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Abstract We use eddy covariance measurements over a semi-natural grassland in the cen-8

tral Indo-Gangetic Basin to investigate biases in the energy fluxes simulated by the Noah9

land-surface model (LSM) for two monsoon onset periods: one with rain (2016) and one10

completely dry (2017). In the preliminary run with default parameters, the offline Noah11

LSM overestimates the midday (1000 to 1400 local time) sensible heat flux (H) by 279%12

(in 2016) and 108% (in 2017) and underestimates the midday latent heat flux (LE) by 56%13

(in 2016) and 67% (in 2017). These discrepancies in simulated energy fluxes propagate to14

and are amplified in coupled Weather Research and Forecasting (WRF) model simulations,15

as seen from the High Asia Reanalysis (HAR) dataset. One-dimensional Noah simulations16

with modified site-specific vegetation parameters not only improve the partitioning of the17

energy fluxes (Bowen ratio of 0.90 in modified run versus 3.09 in the default run), but also18
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reduce the overestimation of the model-simulated soil and skin temperature. Thus, use of19

ambient site parameters in future studies is warranted to reduce uncertainties in short-term20

and long-term simulations over this region. Finally, we examine how biases in the model21

simulations can be attributed to lack of closure in the measured surface energy budget. The22

bias is smallest when the sensible heat flux post-closure method is used (5.2 W m-2 for H23

and 16 W m-2 for LE in 2016; 0.17 W m-2 for H and 2.8 W m-2 for LE in 2017). The24

study shows the importance of taking into account the surface energy imbalance at eddy25

covariance sites when evaluating LSMs.26

Keywords Eddy covariance · Energy balance closure · Land-surface model · Model27

evaluation · Surface energy balance28

1 Introduction29

The Earth is a complex system and its principal components, the atmosphere, the ocean, and30

the land, interact with each other on a wide range of spatial and temporal scales (Suni et al.31

2015). The impact of land-atmosphere interactions on climatic variabilities has received32

much attention in recent years (Seneviratne and Stöckli 2008). The land surface represents33

the lower boundary for the atmosphere and interacts with it through the exchange of energy,34

water, and a variety of chemical species (Entekhabi et al. 1999). Solar radiation warms the35

Earth’s surface, and the total available energy is primarily partitioned into sensible heat flux36

(henceforth, H), latent heat flux (henceforth, LE), and ground heat flux (henceforth, Gs),37

collectively representing the surface energy balance (Trenberth et al. 2009). Studies have38

shown that the heterogeneity of the Earth’s land surface makes the feedbacks between land39

use and the energy fluxes dynamic in space and time (Giorgi and Avissar 1997; Pielke 2001;40

Suni et al. 2015). Thus, forecasting both climate and weather requires proper incorporation41

of these feedbacks in model formulations.42

An increasing body of evidence demonstrates that land-surface models (LSMs) show43

large uncertainties when simulating the partitioning between the energy fluxes (Abramowitz44

et al. 2007; Jiménez et al. 2011; Haughton et al. 2016; Ukkola et al. 2016). Of particular45

note is the recent Protocol for the Analysis of Land Surface models (PALS) Land sUr-46

face Model Benchmarking Evaluation pRoject (PLUMBER) on the evaluation of 13 LSMs,47

which revealed that all LSMs were outperformed by simple, regression-based empirical48

models (Haughton et al. 2016). Another recent study found that LSMs systematically un-49

derestimate LE during drought conditions (Ukkola et al. 2016). In addition to the modelling50

uncertainties, the measured surface energy balance is almost never closed, with the sum of51

observed H, LE and Gs consistently showing a lower magnitude than the observed net ra-52

diation (Rnet) at the hourly and half-hourly time scale at the majority of measurement sites53

(Baldocchi et al. 2001; Wilson et al. 2002; Foken et al. 2010). This imbalance is either due to54

errors in measurement or a result of invalid assumptions (Twine et al. 2000). The measure-55

ment errors stem from instrumental limitations and difference in footprint of the sensors.56

For instance, while the footprint of measurement of the energy fluxes is variable, that of57

the net radiometer is much smaller and remains constant throughout the observation period.58

Similarly, the ground heat flux has a small footprint and is affected by the local heterogene-59

ity in soil conditions. However, these measurements errors are usually small and not enough60

to explain the residual of the surface energy budget (Foken 2008). Another reason for the61

imbalance is the lack of detection of energy storage by the eddy covariance method. The62

air and vegetation can store and release energy, which may account for part of the energy63
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imbalance. Leuning et al. (2012) showed that the high imbalance in the daytime energy bal-64

ance is due to a lack of consideration of the energy storage terms, and the closure fraction65

gets significantly reduced when daily averages are used instead of 30-min averages. During66

stable conditions or due to strong advection, the assumption of fully turbulent transport is67

not valid (Oncley et al. 2007), which could cause some of the energy imbalance. Lastly,68

mesoscale circulation caused by landscape heterogeneity can lead to the underestimation of69

the energy fluxes, which implies that a single eddy covariance tower and 30-min averaging70

periods are not enough to fully measure the fluxes (Stoy et al. 2013). Given the different71

possible reasons for this energy balance non-closure, the residual of the energy imbalance72

is attributed to either H, or LE, or both using different methods, commonly termed as post-73

closure methods (see Sect. 2.6) (Twine et al. 2000). This dual-uncertainty in measurements74

and model simulations further complicates the process of understanding land-atmosphere75

interactions.76

Since the surface fluxes represent the lower boundary conditions in global-circulation as77

well as regional-weather models (Pitman 2003), better representation of surface energy flux78

partitioning is essential to improve numerical weather prediction (NWP) and understand the79

significance of land-atmosphere interactions on changes in weather and climate. It is also80

becoming evident that slight variations in land-atmosphere interactions at the local scale81

can have important regional effects (Pitman 2003). Thus, before relying on regional weather82

models as accurate prognostic tools, it is imperative that the uncertainty in partitioning the83

surface fluxes by LSMs be reduced, as also suggested by Davin et al. (2016). It is difficult to84

evaluate LSMs at larger scales due to the lack of accurate, large-scale spatial data; there are85

also disparities between grid-averaged model results and point-scale observations. However,86

testing one-dimensional (1D) or point models at the local scale using networks of observing87

stations can minimize this scale mismatch and allow us to test the accuracy of representing88

physical and biological processes in these models.89

The Indo-Gangetic Basin, situated in the northern part of India, is one of the most pop-90

ulous river basins in the world (Sharma et al. 2010). A major portion of the economy of this91

region is driven by agriculture, which is particularly vulnerable to monsoonal rainfall vari-92

ability (Siderius et al. 2014). The flux of sensible heat from the warm land surface during93

pre-monsoon period (March to June) creates a low pressure region over the Indo-Gangetic94

Basin, inducing the flow of moist air from the Indian Ocean (Yamashima et al. 2015). As95

such, land-atmosphere interactions have a significant impact on the strength and variabil-96

ity of the South-Asian monsoon. A modelling study found that there is a strong coupling97

between large-scale monsoonal rainfall with soil moisture through H (Unnikrishnan et al.98

2017). Another study linked the post-1950s weakening in the South-Asian monsoon circu-99

lation to reduced evapotranspiration driven by large-scale deforestation in India (Paul et al.100

2016). Both of these studies used the Weather Research and Forecasting (WRF) model,101

which has been shown to have a dry bias over the Indo-Gangetic Basin (Tang et al. 2016).102

Several studies related to the Global Land-Atmosphere Coupling Experiment (GLACE) us-103

ing 12 general circulation models (GCMs) found that during the boreal summer, North India104

is one of the global hotspots for land-atmosphere coupling (Koster et al. 2004; 2006; Guo105

et al. 2006). The land-atmosphere coupling in this region also has local-scale implications.106

For instance, after the monsoon onset, the ratio of H to LE (the Bowen ratio, β ) affects107

the variability in cloud formation (Chakraborty et al. 2015). Another study suggested that108

the difference in LE between urban and rural locations may strongly modulate the inter-109

seasonality of the surface urban heat island of cities in this region (Chakraborty et al. 2017).110

Knowing how these interactions affect the Indo-Gangetic Basin at different scales, as well111

as deciding on proper mitigation measures for possible future scenarios, require better pre-112
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dictive capacity of climate and weather models. Therefore, it is important to quantify how113

well LSMs can simulate the energy fluxes, since their accuracy will strongly influence the114

uncertainty in coupled model simulations over this region.115

In the present study, eddy covariance measurements during the warmest part of the mon-116

soon onset period of two consecutive years (2016 and 2017), spanning around 12 days117

(each), in central Indo-Gangetic Basin (see Fig. 1) are used to evaluate the Noah LSM118

(Mitchell 2005). Noah is used as the default land-surface module for a host of WRF model119

studies performed in India (Mohan and Bhati 2011; Panda and Sharan 2012; Samala et al.120

2013; Vishnu and Francis 2014). However, there is a dearth of validation studies on Noah121

LSM for Indian conditions. Previous studies on evaluating Noah LSM in India have missed122

important variables that influence the surface energy balance, such as skin temperature and123

Rnet, in their analysis (Bhattacharya and Mandal 2015) or have not evaluated the model us-124

ing direct measurements of LE (Patil et al. 2014). Moreover, they have not investigated the125

influence of measurement uncertainties on such model evaluations.126

127

The major research questions addressed by this study are:128

1. What is the magnitude of the current biases in Noah simulations over the central Indo-129

Gangetic Basin?130

2. How do site-specific parameters improve model simulations?131

3. To what extent do post-closure methods alter model-data comparisons?132

133

Significant biases are seen in the modelled partitioning of energy fluxes over this re-134

gion during the study periods represented in the Global Land Data Assimilation System135

(GLDAS)/Noah dataset (Rodell et al. 2004) (Fig. S1). To investigate whether this is a prob-136

lem of scale, simulations are performed for the site using a 1D version of the model. Better137

representation of vegetation and land surface properties were incorporated into Noah to138

quantify the effect of site-specific parameters on surface energy partitioning. Comparison139

of the observed partitioning with the results of a coupled run confirms that the biases in the140

Noah LSM, run with default parametrization, is actually magnified in coupled model runs141

over this region. Finally, the effect of three commonly used post-closure methods to partition142

the residual energy on model evaluation is investigated.143

Site description and instrumentation, model run details, and data processing are de-144

scribed in Sect. 2, observations are shown in Sect. 3.1, the improvements in model simula-145

tions using site-specific land surface and vegetation parameters are discussed in Sect. 3.2.1,146

comparisons with coupled model results are presented in Sect. 3.2.2, and impact of post-147

closure methods are considered in detail in Sect. 3.2.3. Finally. the limitations and future148

scope of this study are discussed in Sects. 3.3 and 3.4, respectively.149

2 Methodology150

2.1 Site Description151

All in-situ observations are made from a 10-m tall tower in the centre of a semi-natural152

grassland (refer to Fig. 1) located in the western portion of the Indian Institute of Technol-153

ogy, Kanpur (IITK) campus (26◦30’32.72”N, 80◦13’25.72”E). The grassland has an average154

altitude of 132 m above sea level and an area of roughly 500 m × 500 m (25 hectares). This155

measurement site is a part of the Indo-UK Interaction of Convective Organisation with Mon-156

soon Precipitation, Atmosphere, Surface & Sea (INCOMPASS) project’s flux tower network157
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(Turner et al. 2015). The fetch around the tower is representative of the non-agricultural158

grasslands in the Indo-Gangetic Basin and is dominated by wild elephant grasses (variants159

of Pennisetum purpureum and Phragmites-Saccharum-Imperata), plus other less common160

grasses and some shrubs, with canopy height varying from 0.2 m during the dry season to161

approximately 2.8 m during late monsoon. During the two study periods, the canopy height162

varied from 0.25 to 0.3 m. The soil texture in the field is silt loam with about 80% silt,163

15% clay, and 5% fine sand (by weight). The soil type is Fluvisol (alluvium), with a pH of164

8.3, and has very little organic content, with 0.82% Carbon and 0.29% Nitrogen by weight.165

The groundwater table in Kanpur varies between 10 and 20 m below ground level depend-166

ing on season (Prasad et al. 2016), and there is surface water accumulation from irrigation167

overflow during December and July at the field site. Data collection is a challenge during168

pre-monsoon period, as intermittent wild fires disrupt continuous measurements (Sahu et al.169

2015). For the present study, data are used from 1 – 12 May for 2016 and from 17 – 28 April170

for 2017. A large fire event occurred at the end of March in 2016 and removed the majority171

of the biomass from the field site, though it quickly recovered following the fire.172

2.2 In-situ Measurements173

All major components of the surface energy balance, which is given by174

Rnet = H +LE +Gs, (1)

are measured at the study site.175

As mentioned earlier, H is the sensible heat flux, LE is the latent heat flux, and Gs is the176

ground heat flux at the surface. Rnet is the net radiation, which is given by177

Rnet = L ↓+S ↓ −L ↑ −S ↑ . (2)

Here, L ↓ is the downwelling longwave radiation, S ↓ is the downwelling shortwave radi-178

ation, L ↑ is the upwelling longwave radiation and S ↑ is the upwelling shortwave radiation.179

The eddy covariance tower has a Licor 7500 (LI7500) H2O/CO2 open-path gas anal-180

yser (LI-COR Biosciences, Logan Utah, USA) and a Gill Windmaster sonic anemometer-181

thermometer (Gill Instruments Ltd., Lymington, UK) to measure gas concentration and182

three-dimensional (3D) wind field at a frequency of 20 Hz. These sensors were mounted183

5.28 m above the ground, and the LI7500 had a northward separation of 0.08 m, an eastward184

separation of 0.03 m, and a vertical separation of 0.27 m. Ambient temperature and relative185

humidity are measured using a HMP155 temp/RH probe (Vaisala, Vantaa, Finland) mounted186

at 4.5 m above the surface. In addition, two HFP01SC heat flux plates (Hukesflux, Delft, The187

Netherlands), kept 0.03 m below the surface, and a 4-component net radiometer (Hukesflux,188

Delft, The Netherlands), mounted 4.7 m above the surface, provide measurements of the189

available energy (Rnet−Gs). Two sets of soil moisture/soil temperature measurements are190

made using digital time domain transmissometry (TDT) sensors (Acclima Inc., Meridian,191

Idaho, USA). The TDT sensors are at depths of 0.05 and 0.15 m below ground level and lo-192

cated underneath each heat flux plate. Wind speed and direction are measured at a height of193

10 m above ground level using a Gill Windsonic two-dimensional (2D) anemometer (Gill In-194

struments Ltd., Lymington, UK). In addition, a Mobotix S15 camera (Mobotix, Winnweiler,195

Germany) is used to get photographs of the cloud cover and vegetation cover four times196

a day. A tipping bucket rain gauge (Environmental measurements Ltd., Newcastle, UK)197

is used to measure precipitation. All data are logged using a Campbell Scientific CR3000198
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Micrologger (Campbell Scientific, Logan, UT, USA). Other than the eddy covariance mea-199

surements, all variables are scanned at 0.1 Hz and logged as one-minute means (sums for200

rainfall). Note that there were a couple of rainy days during the study period of 2016 and no201

rain during that of 2017.202

2.3 Data Processing203

For 2016, H and LE were computed with a missing sample allowance of 10% using the204

EddyPRO software after removing spikes and implausible values from the raw time series205

(Vickers and Mahrt 1997; Mauder et al. 2013). The sonic anemometer data were corrected206

using 2D coordinate rotation (Wilczak et al. 2001) and angle of attack correction (Nakai207

and Shimoyama 2012). Block averaging was used to compute the fluxes, followed by high-208

(Moncrieff et al. 1997) and low-frequency spectral attenuation correction (Moncrieff et al.209

2004). H was corrected for the influence of water vapour (Schotanus et al. 1983; Liu et al.210

2001), while LE was corrected for air density variations (Webb et al. 1980). Statistical out-211

liers were removed for both H and LE (Papale et al. 2006). In addition, absolute limits212

for all measured variables were defined to minimize instrumental errors and data were ig-213

nored when the signal strength of the LI7500 was below 80%. The CarboEurope flagging214

scheme described in Mauder and Foken (2011) was used to determine the best quality sur-215

face energy flux data. Finally, a fully-spatial analytical footprint analysis was performed at216

the thirty-minute time scale to assess the representativeness of the measured fluxes (Neftel217

et al. 2008).218

Due to data logger errors, raw data were not available for 2017. So, gap-filled data were219

used for the analyses (Reichstein et al. 2005). Because of the lack of high-frequency data, a220

similar footprint analysis could not be performed for the second year.221

Since ground heat flux is not measured at the surface, the heat stored above the heat flux222

plate was calculated using a numerical calorimetric approach (Liebethal et al. 2005). The223

soil heat storage, Ss, is given by224

Ss =
∆T s

∆ t
(ρsCs +qvρwCw)∆z. (3)

Here, ∆T s is the change in soil temperature in K (at 0.05 m) over a time interval ∆ t225

(30 min in this case), ρs is the bulk density of the dry soil in kg m-3, Cs is the specific heat226

capacity of the dry soil in J kg-1 K-1, qv is the measured volumetric moisture content at 0.05227

m in m3 m-3, ρw is the density of water in kg m-3, Cw is the specific heat capacity of water228

in J kg-1 K-1, and ∆z is the depth over which the heat storage is calculated (0.03 m in this229

case).230

The bulk dry density of the soil is 1525 kg m-3 based on field measurements, specific231

heat capacity of dry soil is assumed to be 840 J kg-1 K-1 since it has very little organic232

content (Hanks and Ashcroft 1980), and that of water is 4184 J kg-1 K-1.233

Gs is given by234

Gs = G+Ss, (4)

where G is the measured ground heat flux.235
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2.4 Noah LSM Description236

Originating from the Oregan State University (OSU) LSM, the Noah LSM has undergone237

a host of improvements and additions once it started being used by National Centers for238

Environmental Prediction (NCEP) in their general circulation model. The basic surface en-239

ergy balance equation in the model is (1). The Rnet values are calculated for each time step240

from the forcing values of S ↓ and L ↓, pre-defined albedo values, and L ↑ derived from skin241

temperature (T skin). T skin is calculated using a simple linearized formulation (Mahrt and Ek242

1984). The available energy is then partitioned into H and LE. H is determined by the bulk243

heat transfer formulation (Garratt 1993), Gs is estimated using Fourier’s law, and LE is ob-244

tained using Penman-derived potential evaporation formulation (Mahrt and Ek 1984). In the245

current version, the model has one canopy layer and four soil layers (Ek et al. 2003). More246

details about the model can be found in Chen et al. (2001).247

For the 1D model evaluation, the latest version (3.4.1) of the uncoupled Noah LSM was248

run offline from 28 April to 12 May for 2016 and from 17 to 28 April for 2017. The model249

takes air temperature, humidity, wind speed, wind direction, surface pressure, precipitation,250

S ↓, and L ↓ as forcing variables. All the data were available every 30 min, and the model251

output was also in 30-min intervals. Four soil layers of 0.1 m, 0.1 m, 0.3 m, and 0.6 m252

were used for the simulations. Assuming that the 0.05 m TDT measurements are for the253

first 0.1 m layer and the 0.15 m TDT measurements are for the second 0.1 m layer, the254

model was initialized using soil temperature and soil moisture measurements for those layers255

(henceforth, T s1, T s2, qv1, and qv2), while linear extrapolation was used for the third and256

fourth layers. Though soil temperature and soil moisture may not linearly change with depth,257

since the extrapolated values are very close to the field values, the initial conditions have258

very little effect on the simulated T s1, T s2, qv1, and qv2 after a couple of time steps. Since259

the LE data were missing for the first couple of days of the model run period in 2016, the260

data until 1 May 2016 were not used in the evaluation. T skin used to initialize the model261

was derived from L ↑ following the Stefan-Boltzmann law, assuming a constant emissivity262

of 0.95 (Niemelä et al. 2001).263

The first run (henceforth, NoahEX1) was made with the default parameters, with silt264

loam as the soil parameter and grassland as the vegetation parameter. Both of these choices265

were based on site conditions. Since NoahEX1 simulations showed large deviations from266

observations, to investigate the contributing factors, two more runs were performed (hence-267

forth, NoahEX2 and NoahEX3).268

For NoahEX2, the offline Noah model was constrained with observed values of radiative269

properties (albedo and emissivity) over the site. The default value of albedo was changed270

from 0.19 to 0.23 (lookup table: grassland) to the mean measured midday albedo value271

(0.165 for 2016 and 0.138 for 2017). Similarly, the surface emissivity was changed from272

0.92 to 0.96 (lookup table: grassland) to 0.95 (value used to derive the skin-temperature273

from L ↑).274

Since vegetation plays a major role in the moisture flux through transpiration, a third275

model run (NoahEX3) was performed after changing the vegetation properties. By default,276

the model has a very low vegetation cover for this period, with the fraction varying from 0.17277

to 0.27 from April to May. Though only qualitative estimates were available for vegetation278

cover, the terrain photographs show that the vegetation covered more than half the field. So,279

the vegetation cover was changed from 0.5 to 0.6 for this run. The leaf area index (LAI)280

for grassland in the model is varies from 0.52 to 2.10 by default. Since the grassland site281

is primarily covered by grass of 0.25 to 0.30 m height during the study periods, the LAI282

for this site may be different. An LAI-2000 plant canopy analyzer (LI-COR Biosciences,283
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Logan Utah, USA) was used to measure the LAI around the eddy covariance site during this284

period in 2017. The LAI was 3.91 for short grasses and 3.53 for very short grasses. Since285

the site was dominated by a combination of these during the study periods, for NoahEX3,286

the LAI parameter was constrained to 3.73-3.75 for 2016 and to 3.7 for 2017, which should287

be reasonably close to the field values.288

2.5 Criteria for Model Evaluation289

To evaluate the model, three statistical parameters were used: the coefficient of determina-290

tion (r2), the root-mean-square error (RMSE), and the mean bias deviation (MBD).291

292

The RMSE, which is a measure of the difference between the observed and predicted293

values, is given by294

RMSE =
√
(

∑
n
i=1(P−O)2

n
), (5)

where O is the observed value, P is the predicted value, and n is the number of data295

points.296

297

Since RMSE does not show whether the model over or underestimates the observed298

values, the MBD was also determined, given by299

MBD =
∑

n
i=1(P−O)

n
. (6)

Thus, a positive bias represents an over-prediction by the model, while a negative bias300

represents an under-prediction. All the data points available were used to evaluate Rnet, S ↑,301

L ↑, T s1, T s2, qv1, qv2, T skin, and Gs. To quality-assure the energy fluxes, only the data when302

70% contribution of energy fluxes are from within the field site were considered for model303

evaluation for 2016. By doing so, the assumptions of a 1D model are satisfied. Moreover,304

only the highest quality of energy flux data (quality flag 0) based on the CarboEurope flag-305

ging system (Mauder and Foken 2011) were used for the evaluation. Since the dataset for306

2017 did not include the raw data, there were not as many high quality data points and no307

footprint coverage. Thus, for 2017, the energy flux data with quality flags of 0 and 1 were308

used for the evaluation. It should be noted that the 2017 data were mainly used to verify309

whether the results we obtained for 2016 were consistent across two consecutive monsoon310

onset periods.311

2.6 Post-Closure Methods312

Where to assign the measured residual energy due to the non-closure is an important open313

question in this field (Foken 2008). One approach, known as the β post-closure approach, is314

to force closure by using the measured β (Twine et al. 2000). This assumes that the ratio of315

H and LE is same for the missing flux as the ratio detected by the eddy covariance system316

(Ruppert et al. 2006). However, this assumption may not be true. The contribution of large317

eddies, that cannot be detected for shorter averaging periods, may be dominated by LE or H.318

Another approach, called the LE post-closure approach, is to attribute the missing energy to319

LE (Falge et al. 2005). A previous study showed that by increasing the averaging period from320

30 min to 24 h to 5 days, the residual completely disappeared (Mauder and Foken 2006).321
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Moreover, the study found that the residual was primarily caused by H. This predominance322

of H in the energy balance residual has also been found in a recent study for 6 land use types323

(Charuchittipan et al. 2014). Based on this, a third approach, known as the H post-closure324

approach, assigns the missing energy to H (Ingwersen et al. 2011).325

A part of the difference between model simulations and observations could be due to326

the degree of closure achieved at the study site and the post-closure method employed (In-327

gwersen et al. 2015). In this study, all three approaches were used to investigate the impact328

of the post-closure approach on the model evaluation.329

3 Results and Discussion330

3.1 Observed Surface Energy Budget331

Figure 2 shows the time series of observed Rnet, H, LE, and G during the study periods332

in 2016 (Fig. 2a) and 2017 (Fig. 2b). Here, upwelling H and LE, and downwelling Rnet333

are considered positive, while downwelling H and LE, and upwelling Rnet are considered334

negative. G is positive when directed away from the surface (into the soil). All the times335

mentioned in the figures or text are local. Both years show similar patterns, with LE higher336

than H for the entire period. In 2016, the turbulent energy fluxes show comparable values337

on the 3rd, 4th, and 5th of May. There has not been a lot of work on the partitioning of the338

energy fluxes over India during the monsoon onset period. A previous study over a suburban339

eddy covariance station in Lucknow, situated in the northern part of the Indo-Gangetic Basin,340

found that maximum daytime LE (142 ± 84 W m-2) was slightly higher than H (130 ± 82341

W m-2) during pre-monsoon (Venkata Ramana et al. 2004). The study did not look at the342

energy balance closure (EBC) due to unavailability of Rnet and G measurements. Another343

study used the β energy balance method over an irrigated ecosystem in Eastern India and344

found that the magnitude of LE was three to four times that of H during pre-monsoon (Kar345

and Kumar 2007).346

For the next part of the study, Gs was calculated after accounting for the storage term,347

Ss. For 2016, during midday, mean Ss is -14.2 W m-2, which is about 22% of the magnitude348

of the measured G (midday mean of 63.6 W m-2). For midnight (2200 to 0200), mean Ss349

is 4.8 W m-2, approximately 36% of the magnitude of the measured G for the same time350

period (-13.4 W m-2). For 2017, the mean midday and midnight Ss are -7.8 W m-2 and 2.8351

W m-2, respectively. For this period, the storage accounts for 16% of the measured G during352

midday and and 43% of G during midnight. Figure 3a and 3b show the regressions between353

the available energy and the sum of the turbulent fluxes (H +LE) using 30-min averaged354

data for both years. The values during the day are in yellow, while those during the night355

are in violet. The slope of linear regression is 0.79 for 2016 and 0.77 for 2017, while the356

determination coefficient r2 is 0.96 for 2016 and 0.97 for 2017. When the regressions are357

performed using daily averaged data instead (refer to Fig. 3c and 3d), the slope of the linear358

regression increases to 0.85 for 2016 and 0.92 for 2017. This is due to the impact of the359

storage terms on the surface EBC. During the day, there is a large energy imbalance since a360

part of the residual energy is stored in the vegetation, the soil (which is taken into account361

here), and the canopy air underneath the sensors. During the night, this energy is released,362

leading to a H +LE greater than the available energy, as indicated by the violet points in363

Fig. 3a and 3b.364

Figure 4a is the mean diurnal cycle plot of observed H and LE, Gs, Rnet, the energy365

imbalance, and the footprint of measurements for 2016. The bounded lines represent the366
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standard deviation from the measured mean, hourly values. The mean Rnet reaches a max-367

imum value of 586.1 ± 128.2 W m-2 around local noon (1200). LE dominates during this368

period, with a maximum value of 286.3 ± 72.2 W m-2 at 1300. At the same time, H has a369

value of 119.7 ± 37.7 W m-2, making the β at this time approximately 0.42. The average370

GS from the two soil flux plates at 1300 is 88.5 ± 24.4 W m-2. The values for 2017 are very371

similar to 2016. The mean Rnet peaks at noon, with a value of 637.7± 64.2 W m-2. LE peaks372

at 1300 (322.7 ± 55.2 W m-2), and β is 0.43. GS at 1300 is 62.6 ± 3.8 W m-2.373

Figure 4a also shows the energy imbalance (Rnet−Gs−H − LE) at the measurement374

site for 2016. As also indicated by Fig. 3a, the energy imbalance is maximum during the375

day, especially around noon, with a maximum value of 114.0 ± 121.9 W m-2 at noon. The376

energy imbalance is negative during night-time, i.e., the extra energy stored during the day377

is released, causing the turbulent fluxes (H + LE) to be higher than the available energy.378

Overall, the mean residual during the 2016 study period is 28.6 ± 60.5 W m-2. For 2017,379

the residual flux is 135.6 ± 47.1 W m-2 at noon and has an overall mean of 19.0 W m-2. It380

should be noted that the variability in the fluxes are much lower in 2017 compared to the381

previous year. This is because of the lack of cloudy and rainy days during this study period.382

The diurnal variation of the footprint of energy flux measurements for 2016, as calcu-383

lated using the fully-spatial footprint analysis is also shown in Fig. 4a. On average, over384

90% of the turbulent fluxes originate from within the field during the day. At night, there385

is more contribution from outside the field. The minimum flux contribution from within the386

field site is seen at 0500 (65.5 ± 24.4%). Owing to a lack of raw data, a similar footprint387

could not be calculated for 2017.388

3.2 Site-specific Parameters and Post-closure Approaches to Improve Simulated Energy389

Partitioning390

The offline Noah LSM was run over the observation site for both years. To account for the391

energy imbalance in flux tower observations, the model was evaluated after correcting the392

observations using three commonly used post-closure approaches.393

The mean value of β from 1000 to 1400 is determined for each day of the study period394

for the initial observation, the model runs, and after forcing closure of the surface energy395

balance using only quality-assured data. Figure 5 shows the box plot of the midday β for the396

study periods for each case (Fig. 5a for 2016 and Fig. 5b for 2017). The observations show397

a mean midday β of 0.41 in 2016 and 0.52 in 2017. NoahEX1 and NoahEX2 yield β values398

of over 3 for both years, while NoahEX3 simulations of β are closer to the observations.399

Finally, the post-closure approaches also result in high variability of energy flux partitioning400

(from 0.26 for the LE post-closure method to around 1 for the H post-closure method for401

2016 and from 0.39 to 0.85 for 2017). This is partly because of the high residual energy402

during the midday. It should be noted that the H closure produces the closest value to the403

final model run (NoahEX3) for both years. The variability in β is much higher for 2016,404

especially with NoahEX1 and NoahEX2. This is because the model responds strongly to the405

forced precipitation, which is not a factor in 2017. The following subsections discuss the de-406

tails of the evaluation results, the possible reasons for the improvements, and its implications407

for land-surface modelling in the Indo-Gangetic Basin.408
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3.2.1 Offline Noah LSM Runs409

The diurnal variation of the modelled and observed components of the surface energy bal-410

ance are shown in Fig. 6. For H and LE, each subsequent run reduces the discrepancies411

between the simulations and the observations, which is also seen in the time series of the412

quality-assured observed data and simulated values (refer to Fig. S1 and S2). For Gs, Noa-413

hEX1 and NoahEX2 show higher diurnal variability, which is fixed in NoahEX3. Not much414

difference is seen in Rnet for the different Noah runs, and the values are close to observations415

in all cases. The simulations capture the time of the peak H quite well. For LE and Gs, the416

diurnal peak in the simulations is slightly before the peak in observations. NoahEX3 simula-417

tions underestimate the daytime Gs compared to NoahEX1 and NoahEX2, while improving418

the night-time simulations.419

The scatter plots of the measured and simulated surface energy balance components are420

shown in Fig. 7. NoahEX3 simulations are closest to the observations, as also seen from the421

time series (refer to Fig. S1 and S2). For H, the slope of the regression improves from 2 in422

NoahEX1 to 1.6 in NoahEX3 for 2016 and from 1.7 to 1.2 for 2017. For LE, the slope is423

0.36 in NoahEX1 and improves to 0.93 in NoahEX3 (improvement from 0.31 to 1 for 2017).424

For Gs, it changes from 1.1 to 0.65 in the final model run for 2016 and from 2 to 1.3 in 2017.425

For Rnet, all the model runs perform quite well, though there is an improvement of the slope426

of the regression from 0.92 to 0.99 for 2016 and from 0.88 to 0.99 for 2017. It should be427

noted that Fig. 7c and 7d indicate that Noah LSM does not provide negative LE. However,428

our observations show cases of negative LE at our site, probably due to condensation during429

dew fall.430

Table 1 shows the evaluation of Rnet, S ↑,L ↑, T s1, T s2, qv1, qv2, T skin, H, LE, and Gs for431

all the offline Noah model runs for 2016, while Table 1 shows the corresponding results for432

2017. The mean of the simulated values for each model run is also shown. The quality as-433

surance of the flux data based on footprint coverage, combined with the low canopy height,434

removes almost all of the night-time values for 2016. Using night-time data for validation435

of modelled energy fluxes can significantly reduce the RMSE and MBD (since H and LE436

are very small in magnitude during the night). This cannot provide a complete picture of the437

midday energy flux partitioning and the biases in the model. This issue is prevalent in many438

studies, with both daytime and night-time flux data being used for the error calculation (Patil439

et al. 2014). Employing this criterion in the 2016 dataset leads to the higher RMSE com-440

pared to previous studies. However, this approach provides better indication of the midday441

biases for Noah-simulated heat and moisture fluxes. Moreover, the use of simulated data442

corresponding to quality-assured measurements leads to higher mean values for H and LE443

due to the predominance of daytime values. In comparison to the 2016 case, the quality con-444

trol of the flux data did not involve screening for footprint coverage of the measured fluxes445

in 2017. Thus, the RMSE, the MBD, as well as the mean of the modelled fluxes are lower in446

2017, even though the peak daytime values are very similar for both the years (refer to Fig.447

4).448

For NoahEX1, the diurnal variation in Rnet is well captured by the model (r2=1) (refer449

to Fig. 6g and 6h). This is partly because the Rnet is forced by the measured S ↓ and L ↓.450

However, the model underestimates the Rnet (MBD = -20.8 W m-2 for 2016; -31.2 W m-2 for451

2017), due to an overestimation of both S ↑ (MBD = 11.8 W m-2 for 2016; 19.7 W m-2 for452

2017) and L ↑ (MBD = 7.6 W m-2 for 2016; 10.0 W m-2 for 2017). The model significantly453

over-predicts the soil temperature at both depths (MBD=4.0 K for T s1 and 3.0 K for T s2454

in 2016; 6.3 K for T s1 and 4.6 K for T s2 in 2017; p-value for two-sample t-test between455

observed and modelled values<0.001). T skin is also overestimated, though to a lesser extent456
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(RMSE=2.1 K for 2016; 2.8 K for 2017). The variation in T skin is better captured by the457

model (r2=0.98 and 0.96 for 2016 and 2017) compared to that of T s1 or T s2. The average458

magnitude of the soil moisture is well-predicted by the model (MBD=4.0% for qv1 and 2.3%459

for qv2 in 2016; 0.3% for qv1 and 3.5% for qv2 in 2017). However, the model cannot capture460

the variation of soil moisture well in most cases (r2=0.45 for qv1 and 0.41 for qv2 in 2016;461

0.17 for qv1 and 0.95 for qv2 in 2017).462

The simulated H is significantly higher than the measurements (MBD= 104.3 W m-2 for463

2016; 52.9 W m-2 for 2017; p-value for two-sample t-test between observed and modelled464

values<0.001), while LE is significantly lower (MBD=-89.07 W m-2 for 2016; -61.57 W465

m-2 for 2017; p-value for two-sample t-test between observed and modelled values<0.001).466

Gs shows a very low MBD (-5.00 W m-2 for 2016; -0.5 W m-2 for 2017) with a much higher467

RMSE (19.0 W m-2 for 2016; 34.5 W m-2 for 2017). This suggests that the diurnal variation468

of Gs is much more pronounced in the model, with both positive and negative deviations469

from the observed values, as seen in Fig. 6e and 6f. Overall, the model overestimates H (by470

279% in 2016 and by 108% in 2017) and underestimates LE (by 56% in 2016 and by 67%471

in 2017). For 2016, the midday β is 3.09; much higher than the observed midday β of 0.41.472

For 2017, the simulated midday β is 3.23 versus the lower observed β of 0.52.473

The evaluation of the NoahEX1-simulated variables confirm that there are still a number474

of notable issues with the model. This is in agreement with previous work on offline Noah475

model evaluations (Velde et al. 2009; Ingwersen et al. 2011). A study in Nebraska found476

that the model performed poorly during wet periods, with an enhanced diurnal range in477

soil temperature, overestimation of peak H by 57% and underestimation of LE by 50%478

due to the effect of sub-surface water (Radell and Rowe 2008). A study in the Tibetan479

plateau compared three default parametrizations in Noah model during a dry week and found480

similar results to the results presented here, i.e. the surface partitioning was biased towards H481

(MBD =50 W m-2) (Velde et al. 2009). In another study, simulations with constant minimum482

canopy resistance were compared to those with time varying minimum canopy resistance for483

a wheat field in Germany (Ingwersen et al. 2011). The study showed that the biases in the484

flux simulations depended on the stage of crop growth, with the model overestimating LE485

and underestimating H during the fruit-ripening stage and the opposite happening before the486

ripening period.487

Very few studies have been performed on the evaluation of the offline Noah model in488

India. An evaluation study at a semi-arid site in India found an overestimation of soil temper-489

ature by Noah during the Indian monsoon, with an underestimation during the pre-monsoon490

period (Patil et al. 2011). Another study compared Noah model simulated soil temperature491

to observations for dry and wet periods for four semi-arid sites of the LASPEX experiment.492

They found a similar overestimation, with the RMSE for the temperature of the top soil layer493

ranging between 1.8 and 4.8 K (Waghmare et al. 2012), while the RMSE for Rnet varied be-494

tween 36.6 and 76.6 W m-2. A recent study used 1 year of soil temperature data for two495

sub-tropical sites and also found that the soil temperature was consistently overestimated496

by the model for the first layer (RMSE=1.5 to 2 K)(Bhattacharya and Mandal 2015). All497

three studies found that the simulated soil temperature improve for the deeper layers, with498

RMSE reducing with depth, which is also seen in the present study. The energy fluxes have499

not been evaluated in depth for India. While two of the studies used measured H to evalu-500

ate Noah model, they did not have direct measurements of moisture flux. One study found501

a significant overestimation of H for a sub-tropical site, with RMSE greater than 100 for502

all periods (Patil et al. 2014). The other study, which was for the semi-arid site, found that503

Noah-simulated H was almost double the observed midday values for the wet period, with504

no observed data available for the dry period (Patil et al. 2011).505
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The bias in Rnet for 2016 is reduced from -20.8 W m-2 in the NoahEX1 to -9.7 W m-2 in506

NoahEX2 (refer to Table 1). Moreover, the regression is closer to the 1:1 line (refer to Fig.507

7g). This is primarily because the lower albedo increases the Rnet (from an overall mean of508

138.1 W m-2 to 149.2 W m-2) by reducing S ↑ (from 55.5 W m-2 to 41.6 W m-2). However,509

the increasing Rnet also increases T skin (from 306.9 K to 307.1 K), and thus L ↑ (from 498.0510

W m-2 to 501.6 W m-2), T s1 (from 306.1 K to 306.3 K), and T s2 (from 304.7 K to 304.9511

K). It also slightly reduces qv1 (from 16.1% to 16.0%) and qv2 (from 17.5% to 17.4%).512

The increased surface emissivity would reduce the Rnet and would have opposite effect on513

T skin, T s1, T s2, qv1, and qv2. However, the effect of the change in albedo dominates in this514

case. With the increase in available energy, T skin, T s1, and T s2, the difference between the515

forced air temperature and the modelled T skin increases, thus increasing the overestimation516

of H. On the contrary, the bias in LE decreases due to the higher LE in this simulation.517

The patterns seen in the 2017 simulations are similar, albeit showing different magnitudes518

of change.519

The use of site-specific vegetation parameters – in addition to realistic albedo and emis-520

sivity – in NoahEX3 significantly improves the results compared to NoahEX2. LE is pre-521

dicted well by the model (RMSE=47.1 W m-2 and MBD =1.0 W m-2 in 2016; 33.3 W m-2
522

and 2.8 W m-2 in 2017). The overestimation of H is also reduced (MBD=62.1 W m-2 in523

2016; 18.4 W m-2 in 2017), though the RMSE is still high. While Rnet now has a positive524

bias (MBD=2.1 W m-2 in 2016; 0.8 W m-2 in 2017), the RMSE and MBD are smaller than525

that for NoahEX1 and NoahEX2. The temperature values are also improved, with lower526

bias for T s1 (MBD=4.2 K in NoahEX2 versus MBD=2.0 K for NoahEX3 in 2016; 6.7 K527

in NoahEX2 versus 4.2 K for NoahEX3 in 2017), T s2 (MBD=3.2 K in NoahEX2 versus528

MBD=0.7 K for NoahEX3; 4.9 K in NoahEX2 versus 2.3 K for NoahEX3 in 2017) and529

T skin (MBD=2.0 K in NoahEX2 versus MBD=0.1 K for NoahEX3; 2.6 K in NoahEX2 ver-530

sus 0.3 K for NoahEX3 in 2017), possibly due to higher rates of evaporative cooling. The531

small overestimation of Rnet in this run is because of the lower S ↑ (MBD = -2.1 W m-2 in532

2016; -2.3 W m-2 in 2017) and L ↑ (MBD = -0.8 W m-2 in 2016; 1.0 W m-2 in 2017).533

3.2.2 Propagation of LSM Biases into Coupled Simulations534

In addition to the issues with the 1D version of the Noah model run with default configu-535

ration for this study (NoahEX1), we also find that the GLDAS dataset, in which the Noah536

model is forced at a global scale, shows similar severe underestimation of LE and overes-537

timation of H during this period (refer to Fig. S1). Running Noah model in an uncoupled538

mode cannot accurately predict how these biases will translate to errors in coupled modes.539

We expect that while coupled simulations will show the same patterns (overestimation of540

H and underestimation of LE when not using site-specific vegetation parameters), running541

LSMs in coupled versus uncoupled modes would have an impact on the magnitude of the542

simulated fluxes (and thus, the β ), as also seen by Nemunaitis-Berry et al. (2017) for Okla-543

homa city. To confirm this hypothesis, we compare our results with the High Asia Reanalysis544

(HAR) dataset (Maussion et al. 2014).545

The HAR dataset is based on WRF model runs over Asia at 30 km x 30 km resolution546

and uses Noah LSM as its land component. We use the data at the daily scale from 2010547

to 2014 for the grid encompassing our study area. Figure 8 shows the daily mean β from548

the HAR data, the observed data for the two study periods, and the corresponding NoahEX1549

runs for those periods. The NoahEX1 results for only those points that are also present in the550

observed dataset after quality control are used to calculate the daily means. As seen earlier551

in Fig. 5 for midday, the default uncoupled Noah model version significantly overestimates552
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the daily mean β , with values ranging from 2 to 4 compared to observed values of less than553

0.5. The first study period shows more variability in β due to the model’s high sensitivity to554

rain events. The HAR dataset shows even higher values than the uncoupled model output,555

with β ranging from 3 to 6. The HAR reanalysis is constrained using the Operational Model556

Global Tropospheric Analyses and is not a true regional-scale reanalysis. Thus, forcing the557

Noah model using 30-min observed data at the field-scale expectedly shows improvement in558

the simulation of the energy flux partitioning compared to the WRF-Noah modelled data in559

the HAR database. The combined analyses show that the biases in the Noah model extend560

far beyond uncoupled simulations and will impact the variables that are derived from the561

lower boundary conditions in coupled models.562

3.2.3 Impact of Post-closure Approaches563

In the first case, we force EBC based on the observed β for every 30-min interval. Since564

the 2017 data have a lot of night-time values, which lead to negative β , and absurd H and565

LE after forced closure, all the data points with β < 0.8 were removed for this period. On566

average, the β closure leads to the increase of the measured H (by 86.1% in 2016 and 76.0%567

in 2017) and measured LE (by 25.3% in 2016 and 55.5% in 2017). For the second case, the568

residual is assigned to LE, which increases the mean LE by 48.5% (in 2016) and 15.4%569

(in 2017) while H obviously remains unchanged. For the third case, the residual is assigned570

to H. This increases the mean H by 197.7% (in 2016) and 64.9% (in 2017), while LE571

obviously remains unchanged. It should be noted that the final mean percentage increases572

were calculated using only those times when data were available for both the measured573

fluxes and the corrected fluxes after forcing closure.574

Figure 9 shows the effect of the post-closure methods applied in the model evaluation.575

Decimal points are not shown for RMSE and MBD in the figure to conserve space. For576

H, both the RMSE and MBD decrease irrespective of the approach used. The improve-577

ment is most significant for the H post-closure approach. Since the discrepancy between578

the observed and NoahEX3-simulated variables is partly due to overestimation of H, as-579

signing the entire energy balance residual to H has the greatest impact on model evaluation580

(RMSE=71.7 W m-2 and MBD=5.2 W m-2 for 2016; 39.1 W m-2 and -0.1 W m-2 for 2017).581

For the LE post-closure method, there should be no improvement for H, since the H val-582

ues do not change. However, since the dataset is modified to remove the unrealistic values,583

the RMSE and MBD are slightly different. For the β approach, the improvement in MBD584

is minimal for 2016, but more significant for 2017. The highest r2 is also found for the H585

closure (r2=0.69 for 2016; 0.91 for 2017). For LE, the H post-closure method performs the586

best since the LE is not changed and Noah captures the magnitude and variation in LE after587

using site-specific vegetation parameters (RMSE=72.6 W m-2 and MBD=16.4 W m-2; 33.3588

W m-2 and 2.8 W m-2 for 2017).589

3.3 Limitations of the Study590

The NoahEX3 simulations may still lead to significant uncertainties. It is evident that the591

vegetation parameters have a major impact on the simulated LE. There was no site-specific592

measurements of stomatal resistance. Instead, the default values were used. Similarly, the593

vegetation cover derived from the MOBOTIX camera are only based on visual inspection.594

Higher stomatal resistance and lower vegetation cover would reduce the simulated LE and595

improve the correlation between simulated and observed values after post-closure. Since596



Biases in Model-Simulated Surface Energy Fluxes 15

the LAI variation was constrained in the model runs (being set to 3.73) compared to the597

measured range (3.53 to 3.91), a sensitivity study was performed for both years to quantify598

LAI effect on the energy flux simulations (refer to Table T1). LE increases and H decreases599

due to higher LAI, which is expected. Increasing or decreasing LAI by 0.2 changes the mean600

H by less than 1%. The highest change is seen for LE in 2017, with an increase of around601

3% due to an increase in LAI of 0.2. Thus, the uncertainty in specified LAI in the model runs602

has minimal impact on the simulated fluxes in this study.603

The re-evaluation of the NoahEX3 simulations using three different post-closure ap-604

proaches suggests that the approach can have a strong influence on the results of a model605

evaluation. While the H method provides the best match with the NoahEX3 simulations, it606

is important to note that it is unlikely that the residual energy only consists of sensible heat.607

There could be some contribution, though small, from LE (Mauder and Foken 2006). Thus,608

the diurnal variation of the heat flux is distorted by the artificial attribution of the residual609

energy to H. In summary, there are possibilities of misinterpretation in model evaluation610

studies when only one post-closure method is used, as also suggested by Ingwersen et al.611

2015.612

Though extending the averaging time for the EddyPRO processing can indicate how the613

missing energy is partitioned and improve the EBC, in this study, corrections are already614

made for the low-frequency co-spectral losses (Moncrieff et al. 2004). Moreover, a previ-615

ous modified ogive analysis showed that 30 min is still the optimum averaging time for616

measurements over low vegetation (Charuchittipan et al. 2014).617

Finally, forcing EBC at the 30-min time scale is not appropriate, since a complete EBC618

ignores heat storage (Leuning et al. 2012). While Gs is corrected for soil heat storage, heat619

storage in the biomass is ignored in the present study. Biomass storage depends strongly620

on the biomass content of the terrain, and has been shown to range from -50 to 50 W m-2
621

for temperate deciduous forests (Gu et al. 2007) and from -5 to 25 W m-2 for maize crop622

(Meyers and Hollinger 2004). By forcing the EBC, some bias is introduced into the model623

evaluation.624

In the present study, we selected two short periods ( 12 days each) with continuous me-625

teorological measurements during two consecutive years. The conditions prevalent during626

our study period and the site’s surface properties are representative of the monsoon onset627

conditions in the Indo-Gangetic Basin. Nonetheless, these results do not necessarily imply628

that the Noah model has similar high biases in other period of the year. It is also possible629

that the change in phenology affects these biases during the other periods of the year.630

3.4 Future Scope631

Given the dearth of studies on evaluating LSMs in India, especially those using a complete632

suite of observations, it is imperative that large scale experiments be performed using multi-633

ple eddy covariance sites to investigate biases in the land-surface modules of global climate634

and regional weather models. These studies will improve understanding of land-atmosphere635

interactions in this region and lead to more accurate prediction of local weather and climate.636

We show preliminary evidence that coupled simulations using default Noah model is637

heavily biased in this study region. The discrepancy in β simulation can affect both short-638

and medium-range weather forecasting. Moreover, it is important to examine whether these639

biases in modelled β may be contributing to the well-known problems that climate and640

numerical weather prediction models face when dealing with the South Asian summer mon-641

soon (Turner and Annamalai 2012; Saha et al. 2014; Roxy et al. 2015).642
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Our findings are applicable to all places where seasonality or absolute vegetation prop-643

erties are not accurately represented in the model’s default parameterizations. Given the644

impact of site-specific parameters on LSM performance, widespread in-situ measurements645

are necessary in this region. Many of these parameters, like albedo, vegetation fraction, LAI,646

emissivity, etc. can be derived from satellite measurements, though evaluation is necessary647

for different scales (Glenn et al. 2008; Li et al. 2015). Other parameters, like surface rough-648

ness and stomatal resistance, are more site-specific. The data gathered from these studies649

can be used to update the existing lookup tables in Noah model (and other LSMs) and lead650

to future model development more suited to the ambient conditions of the Indo-Gangetic651

Basin.652

4 Conclusions653

The present study shows that the Noah LSM performs poorly over a grassland site in central654

Indo-Gangetic Basin during the monsoon onset period. Significant differences are found655

between observed (midday β of 0.41 for 2016 and 0.52 for 2017) and modelled (midday β656

of 3.09 for 2016 and 3.23 for 2017) energy fluxes, with H being significantly overestimated657

and LE being underestimated. Moreover, T skin, T s1 and T s2 are all overestimated, while Rnet658

is underestimated. These biases are amplified in coupled model runs that use Noah LSM as659

a land-surface module.660

Running the model with modified land surface radiative properties slightly improves661

the Rnet and LE estimates, but worsens the simulated T s1, T s2, and T skin. The improvement662

in the prediction of almost all the variables when using site-specific vegetation parameters663

implies that these parameters, as defined in the model’s lookup table, are not representative664

of the Indo-Gangetic Basin.665

Forcing closure of the measured energy fluxes using three approaches, after accounting666

for heat storage in the soil, shows that part of the difference in model simulations and ob-667

servations can be explained by the difference in EBC between the model and observations.668

Overall, attributing all the residual energy to H shows the greatest improvement.669

In summary, significant biases are seen in Noah’s simulated turbulent fluxes at multi-670

ple scales in this region during the monsoon onset period. Since Noah model is a default671

land-surface module in many numerical weather prediction models, these biases can cause672

uncertainty in coupled model simulations. Further work is needed to better parameterize673

vegetation properties in land-surface models in this region.674
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Fig. 1
Map of study area with position of the eddy covariance flux tower, with relative position of
the study area within India in the inset. Image Courtesy: Google
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Fig. 2
Time series of observed surface energy budget terms during the a 2016 and b 2017 study
periods. The dates are in the format, mm-dd
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Fig. 3
Available energy (Rnet−Gs) versus sum of energy fluxes (H +LE) using 30-min averages
for a 2016 and b 2017 and daily averages for c 2016 and d 2017. The black dotted lines
represent the reference lines with slopes of unity and n is the sample size
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Fig. 4
Diurnal variation of measured H, LE, Rnet, Gs, and residual energy flux for a 2016 and b
2017. The fraction of measured fluxes from field site is also shown for 2016. The solid lines
represent the mean values, while the shaded areas represent the standard deviations
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Fig. 5
Box and whisker plots of midday (1000 to 1400) β from initial observations, uncoupled
Noah runs, and observations after forcing EBC for the study periods in a 2016 and b 2017.
The horizontal line indicates a β of 1 and µ represents the mean β for each category. The
vertical boxes span the interquartile range (25th to 75th percentile) with the dot showing the
median value, and the whiskers extending to the maximum and minimum observations. The
sample size is 94 for 2016 and 93 for 2017
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Fig. 6
Diurnal variation in offline Noah-simulated a H, c LE, e Gs, and g Rnet for 2016 and b H, d
LE, f Gs, and h Rnet for 2017 against site observations. The dots and error bars are for the
mean and standard deviation of observations, while the solid lines and shaded areas for the
mean and standard deviation of the simulated data
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Fig. 7
Regressions of offline Noah-simulated a H, c LE, e Gs, and g Rnet for 2016 and b H, d LE,
f Gs, and h Rnet for 2017 against site observations. The black dotted lines are the reference
line with slopes of unity and n is the sample size
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Fig. 8
Time series of daily mean β from observations, uncoupled Noah simulations, and coupled
WRF-Noah model simulations from HAR. For HAR, the solid lines represent the mean val-
ues of 2010 to 2014, while the shaded areas represent the standard deviations. The horizontal
line indicates a β of 1
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Fig. 9
Impact of three post-closure approaches on the evaluation of the Noah-simulated a H and c
LE for 2016, and b H and d LE for 2017. The black dotted lines are the reference lines with
slopes of unity and n is the sample size
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Table 1: Evaluation of offline Noah simulations for 2016

NoahEX1 NoahEX2 NoahEX3

Statistics
Variable Mean r2 RMSE MBD Mean r2 RMSE MBD Mean r2 RMSE MBD

Rnet (W m-2) 138.1 1.00 29.5 -20.8 149.2 1.00 12.7 -9.7 160.9 1.00 8.3 2.1
S ↑ (W m-2) 55.5 0.99 21.8 11.8 41.6 0.99 4.6 -2.14 41.6 0.99 4.6 -2.14
L ↑ (W m-2) 498.0 0.98 10.2 7.6 501.6 0.98 13.9 11.1 489.6 0.97 7.7 -0.8

T s1 (K) 306.1 0.86 4.4 4.0 306.3 0.86 4.6 4.2 304.2 0.87 2.3 2.0
T s2 (K) 304.7 0.79 3.0 3.0 304.9 0.79 3.2 3.2 302.4 0.67 0.9 0.7
qv1 (%) 16.1 0.45 4.8 4.0 16.0 0.44 4.7 3.9 14.3 0.12 3.2 2.2
qv2 (%) 17.5 0.41 2.6 2.3 17.4 0.40 2.6 2.3 14.0 0.03 1.4 -1.1

T skin (K) 306.9 0.98 2.1 1.8 307.1 0.98 2.4 2.0 305.2 0.97 1.2 0.1
H (W m-2) 148.4 0.88 134.4 104.3 163.8 0.88 154.4 119.7 106.2 0.89 85.3 62.1
LE (W m-2) 65.2 0.83 117.0 -89.1 67.2 0.83 114.9 -87.1 155.3 0.87 47.1 0.98
Gs (W m-2) -6.9 0.88 19.0 -5.0 -7.1 0.88 20.2 -4.8 -4.3 0.89 19.0 -7.6

Table 2: Evaluation of offline Noah simulations for 2017

NoahEX1 NoahEX2 NoahEX3

Statistics
Variable Mean r2 RMSE MBD Mean r2 RMSE MBD Mean r2 RMSE MBD

Rnet (W m-2) 129.1 1.00 44.4 -31.2 146.8 1.00 18.2 -13.6 161.2 1.00 7.8 0.8
S ↑ (W m-2) 58.1 0.99 34.1 19.7 36.0 0.99 4.8 -2.3 36.0 0.99 4.8 -2.3
L ↑ (W m-2) 498.2 0.96 13.8 1.0 504.0 0.96 19.5 15.7 489.3 0.98 7.0 1.0

T s1 (K) 306.0 0.81 7.0 6.3 306.4 0.81 7.4 6.7 303.9 0.87 4.6 4.2
T s2 (K) 304.0 0.71 4.8 4.61 304.3 0.71 5.0 4.9 301.7 0.59 2.4 2.3
qv1 (%) 15.5 0.17 0.4 0.3 15.4 0.58 0.3 0.1 14.8 0.97 0.65 -0.48
qv2 (%) 21.5 0.95 4.0 3.5 21.5 0.95 4.0 3.5 17.4 0.91 1.0 -0.5

T skin (K) 307.1 0.96 2.8 2.2 307.5 0.96 3.2 2.6 305.2 0.98 1.2 0.3
H (W m-2) 81.4 0.86 86.4 52.9 98.0 0.86 111.1 68.4 47.0 0.89 40.3 18.4
LE (W m-2) 32.6 0.92 105.8 -61.6 34.0 0.92 103.6 -60.1 97.0 0.93 33.3 2.8
Gs (W m-2) -11.2 0.89 34.5 -0.5 -11.7 0.88 37.2 0.0 -6.9 0.91 13.5 -4.9
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