraluce et al., 2017). In this study, we focus on the 24 August and 30 October main
shocks that ruptured contiguous segments of the system, apparently with repeated slip on overlapping
patches of the same fault or closely spaced and subparallel (Cheloni et al., 2017; Pucci et al., 2017; Pizzi
et al., 2017; Tinti et al., 2016). The coseismic rupture of the August earthquake is highly heterogeneous
consisting of two separate slip patches, whereas the 30 October event is characterized by additional slip on
multiple fault structures (Cheloni et al., 2017; Scognamiglio et al., 2018) including an ancillary and low-angle
faults. Field work immediately after both the August and October events reports surface slip on several fault
splays outcropping along the western slope of the Vettore Mountain (EMERGEO Working Group, 2016;
Pucci et al., 2017), consistent with activation of the Vettore fault at depth (Galli et al., 2017; Pizzi et al., 2017).
The critical questions that remain are the role of preexisting structures in controlling fault kinematics, the
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condition of activation of closely spaced segments, and the connection between fault branching at shallow
levels with the coseismic rupture. Interaction with preexisting compressional features is supported as a
main factor controlling fault segmentation in the Apennines (Chiarabba & Amato, 2003; Chiaraluce et al.,
2017), while other observations suggest that the high-angle normal fault planes crosscut the compressional
features (Lavecchia et al., 2016; Porreca et al., 2018; Pucci et al., 2017). Our results help reveal the role of
inherited structures and their contribution to the overall complexity of the two mainshock ruptures.

Figure 2. Vp and Vp/Vs layers at 3- and 6-km depth. Aftershocks (dots), large aftershocks and mainshocks (stars) occurring
at ±1.5 km from each layer are shown. The gray lines are the main thrusts of the system, St = Sibillini thrust modified
from Bigi et al. (2011). The dashed lines refer to the inferred tip of the blind ramps at depth (Gramp and Sramp for the
24 August and 30 October mainshocks, respectively). Magenta line is the limit of the well-resolved volume (SF = 3). Laga
SH = Laga structural high.
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(a)

(b)

Figure 3. Vertical sections of Vp and Vp/Vs and relocated aftershocks across the fault system, close to the 30 October (a) and
the 24 August 24 (b) mainshocks. Magenta line is limit of the well-resolved volume (Spread Function = 3). Seismicity
describes two main west dipping planes that correspond to preexisting ramps of the compressional belt: The Gramp and
the Sramp. In the section across the Mw6.0 event, only seismicity that occurred before the second mainshock is plotted.
High Vp/Vs is present in the fault footwall, accounting for overpressurization consistent with persistent seismicity. Dashed
red lines are the Sibillini (St) and Gran Sasso (Gt) thrusts defined in Centamore and Rossi (2009), whose geometry is
drawn according to the positive warping in the Vpmodel. Note that the Gt at depth continues with the Gramp. The location
of this structure at the border of the Laga SH supports the interpretation that this ramp was a Mesozoic normal fault
inverted during the Pliocene compression. Vf and Gf are the Vettore and the Gorzano faults, according to Galadini and
Galli (2003); LSH = Laga structural high.
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Aftershock alignments in correspondence to warping of Vp and Vp/Vs anomalies suggest that the two
ruptured faults correspond to preexisting ramps, inherited from the late Pliocene compression (Figures 2
and 3) now reactivated within the same sequence. The overall trend of these structures agrees with that
constrained for the main faults by source modeling (Cheloni et al., 2017; Liu et al., 2017, Scognamiglio
et al., 2018). The 24 August Amatrice mainshock ruptured two separate patches on a high-angle segment
(Gramp) located at the border of a high Vp Mesozoic structural high (Laga SH in Figure 3b). The 30
October Norcia mainshock nucleated on a buried deep ramp (Sramp in Figure 3a) and propagated on shallow
high-angle splays reaching the surface on the Vettore Mountain slope. The two faults are mechanically
separated by the Sibillini lateral ramp (Figure 4). Early aftershocks of the two main shocks separate distinctly
on the ramps, turning on and off after the two events (Figure 4b, sections A–D). Although we agree that
preexisting compressional structure drives the segmentation of the normal fault system, our results clarify
that the Sibillini lateral ramp (OAS in Chiaraluce et al., 2017) separates the fault segments ruptured during
the two mainshocks and not the two patches ruptured during the first Mw6.0 shock. The shallow normal
faults together with the reactivated ramps create an irregular geometry that leads to the complexity
observed during the coseismic ruptures and the spatial distribution of aftershocks. Our results reconcile
previous observations that normal faulting earthquakes in this sector of the Apennines reactivated thrust
planes of the Pliocene compressional tectonics (Amato et al., 1998).

In the Apennines, the reactivation of preexisting faults and the occurrence of multiple mainshocks sequences
are favored by high fluid pressure (Di Luccio et al., 2010; Malagnini et al., 2012), usually defined by high Vp/Vs
anomalies in the upper crust (Chiarabba et al., 2009; Dvorkin et al., 1999). High Vp/Vs are observed within the
Sibillini block (Figures 2 and 3), indicating high pore pressure within the upper portion of the fault system,
confined by the Sibillini thrust. We identify this as the triggering mechanism of persistent aftershocks within
the shallow section of the system. More strikingly, high Vp/Vs anomalies matches the length of the segment
ruptured during the October mainshock and are observed close to the hypocenter (Figure 5), suggesting that
fluids may have played a role in triggering the large rupture. The Vp/Vs distribution along the fault is

(a)

(b)

Figure 4. (a) Vertical section along the fault system and early aftershocks of the first mainshock. The boxes indicate the 30 October (to the left) and the 24 August
patches (to the right), while mainshocks and Mw> 5.3 hypocenters are shown by stars. The red line indicates the lateral Sibillini ramp that segment the fault
system. (b) The early aftershocks of theMw6.0 and theMw6.5 shocks are plotted, relatively to the two main patches located on either side of the Sibillini ramp. Cross
sections are zoom on the faults, while the original traces are the same as sections plotted in Figure 3. Early aftershocks align on the two faults north and south
of the Sibillini lateral ramp (slr; see sections B and C). Note the disappearance of aftershocks on theMw6.0 fault and the onset of aftershocks on theMw6.5 fault, after
30 October (section B).
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consistent with a process of fluid pressurization within the carbonate unit that persisted after the first event
of August and culminated in the rupture of the main asperity during the October main shock.

A poorly developed cluster of aftershocks is consistent with the low Vp/Vs anomalies at the proximity of the
Amatrice hypocenter in the southern edge of the activated system (Figures 2 and 5) suggesting a limited
fluid pressurization.

5. Conclusions

Seismic tomography and aftershock distributions suggest that the two large ruptures of the 24 August,
Amatrice, and the 30 October, Norcia, earthquakes nucleated on two faults, separated by the Sibillini lateral
ramp, involving the reactivation of inherited inverted steep ramps formed during the late Pliocene
compressive phase. We find that the high Vp/Vs anomalies in the shallow fault footwall support the idea that
the evolution of the earthquake sequence was partly controlled by high pore pressure that favors the positive
inversion of inherited structures and their subsequent reactivation.
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