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Abstract:
The navigational drift for Autonomous Underwater Vehicles (AUVs) operating in open ocean
can be bounded by regular surfacing. However, this is not an option when operating under
ice. To operate effectively under ice requires an on-board navigation solution that does not
rely on external infrastructure. Moreover, some under-ice missions require long-endurance
capabilities, extending the operating time of the AUVs from hours to days, or even weeks
and months. This paper proposes a particle filter based terrain-aided navigation algorithm
specifically designed to be implementable in real-time on the low-powered Autosub Long Range
1500 (ALR1500) vehicle to perform long-range missions, namely crossing the Artic Ocean.
The filter performance is analysed using numerical simulations with respect to various key
factors, e.g. of the sea-floor morphology, bathymetric update rate, map noise, etc. Despite very
noisy on-board measurements, the simulation results demonstrate that the filter is able to keep
the estimation error within the mission requirements, whereas estimates using dead-reckoning
techniques experience unbounded error growth. We conclude that terrain-aided navigation has
the potential to prolong underwater missions to a range of thousands of kilometres, provided
the vehicle crosses areas with sufficient terrain variability and the model includes adequate
representation of environmental conditions and motion disturbances.
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1. INTRODUCTION

As the operation time of under-ice AUV missions increases,
the ability to accurately navigate becomes progressively
more challenging. Ultra-endurance platforms, such as the
ALR1500 (Roper et al. (2017)), which are being developed
for performing prolonged operations, can be effectively
used under the ice. However, the rapid growth on po-
sitioning error and the lack of opportunities for surfac-
ing and obtaining a GPS fix would restrict the range of
such platforms. To exploit the long-endurance capabili-
ties requires fit-for-purpose navigation. Although inertial
navigation provides sufficient short term accuracy, the
performance degrades over time due to sensor errors. To
bound the navigation error, approaches include using Long
Baseline (LBL), deploying static beacons in the area of
interest, or Network LBL (Munafò and Ferri (2017)) where
the presence of an underwater sensor network is used to
support localisation. If the AUV can be followed at all
times, an alternative method relies on using a Ultra-Short
Baseline (USBL) mounted on an unmanned surface vehicle
(Salavasidis et al. (2016)). A review of relevant background
literature is given in Paull et al. (2014). However, in case of
polar operations, the thick ice cover prevents surface-based
assistance. AUVs operating under ice must entirely rely on
on-board sensors and estimation techniques. One possible
way to face this challenge is using terrain information

(Teixeira et al. (2017)). Given a bathymetric reference
map, Terrain-Aided Navigation (TAN) techniques exploit
identifiable natural features of the seabed to estimate the
vehicle position within this map. Various methods have
been reported in the literature to address the TAN esti-
mation problem (Melo and Matos (2017)). One interesting
example is reported in (Nygren and Jansson (2004)), where
a method for terrain-referencing navigation using a multi-
beam sonar is proposed. An essential step in this method
is to establish that, given dense sonar measurements, the
likelihood function is approximately Gaussian and hence
the sonar measurements can be fused using a Kalman
Filter (KF). When the conditions for using a KF do not
hold (even approximately), Particle Filters (PFs) can be
effective alternatives (Arulampalam et al. (2002)). One
additional constraint for long-endurance missions is that
typically the vehicles do not have a large payload capac-
ity, and have limited available computing power (Phillips
et al. (2017)). In the case of PFs, this requires a trade-off
between the number of parameters to be estimated and
computational requirements. The PF complexity problem
has seen some research effort by (Teixeira et al. (2017))
using the Marginalized Particle Filter (MPF).

When it comes to Arctic navigation, ice thickness and
underwater ice topology might be used as an additional
source of information. However, the ice movement makes



this approach very difficult in practise. AUV navigation
in Arctic latitudes is even more challenging because of
the combined effect of multiple factors: a) limited on-
board processing power, b) inability to surface, c) the
effect of high latitudes on heading sensors, and d) water
currents, which are likely to have the largest impact on the
estimation error. This is especially true when the AUV
operates mid-water column and/or is not equipped with
Doppler-based speed over ground sensors. Consequently
the vast majority of the reported AUV missions in the
Arctic have been short-term, i.e. lasting from few hours to
couple of days. Examples include those reported in Jakuba
et al. (2008); Kaminski et al. (2010), where expensive on-
board sensors and acoustic-based support systems, which
are costly and complex to deploy, are used.

The aim of this paper is to understand the challenges
that an AUV will face when operating for months in the
Arctic Ocean and to investigate the potential of the TAN
to tackle these challenges. To satisfy energy constraints
during such a mission, the vehicle is equipped with a
limited sensor suite. A low-complexity particle filter is
then developed to fuse bathymetric measurements, given
a sparse reference map. This is different from the major-
ity of existing research, where high quality sensors and
maps are considered. The filter performance is analysed
under several environmental condition and with respect
to various filter parameters. Simulation results show that
the TAN performs significantly more accurately if the
AUV is guided over an informative terrain. Therefore, our
analysis reveals the importance of proper environmental
characterisation before utilising TAN solutions during such
long missions.

2. PROBLEM FORMULATION

2.1 ALR1500 & Navigation Sensor Suite

The ALR1500 is a long-endurance 1500m depth rated
propeller-driven vehicle developed to accommodate the
requirements of the Arctic crossing challenge, having a
range in excess of 5000km (Roper et al. (2017)). Such
long-endurance is enabled by ensuring low hotel load
and slow travel speed (0.35 − 1m/s). Given the mission
power restrictions, the AUV is equipped with: a Sea-Bird
SBE 52-MP Conductivity, Temperature and Depth (CTD)
probe, a sensor for deriving the operating depth from the
measured hydrostatic pressure; a bespoke low-frequency
4000m range single-beam echo-sounder; and the OCTANS
north-seeking Fiber-Optic Gyrocompass (FOG), the only
energy expensive sensor, for finding the true north. Al-
though the vehicle is also equipped with an Acoustic
Doppler Current Profiler (ADCP), previous field opera-
tions have shown that the ADCP might give poor water-
relative speed estimates, particularly at depths greater
than 1000m, due to a sporadic lack of biological matter to
provide back-scatter in clear oceanic water. To avoid poor
water-speed estimates and reduce power consumption, the
AUV water speed is computed using the propeller RPM
calibrated against bottom-relative speed in deep ocean.

Given this sensor suite, there are two main navigation error
sources: a) the uncompensated speed for water currents,
and b) gyrocompass errors in high latitudes. The heading

error depends mainly on the secant of the latitude and
the uncertainty in latitude. According to gyrocompass
manufactures and the sensor data-sheet (iXblue (2018)), a
rough, but pessimistic, estimate of the gyrocompass Root
Mean Squared Error (RMSE) is 2◦, if the AUV does not
exceed 87◦ of latitude.

2.2 Motion Model

In this paper, localisation is the task of determining the
vehicle position. The AUV depth is measured with high
update rate from the CTD probe. Given the operating
depth and the AUV velocity (compensated for pitch and
roll), it can be assumed that the vehicle is levelled hor-
izontally and stabilized in roll and pitch. Given this, the
AUV motion model is assumed to be a 2D discrete Markov
process:

xk = xk−1 + ∆t ·R(ψk) · uk︸ ︷︷ ︸
∆xk

+mk
(1)

where xk = [xNk , x
E
k ]T is the horizontal vehicle position

at time k, expressed in a local North-East (NE) refer-
ence frame and mk is the process noise, which follows
N (0,Σm). The ∆x = [∆xN ,∆xE ]T represents the vehicle
horizontal displacement in NE. To calculate the ∆x, the
horizontally-levelled AUV body-frame velocity vector u =
[uf , us]T (containing the forward and starboard speed) is
rotated via the rotation matrix R (parametrized only by
yaw ψk) to the local NE frame and scaled by the sampling
time, ∆t=1 second.

By getting the expected value of the process model, the
AUV can maintain an estimate of its position by Dead-
Reckoning (DR). Deep and long-range operations in the
Southern Ocean (DynOPO cruise, April 2017) revealed
that the DR error for the ALR family of vehicles is of the
order of 1% of distance travelled when the AUV operates
in bottom-tracking range and is otherwise proportional to
the water currents.

2.3 Bathymetric Map and Water Depth Measurement

Typically, before a conventional AUV deployment, the
operating area is surveyed and a ship-based bathymetric
map is constructed. However, this is not possible in remote,
ice covered, areas. The reference map used in this research
is obtained from the International Bathymetric Chart
of the Arctic Ocean (IBCAO) project (Jakobsson et al.
(2012)). This project has created a database of all available
bathymetric data north of 64◦N. Constant improvements
have led to a grid of 500m resolution. However, only 11% of
the Arctic has been covered by multi-beam surveys. This
lack of data inevitably causes uncertainty in water-depth
estimates. To take into consideration the map uncertainty,
it is assumed that the map is affected by N (0, σ2

map) noise,
and the depth of an arbitrary location is calculated via
bilinear interpolation.

The ALR1500 is equipped with a single-beam echo-
sounder to measure the vehicle altitude, rk. If rk is added
to the vehicle depth dk, the water-depth measurement zk
is obtained. To account for the zk noise, a noise model
N (0, σ2

v) with intensity that varies with altitude and depth
is assumed:

σ2
v =

(
0.25 + (0.0115 · rk)2

)
+ (5 · 10−4 · dk)2 (2)



where the first term corresponds to the echo-sounder
uncertainty (similarly to Claus and Bachmayer (2015)).
This term is derived from the 2-σ bound of the maxi-
mum acceptable vertical error in sounding sensors for deep
bathymetric measurements, according to the S44 Interna-
tional Hydrographic Organization (IHO).The second term
corresponds to the depth sensor uncertainty, using the 2-σ
bound of the assumed 0.1% maximum error of the mea-
sured depth. Given these assumptions, the measurement
function is:

zk = h(xk) + ωk (3)

where h(·) is the non-linear function that relates the refer-
ence map at position xk to the water-depth measurement
zk. The additive error term ωk ∼ N (0, σ2

ω) is formed
as the sum of independent map and measurement noise
intensities (σ2

ω = σ2
map + σ2

v). Therefore, the likelihood

function is defined as p(zk|xk) = p(zk − h
(
xk)

)
= p(ωk).

3. BAYESIAN ESTIMATION

This section outlines the basics behind Bayesian estima-
tion and PFs. For a detailed treatment in a general setting
see e.g. Arulampalam et al. (2002) and references therein.

Using the Markov property of the process model (1), Bayes
Filters (BF) determine recursively the posterior probabil-
ity density over the state conditioned on all the available
information p(xk|z1:k). When an analytical solution of the
BF is not possible, approximate methods can be used. Such
method is the Sampling Importance Resampling (SIR)
filter, which is used in this paper.

3.1 Sampling Importance Resampling Filter

Let N represent the number of particles and xi
k be

the i-th particle with associated weight wi
k at time-step

k. To successfully track the vehicle, particles must be
drawn from the probability density of the current state,
also termed a target density. However, such density is
not available to be sampled. Instead, the importance
sampling principle permits samples to be drawn from an
approximation of the target density, called importance (or
proposal) density. If arbitrary samples xi

k are drawn from
the appropriately chosen importance density q(xk|z1:k)
and the target density p(xk|z1:k) can be evaluated point-
wise, then the posterior density can be approximated as:

p(xk|z1:k) ≈
N∑
i=1

wi
kδ(xk − xi

k) (4)

where δ is the impulse function and wi
k the normalized

importance weight of the i−th particle given by (5).

wi
k ∝

p(xi
k|z1:k)

q(xi
k|z1:k)

∝ wi
k−1

p(zk|xi
k)p(xi

k|xi
k−1)

q(xi
k|xi

k−1, zk)
(5)

One possible selection for the importance density is the
prior density q(xk|xk−1, zk) = p(xk|xk−1). In this case,
particles are weighted using only the likelihood density:
wi

k ∝ wi
k−1p(zk|xi

k). A common problem of this algorithm
is the so-called sample impoverishment or degeneracy
(Arulampalam et al. (2002)). To mitigate the degeneracy
effect, the resampling step has been introduced. When
resampling is performed at every time-step, the weights are
given by wi

k ∝ p(zk|xi
k) and the SIR algorithm is formed.

Algorithm 1 shows a pseudocode of the SIR algorithm.
The algorithm receives as input the particles from the

Algorithm 1 Sampling Importance Resampling

[{xi
k}Ni=1, x̂k, Pk] ← SIR [{xi

k−1}Ni=1,∆xk, zk]
1: for i = 1 → N do
2: mi

k ∼ N (0,Σm) . Process Noise Sample
3: xi

k ← xi
k−1 + ∆xk + mk . Particle Propagation

4: wi
k ← p(zk|xi

k) . Particle Weight

5: wi
k ←

wi
k∑N

l=1
wl

k

, i = 1→ N . Weight Normalisation

6: x̂k ←
∑N

i=1 w
i
kx

i
k . Position Estimate

7: Pk ←
∑N

i=1 w
i
k(xi

k − x̂k)(xi
k − x̂k)T . Covariance

8: [{xi
k}Ni=1}] ← Resampling [{xi

k, w
i
k}Ni=1}]

preceding iteration, the AUV displacement ∆xk, and the
observation zk. Outputs of the algorithm are the posterior
particles and the filter point estimates {x̂k, Pk}. Particles
are propagated using the process model (1) in step 3. Then,
step 4 assigns weights to the particles using the likelihood
function. On completion of these steps, the algorithm
normalises the weights and calculates the point estimates
for this iteration (steps 5-7). Step 8 performs the so-called
Systematic Resampling (see Arulampalam et al. (2002)
and references therein).

4. SIMULATION SET UP

The TAN algorithm is implemented and evaluated with
respect to environmental characteristics and filter pa-
rameters. It is assumed that the AUV crosses the Arc-
tic Ocean from Svalbard to the Barrow coast in Alaska
(> 3000km), which is a science-driven aspirational use-
case, along two morphologically different trajectories, see
Fig. 1. The westerly trajectory (black waypoints) defines
a less informative path, since the Canada Basin (CB) is
a deep and relatively flat oceanic basin. By re-arranging
these waypoints to avoid the CB, the eastern path (white
waypoints) is formed. Note that both trajectories avoid
critical latitudes (red circle centred at 90◦ of latitude)
where the gyrocompass has a large error. At the beginning
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Fig. 1. (a) Bathymetric map with a set of mission way-
points. (b) Bathymetric gradient map. Large errors
of gyrocompass - read circle region.

of each run, the AUV is launched near Svalbard. Exper-
iments assume constant 1m/s forward speed and 1500m
operating depth, unless the water is shallower and the
AUV switches to a fixed (100m) altitude following mode.



Table 1. Parameters Under Consideration

Number of particles, N
250, 500, 1000, 2000
5000, 7500, 10000

Process noise intensity σm,
Σm = diag(σ2

m, σ
2
m)

0.1, 0.25, 0.5, 0.75, 1, 1.25
1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 7 [m]

Bathymetric update rate 10′, 30′, 1h, 2h, 3h, 4h, 5h, 10h

Map vertical noise, σmap
10, 25, 50, 75, 100

125, 150, 175, 200 [m]

Water Current −0.4N, 0.4E [m/s]

While the AUV is guided between the waypoints, position
estimates are computed using both the SIR algorithm and
dead-reckoning (see section 2.2).

To introduce a localisation drift, an unobserved bias term
of equal magnitude in north and east direction is assumed
to affect the motion model (1). This disturbance simulates
the combined effect of unobserved water currents and
the gyrocompass error at polar latitudes. Arctic Ocean
models show that the expected water current drift is lower
than 0.05m/s on average, while peaks are of the order
of 0.15 − 0.2m/s and mostly present along the eastern
coastline (Madec (2008)). It is assumed for the simulation
that the vehicle drifts on average by 0.2m/s in both north
and east direction throughout the entire mission. This
assumption causes a significantly higher drift, compared to
the expected water current drift. Moreover, to incorporate
potential gyrocompass errors, the water current magnitude
is further increased to 0.4m/s. This extra error is approxi-
mately equivalent to a 8◦ bias heading error (significantly
higher to the expected gyrocompass error) and it allows
to exercise the filter efficiency, although DR errors will be
significantly over-estimated.

For the TAN, the ICBAO grid map is considered as the
baseline water-depth and measurements are assumed to
be affected by the measurement error model N (0, σ2

v).
To realistically estimate the measurement noise, the noise
intensity is calculated based on the noise-corrupted mea-
surements. Since the determination of vertical error in
the reference map is a challenging task (Jakobsson et al.
(2002)), the algorithm is tested over a wide range of map
noise intensities, σmap. Table 1 lists the examined values of
all parameters affecting the TAN performance (discussion
is provided in the result section).

5. SIMULATION RESULTS

This section analyses the performance of the TAN algo-
rithm with respect to terrain morphology and the pa-
rameters shown in Table 1. The effect of each parameter
is demonstrated though M=25 Monte Carlo (MC) runs,
while the remaining parameters assumed constant and
defined based on power constraints. Note, the intention
is not to find the optimal parameter set-up but rather to
show the importance in understanding the environmental
and filter characteristics for developing a real-time system.
The filter performance is examined in terms of RMSE
accuracy and estimation repeatability among the MC runs.
For illustration, the average RMSE and the minimum-
maximum error bounds of the MC runs are plotted. Due
to the mission complexity, high accuracy localisation is
not to be expected and an error bounded within 100km is
considered acceptable. This error bound allows the AUV

to surface in a safe open water area of the coast of Barrow
for recovery, fulfilling the mission objectives.

The filter is first tested with respect to the process noise
intensity. Throughout this experiment, the number of par-
ticles is N=5000, which is a sufficiently large number to
address the 2D estimation problem (Claus and Bachmayer
(2015)) and is feasible considering the ALR1500 processor.
These particles are always initialised at the beginning of
experiments, whilst the vehicle is on the surface, following
a normal distribution with mean the GPS position esti-
mate and σGPS=5m in each direction. In terms of the
bathymetric update rate and the noise in the reference
map, a reasonably low frequency scheme (1h) is selected
and a high vertical map error is introduced (σmap=100m).

The primary role of the process noise is to capture un-
modelled system dynamics and sensor errors. Given the
process model (1) assumes only random errors, whereas
in simulation the vehicle is affected by systematic errors,
the assumed zero-mean Gaussian noise model does not
hold. Therefore, if the noise intensity is not large enough,
the filter is likely to under-estimate the position drift
very quickly. This becomes even more severe when the
vehicle crosses low informative terrain and TAN position
updates are less effective. Recalling also the PF derivation
(Section 3), the process noise intensity parametrizes the
proposal density, which essentially defines the area where
the particles are to be sampled. Therefore, the intensity
of the process noise must take into account unmodelled
vehicle dynamics and to provide a sufficient, but not too
large, particle spread. Avoiding an unnecessarily large
process noise intensity is important for mainly two rea-
sons: a) the number of particles might be insufficient to
represent the probability distribution over the state, and
b) in the presence of terrain similarities the filter may
become trapped in local minima. This is verified by the
results presented in Fig 2. A low noise intensity, σm ∈
[0.1m−0.5m], underestimates the positioning drift and also
causes the so-called particle collapse (Arulampalam et al.
(2002)), while high noise intensity (σm ∈ [6m−7m]) leads
the filter to sometimes stick in local minima and hence in
large estimation errors. However, as Fig. 2 also shows, it
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is possible to tune the filter (σm ∈ [1m−3m]) so that the
position drift is not underestimated and the filter does not
get trapped in local minima. For the subsequent analysis,
σm=1.5m is selected, although any process noise intensity
within the 1m−3m range can be selected. The effect of
the terrain morphology on the filter performance is also



visible. For σm=1.5m, the average RMSE is 29km when
avoiding the CB and 163km when crossing the CB.

Figure 3 shows the effect of the number of particles on the
filter performance. As the number of particles increases,
experiments that avoid the CB show that the filter pro-
vides higher estimation accuracy and repeatability (shown
by shorter error bounds among the MC runs). Once all MC
runs are convergent, the filter is saturated (in terms of the
number of particles) and beyond this point the number of
particles does not significantly affect the filter accuracy. In
contrast, experiments across the CB show that an increase
in the number of particles does not result in an increase in
filter performance. This demonstrates that, given a reason-
able number of particles, the terrain morphology drives the
estimation accuracy. Although N=2000 appears sufficient
for both trajectories, N=5000 is selected for the subsequent
analysis to assure that the number of particles is sufficient
to cover the state space when considering more extreme
scenarios (lower bathymetric update rate and higher errors
in the map).
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Figure 4 shows the estimation accuracy and repeatability
in terms of the vertical map noise intensity. The increase
in the noise intensity results in a reduction in both accu-
racy and repeatability for both trajectories. However, the
navigation error is considered acceptable even in the ex-
treme condition of σmap=200m, when the AUV avoids the
CB. Practically, having such large noise in the reference
map means that the algorithm relies on extreme terrain
variations and massive features.
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The effect of the sampling frequency is shown in Fig. 5.
For these experiments, σmap=100m is selected since this
level of noise already heavily distorts the baseline map. As
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the update time increases, the estimation accuracy and
repeatability drop for both trajectories. Although signif-
icant conservation in power can be achieved by using a
very low frequency scheme (e.g. 10h), the low estimation
repeatability shows that the filter is less robust and such a
low update rate might be risky (potentially leading to ve-
hicle loss under the ice). Given the ALR1500 specification,
an update rate of 1h does not cause power issues, whist
maintaining high accuracy and robustness.

Figure 6 compares the actual vehicle path with the TAN
(averaged over the MC runs) and DR estimates over the
two considered trajectories. The environmental and filter
related parameters are as defined before. For both trajec-
tories, TAN estimates are almost aligned with the actual
path before approaching the CB, while DR estimates drift
linearly over time due to the simulated motion distur-
bances. However, once the AUV enters the CB, the TAN
error increases because of low terrain-variation (see Fig. 6),
whereas the morphologically variable path (avoiding CB)
allows the filter to maintain the error below 20km for
almost the entire mission. As the location of the mission
end forces the AUV to eventually enter a small flat region
of the CB, TAN estimates inevitably experience an error
increase at this point. The instantaneous RMSE (averaged
over all MC runs) at the end of the mission is 91km when
not crossing the CB, while by crossing the entire CB is
173km. Given this extreme water currents applied, the
corresponding instantaneous DR error is above 1800km.

Figure 7 shows the estimation error with the respective 2-
σ confidence bounds in each direction over time. The filter
uncertainty is approximated as a normal and uncorrelated
distribution (although the posterior distribution is often
highly multi-modal). Note that the time-indexed RMSE
is almost always within the 2-σ confidence bounds by
avoiding the CB, whereas the filter underestimates the
positioning error once the vehicle enters the CB.

6. CONCLUSION AND FUTURE WORK

This paper developed and analysed under several condi-
tions the performance of a terrain-aided navigation algo-
rithm during a simulated crossing of the Arctic Ocean with
the ALR1500, an ultra-endurance AUV. Given a sparse
bathymetric map and computational power constraints, a
low dimension particle filter was used to fuse measure-
ments from a limited number of motion sensors and a
low-rated single-beam echo-sounder. The effect of various
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Red lines (solid for TAN and dashed for DR) cor-
respond to position estimates while the actual path
crosses the CB (black). (b) Estimation error for TAN
and DR over time and over the two trajectories. (c)
Bathymetric slope along the two trajectories.
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Fig. 7. TAN error in each direction over time and over
the two trajectories with the corresponding 2-σ con-
fidence bounds.

parameters on the filter performance was demonstrated
along two morphologically different trajectories. Results
showed that the algorithm was able to keep the estima-
tion error within an acceptable range, given a sufficiently
informative terrain. Future research will focus on three key
areas: a) PF robustness (escaping from local minima and
divergence detection) and comparisons between non-linear
estimators (e.g. Unscented Kalman filter and other PF
variants), b) development of a probabilistic bathymetric
map of the Arctic Ocean, and c) development of a path
planning algorithm for supporting the navigation system.
Moreover, to verify our assumptions and prepare for future
under-ice work, we have planned a two months deployment
in the Atlantic Ocean.

ACKNOWLEDGEMENTS

This work was supported in part by the ROBOCADEMY
(FP7 Marie Curie Programme ITN Grant Agreement
Number 608096) and the NERC Oceanids Programme.

REFERENCES

Arulampalam, M.S., Maskell, S., Gordon, N., and Clapp,
T. (2002). A tutorial on particle filters for on-

line nonlinear/non-Gaussian Bayesian tracking. IEEE
Transactions on signal processing, 50(2), 174–188.

Claus, B. and Bachmayer, R. (2015). Terrain-aided naviga-
tion for an underwater glider. Journal of Field Robotics,
32(7), 935–951.

iXblue (2018). OCTANS Fiber-Optic Gyrocompass.
https://www.ixblue.com/products/octans. Ac-
cessed: 2018-03-17.

Jakobsson, M., Calder, B., and Mayer, L. (2002). On
the effect of random errors in gridded bathymetric
compilations. Journal of Geophysical Research: Solid
Earth, 107(B12).

Jakobsson, M., Mayer, L., Coakley, B., Dowdeswell, J.A.,
Forbes, S., Fridman, B., Hodnesdal, H., Noormets, R.,
Pedersen, R., Rebesco, M., et al. (2012). The interna-
tional bathymetric chart of the Arctic Ocean (IBCAO)
version 3.0. Geophysical Research Letters, 39(12).

Jakuba, M.V., Roman, C.N., Singh, H., Murphy, C.,
Kunz, C., Willis, C., Sato, T., and Sohn, R.A. (2008).
Long-baseline acoustic navigation for under-ice au-
tonomous underwater vehicle operations. Journal of
Field Robotics, 25(11-12), 861–879.

Kaminski, C., Crees, T., Ferguson, J., Forrest, A.,
Williams, J., Hopkin, D., and Heard, G. (2010). 12 days
under ice–an historic AUV deployment in the Cana-
dian High Arctic. In Autonomous Underwater Vehicles
(AUV), 2010 IEEE/OES, 1–11. IEEE.

Madec, G. (2008). NEMO ocean engine. Note du Pole
de modelisation, Institut Pierre-Simon Laplace (IPSL),
France, 27, 1288–1619.

Melo, J. and Matos, A. (2017). Survey on advances on
terrain based navigation for autonomous underwater
vehicles. Ocean Engineering, 139, 250–264.
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