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Abstract

Local‐scale microclimatic conditions in forest understoreys play a key role in shaping

the composition, diversity and function of these ecosystems. Consequently, under-

standing what drives variation in forest microclimate is critical to forecasting ecosys-

tem responses to global change, particularly in the tropics where many species

already operate close to their thermal limits and rapid land‐use transformation is

profoundly altering local environments. Yet our ability to characterize forest micro-

climate at ecologically meaningful scales remains limited, as understorey conditions

cannot be directly measured from outside the canopy. To address this challenge, we

established a network of microclimate sensors across a land‐use intensity gradient

spanning from old‐growth forests to oil‐palm plantations in Borneo. We then com-

bined these observations with high‐resolution airborne laser scanning data to char-

acterize how topography and canopy structure shape variation in microclimate both

locally and across the landscape. In the processes, we generated high‐resolution
microclimate surfaces spanning over 350 km2, which we used to explore the poten-

tial impacts of habitat degradation on forest regeneration under both current and

future climate scenarios. We found that topography and vegetation structure were

strong predictors of local microclimate, with elevation and terrain curvature primarily

constraining daily mean temperatures and vapour pressure deficit (VPD), whereas

canopy height had a clear dampening effect on microclimate extremes. This buffer-

ing effect was particularly pronounced on wind‐exposed slopes but tended to satu-

rate once canopy height exceeded 20 m—suggesting that despite intensive logging,

secondary forests remain largely thermally buffered. Nonetheless, at a landscape‐
scale microclimate was highly heterogeneous, with maximum daily temperatures

ranging between 24.2 and 37.2°C and VPD spanning two orders of magnitude.

Based on this, we estimate that by the end of the century forest regeneration could

be hampered in degraded secondary forests that characterize much of Borneo's low-

lands if temperatures continue to rise following projected trends.

K E YWORD S

canopy height, digital elevation model, forest degradation and fragmentation, LiDAR, near‐
surface air temperature, remote sensing, selective logging, vapour pressure deficit

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2018 The Authors. Global Change Biology Published by John Wiley & Sons Ltd

Received: 19 April 2018 | Accepted: 2 July 2018

DOI: 10.1111/gcb.14415

Glob Change Biol. 2018;24:5243–5258. wileyonlinelibrary.com/journal/gcb | 5243

http://orcid.org/0000-0002-0751-6312
http://orcid.org/0000-0002-0751-6312
http://orcid.org/0000-0002-0751-6312
http://orcid.org/0000-0003-4437-5106
http://orcid.org/0000-0003-4437-5106
http://orcid.org/0000-0003-4437-5106
http://orcid.org/0000-0002-8261-2582
http://orcid.org/0000-0002-8261-2582
http://orcid.org/0000-0002-8261-2582
http://creativecommons.org/licenses/by/4.0/
http://www.wileyonlinelibrary.com/journal/GCB


1 | INTRODUCTION

Local‐scale microclimatic conditions in forest understoreys shape

ecological processes at all levels of organization, from the metabolic

and demographic rates of individual organisms to whole‐ecosystem
nutrient cycling (Chen et al., 1999; Clarke, 2017). Consequently,

understanding how the diversity, composition and functioning of for-

est ecosystems will respond to rapid global change hinges on our

ability to quantify microclimate at these ecologically relevant scales

(Bramer et al., 2018; De Frenne et al., 2013; Lenoir, Hattab, & Pierre,

2017). Yet doing so remains inherently challenging, as understorey

microclimatic conditions cannot be directly measured from outside

the canopy. As a result, for most applications we still rely heavily on

coarse‐resolution interpolated climate surfaces that not only fail to

capture climate at scales that are ecologically meaningful (Potter,

Arthur Woods, & Pincebourde, 2013), but are also unrepresentative

of conditions below the canopy (De Frenne & Verheyen, 2016). New

ways of quantifying variation in understorey microclimate and its

underlying drivers at both high resolution and across broad spatial

scales are therefore urgently needed (Bramer et al., 2018; Frey et al.,

2016; Lenoir et al., 2017).

Nowhere is this need to understand local‐scale variation in

microclimate more pressing than in tropical forest landscapes, where

many species already operate close to their thermal limits (Doughty

& Goulden, 2008; Tan et al., 2017; Way & Oren, 2010) and where a

combination of land‐use intensification and climate change are

rapidly altering environmental conditions at both regional and local

scales (Duveiller, Hooker, & Cescatti, 2018; Hardwick et al., 2015;

McAlpine et al., 2018). Two aspects in particular play a key role in

constraining microclimate in forests: topography and vegetation

structure. Topography shapes microclimate through well‐known adia-

batic processes associated with elevation, as well as by influencing

exposure to wind and solar radiation, both of which are modified by

the slope, aspect and curvature of the terrain (Dobrowski, 2011).

Additionally, vegetation structural attributes such as the height, den-

sity and roughness of the canopy also strongly influence near‐sur-
face microclimatic conditions through shading, by altering airflow

and by constraining leaf transpiration (Hardwick et al., 2015). Conse-

quently, land‐use change has the potential to drastically modify local

microclimatic conditions through its effects on vegetation structure

and composition. While recent work suggests that selectively logged

forests may be thermally buffered (Senior, Hill, Benedick, & Edwards,

2017; Senior, Hill, González del Pliego, Goode, & Edwards, 2017),

there is likely a threshold above which canopy loss results in an

strong and abrupt shift in microclimate (Hardwick et al., 2015). Simi-

larly, other processes that influence canopy structure and composi-

tion—such as natural disturbances and variation in forest

composition and dynamics along topo‐edaphic gradients (Jucker,

Bongalov, & Burslem, 2018; Werner & Homeier, 2015)—can also

indirectly contribute to shaping variation in microclimate across trop-

ical forest landscapes.

Yet while the effects of topography and canopy structure on

microclimate are for the most part well understood, characterizing

these processes at high resolution and across broad spatial scales

remains challenging. In this regard, emerging remote sensing tech-

nologies such as airborne laser scanning (ALS, also known as LiDAR)

provide a solution for simultaneously capturing the 3D structure of

both the forest canopy and the underlying terrain in exquisite detail

(Detto, Muller‐Landau, Mascaro, & Asner, 2013; Lefsky, Cohen, Par-

ker, & Harding, 2002; Wulder et al., 2012). By coupling ALS data

with on‐ground networks of microclimate sensors, we are now in a

position to robustly assess the relative importance of different topo-

graphic and canopy structural features in determining microclimate

(Frey et al., 2016; Lenoir et al., 2017). Moreover, these same data

can then be used to generate high‐resolution microclimatic surfaces

for entire landscapes using either empirical of physical‐based mod-

elling approaches (Hardwick, 2015; Tymen et al., 2017). This last

step is critical if we are to generate realistic predictions of how eco-

logical communities and the processes they underpin are likely to

respond to rapid global change (Lenoir et al., 2017).

Here, we combine ALS data with almost one million hourly read-

ings of near‐surface air temperature and vapour pressure deficit

(VPD) taken across a land‐use intensity gradient that spans from old‐
growth tropical forests to oil‐palm plantations in Malaysian Borneo.

These data were used to fit empirical models relating variation in

microclimate among sites to topographic and canopy structural attri-

butes derived from ALS. We then used these models to generate

high‐resolution air temperature and VPD surfaces over an area of

more than 350 km2 to characterize how microclimate varies across

human‐modified tropical landscapes. From these, we developed a

series of scenarios to explore how habitat degradation might impact

forest regeneration under present‐day and future climate conditions

based on our current understanding of how tropical tree seedlings

respond to elevated VPD. Finally, we compared our up‐scaled micro-

climate surfaces with coarse‐resolution interpolated climate grids

routinely used as inputs for ecological models. By doing so, we

aimed to determine whether the two differ systematically, and if so

whether accounting for the buffering effect of forest canopies on

near‐surface air temperature can explain these differences.

2 | MATERIALS AND METHODS

2.1 | Study region

The study was conducted in the Malaysian state of Sabah in north‐
eastern Borneo. Sabah's climate is tropical, with a mean annual tem-

perature of 26.7°C and an annual rainfall of 2,600–3,000 mm (Walsh

& Newbery, 1999). The region supports a variety of forests types,

including lowland dipterocarp forests that are among the tallest in

the tropics. Yet since the 1970 s much of Sabah's forests have been

extensively logged and cleared to make way for oil‐palm plantations

(Gaveau et al., 2016, 2014). To better understand the implications of

this land‐use transformation for local‐scale climatic conditions across

the region, here we leverage ALS and microclimate data acquired as

part of the Stability of Altered Forest Ecosystems (SAFE) project—
one of the world's largest forest fragmentation and degradation
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experiments currently underway in Sabah (Ewers et al., 2011). The

SAFE project aims to quantify the ecological consequences of forest

transformation on a landscape‐scale. It spans across a topographi-

cally diverse landscape (elevational range: 100–960 m.a.s.l.) made up

of forest patches that have been subjected to varying degrees of

logging intensity. This includes unlogged old‐growth forests, forests

that have been selectively logged either once or twice, ones that

have been intensively logged over multiple cycles, as well as areas

that have been clear‐felled and converted to oil‐palm plantations (for

further details on the logging history of the study site, see Ewers

et al., 2011).

2.2 | Microclimate data

Air temperature (T, in °C) and relative humidity (RH, in %) were mea-

sured across a network of 113 permanent forest plots established

through the SAFE project (each 25 × 25 m in size). This includes plots

in the Kalabakan Forest Reserve and surrounding oil‐palm landscape

(hereafter collectively referred to as the “SAFE landscape”; 4°3'N,

117°2'E) and in old‐growth forests at Maliau Basin Conservation Area

(4°5'N, 116°5'E). Collectively, these plots cover the full land‐use inten-

sity gradient captured by the SAFE project—from unlogged old‐
growth forests to mature oil‐palm plantations. In each plot, Hygro-

chron iButton loggers (Maxim Integrated, USA) suspended at a height

of 1.5 m above the ground and shielded from direct solar radiation

were used to record hourly T and RH readings (accurate to ±0.5°C and

±5%, respectively). Microclimate data were collected between May

2013 and March 2015, resulting in a total of 953,789 coupled T and

RH readings. Due to sensors malfunctioning or being lost in the field,

data from four plots were excluded from all further analyses as micro-

climate readings at these sites spanned less than three months (see

Supporting Information Figure S1; In Appendix S1).

Additionally, microclimate data were also acquired in seven Glo-

bal Ecosystem Monitoring (GEM) 1‐ha plots that cover the same log-

ging intensity gradient described above (Riutta et al., 2018). This

includes four plots in forests that have been either intensively or

selectively logged twice in the SAFE landscape and three old‐growth

forest plots with no history of logging—one located at Maliau Basin,

the other two at Danum Valley Conservation Area (4°6'N, 117°4'E).

Hourly T and RH measurements were recorded using HOBO U23

Pro v2 loggers (Onset Computer Corporation, USA; accuracy: ±

0.2°C and ±5%) placed at 1.5 m above the forest floor and shielded

from direct sunlight. Data were collected between July 2015 and

May 2016, but only measurements from 2015 were used for our

analysis (n = 20,052), as 2016 was characterized by higher‐than‐av-
erage temperatures that coincided with the strong El Niño event

that affected South‐East Asia that year (see Appendix S1; Thirumalai,

DiNezio, Okumura, & Deser, 2017).

2.2.1 | Microclimate variables

From the hourly temperature records, we calculated the mean annual

temperature (Tmean) and the mean maximum daily temperature (Tmax) of

each study plot. Tmean and Tmax directly influence biological activity and

habitat suitability across a range of taxonomic groups that are key to

shaping the biodiversity and ecosystem functioning of tropical forests,

including microbes, fungi, plants, invertebrates and vertebrates (Clarke,

2017). We focus on metrics that integrate temperature conditions

across the course of the year as our data show little evidence of sea-

sonal trends in temperature, with differences in temperature between

plots far exceeding any systematic variation across seasons (Figure S2).

This is in line with previous studies that have shown that with the

exception of El Niño years, the climate at our study site is largely asea-

sonal (Walsh & Newbery, 1999).

In addition to air temperature, we also used the microclimate data

to characterize atmospheric water balance by estimating VPD (in hPa).

VPD is the difference between the saturation water vapour pressure

(es) and the actual water vapour pressure (e)—in other words the differ-

ence between how much moisture the air can hold before becoming

saturated and the amount of moisture actually present in the air. As

such, VPD is intimately linked to water transport and transpiration in

plants (Anderson, 1936; Motzer, Munz, Kuppers, Schmitt, & Anhuf,

2005; Will, Wilson, Zou, & Hennessey, 2013), with high VPD driving

reduced growth and survival in both temperate and tropical trees

(McDowell et al., 2018; Sanginés de Cárcer et al., 2018). Given that

RH ¼ e=esð Þ � 100, VPD can be expressed as 100� RHð Þ=100½ � � es,

where es is derived from T using Bolton's (1980) equation:

es ¼ 6:112�e
17:67�T
Tþ243:5. Having estimated VPD for each coupled hourly

observation of T and RH, we then calculated annual mean VPD

(VPDmean) and mean daily maximum VPD (VPDmax) for each study plot.

2.3 | Airborne laser scanning data

ALS data covering the SAFE project were acquired in November

2014 using a Leica ALS50‐II LiDAR sensor flown by NERC's Airborne

Research Facility. Data acquisition parameters and processing are

described in detail in Jucker, Asner, and Dalponte (2018). Briefly, the

data were obtained as a discretized point cloud, with up to four

returns recorded per pulse and a median density of 15.3 pulses m−2.

Points were classified into ground and nonground returns using the

LAStools software (https://rapidlasso.com/lastools), and a digital ele-

vation model (DEM) was fit to the ground returns to produce a 1‐m
resolution raster. The DEM was then subtracted from the elevations

of all nonground returns to produce a normalized point cloud, from

which a 0.5‐m resolution pit‐free canopy height model (CHM) was

generated following the approach described in Khosravipour, Skid-

more, Isenburg, Wang, and Hussin (2014).

All further processing of the ALS data was done using the raster

package in R (Hijmans, 2016; R Core Development Team, 2016) and

custom‐written Python code. Specifically, for both the field plots and

the SAFE landscape as a whole, we used the DEM, CHM and nor-

malized point clouds to calculate a series of topographic and canopy

structural and metrics relevant for characterizing microclimate (de-

scribed below). For the SAFE plots, metrics were extracted after

applying a 12.5‐m buffer around each plot, bringing the plot size to

50 × 50 m. This was done to ensure that canopy conditions around
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the perimeter of each plot were captured, as forest clearings (both

natural and man‐made) can modify understorey microclimatic condi-

tions tens of metres from the forest edge (Camargo & Kapos, 1995;

Chen et al., 1999; Ewers & Banks‐Leite, 2013). For consistency, we

applied this same approach to the GEM plots, extracting ALS metrics

from a 50 × 50 m area centred on the location of the microclimate

loggers. Similarly, all landscape‐scale level metrics were computed at

50‐m resolution.

2.3.1 | Topographic metrics

From the DEM, we extracted four topographic metrics known to

affect air temperature and humidity through changes in atmospheric

pressure or exposure to wind and solar radiation (Dobrowski, 2011):

elevation (in m.a.s.l.), terrain slope (in degrees), aspect (in radians)

and topographic position index (TPI), which describes the curvature

of the terrain and ranges from negative where the terrain is concave

(i.e., gulleys) to positive where it is convex (i.e., ridges). As the study

site lies near the equator and prevailing winds in the region blow

from the east, we expect differences in exposure to wind and solar

radiation to be most pronounced between east and west‐facing
slopes. To capture this, aspect values were sine‐transformed so that

east‐facing slopes are assigned positive values, while leeward slopes

facing west are characterized by negative ones. For each plot and

landscape grid cell, elevation was calculated by taking the mean

value of the DEM within an area of 50 × 50 m. Prior to calculating

slope, aspect and TPI, we first spatially resampled the DEM to 10‐m
resolution, at which point mean values for each metric were

extracted at 50 × 50 m. This two‐step approach ensured that slope,

aspect and TPI estimates were not unduly affected by extreme local-

ized values (Jucker, Bongalov, et al., 2018).

2.3.2 | Canopy structural metrics

From the CHM and the normalized ALS point cloud, we calculated five

canopy structural metrics related to canopy height, density, openness

and roughness which we hypothesize to influence understorey micro-

climate as a result of shading and modified air flow. These included

maximum canopy height (Hmax, in m), mean top‐of‐canopy height (TCH,

in m), gap fraction at 2 m aboveground (in %), standard deviation of

TCH (in m) and plant area index (PAI, in m2 m‐2), a measure of the total

plant area (leaves and woody tissues) per unit ground surface area. PAI

is an integrated measure of canopy density which we estimated empiri-

cally from the ALS point cloud using the MacArthur‐Horn approxima-

tion following the approach of Stark et al. (2012).

While these metrics aim to capture complementary aspects of

canopy structure, they are nonetheless inherently related to one

another (Appendix S2). To avoid issues with collinearity in our mod-

els, a preliminary analysis was conducted to ascertain which canopy

metric would be best suited for modelling microclimate. This

revealed two primary axes of variation, one related to canopy height,

the other to canopy density (Appendix S2). Based on this, we chose

to focus our analyses of Hmax and PAI as predictors of understorey

microclimate. To completely remove collinearity between model pre-

dictors, we then fit a regression linking variation in PAI to Hmax (both

log‐transformed) and took the residual variation in PAI from this

model (PAIresid) as a predictor for all further analyses presented here.

High values of PAIresid indicate canopies that are denser than

expected based on their height, while low values correspond to spar-

ser and more open canopies.

2.4 | Plot‐level microclimate modelling

Weused a structural equation modelling (SEM) framework to character-

ize how land‐use intensity, canopy structure and topography interact to

shape local‐scale variation in microclimate. In a first step, data from the

116 plots with microclimate records were used to fit multiple regres-

sion models relating variation in Tmean, Tmax, VPDmean and VPDmax to

the topographic and canopy structural metrics described above. In the

case of VPDmean and VPDmax, the models also explicitly accounted for

the effects of air temperature on VPD, as the two are intrinsically

related (i.e., for a given RH, increasing T drives an increase in VPD).

Additionally, we tested for specific interaction terms between canopy

structural metrics and topographic ones—namely Hmax, aspect and TPI

—as we expect canopy effects on microclimate to be most pronounced

on exposed, west‐facing slopes and on hilltops. Based on a visual

inspection of the data, Tmean, Tmax and Hmax were log‐transformed prior

to model fitting to better capture the relationship between air tempera-

ture and canopy height and normalize the residuals of the model.

In addition to modelling the direct effects of topography and

canopy structure on microclimate, we also fit regression models

relating plot‐level variation in Hmax and PAIresid to topographic met-

rics, allowing us to characterize the indirect effects of topography on

air temperature and VPD mediated through changes in canopy struc-

ture (Jucker, Bongalov, et al., 2018; Werner & Homeier, 2015). This

analysis was also repeated across the entire SAFE landscape, allow-

ing us to leverage the full coverage of the ALS data (approximately

363 km2). Lastly, we indirectly linked variation in microclimate to

logging history and land‐use intensity by characterizing changes in

canopy structural metrics along the land‐use intensity gradient cap-

tured by the SAFE project.

In a second step, we then brought together the individual regres-

sion models using a piecewise SEM framework (also known as confir-

matory path analysis), as implemented in the piecewiseSEM package in

R (Lefcheck, 2016). This allowed us to visually and quantitatively

assess the direct and indirect impacts of topography, canopy structure

and land‐use intensity on microclimatic variation. To obtain standard-

ized path coefficients—the magnitude of which can be directly com-

pared within and between submodels—all data were scaled prior to

model fitting to have a mean of 0 and standard deviation of 1. Lastly,

in order to determine whether variation in Tmean, Tmax, VPDmean and

VPDmax was most strongly associated with topography or canopy

structure, we used variance partitioning to assign R2 values to each

model predictor using the recommended “averaging over orderings”
approach proposed by Lindeman, Merenda, and Gold (1980) as imple-

mented in the R package relaimpo (Grömping, 2006).
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2.5 | Landscape‐scale variation in microclimate and
its implications for forest regeneration

The best‐fit regression models for Tmean, Tmax, VPDmean and VPDmax

were used to map each microclimate variable at 50‐m resolution

across the SAFE landscape (n = 145,214 grid cells, equivalent to

approximately 363 km2) using DEM, CHM and point cloud‐derived
metrics as inputs.

To showcase how high‐resolution microclimate data can be used to

better understand and forecast responses of tropical forests to global

change, we used our up‐scaled estimates of VPDmax to identify areas

within the SAFE landscape where conditions might be suboptimal for

forest regeneration under current and future climate conditions. Specif-

ically, we first quantified what proportion of the SAFE landscape cur-

rently experiences mean daily maximum VPD values that exceed

12 hPa, threshold above which VPD has been shown to impede tran-

spiration in montane Neotropical trees (Motzer et al., 2005). We then

repeated this after accounting for changes in VPDmax that are expected

to occur by 2080 as a result of increases in Tmax predicted by the Had-

GEM2‐AO general circulation model for two Representative concentra-

tion pathways (RCP) presented in the IPCC's Fifth Assessment Report

(IPCC, 2014). The first is an emission mitigation scenario (RCP4.5),

under which Tmax is expected to increase by 1.9°C across the SAFE

landscape by 2061–80. The second is a business‐as‐usual scenario
(RCP8.5) which predicts Tmax will increase by 2.8°C at SAFE by 2061–
80 (estimates based on future climate projections obtained at 30‐arc
second resolution from: https://www.worldclim.org/CMIP5v1).

Note that this analysis makes a number of important assump-

tions and is only intended to provide an approximate estimate of

how climate change could impact the regeneration of tropical forests

in human‐modified landscapes. For instance, it assumes no further

land‐use intensification in the study area, nor does it account for

changes in rainfall regimes. This is despite the fact that there is

already evidence of declines in precipitation in regions affected by

high deforestation rates in Borneo (McAlpine et al., 2018). Addition-

ally, there may well be differences in the ecophysiological responses

of Bornean tree species to VPD compared to those of the Neotropi-

cal montane species studied in Motzer et al. (2005), although we

note that both systems are characterized by relatively aseasonal cli-

mates and that in selecting a VPD threshold of 12 hPa we adopted

the upper limit identified in the above‐mentioned study. Nonethe-

less, to assess how sensitive our estimates are to the choice of VPD

threshold, we repeated the analysis assuming a VPDmax of 15 hPa as

a limit to transpiration, which is in line with recent estimates for

temperate tree species in Europe (Sanginés de Cárcer et al., 2018).

2.6 | Comparing up‐scaled microclimate surfaces
with coarse‐resolution gridded climate data

In addition to using the up‐scaled microclimate estimates to identify

areas where evaporative demands could impede forest regeneration,

we also compared them to coarser‐resolution gridded climate data from

the WorldClim2 database that underpin a wide range of ecological

modelling applications (Fick & Hijmans, 2017). WorldClim2 climate

grids are generated by interpolating observations from weather sta-

tions typically located in open environments and have a spatial resolu-

tion of 30‐arc seconds (approximately 1 km). Here, we focus on two

WorldClim2 variables—mean annual temperature and mean monthly

maximum temperature—which we compared to our up‐scaled esti-

mated of Tmean and Tmax. To enable comparisons between the two, we

extracted mean and maximum air temperature values from the World-

Clim2 layers for each 50‐m grid cell covering the SAFE landscape. This

allowed us to determine whether up‐scaled microclimate estimates dif-

fer systematically from WorldClim2 gridded temperature surfaces

(Faye, Herrera, Bellomo, & Dangles, 2014), with potentially important

consequences for how we currently forecast the impacts of climate

change across ecological scales. Moreover, it allowed us to explore

whether accounting for the buffering effect of forest canopies on near‐
surface air temperature—which is not captured by WorldClim2 (De

Frenne & Verheyen, 2016)—helps explain any systematic differences

we see betweenmicro‐ and macroclimate data.

3 | RESULTS

3.1 | Topographic and canopy structural effects on
microclimate

3.1.1 | Mean and maximum air temperature

Both topography and canopy structure helped explain differences in air

temperature among forest plots (Figure 1) and together accounted for

55% of the variation in Tmean and 57% of that in Tmax (see Appendix S3

for full summaries of all regression models). Generally, both Tmean and

Tmax were lower under tall, dense forests canopies (i.e., ones with high

Hmax and PAIresid), at higher elevations within the landscape and in gul-

leys, where TPI values are negative (Figure 2). Tmean was influenced

more strongly by topography than canopy structure (Figure 1b), and all

else being equal decreased by 0.4°C for every 100 m of elevation gain

(Figure 2b). By contrast, variation in Tmax was predominately controlled

by canopy structure, with Hmax alone explaining 36% of the variance in

Tmax (Figure 1d). This effect of canopy height on air temperature was

markedly nonlinear and tended to plateau past a certain Hmax for both

Tmean and Tmax. Specifically, after controlling for the effects of topogra-

phy, we estimate that 20‐m tall forests have a Tmean and Tmax that are

1.8°C and 5.9°C cooler, respectively, compared to areas with no vege-

tation cover above 1 m (Figure 2a,d). However, extending canopy

height by a further 20 m only led to an additional decrease in Tmean of

0.4°C and in Tmax of 1.2°C. As a result, we found that despite inten-

sively logged forest plots having canopies that are, on average, only half

as tall as those of old‐growth ones (mean Hmax = 32.2 m compared to

64.0 m; Figure 3), the two differed in Tmean and Tmax by just 0.4°C and

1.2°C, respectively.

The effects of topography and canopy structure on air tempera-

ture were more than just additive. Firstly, in both the Tmean and Tmax

models we found clear evidence of an interaction between aspect

and Hmax (Figure 1), whereby the influence of canopy height on air
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temperature was markedly stronger on wind‐exposed, east‐facing
slopes. Specifically, we estimate that increasing Hmax from 1 to 20 m

on east‐facing slopes resulted in a decrease in Tmean of 3.1°C and in

Tmax of 8.7°C. By contrast, this same increase in Hmax on leeward,

west‐facing slopes only drove a decrease in Tmean of 0.6°C and in

Tmax of 3.6°C. Additionally, we also found that topography can influ-

ence air temperature indirectly through its effects on canopy struc-

ture. Forest plots on steeper slopes were characterized by taller

canopies (Figure 1), a pattern that also emerged at landscape‐scale
(see Appendix S4 for model outputs). Across the broader landscape,

F IGURE 1 Piecewise structural equation models relating variation in (a) annual mean temperature (Tmean) and vapour pressure deficit
(VPDmean) and (b) mean maximum daily temperature (Tmax) and vapour pressure deficit (VPDmax) to canopy structural and topographic metrics.
The models also capture the effects of logging pressure and land‐use intensity on maximum canopy height (Hmax), as well as the covariation
between Hmax and plant area index (PAI)—which was explicitly accounted for by taking the residuals of a regression relating PAI to Hmax as a
predictor of temperature and VPD in the models. Dark grey arrows denote positive relationships, while light ones correspond to negative
associations. The width of the arrows reflects the strength of the pathway and is proportional to the standardized path coefficient (reported in
Appendix S3). A dashed arrow was used to represent the interaction effect between aspect and Hmax. Only pathways that were significant to
p ≤ 0.05 are shown. R2 values are reported for each endogenous variable. Additionally, panels (b) and (d) provide a breakdown of how much of
the variance in Tmean, VPDmean, Tmax and VPDmax was explained by topographic metrics, canopy structural metrics and (in the case of VPD) by
temperature [Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 2 Modelled relationships between microclimate variables and forest structural and topographic attributes, including maximum
canopy height (Hmax), elevation and topographic position index (TPI). Response curves for mean annual temperature (Tmean), mean maximum
daily temperature (Tmax), mean annual vapour pressure deficit (VPDmean) and mean maximum daily vapour pressure deficit (VPDmax) correspond
to predicted values (± 95% confidence intervals) obtained from the regression models which underpin the structural equation models depicted
in Figure 1. For Tmean and Tmax, fitted values were obtained by setting all model predictors (expect those presented on the x‐axis) to their
global mean values. For VPDmean and VPDmax, predicted values account for both the direct effects of the canopy structural and topographic
variables on VPD (while keeping all other model predictors constant at their mean value) as well as those mediated through changes in air
temperature driven by Hmax, elevation and TPI [Colour figure can be viewed at wileyonlinelibrary.com]
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ALS data also suggest that forests in gulleys (defined as areas with

TPI ≤ –6) attained maximum heights that were 10.7 m greater, on

average, than those on hilltops and ridges (TPI ≥ 6), and that forests

on east‐facing slopes were up to 3.6 m shorter than those on the

more protected west‐facing ones (Appendix S4).

3.1.2 | Mean and maximum vapour pressure deficit

The effects of topography and canopy structure on VPDwere predomi-

nantly mediated through changes in local air temperature, rather than a

direct influence on VPD (Figure 1). Regression models explained 61%

of the variance in VPDmean and 75% of that in VPDmax, with most of this

attributed to changes in Tmean and Tmax. Topographic features did, how-

ever, explain 24% of the variance in VPDmean, which—for a given tem-

perature—tended to increase with both elevation and TPI. The same

pattern, although less pronounced, was also found for VPDmax.

When accounting for the indirect effects of topography and

canopy structure on air temperature, both VPDmean and VPDmax

were found to decrease rapidly with increasing canopy height and

density before tending to plateau in plots where Hmax exceeded

40 m (Figure 2g,j). Similarly, as TPI was positively correlated with

both T and VPD (Figure 1), terrain curvature had a compound effect

on VPD such that—all else being equal—forests on ridges and hill-

tops (TPI ≥6) were estimated to have a VPDmean that was four times

that of forests in gullies (TPI ≤ –6; 0.7 hPa compared to 2.8 hPa;

Figure 2i), and a VPDmax that was more than twice as high (4.6 hPa

compared to 9.5 hPa; Figure 2l). By contrast, because VPD (for a

given air temperature) tended to increase with elevation while T

decreased (Figure 1), both VPDmean and VPDmax remained fairly con-

stant across the elevational gradient present at SAFE (Figure 2h,k).

3.2 | Landscape‐scale variation in microclimate and
its implications for forest regeneration

Up‐scaled microclimate estimates varied considerably across the

SAFE landscape (Figure 4), with Tmean ranging between 22.0 and

27.7°C (mean = 24.5°C), Tmax between 24.2 and 37.2°C (mean =

29.5°C), VPDmean between 0 and 4.5 hPa (mean = 1.8 hPa) and

VPDmax between 0 and 18.5 hPa (mean = 7.8 hPa).

Under present‐day conditions, our models predict that 14.5% of

the area covered by our ALS campaign currently experiences mean

maximum daily VDP values in excess of 12 hPa (Figure 5a,c), thresh-

old above which evaporative demands are expected to impede

growth and results in increased risk of mortality for tropical tree

seedlings. Under the RCP4.5 emission scenario—which predicts an

increase in Tmax of 1.9°C by 2080—we forecast that the proportion

of the SAFE landscape categorized as suboptimal for forest regener-

ation would more than double to 32.6% even if no further forest

clearing were to take place and rainfall regimes were to remain

unchanged (Figure 5a). This increase would be even more substantial

under the RCP8.5 business‐as‐usual scenario, reaching 49.1% of the

SAFE landscape (Figure 5c). Adopting a more conservative VPDmax

threshold to leaf transpiration and photosynthesis of 15 hPa, our

estimates of the proportion of the study area where conditions are

currently suboptimal for seedling establishment and growth were

revised down to 5.3% (Figure 5b,d). Nonetheless, even in this sce-

nario a rise in Tmax of 1.9°C and 2.8°C by 2080 (RCP4.5 and

RCP8.5, respectively) would still result in a more than threefold

increase in the area where forest regeneration is potentially

impacted by high VPDmax (15.3% and 22.4% of pixels, respectively;

Figure 5b,d).

3.3 | Systematic differences between up‐scaled
microclimate surfaces and WorldClim2 grids

When compared to coarser‐resolution gridded climate surfaces, we

found that on average air temperature estimates from the World-

Clim2 database tended to systematically overestimate Tmean by

1.4°C and Tmax by 1.9°C across the landscape (Figure 6a,c). The dis-

crepancy between mean annual temperatures captured by World-

Clim2 grids and those captured by our analysis was explained, in

large part, by the cooling effect of the canopy. Areas of the

F IGURE 3 Variation in (a) maximum
canopy height and (b) plant area index
along in relation to land‐use intensity and
historical logging pressure across the
Stability of Altered Forest Ecosystems
(SAFE) and Global Ecosystem Monitoring
(GEM) plots [Colour figure can be viewed
at wileyonlinelibrary.com]
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landscape characterized by little or no vegetation cover (Hmax ≤2 m)

showed good agreement between microclimate estimates and

WorldClim2 grids (mean difference <0.1°C; standard deviation =

0.9°C; Figure 6b). Instead, for pixels where Hmax ≥20 m WorldClim2

estimates of Tmean were 1.7°C warmer than our microclimate ones

(standard deviation = 0.3°C). Much the same pattern emerged for

Tmax (Figure 6d). However, in this case even after accounting for

canopy effects we still found a clear systematic difference between

microclimate estimates and WorldClim2 grids. Specifically, for areas

where Hmax ≤2 m WorldClim2 estimates were 4.9°C cooler

F IGURE 4 Variation in (a) elevation, (b) maximum canopy height, (c) mean annual temperature, (d) mean maximum daily temperature, (e)
mean annual vapour pressure deficit and (f) mean maximum daily vapour pressure deficit across the Stability of Altered Forest Ecosystems
(SAFE) landscape at 50 × 50 m resolution. Panels (c–f) correspond to predicted values obtained from the regression models described in the
main text and illustrated in Figure 1 [Colour figure can be viewed at wileyonlinelibrary.com]
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compared to our microclimate ones (standard deviation = 1.2°C),

whereas for pixels with Hmax ≥20 m WorldClim2 grids tended to

overestimate Tmax by 2.3°C (standard deviation = 0.8°C).

4 | DISCUSSION

Canopy structure and topography emerged as strong, interactive dri-

vers of fine‐scale variation in understorey microclimatic conditions

across a land‐use intensity gradient that increasingly typifies much of

Borneo's lowland tropical landscapes (Bryan et al., 2013; Gaveau

et al., 2014, 2016). Given the importance of local‐scale microclimatic

conditions in shaping ecosystem responses to global environmental

change (De Frenne et al., 2013)—and the fact that currently avail-

able climate data tend to be unrepresentative of understorey condi-

tions (De Frenne & Verheyen, 2016; Faye et al., 2014)—our results

highlight the potential of remote sensing technologies such as ALS

for characterizing microclimate at ecologically relevant scales (Bramer

et al., 2018; Frey et al., 2016; Lenoir et al., 2017). Here, we start by

taking a closer look at the role of vegetation structure and topogra-

phy in shaping understorey microclimate in human‐modified tropical

F IGURE 5 Areas of the SAFE landscape where mean maximum daily vapour pressure deficit (VPDmax) is predicted to exceed hypothesized
transpiration thresholds (12 and 15 hPa) for tree seedlings under current (dark red) and future climate conditions (light red). Results for two
different IPCC representative concentration pathways (RCP) are shown: the RCP4.5 emission mitigation scenario (a and b) and the RCP8.5
business‐as‐usual scenario (c and d). The percentage of 50 × 50 m pixels exceeding VPDmax thresholds is given in brackets for each scenario.
The black contour lines mark the current extent of oil‐palm plantations within the SAFE landscape, as well as areas dominated by short
scrubby vegetation that develops in the aftermath of logging and of bare ground [Colour figure can be viewed at wileyonlinelibrary.com]
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forests. We focus in particular on some of the more subtle—yet

strong—indirect and interactive effects of canopy height, terrain cur-

vature and aspect that traditional field‐based approaches would have

likely overlooked. We then take a closer look at how ALS‐derived
microclimate surfaces can refine our understanding of the ecological

impacts of global change, using our analysis exploring the potential

impacts of climate warming on forest regeneration across the SAFE

landscape as a case study. Finally, we end by discussing how the

next generation of satellite‐based remote sensing platforms could be

used to build on our efforts to map the near‐surface air temperature

and VPD of tropical landscapes, potentially opening the door to

microclimate monitoring on a global scale.

4.1 | Canopy structure and topography as drivers
of understorey microclimate

Canopy height—which correlated strongly with canopy density and

roughness—emerged as an overarching driver of near‐surface air

temperature and moisture content, with taller canopies being associ-

ated with lower mean and maximum temperatures as well VPD (Fig-

ures 1 and 2). Vegetation structure influenced air temperature and

VPD primarily by dampening maximum daily values rather than

strongly shifting their means (Figure 1; Frey et al., 2016). This buffer-

ing effect was markedly nonlinear, being strongest in forest patches

where the canopy was less than 20 m tall before progressively

F IGURE 6 Systematic differences between ALS‐derived understorey microclimatic conditions and WorldClim2 gridded climate surfaces.
Panel (a) shows the probability density distribution of mean annual temperature values predicted from ALS‐derived canopy structural and
topographic metrics across the Stability of Altered Forest Ecosystems (SAFE) landscape (as mapped in Figure 4c) and those obtained from the
WorldClim2 database for the same area. Panel (b) illustrates how—for a given point within the SAFE landscape—the difference between these
two temperature surfaces changes according to the maximum canopy height of that pixel. Large black circles correspond to mean difference
values (± 1 standard deviation) calculated at 2 m height intervals. Panels (c and d) show these same patterns for maximum temperature [Colour
figure can be viewed at wileyonlinelibrary.com]
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saturating thereafter (Figure 2). As a result, we found that even

though logging had a profound impact on the height and density of

forest canopies (Figure 3; Hardwick et al., 2015; Pfeifer et al., 2016),

only under intense logging pressure or following the conversion of

forests to oil‐palm plantations was microclimate strongly affected.

This is broadly consistent with recent work showing that logged for-

ests in the tropics tend to be largely thermally buffered and do not

differ substantially in their microclimate to old‐growth stands (Senior,

Hill, Benedick, et al., 2017; Senior, Hill, González del Pliego, et al.,

2017). Yet while previous studies have for the most part been lim-

ited to making dichotomous comparisons between logged and

unlogged forests, using high‐precision ALS data acquired across a

landscape where land‐use intensity was manipulated experimentally

we were able to characterize the effects of forest degradation on

microclimate in terms of quantitative changes in forest structure. In

doing so, our results underscore the importance of logged and sec-

ondary tropical forests not only for their biodiversity (Chazdon et al.,

2009; Deere et al., 2018) and carbon storage potential (Martin, New-

ton, & Bullock, 2013; Poorter et al., 2016; Riutta et al., 2018), but

also in terms of their ability to maintain environmental conditions

conducive to forest regeneration and nutrient cycling (Both, Elias,

Kritzler, Ostle, & Johnson, 2017; Ewers et al., 2015).

By contrast, topography was most important for driving variation

in mean annual temperature and VPD across the landscape (Figure 1).

In large part, this variation was associated with the elevational gradi-

ent that characterizes the SAFE landscape (Figure 2b). Specifically,

mean annual temperature was found to decrease by an average of

0.4°C for every 100 m of elevation gain, which is consistent with

the adiabatic lapse rate of a warm, fully saturated air parcel (Minder,

Mote, & Lundquist, 2010). In addition to elevation, topographic fea-

tures associated with the slope, curvature and aspect of the terrain

—which together influence exposure to wind and solar radiation

(Dobrowski, 2011)—were also important in shaping fine‐scale varia-

tion in microclimate among forest stands. In particular, terrain curva-

ture (as captured by TPI) strongly influenced annual mean VPD

(Figure 2i). This occurred as a result of both an indirect effect of TPI

on air temperature, whereby ridges were found to be around 0.8°C

warmer than gulleys (all else being equal), as well as a direct positive

association between terrain concavity and relative humidity. The fact

that microclimate can vary so substantially in relation to small‐scale
terrain features such as those captured here highlights just how

important topography can be to shaping the structure, composition

and function of tropical forests (Jucker, Bongalov, et al., 2018; Wer-

ner & Homeier, 2015).

While the effects of topography on microclimate are for the

most part well understood (even if often hard to quantify), what

remains much less clear is the extent to which topography and vege-

tation structure can work together to shape forest microclimate

(Frey et al., 2016). In this respect, our results point to a number of

subtle, yet strong, interactive and indirect effects linking these two

drivers of microclimatic variation. On the one hand, we found clear

evidence of an interaction between aspect and canopy height,

whereby the buffering effect of canopy structure on near‐surface air

temperature was much more pronounced on east‐facing slopes. This

is consistent with the fact that prevailing winds in the region blow

from the east, making the sheltering effect of the canopy more pro-

nounced on these slopes (Hardwick et al., 2015). It may also reflect

the fact that in tropical regions clouds tend to build‐up during the

course of the day, meaning that on average direct solar radiation will

be lower on west‐facing slopes that are exposed to the sun in the

afternoon (Smith, 1977). Consequently, on west‐facing slopes forest

canopies may play less of a role in intercepting incoming solar radia-

tion before it reaches the forest floor compared to east‐facing slopes

that are exposed to the morning sun.

In addition to these interactive effects between aspect and

canopy height, we also found clear evidence that topography can

influence understorey microclimate indirectly by driving fine‐scale
variation in forest structure within tropical landscapes. Previous work

has highlighted the importance of topography in shaping the compo-

sition and structure of forest canopies (Jucker, Bongalov, et al.,

2018; Swetnam, Brooks, Barnard, Harpold, & Gallo, 2017; Werner &

Homeier, 2015), but to our knowledge, the implications of this for

understorey microclimate have been largely overlooked. We found

that across the SAFE landscape canopy height varied substantially in

relation to terrain elevation, slope aspect and curvature (see

Appendix S4). While positive associations between canopy height,

elevation and terrain slope are likely to primarily reflect logging

restrictions on steep slopes (as well as potentially resulting from the

tendency of ALS to slight overestimate canopy height on steep

ground; Alexander, Korstjens, & Hill, 2018), those between canopy

height and topographic position suggest strong underlying ecological

gradients. Most notably, we found that forests in gulleys and on lee-

ward slopes sheltered from the wind were substantially taller than

those on exposed ridges (also see King, Davies, Tan, & Nur Supardi,

2009; Coomes, Šafka, Shepherd, Dalponte, & Holdaway, 2018),

thereby further strengthening underlying microclimatic gradients dri-

ven directly by topography.

4.2 | Landscape‐scale modelling of microclimate to
guide forest conservation

Previous field‐based studies have highlighted the extent to which

the microclimate of tropical forests can vary as a result of both natu-

ral heterogeneity in canopy structure and in response to logging or

habitat fragmentation (Ewers & Banks‐Leite, 2013; Hardwick et al.,

2015; Scheffers et al., 2017; Senior, Hill, Benedick, et al., 2017;

Senior, Hill, González del Pliego, et al., 2017). Yet field data alone

can only take us so far when the aim is to assess habitat suitability

and model ecosystem functioning at scales relevant for management

and conservation (Bramer et al., 2018). By combining a network of

microclimate sensors with ALS data, we were able to not only iden-

tify the key drivers of microclimatic variation within a tropical forest,

but also use this information to up‐scale air temperature and VPD

estimates across the entire landscape at high resolution (Figure 4).

Fine‐scale microclimate surfaces such as these are critical to fore-

casting the potential biodiversity impacts of land‐use intensification
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and regional climate change in human‐modified tropical landscapes,

particularly for thermally sensitive species characterized by limited

dispersal ability (Ehrmann et al., 2017; García‐Robledo, Kuprewicz,

Staines, Erwin, & Kress, 2016; Kaspari, Clay, Lucas, Yanoviak, & Kay,

2015; Sunday, Bates, & Dulvy, 2011). Moreover, they provide an

opportunity to substantially refine models of key ecosystem pro-

cesses such as soil respiration that currently represent major uncer-

tainties in our understanding of global terrestrial carbon budgets

(Bradford et al., 2016; Carey et al., 2016; Jones, Cox, & Huntingford,

2003).

To illustrate the kind of landscape‐level inferences made possible

by access to high‐resolution microclimate surfaces such as those

developed here, we explored how land‐use intensification might

impact forest regeneration under present and future climate scenar-

ios as a result of changes in VPD—which constrains transpiration in

plants and is a strong predictor of growth and mortality in tropical

trees (McDowell et al., 2018; Motzer et al., 2005; Will et al., 2013).

In this respect, our results suggest that under current conditions

between 5% and 15% of the SAFE landscape exceeds a VPD thresh-

old above which the survival and growth of tropical tree seedlings

could be decreased, leading to suboptimal conditions for forest

regeneration (Figure 5). Yet at present, areas classified as suboptimal

are almost exclusively located within oil‐palm plantations, making the

point about potential for forest regeneration rather moot. This out-

look changes when we forecast increases in VPD that would result

from a rise in regional temperatures by the end of the century, par-

ticularly if we assume a threshold to transpiration of 12 hPa (Fig-

ure 5a,c). Under these scenarios not only would the proportion of

the landscape deemed as suboptimal for seedling growth and sur-

vival more than double, but VPD thresholds to transpiration would

also be exceeded in parts of the landscape characterized by early‐
successional, degraded secondary forests (Figure 5c). The microcli-

mate impacts on the successional trajectories of these degraded for-

est patches would likely be further compounded by soil runoff and

nutrient leaching associated with intensive logging activities (Lab-

rière, Locatelli, Laumonier, Freycon, & Bernoux, 2015; Sidle et al.,

2006), as well as the progressive loss of a seed bank (Holl, 1999).

Consequently, highly disturbed tropical landscapes could become

harder to rehabilitate in the future, having to increasingly resort to

costly reforestation initiatives rather than relying on natural regener-

ation (Graham, Laurance, Grech, McGregor, & Venter, 2016). This is

particularly true of Sabah where 32% of the land is covered by

highly degraded secondary forests (Bryan et al., 2013).

The approach we take to forecasting habitat suitability for tropi-

cal seedlings does have a number of clear limitations. For instance,

our scenarios are all based on VPD thresholds to transpiration taken

from the literature rather than ones measured in situ, on top of

which we only account for increases in temperature without factor-

ing in further changes in land‐use or rainfall regimes. Moreover, our

scenarios overlook the fact that forest degradation would also

change light regimes on the forest floor, which would have impor-

tant implications for seedling establishment and growth. Nonethe-

less, it highlights why efforts to develop high‐resolution, ecologically

meaningful environmental data layers are critical if we are to

improve our ability to forecast how tropical forests will respond

under growing pressure from logging, habitat fragmentation and cli-

mate change. In this regard, we see the current and future scenarios

developed here as hypotheses to be tested and refined in the field.

4.3 | Leveraging emerging remote sensing
technologies to track microclimate on a global scale

When comparing near‐surface air temperature estimates up‐scaled
using the ALS data to ones obtained through WorldClim2, we found

that the latter not only substantially underestimates the degree to

which microclimate varies within landscapes (Figure 6a,c), but also

departs systematically from understorey microclimate observations

(Faye et al., 2014). When averaged across the entire study area,

mean annual temperatures obtained from the WorldClim2 database

overestimated locally derived values by 1.4°C, which is similar in

magnitude to projected warming trends for the region by the end of

the century under a conservative emission scenario (Scriven, Hodg-

son, Mcclean, & Hill, 2015). In large part, these differences between

microclimate estimates and WorldClim2 grids could be explained by

the fact that the coarser‐resolution gridded temperature surfaces are

generated by interpolating observations from weather stations that

are almost exclusively located in open environments (De Frenne &

Verheyen, 2016) and therefore fail to capture the buffering effect of

canopies on local temperatures (Figure 6b,d).

This mismatch between readily available gridded climate surfaces

and local‐scale microclimate observations has major implications for

how we model species distributions and up‐scale ecosystem pro-

cesses in the face of global change (De Frenne et al., 2013; Lenoir

et al., 2017). As such, generating climate surfaces that are more rep-

resentative of conditions on the ground is considered by many as a

high priority (Bramer et al., 2018; De Frenne & Verheyen, 2016).

Encouragingly, our results—along with those of a handful of other

studies (e.g., Frey et al., 2016; Lenoir et al., 2017; Tymen et al.,

2017)—suggest that 3D remote sensing technologies such as ALS

hold real promise in this respect. Looking ahead, as NASA prepares

to launch the first spaceborne laser scanner designed specifically to

characterize the structure of the world's forest as part of their

upcoming GEDI mission (https://science.nasa.gov/missions/gedi), we

may soon be in a position to radically advance our ability to monitor

microclimate on a global scale.

ACKNOWLEDGEMENTS

This work was funded through NERC's Human Modified Tropical

Forests Programme (grant number NE/K016377/1 awarded to the

BALI consortium) and by the Sime Darby Foundation. D.A.C. was

supported by a Leverhulme International Fellowship. We thank

NERC's Airborne Research Facility and Data Analysis Node for con-

ducting the airborne survey and preprocessing the data. We

acknowledge the Sabah Biodiversity Centre, Sabah Biodiversity

Council, Maliau Basin and Danum Valley Management Committees

JUCKER ET AL. | 5255

https://science.nasa.gov/missions/gedi


and the Economic Planning Unit for their support, access to field

sites and for permission to carry out fieldwork in Sabah. We also

wish to thank the South East Asia Rainforest Research Partnership,

Sabah Foundation, Benta Wawasan, the State Secretary, Sabah Chief

Minister's Departments and the Sabah Forestry Department. We are

grateful to Laura Kruitbos, Unding Jami and the many field assistants

who contributed to logistics and data collection. Lastly, we thank

three anonymous reviewers for their insightful and constructive

comments to our article.

AUTHOR CONTRIBUTION

D.A.C. coordinated the NERC airborne surveys of the SAFE project,

which is led by R.M.E.; T.J. and D.A.C. designed the study; T.J., T.S.

and D.T.M. processed the airborne imagery; S.R.H., S.B. and

D.M.O.E. acquired the microclimate data; T.J. analysed the data and

wrote the first draft of the manuscript, with all authors contributing

substantially to revisions.

ORCID

Tommaso Jucker http://orcid.org/0000-0002-0751-6312

Sabine Both http://orcid.org/0000-0003-4437-5106

David A. Coomes http://orcid.org/0000-0002-8261-2582

REFERENCES

Alexander, C., Korstjens, A. H., & Hill, R. A. (2018). Influence of micro‐to-
pography and crown characteristics on tree height estimations in

tropical forests based on LiDAR canopy height models. International

Journal of Applied Earth Observation and Geoinformation, 65, 105–113.
https://doi.org/10.1016/j.jag.2017.10.009

Anderson, D. B. (1936). Relative humidity or vapor pressure deficit. Ecol-

ogy, 17, 277–282. https://doi.org/10.2307/1931468
Bolton, D. (1980). The computation of equivalent potential temperature.

Monthly Weather Review, 108, 1046–1053. https://doi.org/10.1175/
1520-0493(1980)108aabbb1046:TCOEPTaaabb2.0.CO;2

Both, S., Elias, D. M. O., Kritzler, U. H., Ostle, N. J., & Johnson, D. (2017).

Land use not litter quality is a stronger driver of decomposition in

hyperdiverse tropical forest. Ecology and Evolution, 7, 9307–9318.
https://doi.org/10.1002/ece3.3460

Bradford, M. A., Wieder, W. R., Bonan, G. B., Fierer, N., Raymond, P. A.,

& Crowther, T. W. (2016). Managing uncertainty in soil carbon feed-

backs to climate change. Nature Climate Change, 6, 751–758.
https://doi.org/10.1038/nclimate3071

Bramer, I., Anderson, B. J., Bennie, J., Bladon, A. J., DeFrenne, P., & Hem-

ming, D. ,.… Gillingham, P. K. (2018). Advances in monitoring and

modelling climate at ecologically relevant scales. Advances in Ecologi-

cal Research, 58, 101–161.
Bryan, J. E., Shearman, P. L., Asner, G. P., Knapp, D. E., Aoro, G., & Lokes,

B. (2013). Extreme differences in forest degradation in Borneo: Com-

paring practices in Sarawak, Sabah, and Brunei. PLoS ONE, 8, e69679.

https://doi.org/10.1371/journal.pone.0069679

Camargo, J. L. C., & Kapos, V. (1995). Complex edge effects on soil mois-

ture and microclimate in central Amazonian forest. Journal of Tropical

Ecology, 11, 205–221. https://doi.org/10.1017/S026646740000866X
Carey, J. C., Tang, J., Templer, P. H., Kroeger, K. D., Crowther, T. W., Bur-

ton, A. J., … Tietema, A. (2016). Temperature response of soil

respiration largely unaltered with experimental warming. Proceedings

of the National Academy of Sciences, 113, 13797–13802. https://doi.
org/10.1073/pnas.1605365113

Chazdon, R. l., Peres, C. a., Dent, D., Sheil, D., Lugo, A. e., Lamb, D., …
Miller, S. e. (2009). The potential for species conservation in tropical

secondary forests. Conservation Biology, 23, 1406–1417. https://doi.
org/10.1111/j.1523-1739.2009.01338.x

Chen, J., Saunders, S. C., Crow, T. R., Naiman, R. J., Brosofske, K. D.,

Mroz, G. D., … Franklin, J. F. (1999). Microclimate in forest ecosys-

tem and landscape ecology. BioScience, 49, 288–297. https://doi.org/
10.2307/1313612

Clarke, A. (2017). Principles of thermal ecology: Temperature, energy and

life, Vol. 464 (p. pp.). Oxford, UK: Oxford University Press.

Coomes, D. A., Šafka, D., Shepherd, J., Dalponte, M., & Holdaway, R.

(2018). Airborne laser scanning of natural forests in New Zealand

reveals the influences of wind on forest carbon. Forest Ecosystems, 5,

1–14.
De Frenne, P., Rodriguez‐Sanchez, F., Coomes, D. a., Baeten, L., Ver-

straeten, G., Vellend, M., … Verheyen, K. (2013). Microclimate mod-

erates plant responses to macroclimate warming. Proceedings of the

National Academy of Sciences, 110, 18561–18565. https://doi.org/10.
1073/pnas.1311190110

De Frenne, P., & Verheyen, K. (2016). Weather stations lack forest data.

Science, 351, 234. https://doi.org/10.1126/science.351.6270.234-a

Deere, N. J., Guillera‐Arroita, G., Baking, E. L., Bernard, H., Pfeifer, M.,

Reynolds, G., … Struebig, M. J. (2018). High Carbon Stock forests

provide co‐benefits for tropical biodiversity (ed Magrach A). Journal

of Applied Ecology, 55, 997–1008. https://doi.org/10.1111/1365-

2664.13023

Detto, M., Muller‐Landau, H. C., Mascaro, J., & Asner, G. P. (2013).

Hydrological networks and associated topographic variation as tem-

plates for the spatial organization of tropical forest vegetation. PLoS

ONE, 8, e76296. https://doi.org/10.1371/journal.pone.0076296

Dobrowski, S. Z. (2011). A climatic basis for microrefugia: The influence

of terrain on climate. Global Change Biology, 17, 1022–1035.
https://doi.org/10.1111/j.1365-2486.2010.02263.x

Doughty, C. E., & Goulden, M. L. (2008). Are tropical forests near a high

temperature threshold? Journal of Geophysical Research, 113,

G00B07. https://doi.org/10.1029/2007JG000632

Duveiller, G., Hooker, J., & Cescatti, A. (2018). The mark of vegetation

change on Earth’s surface energy balance. Nature Communications, 9,

1–12. https://doi.org/10.1038/s41467-017-02810-8
Ehrmann, S., Liira, J., Gärtner, S., Hansen, K., Brunet, J., Cousins, S. A. O.,

… Scherer‐Lorenzen, M. (2017). Environmental drivers of Ixodes rici-

nus abundance in forest fragments of rural European landscapes.

BMC Ecology, 17, 1–14. https://doi.org/10.1186/s12898-017-0141-0
Ewers, R. M., & Banks‐Leite, C. (2013). Fragmentation impairs the micro-

climate buffering effect of tropical forests (ed Bohrer G). PLoS ONE,

8, e58093.

Ewers, R. M., Boyle, M. J. W., Gleave, R. A., Plowman, N. S., Benedick, S.,

Bernard, H., … Turner, E. C. (2015). Logging cuts the functional

importance of invertebrates in tropical rainforest. Nature Communica-

tions, 6, 6836. https://doi.org/10.1038/ncomms7836

Ewers, R. M., Didham, R. K., Fahrig, L., Ferraz, G., Hector, A., Holt, R. D.,

& Turner, E. C. (2011). A large‐scale forest fragmentation experiment:

The Stability of Altered Forest Ecosystems Project. Philosophical

Transactions of the Royal Society B, 366, 3292–3302. https://doi.org/
10.1098/rstb.2011.0049

Faye, E., Herrera, M., Bellomo, L., & Dangles, O. (2014). Strong discrepan-

cies between local temperature mapping and interpolated climatic

grids in tropical mountainous agricultural landscapes. PloS ONE, 9,

e105541. https://doi.org/10.1371/journal.pone.0105541

Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1‐km spatial reso-

lution climate surfaces for global land areas. International Journal of

Climatology, 37, 4302–4315. https://doi.org/10.1002/joc.5086

5256 | JUCKER ET AL.

http://orcid.org/0000-0002-0751-6312
http://orcid.org/0000-0002-0751-6312
http://orcid.org/0000-0002-0751-6312
http://orcid.org/0000-0003-4437-5106
http://orcid.org/0000-0003-4437-5106
http://orcid.org/0000-0003-4437-5106
http://orcid.org/0000-0002-8261-2582
http://orcid.org/0000-0002-8261-2582
http://orcid.org/0000-0002-8261-2582
https://doi.org/10.1016/j.jag.2017.10.009
https://doi.org/10.2307/1931468
https://doi.org/10.1175/1520-0493(1980)108aabbb1046:TCOEPTaaabb2.0.CO;2
https://doi.org/10.1175/1520-0493(1980)108aabbb1046:TCOEPTaaabb2.0.CO;2
https://doi.org/10.1002/ece3.3460
https://doi.org/10.1038/nclimate3071
https://doi.org/10.1371/journal.pone.0069679
https://doi.org/10.1017/S026646740000866X
https://doi.org/10.1073/pnas.1605365113
https://doi.org/10.1073/pnas.1605365113
https://doi.org/10.1111/j.1523-1739.2009.01338.x
https://doi.org/10.1111/j.1523-1739.2009.01338.x
https://doi.org/10.2307/1313612
https://doi.org/10.2307/1313612
https://doi.org/10.1073/pnas.1311190110
https://doi.org/10.1073/pnas.1311190110
https://doi.org/10.1126/science.351.6270.234-a
https://doi.org/10.1111/1365-2664.13023
https://doi.org/10.1111/1365-2664.13023
https://doi.org/10.1371/journal.pone.0076296
https://doi.org/10.1111/j.1365-2486.2010.02263.x
https://doi.org/10.1029/2007JG000632
https://doi.org/10.1038/s41467-017-02810-8
https://doi.org/10.1186/s12898-017-0141-0
https://doi.org/10.1038/ncomms7836
https://doi.org/10.1098/rstb.2011.0049
https://doi.org/10.1098/rstb.2011.0049
https://doi.org/10.1371/journal.pone.0105541
https://doi.org/10.1002/joc.5086


Frey, S. J. K., Hadley, A. S., Johnson, S. L., Schulze, M., Jones, J. A., &

Betts, M. G. (2016). Spatial models reveal the microclimatic buffering

capacity of old‐growth forests. Science Advances, 2, e1501392–
e1501392. https://doi.org/10.1126/sciadv.1501392

García‐Robledo, C., Kuprewicz, E. K., Staines, C. L., Erwin, T. L., & Kress,

W. J. (2016). Limited tolerance by insects to high temperatures

across tropical elevational gradients and the implications of global

warming for extinction. Proceedings of the National Academy of

Sciences, 113, 680–685. https://doi.org/10.1073/pnas.1507681113
Gaveau, D. L. A., Sheil, D., Husnayaen, , Salim, M. A., Arjasakusuma, S.,

Ancrenaz, M., … Meijaard, E. (2016). Rapid conversions and avoided

deforestation: Examining four decades of industrial plantation expan-

sion in Borneo. Scientific Reports, 6, 32017. https://doi.org/10.1038/

srep32017

Gaveau, D. L. A., Sloan, S., Molidena, E., Yaen, H., Sheil, D., Abram, N. K.,

… Meijaard, E. (2014). Four decades of forest persistence, clearance

and logging on Borneo. PLoS ONE, 9, e101654. https://doi.org/10.

1371/journal.pone.0101654

Graham, V., Laurance, S. G., Grech, A., McGregor, A., & Venter, O.

(2016). A comparative assessment of the financial costs and carbon

benefits of REDD+ strategies in Southeast Asia. Environmental

Research Letters, 11, 114022. https://doi.org/10.1088/1748-9326/

11/11/114022

Grömping, U. (2006). R package relaimpo: Relative importance for linear

regression. Journal of Statistical Software, 17, 139–147.
Hardwick, S. R. (2015). Interactions between vegetation and microclimate

in a heterogeneous tropical landscape. Imperial College London, 138,

pp.

Hardwick, S. R., Toumi, R., Pfeifer, M., Turner, E. C., Nilus, R., & Ewers, R.

M. (2015). The relationship between leaf area index and microclimate

in tropical forest and oil palm plantation: Forest disturbance drives

changes in microclimate. Agricultural and Forest Meteorology, 201,

187–195. https://doi.org/10.1016/j.agrformet.2014.11.010

Hijmans, R. J. (2016). raster: Geographic data analysis and modeling. R

package version (p. 2.5–8. https://CRAN.R-project.org/package=raste

r).

Holl, K. D. (1999). Factors limiting tropical rain forest regeneration in

abandoned pasture: Seed rain, seed germination, microclimate and

soil. Biotropica, 31, 229–242.
IPCC (2014). IPCC, 2014: Climate Change 2014: Synthesis Report. Contri-

bution of Working Groups I, II and III to the Fifth Assessment Report of

the Intergovernmental Panel on Climate Change (eds Pachauri RK,

Meyer LA) (p. 151). Geneva, Switzerland: IPCC.

Jones, C. D., Cox, P., & Huntingford, C. (2003). Uncertainty in climate‐
carbon‐cycle projections associated with the sensitivity of soil respi-

ration to temperature. Tellus Series B, 55, 642–648. https://doi.org/
10.1034/j.1600-0889.2003.01440.x

Jucker, T., Asner, G. P., Dalponte, M., et al. (2018). Estimating above-

ground carbon density and its uncertainty in Borneo’s structurally

complex tropical forests using airborne laser scanning. Biogeosciences,

15, 3811–3830.
Jucker, T., Bongalov, B., Burslem, D. F. R. P., et al. (2018). Topography

shapes the structure, composition and function of tropical forest

landscapes. Ecology Letters, 21, 989–1000.
Kaspari, M., Clay, N. A., Lucas, J., Yanoviak, S. P., & Kay, A. (2015). Ther-

mal adaptation generates a diversity of thermal limits in a rainforest

ant community. Global Change Biology, 21, 1092–1102. https://doi.

org/10.1111/gcb.12750

Khosravipour, A., Skidmore, A. K., Isenburg, M., Wang, T., & Hussin, Y. A.

(2014). Generating pit‐free canopy height models from airborne

LiDAR. Photogrammetric Engineering & Remote Sensing, 80, 863–872.
https://doi.org/10.14358/PERS.80.9.863

King, D. A., Davies, S. J., Tan, S., & Nur Supardi, M. N. (2009). Trees

approach gravitational limits to height in tall lowland forests of

Malaysia. Functional Ecology, 23, 284–291. https://doi.org/10.1111/j.
1365-2435.2008.01514.x

Labrière, N., Locatelli, B., Laumonier, Y., Freycon, V., & Bernoux, M.

(2015). Soil erosion in the humid tropics: A systematic quantitative

review. Agriculture, Ecosystems & Environment, 203, 127–139.
https://doi.org/10.1016/j.agee.2015.01.027

Lefcheck, J. S. (2016). piecewiseSEM: Piecewise structural equation mod-

elling in r for ecology, evolution, and systematics. Methods in Ecology

and Evolution, 7, 573–579.
Lefsky, M. A., Cohen, W. B., Parker, G. G., & Harding, D. J. (2002). Lidar

remote sensing for ecosystem studies. BioScience, 52, 19–30.
https://doi.org/10.1641/0006-3568(2002)052[0019:LRSFES]2.0.

CO;2

Lenoir, J., Hattab, T., & Pierre, G. (2017). Climatic microrefugia under

anthropogenic climate change: Implications for species redistribution.

Ecography, 40, 253–266. https://doi.org/10.1111/ecog.02788
Lindeman, R. H., Merenda, P. F., & Gold, R. Z. (1980). Introduction to

bivariate and multivariate analysis (p. 444). Foresman, Glenview: Scott.

Martin, P. A., Newton, A. C., & Bullock, J. M. (2013). Carbon pools

recover more quickly than plant biodiversity in tropical secondary

forests. Proceedings of the Royal Society B: Biological Sciences, 280,

20132236–20132236. https://doi.org/10.1098/rspb.2013.2236
McAlpine, C. A., Johnson, A., Salazar, A., Syktus, J., Wilson, K., Meijaard,

E., … Sheil, D. (2018). Forest loss and Borneo’s climate. Environmen-

tal Research Letters. https://doi.org/10.1088/1748-9326/aaa4ff

McDowell, N., Allen, C. D., Anderson‐Teixeira, K., Brando, P., Brienen, R.,
Chambers, J., … Xu, X. (2018). Drivers and mechanisms of tree mor-

tality in moist tropical forests. New Phytologist, 219, 851–869.
https://doi.org/10.1111/nph.15027

Minder, J. R., Mote, P. W., & Lundquist, J. D. (2010). Surface temperature

lapse rates over complex terrain: Lessons from the Cascade Moun-

tains. Journal of Geophysical Research Atmospheres, 115, 1–13.
https://doi.org/10.1029/2009JD013493

Motzer, T., Munz, N., Kuppers, M., Schmitt, D., & Anhuf, D. (2005). Sto-

matal conductance, transpiration and sap flow of tropical montane

rain forest trees in the southern Ecuadorian Andes. Tree Physiology,

25, 1283–1293. https://doi.org/10.1093/treephys/25.10.1283
Pfeifer, M., Kor, L., Nilus, R., Turner, E., Cusack, J., Lysenko, I., … Ewers,

R. m. (2016). Mapping the structure of Borneo’s tropical forests

across a degradation gradient. Remote Sensing of Environment, 176,

84–97. https://doi.org/10.1016/j.rse.2016.01.014
Poorter, L., Bongers, F., Aide, T. M., Almeyda Zambrano, A. M., Balvanera,

P., Becknell, J. M., … Rozendaal, D. M. A. (2016). Biomass resilience

of Neotropical secondary forests. Nature, 530, 211–214. https://doi.
org/10.1038/nature16512

Potter, K. A., Arthur Woods, H., & Pincebourde, S. (2013). Microclimatic

challenges in global change biology. Global Change Biology, 19, 2932–
2939. https://doi.org/10.1111/gcb.12257

R Core Development Team., (2016). R: A language and environment for

statistical computing. Vienna, Austria: R Foundation for Statistical

Computing.

Riutta, T., Malhi, Y., Kho, L. K., Marthews, T. R., Huaraca Huasco, W.,

Khoo, M. S., … Ewers, R. M. (2018). Logging disturbance shifts net

primary productivity and its allocation in Bornean tropical forests.

Global Change Biology, 24, 2913–2928. https://doi.org/10.1111/gcb.
14068

Sanginés de Cárcer, P., Vitasse, Y., Peñuelas, J., Jassey, V. E. J., Buttler,

A., & Signarbieux, C. (2018). Vapor‐pressure deficit and extreme cli-

matic variables limit tree growth. Global Change Biology, 24, 1108–
1122. https://doi.org/10.1111/gcb.13973

Scheffers, B. R., Edwards, D. P., Macdonald, S. L., Senior, R. A., Andriama-

hohatra, L. R., Roslan, N., … Williams, S. E. (2017). Extreme thermal

heterogeneity in structurally complex tropical rain forests. Biotropica,

49, 35–44. https://doi.org/10.1111/btp.12355

JUCKER ET AL. | 5257

https://doi.org/10.1126/sciadv.1501392
https://doi.org/10.1073/pnas.1507681113
https://doi.org/10.1038/srep32017
https://doi.org/10.1038/srep32017
https://doi.org/10.1371/journal.pone.0101654
https://doi.org/10.1371/journal.pone.0101654
https://doi.org/10.1088/1748-9326/11/11/114022
https://doi.org/10.1088/1748-9326/11/11/114022
https://doi.org/10.1016/j.agrformet.2014.11.010
https://CRAN.R-project.org/package=raster
https://CRAN.R-project.org/package=raster
https://doi.org/10.1034/j.1600-0889.2003.01440.x
https://doi.org/10.1034/j.1600-0889.2003.01440.x
https://doi.org/10.1111/gcb.12750
https://doi.org/10.1111/gcb.12750
https://doi.org/10.14358/PERS.80.9.863
https://doi.org/10.1111/j.1365-2435.2008.01514.x
https://doi.org/10.1111/j.1365-2435.2008.01514.x
https://doi.org/10.1016/j.agee.2015.01.027
https://doi.org/10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2
https://doi.org/10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2
https://doi.org/10.1111/ecog.02788
https://doi.org/10.1098/rspb.2013.2236
https://doi.org/10.1088/1748-9326/aaa4ff
https://doi.org/10.1111/nph.15027
https://doi.org/10.1029/2009JD013493
https://doi.org/10.1093/treephys/25.10.1283
https://doi.org/10.1016/j.rse.2016.01.014
https://doi.org/10.1038/nature16512
https://doi.org/10.1038/nature16512
https://doi.org/10.1111/gcb.12257
https://doi.org/10.1111/gcb.14068
https://doi.org/10.1111/gcb.14068
https://doi.org/10.1111/gcb.13973
https://doi.org/10.1111/btp.12355


Scriven, S. A., Hodgson, J. A., Mcclean, C. J., & Hill, J. K. (2015). Pro-

tected areas in Borneo may fail to conserve tropical forest biodiver-

sity under climate change. Biological Conservation, 184, 414–423.
https://doi.org/10.1016/j.biocon.2015.02.018

Senior, R. A., Hill, J. K., Benedick, S., & Edwards, D. P. (2017). Tropical

forests are thermally buffered despite intensive selective logging. Glo-

bal Change Biology, 24, 1267–1278. https://doi.org/10.1111/gcb.

13914

Senior, R. A., Hill, J. K., González del Pliego, P., Goode, L. K., & Edwards,

D. P. (2017). A pantropical analysis of the impacts of forest degrada-

tion and conversion on local temperature. Ecology and Evolution, 7,

7897–7908. https://doi.org/10.1002/ece3.3262
Sidle, R. C., Ziegler, A. D., Negishi, J. N., Rahim, A., Siew, R., & Turkel-

boom, F. (2006). Erosion processes in steep terrain — truths, myths,

and uncertainties related to forest management in Southeast Asia.

Forest Ecology and Management, 224, 199–225. https://doi.org/10.

1016/j.foreco.2005.12.019

Smith, J. M. B. (1977). Vegetation and microclimate of east‐ and west‐
facing slopes in the grasslands of MT Wilhelm, Papua New Guinea.

Journal of Ecology, 65, 39–53. https://doi.org/10.2307/2259061
Stark, S. C., Leitold, V., Wu, J. L., Hunter, M. O., de Castilho, C. V., Costa,

F. R. C., … Saleska, S. R. (2012). Amazon forest carbon dynamics pre-

dicted by profiles of canopy leaf area and light environment. Ecology

Letters, 15, 1406–1414. https://doi.org/10.1111/j.1461-0248.2012.

01864.x

Sunday, J. M., Bates, A. E., & Dulvy, N. K. (2011). Global analysis of ther-

mal tolerance and latitude in ectotherms. Philosophical Transactions of

the Royal Society B: Biological Sciences, 278, 1823–1830. https://doi.
org/10.1098/rspb.2010.1295

Swetnam, T. L., Brooks, P. D., Barnard, H. R., Harpold, A. A., & Gallo, E.

L. (2017). Topographically driven differences in energy and water

constrain climatic control on forest carbon sequestration. Ecosphere,

8, e01797. https://doi.org/10.1002/ecs2.1797

Tan, Z.‐H., Zeng, J., Zhang, Y.‐J., Slot, M., Gamo, M., Hirano, T., …
Restrepo‐Coupe, N. (2017). Optimum air temperature for tropical for-

est photosynthesis: Mechanisms involved and implications for climate

warming. Environmental Research Letters, 12, 054022. https://doi.org/

10.1088/1748-9326/aa6f97

Thirumalai, K., DiNezio, P. N., Okumura, Y., & Deser, C. (2017). Extreme

temperatures in Southeast Asia caused by El Niño and worsened by

global warming. Nature Communications, 8, 15531. https://doi.org/10.

1038/ncomms15531

Tymen, B., Vincent, G., Courtois, E. A., Heurtebize, J., Dauzat, J., Mare-

chaux, I., & Chave, J. (2017). Quantifying micro‐environmental

variation in tropical rainforest understory at landscape scale by com-

bining airborne LiDAR scanning and a sensor network. Annals of For-

est Science, 74(2), https://doi.org/10.1007/s13595-017-0628-z

Walsh, R. P. D., & Newbery, D. M. (1999). The ecoclimatology of Danum,

Sabah, in the context of the world’s rainforest regions, with particular

reference to dry periods and their impact. Philosophical Transactions

of the Royal Society B, 354, 1869–1883. https://doi.org/10.1098/rstb.
1999.0528

Way, D. A., & Oren, R. (2010). Differential responses to changes in

growth temperature between trees from different functional groups

and biomes: A review and synthesis of data. Tree Physiology, 30,

669–688. https://doi.org/10.1093/treephys/tpq015
Werner, F. A., & Homeier, J. (2015). Is tropical montane forest hetero-

geneity promoted by a resource‐driven feedback cycle? Evidence

from nutrient relations, herbivory and litter decomposition along a

topographical gradient. Functional Ecology, 29, 430–440. https://doi.
org/10.1111/1365-2435.12351

Will, R. E., Wilson, S. M., Zou, C. B., & Hennessey, T. C. (2013). Increased

vapor pressure deficit due to higher temperature leads to greater

transpiration and faster mortality during drought for tree seedlings

common to the forest‐grassland ecotone. New Phytologist, 200, 366–
374. https://doi.org/10.1111/nph.12321

Wulder, M. A., White, J. C., Nelson, R. F., Næsset, E., Ørka, H. O., Coops,

N. C., … Gobakken, T. (2012). Lidar sampling for large‐area forest

characterization: A review. Remote Sensing of Environment, 121, 196–
209. https://doi.org/10.1016/j.rse.2012.02.001

SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of the article.

How to cite this article: Jucker T, Hardwick SR, Both S, et al.

Canopy structure and topography jointly constrain the

microclimate of human‐modified tropical landscapes. Glob

Change Biol. 2018;24:5243–5258. https://doi.org/10.1111/
gcb.14415

5258 | JUCKER ET AL.

https://doi.org/10.1016/j.biocon.2015.02.018
https://doi.org/10.1111/gcb.13914
https://doi.org/10.1111/gcb.13914
https://doi.org/10.1002/ece3.3262
https://doi.org/10.1016/j.foreco.2005.12.019
https://doi.org/10.1016/j.foreco.2005.12.019
https://doi.org/10.2307/2259061
https://doi.org/10.1111/j.1461-0248.2012.01864.x
https://doi.org/10.1111/j.1461-0248.2012.01864.x
https://doi.org/10.1098/rspb.2010.1295
https://doi.org/10.1098/rspb.2010.1295
https://doi.org/10.1002/ecs2.1797
https://doi.org/10.1088/1748-9326/aa6f97
https://doi.org/10.1088/1748-9326/aa6f97
https://doi.org/10.1038/ncomms15531
https://doi.org/10.1038/ncomms15531
https://doi.org/10.1007/s13595-017-0628-z
https://doi.org/10.1098/rstb.1999.0528
https://doi.org/10.1098/rstb.1999.0528
https://doi.org/10.1093/treephys/tpq015
https://doi.org/10.1111/1365-2435.12351
https://doi.org/10.1111/1365-2435.12351
https://doi.org/10.1111/nph.12321
https://doi.org/10.1016/j.rse.2012.02.001
https://doi.org/10.1111/gcb.14415
https://doi.org/10.1111/gcb.14415

