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Although it is generally accepted that δ15N in lichen reflects predominatingN isotope sources in the environment,
confirmation of the direct correlation between lichen δ15N and atmospheric δ15N is still missing, especially under
field conditions with most confounding factors controlled. To fill this gap and investigate the response of lichens
with different tolerance to atmospheric N deposition, thalli of the sensitive Evernia prunastri and the tolerant
Xanthoria parietinawere exposed for ten weeks to different forms and doses of N in a field manipulation exper-
iment where confounding factors were minimized. During this period, several parameters, namely total N, δ15N
and chlorophyll a fluorescence, were measured. Under the experimental conditions, δ15N in lichens quantita-
tively responded to the δ15N of released gaseous ammonia (NH3). Although a high correlation between the iso-
topic signatures in lichen tissue and supplied N was found both in tolerant and sensitive species, chlorophyll a
fluorescence indicated that the sensitive species very soon lost its photosynthetic functionality with increasing
N availability. The most damaging response to the different N chemical forms was observed with dry deposition
of NH3, although wet deposition of ammonium ions had a significant observable physiological impact. Con-
versely, there was no significant effect of nitrate ions on chlorophyll a fluorescence, implying differential sensi-
tivity to dry deposition versus wet deposition and to ammonium versus nitrate in wet deposition. Evernia
prunastriwas most sensitive to NH3, then NH4

+, with lowest sensitivity to NO3
−. Moreover, these results confirm

that lichen δ15N can be used to indicate the δ15N of atmospheric ammonia, providing a suitable tool for the inter-
pretation of the spatial distribution of NH3 sources in relation to their δ15N signal.
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Nitrogen (N) is considered one of themain drivers of environmental
change and one of the major pollutants of anthropogenic origin
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(Kanakidou et al., 2016; Payne et al., 2017; Stevens et al., 2018). Nitrog-
enous gases and in particular ammonia (NH3) represent the most rele-
vant part of total N deposition, originating mainly from production of
fertilizers, munitions and other products, biological fixation of N2 and
decomposition of organic compounds (Sutton et al., 2013).

The excess of reactive N introduced into the ecosystems has been in-
creasingly recognized as a threat to biodiversity and to ecosystem func-
tion and resilience, affecting processes occurring in the atmosphere,
oceans and terrestrial habitats (Bobbink et al., 2010; Steffen et al.,
2015). Gaseous NH3 is also produced by catalytic convertors of vehicles
with internal combustion engine, thus representing a main threat to
human health in urban environments (Suarez-Bertoa et al., 2014).
Therefore, monitoring N sources and deposition as well as assessing
the effects on ecosystems is pivotal for the establishment of suitable
management and mitigation strategies.

Depositionmeasurement stations are expensive and have restricted
spatial distribution, thus providing only a partial and uncertain picture
of N deposition rates in limited areas (Sutton et al., 2003). Moreover,
currently available measurement methods present technical uncer-
tainties related to emissions, dispersion, chemistry, and data collecting
and handling, making the assessment of N deposition still an open
issue (Fowler et al., 2009). Equally, apart from specific landscape scale
assessments (e.g. Dragosits et al., 2002), local conditions can hardly be
represented by regional models existing for N deposition at larger
scales.

Biomonitoring has been proposed and used as an effective tool to
quantify the exposure to and evaluate the effects of atmospheric N on
sensitive components of the ecosystems (e.g. Izquieta-Rojano et al.,
2016; Munzi et al., 2012; Pinho et al., 2011, 2012, 2014; Varela et al.,
2016; Wolseley et al., 2006). In particular, N isotopic signature (δ15N)
in different organisms and tissues, such as lichens, mosses and bark,
provides an informative tool formonitoring sources and pathways of at-
mospheric N (Boltersdorf et al., 2014 and references therein).

Lichens are well-known as biomonitors, responding to increased N
availability (Munzi et al., 2014; Pinho et al., 2012, 2014) since they de-
pend on the atmospheric compartment (wet and dry atmospheric de-
positions) for their nutrient requirements. Several works
demonstrated that epiphytic lichens reflect N deposition, especially
from agriculture-derived N-containing compounds (e.g. Gombert
et al., 2003; Ruoss, 1999).

It is generally accepted that thallus N content and isotopic signature
(δ15N) in lichens reflect land use (N sources) and atmospheric transport
of N pollutants in the surroundings, and several studies have dealt with
relations between N concentration and isotopic signature in lichen or-
ganic material. Tests on epiphytic lichens collected near deposition
measurement field stations in Germany found that N content and δ15N
values in lichens, when compared with measured and modelled N de-
position data, reflected the local N deposition originating from agricul-
ture activities (Boltersdorf et al., 2014; Boltersdorf and Werner, 2013,
2014). Manninen (2018) found that δ15N in Hypogymnia physodes sup-
ported the uptake of oxidized N mainly originating from road traffic in
Helsinki metropolitan area. For Antarctic environments, Cipro et al.
(2011) and Crittenden et al. (2015) investigated organic pollutants
and stable isotopes in vegetation finding that N isotopic signature in li-
chens and mosses indicate the influence of animal-derived N. Hogan
et al. (2017) used N and sulphur isotopic composition of the species
Cladia retipora to pinpoint anthropogenic influences on atmospheric
background deposition in Tasmania. Similarly, Pinho et al. (2017)
ranked land-cover types according to the amount and form of emitted
atmospheric reactive N in a complex landscape withmultiple N sources
correlating N concentration and isotopic composition in lichen thalli to
land-cover data.

Atmospheric δ15N has not been measured and compared directly
with δ15N in lichen tissue; previous results merely report correlations
with δ15N in other organisms living in the area or with models. The
main difficulties are due to the synergism between climatic and
anthropogenic factors and the superimposition of multiple N sources,
the spatial variability of NH3, the reactivity of some N forms, and the
scarce number of measuring devices in the field (Boltersdorf and
Werner, 2013). Moreover, the range of variability of N-NH3 isotopic sig-
nature from different sources is huge, as shown by Ti et al. (2018). The
authors found that in China δ15 of N-NH3 ranged from −30.8 to
−3.3‰ for volatilized fertilizer, from −35.1 to −10.5‰ for emissions
from a pig farm, and from −24.7 to −11.3‰ for emissions from a
dairy farm.

Although Skinner et al. (2006) found a significant correlation be-
tween experimental supply of dry N deposition (ammonia concentra-
tion ranging between 0 and 125 μg m−3) and N content and δ15N in
the terricolous lichen Cladonia portentosa, a confirmation of the direct
correlation between the source and epiphytic lichen δ15N was missing.

The present communication investigates how N deposition affects
lichen's isotopic signature in a manipulative ecosystem experiment
(Whim Bog, Scotland, Leith et al., 2004). The aim is to evaluate the po-
tential for δ15N as a natural tracer for N pollution, especially for atmo-
spheric N sources. Moreover, since the Whim Bog site is in an
environment with low background N deposition (Leith et al., 2004),
the use of physiological tests allows investigation of the specific effects
of different forms of N (dry vs. wet; ammonium vs. nitrate), thereby
minimizing other confounding elements.

Based on theworkinghypotheses that lichenswill take up theN sup-
plied, and that δ15N in epiphytic lichens exposed to atmospheric N de-
position will tend toward the δ15N of the N deposition source, we
aimed to compare: i) δ15N of lichen thalli and the atmospheric N source;
ii) the performance of and the fractionation of δ15N of lichen organic
material of N-tolerant and N-sensitive species; iii) the effects of nitrate
vs. ammonium on lichens exposed to conditions resembling natural
ones; and iv) the effects of wet deposited nitrogen vs. dry deposition
as gaseous NH3.

2. Methods

2.1. Nitrogen treatments

Reactive N deposition treatments have been applied at the Whim
Bog experimental site, a peatland ecosystem 26 km from the sea
(Sheppard et al., 2004, 2011), including manipulation of both wet and
dry deposition. For wet deposition, four control plots receive only natu-
ral rainfall with a background total inorganic N deposition of
8 kg ha−1 yr−1 (wet plus dry). The other wet deposition experimental
plots receive different additional N doses (as NH4Cl or NaNO3) applied
through a sprinkler irrigation system, to simulate natural rainfall, at
rates of 8, 24 and 56 kg ha−1 yr−1. Each treatment is replicated in 4
plots in each of four blocks, which take account of site geography.
Plots, circular areas of 12.5 m2, are 3 m apart to minimise cross-
contamination.

For dry deposition, an NH3 gradient is established by NH3 release
from a 10 m long pipe line source at 1 m height (tangential to the
main wind direction), when the wind direction is 180–215° and speed
is at least 2.5 m s−1. NH3 concentrations and loads were measured at
the transplant locations, located 12, 30 and 60 m downwind (north
east) from the NH3 source, using passive ALPHA samplers (Tang et al.,
2001) set 0.1 m above the vegetation, and estimates calculated follow-
ing Cape et al. (2008).

2.2. Lichen material

Thalli of the tolerant foliose species X. parietina, which is considered
well suited for monitoring using N isotopic signature (e.g. Boltersdorf
andWerner, 2013), and the sensitive fruticose species E. prunastri, com-
monly used in biomonitoring surveys (e.g. Paoli et al., 2015b), were col-
lected at sites with an NH3 concentration of 1.6 μg m−3 for X. parietina
(Penicuik,Midlothian Scotland) and 0.6 μgm−3 for E. prunastri (Peebles,



Fig. 1. Results of linear regression analysis between δ15N (average ± SE, n = 3) of lichen
thallus and NH3 deposition rate (besides the total background value of 8 kg ha−1 yr−1)
(A) and between δ15N (average ± SE, n = 3) and thallus N concentration expressed as
percentage dry weight (DW) (B), in X. parietina (squares) and E. prunastri (diamonds).
The dotted line in (A) and (B) represents the value of δ15N in the released NH3 of the
dry treatment. The dashed lines in part (A) represent the uptake rate of NH3 in the two
lichen species for depositions of up to 3 kg N ha−1 yr−1. 95% confidence intervals of the
slopes are from 2.707 to 9.170 for E. prunastri and from 0.605 to 2.363 for X. parietina in
(A) up to 3 kg N ha−1 yr−1; from 21.545 to 65.172 for E. prunastri and from 5.801 to
22.128 for X. parietina in (B). R2 is the coefficient of determination and P is the statistical
significance.
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Tweeddale, Scotland). NH3 concentrationswere extracted from theAPIS
– Air Pollution Information System website (http://www.apis.ac.uk),
which reports a modelled 3-year average concentration for the 5 km
× 5 km grid square that the specified location is in. Four branches of
Sambucus nigra and of Quercus robur, carrying respectively 5–10 thalli
of different size of X. parietina and E. prunastri were transplanted to-
gether into each of the different wet plots and along the dry transect
at 12, 30 and 60 m from the NH3 source (where ALPHA samplers were
located) at Whim Bog. All the transplanted branches were supported
by plastic sticks and inserted facing the N source at the same height
and distance in the open (Supplementarymaterial, Fig. S1). Transplants,
exposed from the end of June to the beginning of September 2012, were
collected after 10weeks fromwet deposition plots (around 20 thalli per
species) and in 3 different times (10–12 thalli per species each time),
after 3, 6 and 10 weeks respectively, in the case of dry deposition. Dur-
ing those periods, lichens were exposed to different N loads depending
onmeteorological conditions. Meteorological conditionswere the same
for dry and wet sampling plots, and meteorological parameters were
measured on site by an automatic weather station. All parameters
were calculated considering not the exposure time or the distance
from the source, but the cumulative N loads to which lichen thalli
were subjected in the different periods (see Supplementary material,
Table S1 for N loads of single periods).

Measurementswere taken in collectedmaterial pre-transplantation,
which were considered as control values. Additionally, some samples
were subjected to irrigation with rain water without N supply (control
plots). These two plots were used to check if the transplant process af-
fected lichen health at two different times (in the middle and at the
end of the experiment).

2.3. Stable isotopes and total N

Stable isotope ratio analysis was performed at the Centro de
Recursos em Isótopos Estáveis - Stable Isotopes and Instrumental Anal-
ysis Facility, at the Faculdade de Ciências, Universidade de Lisboa -
Portugal. δ15N in the samples was determined by continuous flow iso-
tope mass spectrometry (CF-IRMS) (Preston and Owens, 1983), on a
Sercon Hydra 20–22 (Sercon, UK) stable isotope ratio mass spectrome-
ter, coupled to a EuroEA (EuroVector, Italy) elemental analyser for on-
line sample preparation by Dumas-combustion. Delta Calculation was
performed according to δ = [(Rsample − Rstandard) / Rstandard] ∗ 1000,
where R is the ratio between the heavier isotope and the lighter one. δ
15NAir values are referred to air. The reference materials used were
USGS-25, USGS-35, BCR-657 and IAEA-CH7 (Coleman and Meier-
Augenstein, 2014); the laboratory standard used was Protein Standard
OAS/Isotope (Elemental Microanalysis, UK). The major mass signal of
N was used to calculate total N abundance, usingWheat Flour Standard
OAS (ElementalMicroanalysis, UK, with 1.36%N) as elemental composi-
tion reference materials. Uncertainty of the isotope ratio and N content
analysis, calculated using values from 6 to 9 replicates of laboratory
standard, interspersed among samples in every batch analysis, was
≤0.1‰. Elemental and isotopic composition of reference material can
be found in Supplementary material Table S2. Three replicates for
each treatment and species were analyzed, with replicates plot-
averaged and treated as independent sampling units.

Isotopic signature of chemicals used for the treatments were−0.1‰
for NH4Cl, 3.8‰ for NaNO3 used in the wet deposition treatments and
6.2‰ for NH3 released in the dry deposition treatment.

2.4. Chlorophyll a fluorescence

Measurements of the chlorophyll a fluorescence parameter Fv/Fm of
the transplanted lichens were taken as a stress indicator (Munzi et al.,
2014). Samples were hydrated and dark-adapted at room temperature
for 15 min before measuring fluorescence. The Fv/Fm ratio was
measured with the Plant Efficiency Analyzer Handy PEA (Hansatech
LTD, UK).

Samples were considered affected but viable when Fv/Fm N 0.32
based on Munzi et al. (2013). In that study, samples of X. parietina
with similar value of Fv/Fm after N treatment were able to recover al-
most to control value showing that the algal partner, belonging to the
genus Trebouxia, and also present in E. prunastri, was still viable.

2.5. Statistics

Significance of differences (P b 0.05) in chlorophyll a fluorescence
values between treatments and controls was checked by one-way anal-
ysis of variance (ANOVA), using the Dunnett test for post-hoc compari-
sons in Statistica (Stasoft Inc.). Linear regression analysis was used to
model the relationships between δ15N, N content and N dry andwet de-
position and between Fv/Fm and δ15N using SPSS software (IBM Corp.
Released 2016. IBM SPSS Statistics Version 24.0).

3. Results and discussion

In the experimental conditions, δ15N of lichens responded to the
δ15N of the released atmospheric ammonia (Fig. 1A). Although a close
correlation between the isotopic signatures of lichen tissue and supplied
Nwas found both in the tolerant and sensitive species, the sensitive spe-
cies lost its functionality with increasing N availability (Fig. 2).

http://www.apis.ac.uk


Fig. 2.Average values of Fv/Fm (±SE; n=20 for each species forwet deposition and n=10
for each species for dry deposition) in transplanted samples of X. parietina and E. prunastri
after treatments with different doses of NO3

− (A), NH4
+ (B) and NH3 (C) (N kg besides the

background value of 8 kg ha−1 yr−1). * = significantly different from the control (P b

0.05); dashed line represents the estimated lichen viability threshold for Fv/Fm.

Fig. 3. Total N content (% of dry weight, DW, average ± SE, n = 3) in response to
atmospheric NH3 depositions provided to samples (kg N ha−1 yr−1 besides the total
background value of 8 kg ha−1 yr−1) in thalli of X. parietina (squares) and E. prunastri
(diamonds). For X. parietina, the data were fitted to a logarithmic increase (y =
0.1415ln(x) + 1.6549). R2 is the coefficient of determination and P is the statistical
probability.
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Differential physiological responses due to different N forms were ob-
served, with the strongest response observed in case of dry deposition;
wet deposition was moderately effective in reducing Fv/Fm in case of
NH4

+, but much less effective in case of NO3
− (Fig. 2).

3.1. Chlorophyll a fluorescence

The maximum quantum yield, based on the Fv/Fm parameter, was
used to evaluate the metabolic and physiological status of the lichen
thalli (Munzi et al., 2014). Measurements taken on the control samples,
at three times in the experiment (t0 = 1 week, t1 = 5 weeks and t2 =
10weeks), revealed that 10weeks after the transplantation the process
did not affect X. parietina and slightly affected the health status of E.
prunastri, though without compromising its viability (Supplementary
material, Table S3). A decrease in photosynthetic performance was ob-
served by Paoli et al. (2015a) in thalli of the sensitive species
Flavoparmelia caperata transplanted in a climatic chamber for 5 weeks,
whereas X. parietina tolerated the same conditions for a longer time.
Chlorophyll a fluorescence (Fig. 2A, B; Supplementary material,
Table S4) showed only modest effect of wet deposition on X. parietina,
with occasional decreases in few treatments. The Fv/Fm parameter in
E. prunastri decreased in transplants already at low doses of ammonium
and nitrate, even though samples remained viable in the case of NO3

−,
with Fv/Fm values larger than the estimated critical value of 0.32. In
the case of X. parietina the minor overall response was similar for im-
pacts of NH4

+ and NO3
−, whereas for E. prunastri, the adverse effect

was much larger from NH4
+ than from NO3

−, with all except the lowest
treatments (1.9 kg NH4

+-N ha−1) having Fv/Fm values less than the crit-
ical value of 0.32.

Exposure tomean concentrations of gaseous NH3 equivalent to a de-
position of N1.15 kg N ha−1 yr−1 strongly affected photosystem II of E.
prunastri, with values of Fv/Fm near to zero at the highest doses
(Fig. 2C; Supplementary material, Table S5). Xanthoria parietina exhib-
ited decreased fluorescence values only at the highest depositions of
ammonia (N4.8 kg N ha−1 yr−1) (Fig. 2C; Supplementary material,
Table S5).

These findings are in agreement with previous observations about
the effects of N compounds on lichens. In several studies, X. parietina ap-
peared tolerant to wet deposited NO3

− and NH4
+ (Munzi et al., 2009a,

2010; Pirintsos et al., 2009), but more sensitive to NH3 (Munzi et al.,
2014; Paoli et al., 2015a). This is consistent with the reported deleteri-
ous effects of dry deposition on peatland vegetation and more specifi-
cally for E. prunastri, as compared with wet deposition (Munzi et al.,
2009a, 2010; Pinho et al., 2012; Sheppard et al., 2011).

3.2. Dry deposition

The results showed an increase in thalli N concentration when NH3

was provided to both species (Fig. 3). For X. parietina, the data were
fitted to a logarithmic increase (y = 0.1415ln(x) + 1.6549). For E.
prunastri, the N content remained stable at the lowest values of NH3 de-
position, increased linearly between 1.15 and 2.66 kg N ha−1 yr−1 to
reach, after that, a limit value which appears to be reflective of a break-
down of this species at high NH3 concentrations.

In a laboratory experiment, Miller and Brown (1999) found that,
when exposed to NH3, most of the ammonia vapour was recovered in
the lichen Peltigera membranacea as ammonium ions, both in the inter-
cellular spaces and bound to exchange sites. In the field, several authors
have reported that lichen N content reflects spatial variations in the
amount of deposited N, particularly ammonia, even when species pres-
ent clear difference in growth form, morphology and other general
functional traits (Branquinho et al., 2010; Gaio-Oliveira et al., 2001;
Nielsen et al., 2014).



Fig. 4. Relation between lichen δ15N and Fv/Fm in thalli of X. parietina and E. prunastri
treatedwith NH3. R2 is the coefficient of determination and P is the statistical significance.
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In the cases of X. parietina an initial increase of total N concentration
is seen in Fig. 3 followed by attenuation to a steady state value suggest-
ing a saturation pattern once NH3 depositions exceed 4 kg N ha−1 yr−1.
In E. prunastri there was no correlation between NH3 and N lichen con-
tent above 2.66 kg N ha−1 yr−1 (Fig. 3), which is consistent with a
breakdown of the lichen functioning at high N availability.

This observation is in agreementwith findings by Olsen et al. (2010)
who found amaximum tissue N concentration within onemonth of ex-
posure in X. parietina transplanted into a heavily NH3 polluted area.
Their maximum thallus N concentration was 2.3%, which was similar
to the values found in our study (2.5% in X. parietina and 2.2% in E.
prunastri).

The different response of the two species can be explained looking at
their viability (Fig. 2). Already at a deposition of 1.2 kg N ha−1 yr−1 of
NH3, E. prunastri showed an impairment of its vitality. That, together
with other possible damages attributable to N (Munzi et al., 2009b),
likely prevented a correct metabolic functioning and a clear response
to the treatment during the experiment. The increase in thallus N con-
centration for an NH3 deposition of N1.2 kg N ha−1 yr−1 in E. prunastri
is not surprising since previous observations suggested that the uptake
mechanism is passive and physical rather than metabolic and showed
that NH3 uptake occurred not only in living but also to some extent in
dead lichen material (Miller and Brown, 1999).

A decrease of Fv/Fm below the vitality threshold was also observed
in X. parietina around 4.8 kg N ha−1 yr−1 of NH3 (Fig. 2C). The conse-
quent decreased functionality of the thalli can thus explain the satura-
tion pattern.

This difference between tolerant and sensitive species was found
also by Boltersdorf and Werner (2013) in a field survey including vari-
ous species of epiphytic lichens, where only data obtained from
nitrophytic species were correlatedwith data obtained fromNmonitor-
ing networks based on physicochemical measurements.

Results displayed in Fig. 1 provide further support for our hypothesis
that N isotopic signature observed in lichens tends to resemble the
value of the N source (6.2‰ for added NH3), since increasing the con-
centration of available NH3 (Fig. 1A) and increasing lichen N concentra-
tion (Fig. 1B), lichen δ15N is driven toward more positive values.

Dashed lines in Fig. 1A show the initial linear stage of uptake before
saturation pattern or total impairment were reached in X. parietina and
E. prunastri. The slopes of the lines indicate a 3-fold greater increase of
δ15N due to increasing NH3 supply in E. prunastri than in X. parietina.
This value is compatible with the higher cation exchange capacity of
non-nitrophilous than of nitrophilous species (Branquinho, 2001).
When Gaio-Oliveira et al. (2001) compared cation exchange capacity
in E. prunastri and X. parietina, they found a 5-fold higher capacity for
the former than for the latter. In a humid environment such as Whim
Bog, it is expected that NH3 will react to form NH4

+ which binds to ex-
change sites. Support for the occurrence of such chemical reactions
comes from the observation that surface pH of thalli of the lichen C.
portentosa exposed to NH3 in the Whim Bog was increased to 136% of
the control value, changing from 4.41 to 6.02 (Munzi et al., in prepara-
tion). Such a drastic change in pH,which influences the cellular environ-
ment and functioning, can contribute to explain the high toxicity to
lichens of NH3 dry deposition.

While carbon fractionation has been considered in previous papers
(e.g. Máguas et al., 1995), N fractionation in lichens has been almost
completely neglected. Although several metabolic processes.

could potentially alter δ15N of lichens (Beck and Mayr, 2012), our
findings showed that fractionation, if any, did not cause a relevant diver-
gence between lichen and source δ15N. A possible exception to this is
the δ15N values of +10 and + 9 for E. prunastri at high NH3 deposition
levels above the impairment threshold of 1.2 kg ha−1 yr−1, which
exceeded the source value. It is reasonable to think that E. prunastri
had already lost the capacity to maintain cellular integrity and physio-
logical processes regulated at these levels, including uptake processes,
which might lead to a fractionating effect with a preferential uptake of
the heaviest isotope. However, further studies are needed to clarify
this aspect and a new experiment has been designed at purpose.

Finally, Fig. 4 shows that themaximumpotential quantum efficiency
of photosystem II of lichens (Fv/Fm) is significantly correlated with
δ15N. Again, this can be explained since δ15N depends on the amount
of N taken up from the Ndeposition source that can be toxic at high con-
centrations. In agreementwith previous results (Munzi et al., 2014), the
Fv/Fm parameter decreased in both E. prunastri and X. parietina. How-
ever, due to a different N tolerance between these two species, E.
prunastri, showed lower fluorescence values than X. parietina.

Taken together these results suggest an oligotrophic species
responded more efficiently than a nitrophytic species to NH3 treatment
in the short term, but when subjected to increased N availability for a
prolonged time, they lose their functionality and, consequently, the abil-
ity to respond to changing environmental conditions. By contrast, the
nitrophytic species which can tolerate high N supplies, can act as a reli-
able indicator of NH3 deposition even in areas with high N pollution.
This is true not only for transplantation experiments, but also when in
situ lichens are used. For example, a study conducted near a cattle
barn in Portugal showed E. prunastri disappearing and X. parietina in-
creasing in frequency along a gradient of NH3 concentrations (Munzi
et al., 2014; Pinho et al., 2011, 2012).

3.3. Wet deposition

Significant correlations were found between lichen total amount of
NH4

+ provided inwet deposition and both total N content of lichen thalli
and lichen δ15N signal (Fig. 5). Conversely, no significant correlations
were found between N content and δ15N in thalli of both species
when treated with NH4

+ (Supplementary material, Fig. S2). For the
same parameters in case of NO3

−, the only significant correlation was
found between δ15N and NO3

− provided in thalli of E. prunastri (Supple-
mentary material, Fig. S3).

Lichens can take up several N forms from wet deposition like NH4
+,

NO3
−, and organic N (Hauck, 2010). Although in nature lichens take up

NH4
+ and NO3

− from rainfall with similar efficiency (Crittenden, 1998),
when exposed to solutions of high N concentration, it has been found
that lichens take up NH4

+ preferentially to NO3
− (Dahlman et al., 2004).

This finding is confirmed by our experiment, where measurements
of total N content in thalli of both species showed a slight but significant
increase when thalli were treated with NH4

+ (Fig. 5A) and indicated no
significant uptake of the NO3

− supplied (Supplementary material,
Fig. S3A). Accordingly, the isotopic signature of samples treated with
NH4

+ suggests the uptake of N which was then found in lichen tissue
(Fig. 5B),while in case of NO3

− only E. prunastri at the highest concentra-
tion showed a change in the isotopic signature (Supplementary mate-
rial, Fig. S3B).



Fig. 5. Linear regression between N content and doses of NH4
+ provided (besides the total

background value of 8 kg ha−1 yr−1) (A) and between δ15N and doses of NH4
+ provided

(B) in thalli of X. parietina and E. prunastri. The dotted line in part (B) represents the
value of δ15N in the released NH4

+ of the wet treatment. R2 is the coefficient of
determination and P is the statistical significance.
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A different uptake rate can also explain the physiological results
(Fig. 2). In fact, the less efficient uptake of NO3

− and the consequent
lower amount of N in the cells in comparison with NH4

+ can justify the
less harmful effects observed in the experiment indicated by the Fv/
Fm ratio. In this way, it appears that one reason for the lower impact
of NO3

− than NH4
+ is the lower rate of uptake of NO3

−. This is explored
in Supplementary material, Fig. S4 which shows the extent of reduction
in Fv/Fm (by comparison to the control) normalized by the degree to
which the δ15N content approaches the δ15N value of the deposited N,
and Fig. S5 which shows the same per unit of tissue N.

4. Conclusions

Ourfindings confirmed that lichen δ15N varies accordingly to the iso-
topic signature of the N source (6.2‰ for NH3, −0.1‰ for NH4Cl and
3.8‰ for NaNO3). By contrast, the results do not point to any significant
fractionation in N deposition to lichens. An exception to thismay be two
values of δ15N at 10 and 9‰ for high NH3 treatments in E. prunastri, po-
tentially linked to thallus breakdown, though in the absence of other
data this requires further investigation.

We found that the nitrophytic X. parietinawas able to survive in the
tested conditions and maintain its functionality at higher NH3 concen-
trations than E. prunastri. From a practical point of view, this means
that δ15N of lichen tissue reflects the δ15N of atmospheric ammonia, pro-
viding a suitable tool for the interpretation of the spatial distribution of
NH3 sources even after few weeks of exposure. The use of tolerant spe-
cies is preferred to sensitive ones to obtain a reliable indication in areas
with high N pollution.

In conditions resembling natural ones, wet deposition of NO3
− did

not affect lichen N concentrations through the duration of the
experiment and caused less impact on chlorophyll a than NH4
+ as indi-

cated by the Fv/Fm ratio. Dry deposition caused a much greater impact,
which is consistent with different and more efficient uptake mecha-
nisms. As this study focused on exposure over a 10-week period, further
experiments are needed to clarify the response to NH4

+ and NO3
− over

the long term.
These results clarify the response of sensitive components of the en-

vironment to N pollutants in the field, where multiple N sources often
make the interpretation of biomonitoring surveys difficult.

Acknowledgments

This research was supported by the NitroPortugal project (Grant
Agreement number: 692331, H2020-TWINN-2015/H2020-TWINN-
2015), through transnational access in the ExpeER project, and for un-
derpinning data collection under the ÉCLAIRE project (FP7-ENV-2011
n° 282910). Core operation of the Whim Bog experimental facility is
co-financed through the CEH National Capability Programme on Air
Chemistry and Effects. SM thanks the Fundação para a Ciência e
Tecnologia (FCT) Investigador grant and the FCT project IF/00964/
2013. This paper provides a contribution to the Indicators Activity of
the International Nitrogen Management System (INMS) and the Inter-
national Long-Term Ecosystem Research (ILTER) network.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2018.11.010.

References

Beck, A., Mayr, C., 2012. Nitrogen and carbon isotope variability in the green-algal lichen
Xanthoria parietina and their implications on mycobiont–photobiont interactions.
Ecol. Evol. 2 (12), 3132–3144.

Bobbink, R., et al., 2010. Global assessment of nitrogen deposition effects on terrestrial
plant diversity: a synthesis. Ecol. Appl. 20, 30–59.

Boltersdorf, S., Werner, W., 2013. Source attribution of agriculture related deposition by
using total nitrogen and δ15N in epiphytic lichen tissue, bark and deposition water
samples in Germany. Isot. Environ. Health Stud. 49, 197–218.

Boltersdorf, S., Werner, W., 2014. Lichens as a useful mapping tool? - an approach to as-
sess atmospheric N loads in Germany by total N content and stable isotope signature.
Environ. Monit. Assess. 186 (8), 4767–4778.

Boltersdorf, S.H., Pesch, R., Werner, W., 2014. Comparative use of lichens, mosses and tree
bark to evaluate nitrogen deposition in Germany. Environ. Pollut. 189, 43–53.

Branquinho, C., 2001. Lichens. In: Prasad, M.N.V. (Ed.), Metals in the Environment: Anal-
ysis by Biodiversity. CRC Press, New York, pp. 117–158.

Branquinho, C., Dias, T., Cruz, C., Máguas, C., Martins-Loução, M.A., 2010. Lichen trans-
plants at our service for atmospheric NH3 deposition assessments. In: Nash, I.I.I.T.H.,
et al. (Eds.), Biology of Lichens – Symbiosis, Ecology, Environm. Monitoring, System-
atics, Cyber Applications. Bibliotheca Lichenologica 105, Stuttgart, pp. 103–112.

Cape, J.N., Jones, M.R., Leith, I.D., Sheppard, L.J., van Dijk, N., Sutton, M.A., Fowler, D., 2008.
Estimate of annual NH3 dry deposition to a fumigated ombrotrophic bog using
concentration-dependent deposition velocities. Atmos. Environ. 42, 6637–6646.

Cipro, C.V.Z., Yogui, G.T., Bustamante, P., Taniguchi, S., Sericano, J.L., Montone, R.C., 2011.
Organic pollutants and their correlation with stable isotopes in vegetation from
King George Island, Antarctica. Chemosphere 85, 393–398.

Coleman, M., Meier-Augenstein, W., 2014. Ignoring IUPAC guidelines for measurement
and reporting of stable isotope abundance values affects us all. Letter to the Editor.
Rapid Commun. Mass Spectrom. 28, 1953–1955.

Crittenden, P.D., 1998. Nutrient exchange in an Antarctic macrolichen during summer
snowfall – snow melt events. New Phytol. 139, 697–707.

Crittenden, P.D., Scrimgeour, C.M., Minnullina, G., Sutton, M.A., Tang, Y.S., Theobald, M.R.,
2015. Lichen response to ammonia deposition defines the footprint of a penguin
rookery. Biogeochemistry 122, 295–311.

Dahlman, L., Persson, J., Palmqvist, K., Nӓsholm, T., 2004. Organic and inorganic nitrogen
uptake in lichens. Planta 219, 459–467.

Dragosits, U., Theobald, M.R., Place, C.J., Lord, E., Webb, J., Hill, J., Apsimon, H.M., Sutton,
M.A., 2002. Ammonia, emission, deposition and impact assessment at a field scale:
a case study of sub-grid spatial variability. Environ. Pollut. 117 (1), 147–158.

Fowler, D., et al., 2009. Atmospheric composition change: ecosystems - atmosphere inter-
actions. Atmos. Environ. 43, 5193–5267.

Gaio-Oliveira, G., Branquinho, C., Máguas, C., Martins-Loução, M.A., 2001. The Concentra-
tion of Nitrogen in Nitrophilous and Non-nitrophilous Lichen Species. vol. 31. Sym-
biosis, pp. 187–199.

Gombert, S., Asta, J., Seaward, M.R.D., 2003. Correlation between the nitrogen concentra-
tion of two epiphytic lichens and the traffic density in an urban area. Environ. Pollut.
123, 281–290.

https://doi.org/10.1016/j.scitotenv.2018.11.010
https://doi.org/10.1016/j.scitotenv.2018.11.010
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0005
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0005
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0005
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0010
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0010
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0015
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0015
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0015
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0015
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0020
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0020
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0020
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0025
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0025
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0030
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0030
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0035
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0035
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0035
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0035
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0035
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0040
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0040
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0040
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0045
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0045
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0050
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0050
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0050
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0055
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0055
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0060
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0060
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0065
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0065
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0070
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0070
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0075
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0075
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0080
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0080
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0080
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0085
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0085
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0085


704 S. Munzi et al. / Science of the Total Environment 653 (2019) 698–704
Hauck, M., 2010. Ammonium and nitrate tolerance in lichens. Environ. Pollut. 158,
1127–1133.

Hogan, C.M., Proemse, B.C., Barmuta, L.A., 2017. Isotopic fingerprinting of atmospheric ni-
trogen and sulfur using lichens (Cladia retipora) in Tasmania, Australia. Appl.
Geochem. 84, 126–132.

Izquieta-Rojano, S., Elustondo, D., Ederra, A., Lasheras, E., Santamaría, C., Santamaría, J.M.,
2016. Pleurochaete squarrosa (Brid.) Lindb. as an alternativemoss species for biomon-
itoring surveys of heavy metal, nitrogen deposition and δ15N signatures in a Mediter-
ranean area. Ecol. Indic. 60, 1221–1228.

Kanakidou, M., Myriokfalitakis, S., Dasalakis, N., Fanourgakis, G., 2016. Past, present and
future atmospheric nitrogen deposition. J. Atmos. Sci. 73, 2039–2047.

Leith, I.D., Sheppard, L.J., Fowler, D., Cape, N.J., Jones, M., Crossley, K.J., Hargreaves, S., Tang,
Y.S., Theobald, M., Sutton, M.A., 2004. Quantification of dry N deposition to an
ombrotrophic bog from an automated NH3 release system. Water Air Soil Pollut.
(6), 207–218.

Máguas, C., Griffiths, H., Broadmeadow,M.S.J., 1995. Gas exchange and carbon isotope dis-
crimination in lichens: evidence for interactions between CO2-concentrating mecha-
nisms and diffusion limitation. Planta 196, 95–102.

Manninen, S., 2018. Deriving nitrogen critical levels and loads based on the responses of
acidophytic lichen communities on boreal urban Pinus sylvestris trunks. Sci. Total En-
viron. 613–614, 751–762.

Miller, J.E., Brown, D.H., 1999. Studies of ammonia uptake and loss by lichens. Lichenolo-
gist 31, 85–93.

Munzi, S., Pirintsos, A.S., Loppi, S., 2009a. Chlorophyll degradation and inhibition of poly-
amine biosynthesis in the lichen Xanthoria parietina under nitrogen stress. Ecotoxicol.
Environ. Saf. 72, 281–285.

Munzi, S., Pisani, T., Loppi, S., 2009b. The integrity of lichen cell membrane as a suitable
parameter for monitoring biological effects of acute nitrogen pollution. Ecotoxicol.
Environ. Saf. 72, 2009–2012.

Munzi, S., Pisani, T., Paoli, L., Loppi, S., 2010. Time- and dose-dependency of the effects of
nitrogen pollution on lichens. Ecotoxicol. Environ. Saf. 73, 1785–1788.

Munzi, S., Paoli, L., Fiorini, E., Loppi, S., 2012. Physiological response of the epiphytic lichen
Evernia prunastri (L.) Ach. to ecologically relevant nitrogen concentrations. Environ.
Pollut. 171, 25–29.

Munzi, S., Branquinho, C., Cruz, C., Loppi, S., 2013. Nitrogen tolerance in the lichen
Xanthoria parietina: the sensitive side of a resistant species. Funct. Plant Biol. 40,
237–243.

Munzi, S., Cruz, C., Branquinho, C., Pinho, P., Leith, I.D., Sheppard, L.J., 2014. Can ammonia
tolerance amongst lichen functional groups be explained by physiological responses?
Environ. Pollut. 187, 206–209.

Nielsen, K.E., Andersen, H.V., Strandberg, M., Løfstrøm, P., Degn, H.J., Damgaard, C., 2014.
Relationship between atmospheric ammonia concentration and nitrogen content in
terricolous lichen (Cladonia portentosa). Water Air Soil Pollut. 225, 2178.

Olsen, H.B., Berthelsen, K., Andersen, H.V., Søchting, U., 2010. Xanthoria parietina as a
monitor of ground-level ambient ammonia concentrations. Environ. Pollut. 158,
455–461.

Paoli, L., Maslaňáková, I., Grassi, A., Bačkor, M., Loppi, S., 2015a. Effects of acute NH3 air
pollution on N-sensitive and N-tolerant lichen species. Ecotoxicol. Environ. Saf. 122,
377–383.

Paoli, L., Munzi, S., Guttová, A., Senko, D., Sardella, G., Loppi, S., 2015b. Lichens as suitable
indicators of the biological effects of atmospheric pollutants around a municipal solid
waste incinerator (S Italy). Ecol. Indic. 52, 362–370.

Payne, R.J., Dise, N.B., Field, C.D., Dore, A.J., Caporn, S.J.M., Stevens, C.J., 2017. Nitrogen de-
position and plant biodiversity: past, present, and future. Front. Ecol. Environ. 15 (8),
431–436.

Pinho, P., Dias, T., Cruz, C., Tang, Y.S., Sutton, M.A., Martins-Loução, M.A., Máguas, C.,
Branquinho, C., 2011. Using lichen functional-diversity to assess the effects of atmo-
spheric ammonia in Mediterranean woodlands. J. Appl. Ecol. 48 (5), 1107–1116.
Pinho, P., Bergamini, A., Carvalho, P., Branquinho, C., Stofer, S., Scheidegger, C., Máguas, C.,
2012. Lichen functional groups as ecological indicators of the effects of land-use in
Mediterranean ecosystems. Ecol. Indic. 15, 36–42.

Pinho, P., Llop, E., Ribeiro, M.C., Cruz, C., Soares, A., Pereira, M.J., Branquinho, C., 2014. Tools
for determining critical levels of atmospheric ammonia under the influence of multi-
ple disturbances. Environ. Pollut. 188, 88–93.

Pinho, P., Barros, C., Augusto, S., Pereira, M.J., Máguas, C., Branquinho, C., 2017. Using ni-
trogen concentration and isotopic composition in lichens to spatially assess the rela-
tive contribution of atmospheric nitrogen sources in complex landscapes. Environ.
Pollut. 230, 632–638.

Pirintsos, S.A., Munzi, S., Loppi, S., Kotzabasis, K., 2009. Do polyamines alter the sensitivity
of lichens to nitrogen stress? Ecotoxicol. Environ. Saf. 72, 1331–1336.

Preston, T., Owens, N.J.P., 1983. Interfacing an automatic elemental analyser with an iso-
tope ratio mass spectrometer: the potential for fully automated total nitrogen and
nitrogen-15 analysis. Analyst 108, 971–977.

Ruoss, E., 1999. How agriculture affects lichen vegetation in Central Switzerland. Lichen-
ologist 31, 63–73.

Sheppard, L.J., Crossley, A., Leith, I.D., Hargreaves, K.J., Carfrae, J.A., van Dijk, N., Cape, J.N.,
Sleep, D., Fowler, D., Raven, J.A., 2004. An automated wet deposition system to com-
pare the effects of reduced and oxidised N on ombrotrophic bog species: practical
considerations. Water Air Soil Pollut. 4, 197–205.

Sheppard, L.J., Leith, I.D., Mizunuma, T., Cape, J.N., Crossley, A., Leeson, S., Sutton, M.A., van
Dijk, N., Fowler, D., 2011. Dry deposition of ammonia gas drives species change faster
than wet deposition of ammonium ions: evidence from a long-term field manipula-
tion. Glob. Chang. Biol. 17, 3589–3607.

Skinner, R.A., Ineson, P., Jones, H., Sleep, D., Leith, I.D., Sheppard, L.J., 2006. Heathland veg-
etation as a bio-monitor for nitrogen deposition and source attribution using δ15N
values. Atmos. Environ. 40, 498–507.

Steffen, W., Richardson, K., Rockström, J., Cornell, S.E., Fetzer, I., Bennett, E.M., Biggs, R.,
Carpenter, S.R., de Vries, W., de Wit, C.A., Folke, C., Gerten, D., Heinke, J., Mace, G.M.,
Persson, L.M., Ramanathan, V., Reyers, B., Sörlin, S., 2015. Planetary boundaries: guid-
ing human development on a changing planet. Science 347 (6223).

Stevens, C.J., David, T.I., Storkey, J., 2018. Atmospheric nitrogen deposition in terrestrial
ecosystems: its impact on plant communities and consequences across trophic levels.
Funct. Ecol. 32 (7), 1757–1769.

Suarez-Bertoa, R., Zardini, A.A., Astorga, C., 2014. Ammonia exhaust emissions from spark
ignition vehicles over the new European driving cycle. Atmos. Environ. 97, 43–53.

Sutton, M.A., Asman, W.A.H., Ellerman, T., van Jaarsveld, J.A., Acker, K., Aneja, V., Duyzer,
J.H., Horvath, L., Paramonov, S., Mitosinkova, M., Tang, Y.S., Achermann, B., Gauger,
T., Bartnicki, J., Neftel, A., Erisman, J.W., 2003. Establishing the link between ammonia
emission control and measurements of reduced nitrogen concentrations and deposi-
tion. Environ. Monit. Assess. 82 (2), 149–185.

Sutton, M., Reis, S., Riddick, S.N., Dragosits, U., Nemitz, E., Theobald, M.R., et al., 2013. To-
wards a climate-dependent paradigm of ammonia emission and deposition. Philos.
Trans. R. Soc. B 368, 20130166.

Tang, Y.S., Cape, J.N., Sutton, M.A., 2001. Development and types of passive samplers for
NH3 and NOx. Sci. World 1, 513–529.

Ti, C., Gao, B., Luo, Y., Wang, X., Wang, S., Yan, X., 2018. Isotopic characterization of NHx-N
in deposition and major emission sources. Biogeochemistry 138, 85–102.

Varela, Z., García-Seoane, R., Arróniz-Crespo, M., Carballeira, A., Fernández, J.A., Aboal, J.R.,
2016. Evaluation of the use of moss transplants (Pseudoscleropodium purum) for bio-
monitoring different forms of air pollutant nitrogen compounds. Environ. Pollut. 213,
841–849.

Wolseley, P.A., James, P.W., Theobald, M.R., Sutton, M.A., 2006. Detecting changes in epi-
phytic lichen communities at sites affected by atmospheric ammonia from agricul-
tural sources. Lichenologist 38 (2), 161–176.

http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0090
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0090
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0095
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0095
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0095
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0100
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0100
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0100
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0100
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0105
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0105
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0110
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0110
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0110
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0110
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0115
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0115
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0115
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0115
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0120
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0120
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0120
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0125
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0125
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0130
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0130
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0130
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0135
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0135
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0135
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0140
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0140
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0145
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0145
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0145
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0150
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0150
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0150
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0155
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0155
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0155
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0160
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0160
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0165
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0165
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0165
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0170
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0170
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0170
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0170
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0175
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0175
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0175
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0180
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0180
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0180
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0185
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0185
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0190
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0190
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0195
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0195
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0195
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0200
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0200
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0200
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0200
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0205
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0205
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0210
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0210
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0210
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0215
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0215
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0220
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0220
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0220
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0225
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0225
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0225
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0230
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0230
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0230
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0230
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0235
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0235
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0240
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0240
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0240
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0245
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0245
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0250
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0250
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0250
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0255
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0255
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0255
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0260
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0260
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0260
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0260
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0265
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0265
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0265
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0270
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0270
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0270
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0275
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0275
http://refhub.elsevier.com/S0048-9697(18)34356-0/rf0275

	δ15N of lichens reflects the isotopic signature of ammonia source
	1. Introduction
	2. Methods
	2.1. Nitrogen treatments
	2.2. Lichen material
	2.3. Stable isotopes and total N
	2.4. Chlorophyll a fluorescence
	2.5. Statistics

	3. Results and discussion
	3.1. Chlorophyll a fluorescence
	3.2. Dry deposition
	3.3. Wet deposition

	4. Conclusions
	Acknowledgments
	Appendix A. Supplementary data
	References




