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Executive Summary 
 The National Plant Monitoring (NPMS), a partnership between the BSBI, CEH, JNCC and Plantlife, 

is a volunteer-based, habitat and plant monitoring scheme conceived as a representative sample 
of high quality semi-natural habitats across the UK. 

 The habitat classification scheme used by the NPMS was developed in relation to the UK National 
Vegetation Classification (NVC) and the European Nature Information System (EUNIS) 
classifications, meaning that there are clear correspondences between habitat schemes. 

 Many NPMS habitats have already accumulated more than 30 samples in the first two years of 
the scheme (2015-16). Although this does not directly map to the number of samples per species, 
it suggests that the power to detect moderate change (e.g. a 10% change over ten years) in species 
richness in these habitats is likely to be high in the most popular habitats (i.e. dry acid grassland; 
dry calcareous grassland; dry deciduous woodland; hedgerows of native species; neutral damp 
grassland; neutral pastures and meadows; and common wetland habitats). 

 There is much existing evidence in the scientific literature for links between the previously 
selected NPMS Indicator species and the deposition of nitrogen. 

 Comparison with a contemporary professional survey (the Welsh Glastir Monitoring and 
Evaluation Programme) suggests that NPMS full plot (‘Inventory’) and indicator data are likely to 
be biased. These biases should be re-evaluated periodically, and analytical adjustments for them 
should be investigated. 

 The uptake of NPMS 1 km squares currently under-represents upland habitats. However, current 
N deposition gradients in NOx and NHy appear to be covered by allocated and surveyed squares. 
The detection of air pollution impacts are therefore likely to be correspondingly biased towards 
lowland habitats. 

 Key air pollution impact metrics that could be created for NPMS data include mean Ellenberg N 
or R and species or indicator richness. The scientific literature suggests that these metrics are 
meaningful and can be directly related to the impacts of nitrogen deposition. The NPMS 
partnership should also consider the inclusion of assessments of grass:forb cover ratio and 
assessments of flowering in its field protocol. These are both relatively easy for volunteers to 
assess, and have been noted in the literature as being related to N deposition and ozone impacts 
respectively. Implementing changes to the NPMS field protocol, however, is dependent on 
agreement with all NPMS partners, and an assessment of the capacity of NPMS volunteers to 
perform additional tasks within an already demanding structured survey framework. 

 An analysis of the likely power of the NPMS to detect changes in species richness suggests that 
the smallest simulated change in richness (a 10% increase or decline over ten years) is only likely 
to be detectable in a subset of habitats at the current time, depending on the typical richness in 
that habitat and the number of available plots. Habitats that are well covered by the current 
resource are listed above (bullet 3); relatively poorly represented habitats of relevance for air 
pollution impacts include: blanket bog; coastal sand dunes; montane calcareous and dry 
heathlands; and raised bog. 

 The ‘Indicator’ species chosen by the NPMS partnership do, however, appear to capture broad UK 
ecological gradients, suggesting that they provide a good basis for inferring the main types of 
ecological change likely to be observed, strengthening the value of these plots for ecological 
inference. 
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 WP2 Task 3 reviews the available air pollution datasets currently available for correlative 
modelling of vegetation response variables. With the exception of O3 (available only from 
EMEP4UK at 5 x 5 km resolution at the current time), the 1 x 1 km predictions of the FRAME model 
are likely to be provide the most analytical power for inferring relationships between nitrogen 
deposition and NPMS response data at the current time. 

 Recently developed Bayesian modelling frameworks can be used to estimate the impacts of 
nitrogen deposition on species richness whilst taking account of surveyor level, habitat, and 
spatio-temporal correlation structures. Initial estimates of the effects of N deposition for dry acid 
grassland and dry calcareous grassland species richness are presented and discussed. 

 In conclusion, the efforts of NPMS surveyors to collect plant community data on Britain’s semi-
natural habitats represents an important and growing resource. However, unevenness in square 
uptake, and other biases at the plot and species level, mean that care should be taken with respect 
to inference and model construction. Metrics representing air pollution impacts should be 
possible for well-represented habitats, whilst the future development of the scheme will take 
expansions suggested here into consideration. Communication of these issues with volunteers 
through the NPMS should also increase awareness of issues pertaining to air pollution, and 
encourage volunteers to stay with the scheme. 
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Work Package 1 

Introduction 
The National Plant Monitoring Scheme (NPMS) is a recently developed, volunteer-based, habitat and 

plant monitoring scheme (Walker et al., 2015). It was conceived as a national sample of high quality 

semi-natural habitats, but one which was straightforward enough in design to be appealing to 

volunteer botanical recorders. Comprehensive information on the founding motivations and design 

of the scheme is available in several reports and papers (e.g. Walker et al., 2010, 2015; Pescott et al., 

2014, 2015, 2016, In review), and we do not review all of this information here. Unpublished reports 

cited herein are to be made available on the scheme website 

(http://www.npms.org.uk/content/conservation-and-research), or are being prepared for 

publication in the peer-reviewed literature. The current report deals with information on NPMS 

habitats, and the current recording of these habitats, in order to inform decisions on the potential 

utility of NPMS data for assessing the impacts of air pollutants, especially nitrogen, on semi-natural 

habitats. In general, we assume that this type of research would be framed within a correlative 

mode, but we do not assess all of the general limitations of this type of approach here (however see 

Smart et al., 2012 for a concise review of some of the limitations that can arise within this 

framework). 

Here we: (1) provide comprehensive information on the equivalences of the broad- and fine-scale 

habitats, as defined within the NPMS, with other habitat classification frameworks (EUNIS, Annex 1 

(Habitats Directive) habitats, and the National Vegetation Classification) that may be of importance 

for reporting within larger political boundaries, or for the amalgamation or comparison of data with 

other monitoring programmes. Note that these equivalences were used throughout the 

development of the NPMS, rather than only being considered subsequent to its finalisation (Pescott 

et al., In review); (2) provide summary information on the numbers of plots recorded at the fine-

scale habitat level by the most experienced recorders during the first two field seasons of the NPMS, 

and link these habitats, and the species recorded therein, to published critical loads for nitrogen; (3) 

present a recent assessment of recorder bias performed for a subset of NPMS data within Wales. 

(This assessment provides information that will support the accurate interpretation of NPMS data 

across subsequent analyses, and provide a framework for future quality assurance.) Finally, under 

(4), we present an assessment of how current NPMS 1 km squares (as represented by the 10 x 10 km 

squares within which they are nested) are currently representative of large-scale environmental 

gradients, including a subset of important air pollutants (as represented by estimates from the 

FRAME model of pollutant deposition; Dore et al., 2007). 
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Task 1. NPMS habitat equivalences (EUNIS/Annex 1/NVC) 

The tables below summarise equivalences between the final NPMS broad- and fine-scale 

habitat classifications and EUNIS Levels 1-3 (Davies et al., 2004) and Annex 1 habitats (Table 

2) and National Vegetation Classification communities (Table 3; Rodwell, 1991 et seq.). The 

NVC habitat equivalences were used directly in the selection of the fine-scale habitat-

specific plant indicator species (Pescott et al., 2014, In review.) Although a final decision was 

made to define NPMS habitats in terms of the NVC, the EUNIS definitions were considered 

alongside development of the NVC classification throughout the project, rather than being 

matched as an addendum to the habitat development work; indeed, the NPMS design 

process began with EUNIS Level 2 as the basis for its fine-scale habitat classification. 

Correspondence, therefore, should be close. Our NVC definitions, and the final names of the 

NPMS habitats, were subject to external expert review; Table 1 lists the experts involved in 

this process and their areas of expertise. 

 

The habitat correspondence tables given below are also now available as PDFs on the NPMS 

website at http://www.npms.org.uk/content/conservation-and-research. Excel versions are 

available on request from the lead author of this report. The indicator species chosen as a 

result of the NPMS to NVC habitat definition work are available in the NPMS volunteer 

support pack: see ‘NPMS Species lists’ at http://www.npms.org.uk/content/resources. 

 

Table 1. The habitat experts consulted and habitats reviewed. 

Expert Organisation Area of expertise Habitats reviewed 

Iain Diack 
 

Natural England Wetland habitats, bogs, 
mires, wet heath 

Wet grassland, fens, mires, 
bogs, swamps 

Ian Strachan 
 

SNH/JNCC (former) Upland habitats, standing 
waters, coastal 

Montane, bogs, mires, 
standing waters, coastal 

Richard Jefferson  
 

Natural England Grasslands Dry grasslands 

Stuart Smith 
 

Natural Resources 
Wales 

Grasslands, fens Wet and dry grasslands, fens 
and mires 
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Table 2. NPMS habitat to EUNIS and Annex 1 community correspondence table. 
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Table 3. NPMS habitat to NVC community correspondence table. 

 

 

NPMS Broad Habitat NPMS Fine Habitat NVC communities included

Arable margins Arable field margins OV1-11, 13-17

Raised bog M1-3, 18, 19, 20, 25

Blanket bog M1-3, 17-20, 25

Wet heath M15, 16

Hedgerows of native species W21-25

Wet Woodland W1-7

Dry Deciduous woodland W8-17

Coastal saltmarsh SM10-28

Coastal sand dunes SD7-18

Machair SD8

Coastal vegetated shingle SD1

Maritime cliffs and slopes MC5, 8-12; H7; CG1

Nutrient poor lakes and ponds A7, 13-14, 22-24; S4, 8-10, 19

Nutrient rich lakes and ponds A1-17, 19-21; S1-8, 10-19, 22, 24, 25, 28

Rivers and streams A1-2, 5-21; S4-7, 11-19, 22, 28

Dry heathland H1-8, 11

Dry montane heathland H4, 8-10, 12-22

Dry calcareous grassland CG1-10

Dry acid grassland U1-6, 20; SD10-11

Neutral pastures and meadows MG1-6

Neutral damp grassland MG8-13

Acid fens, mires and springs M4-8, 21, 23, 25, 27-29, 31-35

Base-rich fens, mires and springs M9-14, 22-28, 37-38; S1-3, 9-13, 24-27

Montane calcareous grassland CG9-14

Montane acid grassland U2-14, 19

Native Pinewood and juniper scrub Conifer woodlands and Juniper scrub W18-19

Inland rocks and scree CG1, 9-10; OV37-40

Montane rocks and scree CG14; OV37, 40; U15-18, 21; W20

Lowland grassland

Rock outcrops, cliffs and scree

Upland grassland

Coast

Freshwater

Bog and Wet Heath

Marsh and fen

Broadleaved woodland, hedges and 

scrub

Heathland
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Task 2. Habitat representation in the NPMS (2015-16): Defining the current resource 

Table 4 summarises habitat data received by the NPMS in 2015 and 2016. Surveyors within 

the NPMS can choose to survey habitat plots at one of three different levels: Wildflower, 

Indicator and Inventory (Walker et al., 2015). Surveyors can also choose whether to record 

at the level of the NPMS broad habitat or at the fine-scale level (see WP1 Task 1; Walker et 

al., 2015). Table 4 provides counts of annual survey visits at the fine habitat level over the 

two years of the NPMS to date. Counts for the more complete Indicator and Inventory level 

plots are shown only; the Inventory level plots are complete samples (i.e. all species should 

be recorded), whilst the shorter lists of species searched for by those surveying at the 

Indicator level have been shown to retain a high level of ecological information (Pescott et 

al., In review). 

 

The best represented fine-scale habitats are within the ‘Broadleaved woodland, hedges and 

scrub’ and the ‘Lowland grassland’ broad categories (see WP1 Task 1 above); arable field 

margins are also well represented. Work on power within the NPMS came to the general 

conclusion that around 30 plots for a species would be necessary for analysts to detect 

declines within 10 years (Pescott et al., 2016, In review); many of the fine-scale habitats 

below reach this level (Table 4), although this does not mean that any given species within a 

habitat will have 30 recorded occurrences. More work on species-level power is planned in 

WP2 Task 2.  

 

Tables 5 and 6 link NPMS habitats and species respectively to published estimates of 

responses to nitrogen deposition. In the case of habitats, these are given as critical load 

exceedance values; for species they are indicators of the direction of change source from 

individual studies and experiments. Overall, evidence for change linked to nitrogen 

deposition has been found for 51 NPMS indicator species, although this is sometimes 

contradictory between studies. Contradictory evidence may be due to statistical variance 

and/or bias, or real ecological (i.e. local context) difference. Note also that some evidence 

presented by primary studies is in the form of ordinations or other summaries, and that 

therefore individual effects on species cannot always be easily extracted. 
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Table 4. Counts of annual survey visits to plots recorded at the fine habitat level in 2015 and 2016. 

Fine-scale habitat Indicator samples Inventory samples 

Acid fens, mires and springs 30 22 

Arable field margins 104 76 

Base-rich fens, mires and springs 11 28 

Blanket bog 18 20 

Coastal saltmarsh 24 25 

Coastal sand dunes 7 29 

Coastal vegetated shingle 35 21 

Dry acid grassland 23 41 

Dry calcareous grassland 60 60 

Dry deciduous woodland 158 167 

Dry heathland 71 35 

Hedgerows of native species 200 164 

Inland rocks and scree 19 14 

Maritime cliffs and slopes 27 5 

Montane acid grassland 5 33 

Montane calcareous grassland 1 5 

Montane dry heathland 7 5 

Montane rocks and scree 4 7 

Native conifer woods and juniper scrub 7 10 

Neutral damp grassland 55 60 

Neutral pastures and meadows 105 161 

Nutrient-poor lakes and ponds 15 7 

Nutrient-rich lakes and ponds 20 41 

Raised bog 0 3 

Rivers and streams 28 37 

Wet heath 41 27 

Wet woodland 27 32 
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Table 5. NPMS fine scale habitat links to priority habitats and critical load values for nitrogen. The EUNIS classes for 

which the original critical loads were derived are given in the table below. The EUNIS classes that they have implicitly 

been extended to (through matching to NPMS fine habitats) can be derived from comparison with Table 2. 
NPMS Fine Habitat  Priority habitat Critical load exceedence value (kg N ha-1 year-1) and original 

EUNIS class (in parentheses). 
(From Hall et al., 2011; Caporn et al., 2016) 

Arable field margins Arable Field Margins Not covered 
Raised Bog Lowland raised bog 5-10 (D1) 
Blanket Bog  Blanket bog 5-10 (D1) 
Wet heath Lowland Heathland  10-20 (F4.11) 
Hedgerows of native species Hedgerows Not covered 
Wet woodland Wet Woodland 10-20 (G1) 
Dry deciduous woodland  Lowland Beech and Yew 

Woodland 
10-20 (G1.6) 

Lowland Mixed Deciduous 
Woodland 

10-15, 15-20 (G1.8; G1; G4) 

Upland Oakwood 10-15, 15-20 (G1.8; G1) 
Upland Birchwoods 10-20 (G1) 
Upland Mixed Ashwoods 15-20 (G1.A) 

Coastal saltmarsh Coastal saltmarsh 20-30 (A2.53; A2.54; A2.55) 
Coastal sand dunes Coastal sand dunes 8-15 (B1.4), 10-20 (B1.3) 
Machair Machair Not covered 
Coastal vegetated shingle Coastal vegetated shingle Not covered 
Maritime cliff and slopes Maritime cliff and slopes Not covered 
Nutrient poor lakes and ponds Oligotrophic and dystrophic 

lakes; Mesotrophic lakes; Ponds 
3-10 (C1.1) 

Nutrient rich lakes and ponds Eutrophic standing waters; 
Ponds 

Not covered 

Reedbeds Not covered 
Rivers and Streams  Rivers Not covered 
Dry heathland  Lowland Heathland 10-20 (F4.2) 
Montane dry heathland  Mountain Heaths and Willow 

Scrub 
5-15 (F2) 

Upland Heathland 10-20 (F4.11) 
Dry calcareous grassland Lowland Calcareous Grassland 15-25 (E1.26) 

Calaminarian Grasslands Not covered 
Dry acid grassland  Lowland Dry Acid Grassland 8-15, 10-15 (E1.95; E1.7)) 
Neutral pastures and meadows  Upland Hay Meadows 10-20 (E2.3) 

Lowland Meadows 20-30 (E2.2) 
Neutral damp grassland  Coastal and Floodplain Grazing 

Marsh 
Not covered 

Acid Fens, mires and springs Lowland Fens; Upland Flushes, 
Fens and Swamps 

10-15, 15-30 (D2; D4.1) 

Purple Moor Grass and Rush 
Pastures 

15-25 (E3.51) 

Base-rich fens, mires and springs  Lowland Fens; Upland Flushes, 
Fens and Swamps 

10-15, 15-25, 15-30 (D2; D4.1; D4.2) 

Montane calcareous grassland Upland Calcareous Grassland 5-10 (E4.4) 
Montane acid grassland  Mountain Heaths and Willow 

Scrub 
5-10 (E4.3) 

Conifer woods and juniper scrub Native Pine Woodlands 5-15 (G3; G3.4) 
Montane rocks and scree Mountain Heaths and Willow 

Scrub 
5-15 (E4.2; F2) 

Inland Rock Outcrop and Scree 
Habitats 

Not covered 

Inland rocks and scree Inland Rock Outcrop and Scree 
Habitats 

Not covered 

Limestone Pavements Not covered 

 

Table 6. Linking NPMS Indicator species to evidence of links with nitrogen deposition. 

See WP1 Appendix 1 below. 
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Task 3. Assessing the potential for recorder bias in the NPMS dataset 

All surveys have the potential for issues with species’ detectability or other biases, despite 

the existence of protocols and guidance (Morrison, 2016); however, this may be a particular 

issue with volunteer-based surveys (Tulloch et al., 2013; Pescott et al., 2015). The existence 

of a contemporaneous survey to the NPMS, covering an overlapping set of habitats in 

Wales, the Glastir Monitoring and Evaluation Program (GMEP; https://gmep.wales), allows 

for a test of the potential for this phenomenon to have affected NPMS data. The GMEP 

survey follows the methodology for unbiased plot locations used in the UK Countryside 

Survey (CS; Carey et al., 2008), with recording performed by contracted surveyors. The main 

reason for using GMEP data instead of the CS is the temporal match with NPMS surveys – 

the use of the CS from 2007 would introduce an additional element of uncertainty given the 

ten years since the actual surveys for the CS were conducted. GMEP data for 2014 and 2016 

(the two years of available survey data) were compared to Welsh NPMS data (for 2015 and 

2016) on the following basis: plots were matched on general broad habitats (as opposed to 

NPMS broad habitat specifically; e.g. see Norton et al., 2012) and were limited to 

comparable plot sizes. It was also established that the NPMS and GMEP 1 km square 

samples to be compared exhibited similar distributions of the land cover weightings used to 

randomly weight the selection of squares in the NPMS (Pescott et al., 2014); this means that 

bias attributable to within-grid square land covers could be excluded as a significant process 

influencing the results. Subsequently, in order to establish a common benchmark against 

which to compare plot types, the plots that were subject to complete sampling (i.e. GMEP 

and NPMS Inventory plots) were both filtered according to the species on the NPMS 

Indicator list. 

 

After performing this filtering step, two patterns were apparent: NPMS Indicator plots were 

significantly less species rich than their comparator-filtered GMEP plots, whilst filtered 

NPMS Inventory plots tended to be marginally more species rich than their GMEP 

comparators (Fig. 1); note, however, that this graphical analysis does not constitute a formal 

statistical model, but rather an indication of potential significance. If one assumes that 

GMEP data are largely without bias due to the fact that the plot placement methodology 

within squares follows a standardised protocol designed to minimise bias (Maskell et al., 

2008; note, however, that error of various types may still be present: plots in some GMEP 
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squares still encountered access issues, for example), then we can conclude that NPMS 

Indicator plots may be under-recorded, whilst NPMS Inventory plots may suffer from some 

plot-level self-selection bias towards richer habitat patches (despite the NPMS protocol). 

Another consideration relevant to the NPMS Indicator plots is that, even if the distribution 

of NPMS land-cover weights across 1 km squares is similar to that across GMEP squares, the 

explicit NPMS guidance to place plots in patches of semi-natural habitat, along with the 

provision of maps to surveyors detailing the likely locations of such habitats in a square, may 

result in more species-rich plots, even if the within-square plot selection protocol (intended 

to minimise bias) is followed. This is in keeping with the design and aims of the scheme. 

 

The NPMS was designed to report on semi-natural habitats of types under-represented by 

other national surveys, such as the CS (Carey et al., 2008). The fact, then, that fully-surveyed 

plots may be richer than plots surveyed under a completely random framework is not 

unexpected, and may simply be the result of surveyors following the provided guidance. 

However, without a review of surveyor plot placement, we cannot rule out a contribution 

from bias (and even if the majority of surveyors could be shown to have followed the NPMS 

plot placement guidance, plots in such locations could still have been chosen preferentially 

over suggested alternative locations). Finally, in the specific context of air pollution impacts, 

richer initial plots may make it easier to detect negative effects such as eutrophication; the 

desire to have plots in lower quality stands of semi-natural vegetation, in order to detect 

improvements as well as declines (Pescott et al., 2015), may be less important in this 

context.  
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Figure 1. GMEP 2014/’16 quadrats compared with Welsh NPMS plots 2015/’16.  Numbers above figure 

panels relate to broad habitats, see Table 7 below for descriptions and code numbers. Each box and 

whisker summarises the distribution of the values of each response variable in each of four datasets 

coded as follows: G = GMEP quadrat data from Wales; Id = NPMS quadrats in which only selected 

indicator species were recorded; Iv = NPMS quadrats in which all vascular plant species were recorded. 

Note, however, that the variables shown, irrespective of their survey origins, are based solely on 

presence of indicator species listed by NPMS (i.e. they were filtered according to the NPMS Indicator 

lists). Such a constraint ensures that all records in all quadrats were drawn from the same list of plant 

species, although the effort applied in searching for these species may still have differed between 

quadrats. 

 

 

Table 7. Broad habitat codes and descriptions. 

Broad Habitat code Broad Habitat 

1 Broadleaved woodland 

4 Arable 

6 Neutral grassland 

8 Acid grassland 

10 Dwarf Shrub Heath 

11 Fen, Marsh & Swamp 

12 Bog 
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Task 4. NPMS squares and their representation of important environmental gradients 

Coverage of environmental driver gradients by structured monitoring schemes is of clear 

importance for subsequent correlative research (Smart et al., 2012), but national variation 

in volunteer-based survey activity may result in unrepresentative coverage of such 

gradients, even if available locations for survey are stratified in order to increase 

geographical spread, as is the case in the NPMS.  Analyses of gradient coverage may also 

serve to highlight where environmental drivers are largely confounded at the scale of 

investigation, and will therefore also help to manage expectations and/or plan 

complementary activity at different scales that might be required to strengthen claims of 

driver-impact associations. 

 

Within the NPMS dataset, we compared all released, volunteer-allocated, and volunteer-

surveyed monads (as of February 2017) according to a set of important environmental 

variables matched at the 10 x 10 km scale (hectads; variables listed in Table 8). Figure 2 

illustrates the placement of these sets of squares according to the first two principal 

components of the ordinated data. The PCA indicates that, although there is little difference 

in the environmental coverage of allocated and surveyed monads, these are clearly 

unrepresentative of the complete set of released monads, with squares in the more humid, 

peat-covered parts of Britain being under-represented in volunteer interest and activity. The 

second principal component captures gradients of nitrogen oxides (NOy) and 

ammonia/ammonium (NHX), and there does not appear to be a clear bias relating to the 

representativeness of allocated, surveyed and all released locations along this second 

gradient. Despite the fact that the ordination axes imply that NPMS monads cover the 

pollution gradients included in the analysis, it is, however, very likely that sensitive habitats 

typical of upland Britain (e.g. raised and blanket bog) will remain under-represented for this 

comparison: axis two appears to be more driven by the presence of points at the lower end 

of axis one, suggesting that coverage of the pollution gradient is likely to be largely 

restricted to lowland areas. This will work to restrict inference for sensitive upland habitats. 

The NPMS is focusing on recruitment in the uplands as a part of its strategic plan, and, 

elsewhere, the potential for joint analyses of data with future, professional-led, ground 

surveys is likely to contribute to the filling of these gaps (P. Henrys, CEH Lancaster, pers. 

comm.)
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Figure 2. PCA of all GB hectad environmental variables available, grouped by NPMS survey status (to 

February 2017). Note that hectads with missing values for any of the environmental values are 

excluded. Calcareous bedrock (as a proportion) was logit transformed prior to entering into the PCA. 

Population density was log transformed. Ellipses represent 95% confidence intervals. The axis label 

percentages indicate the percentages of variance explained by a principal component. 
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Table 8. NPMS square PCA environmental data sources. For maps of these variables (with the 

exception of NOy) see Blockeel et al. (2014) and Pescott et al. (2015). 

Environmental variable Source and notes 

Mean altitude Integrated Hydrological Digital Terrain Model (Morris & Flavin 
1990, 1994) 

January mean temperature 
and July mean temperature 
(both 1981-2010) 

Met Office standard dataset 

Mean number of wet days 
per year (1981-2010) 

Met Office standard dataset 

NOy and NHx (keq ha-1 yr-1; 
1990-1996 mean) 

FRAME nitrogen deposition model (Dore et al. 2007). 1990-1996 
was chosen to represent a recent period of high emissions – the 
important thing here is to capture relevant spatial variation, 
rather than absolute values. 

Arable land ‘Arable and horticulture’ cover class, Land Cover Map 2007 
(Morton et al. 2011) 

Peaty soils ‘Bog’ cover class, Land Cover Map 2007 (Morton et al. 2011) 

Calcareous rocks BGS Parent Material Model Version 6 (Great Britain). Based on 
bedrocks with CaCO3 contents classified as High (e.g. chalk), 
Variable (high) (e.g. interbedded limestone and mudstone beds) 
and Moderate (e.g. dolomitic limestone, calcareous mudstone) 

Population density Gridded Population of the World, Version 3 (CIESIN 2005) 
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Appendix 1. NPMS species and indicators of nitrogen deposition 
Table 6. Linking NPMS Indicator species to evidence of links with nitrogen deposition. 
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Achillea millefolium pos  1   positive    

Aethusa cynapium pos  2       

Agrimonia eupatoria pos  2       

Agrostis capillaris neg  2   positive    

Ajuga reptans pos  1       

Alchemilla alpina pos  1  small magnitude     

Alisma plantago-aquatica pos  1       

Allium ursinum pos  1       

Alnus glutinosa pos  1       

Alopecurus geniculatus pos  2       

Alopecurus myosuroides neg  2       

Ammophila arenaria pos  2  negative  negative   

Anagallis arvensis pos  1       

Anagallis tenella pos  1       

Anemone nemorosa pos  1       

Angelica sylvestris pos  1       

Antennaria dioica pos  1       

Anthemis cotula pos  2       

Anthoxanthum odoratum pos/neg  2   inconsistent    

Anthriscus sylvestris neg  1       

Anthyllis vulneraria pos  1       

Apium graveolens pos  1       

Apium nodiflorum pos  2       

Arabis hirsuta pos  2       
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Arctium minus / 
nemorosum pos 1 1       

Arctostaphylos uva-ursi pos  2  negative     

Armeria maritima pos  1       

Arum maculatum pos  1       
Asplenium ceterach 
(Ceterach officinarum) pos  1       

Asplenium ruta-muraria pos  2       
Asplenium scolopendrium  
(Phyllitis scolopendrium) pos  1       

Asplenium trichomanes pos  1       

Aster tripolium pos  1       

Atriplex portulacoides pos  2       

Atriplex sp. pos 1 1       
Avenula pratense 
(Helictotrichon pratense) pos  2       

Azolla filiculoides neg  2       

Bellis perennis pos  1       

Berula erecta pos  2       

Beta vulgaris pos  1       
Betonica officinalis 
(Stachys officinalis) pos  1  negative     

Betula pubescens / pendula pos/neg 1 1       

Bidens tripartita pos  2       

Blackstonia perfoliata pos  1       

Blechnum spicant pos  1       

Brachypodium pinnatum neg  2       

Briza media pos  1     negative  
Bromopsis erecta pos  2  negative     

Bromus hordeaceus pos  2       

Buddleja davidii neg  1       

Butomus umbellatus pos  2       
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Calluna vulgaris pos  1 negative      

Caltha palustris pos  1       

Calystegia sepium pos  1       

Campanula glomerata pos  1  negative     

Campanula latifolia pos  2       

Campanula rotundifolia pos  1 negative  Inconsistent  negative  
Campanula trachelium pos  2       

Capsella bursa-pastoris pos  1       

Cardamine pratensis pos  1       

Carduus nutans pos  2       

Carex arenaria pos  2       

Carex bigelowii pos  2       

Carex echinata pos  2       

Carex flacca pos  2       

Carex limosa pos  2  negative     

Carex nigra pos  2       

Carex otrubae pos  2       

Carex panicea pos  2    positive   

Carex paniculata pos  1       

Carex pendula pos  1       

Carex pulicaris pos  2       

Carex remota pos  2       

Carex rostrata pos  2       

Carex sylvatica pos  2       

Carlina vulgaris pos  2  negative     

Carpobotus edulis neg  1       

Centaurea scabiosa pos  1  

small 
magnitude/negative     

Centranthus ruber neg  1       

Cerastium arvense pos  2  negative     

Cerastium fontanum pos  1       
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Cerastium glomeratum pos  2       

Ceratocapnos claviculata pos  1       

Chaenorhinum minus pos  2       

Chaerophyllum temulum pos  2       

Chenopodium album pos  1       
Chrysosplenium 
oppositifolium pos  1       

Circaea lutetiana pos  1       

Cirsium acaule pos  1       

Cirsium arvense neg  1       

Cirsium dissectum pos  2       

Cirsium heterophyllum pos  2       

Cirsium palustre pos  1       

Cirsium vulgare pos  1       

Clematis vitalba pos  1       

Clinopodium acinos pos  2       

Cochlearia sp. pos 1 1       
Coeloglossum viride 
(Dactylorhiza viridis) pos  2       

Colchicum autumnale pos  1       
Comarum palustre 
(Potentilla palustris) pos  1       

Conifer seedlings / saplings neg 1 1       

Conopodium majus pos  2       

Cornus sanguinea pos  2       

Corylus avellana pos  1       

Crambe maritima pos  1       

Crassula helmsii neg  2       

Crataegus monogyna pos/neg  1       

Crepis paludosa pos  2       

Crithmum maritimum pos  1       
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Cruciata laevipes pos  1       

Cryptogramma crispa pos  1  small magnitude     

Cuscuta epithymum pos  1       

Cynoglossum officinale pos  2  negative     

Cynosurus cristatus pos  1       

Cystopteris fragilis pos  2       

Cytisus scoparius pos  2       

Dactylorhiza fuchsii pos  2       

Dactylorhiza maculata pos  2       

Dactylorhiza praetermissa pos  2       

Daphne laureola pos  2       

Daucus carota pos  2  negative     

Deschampsia cespitosa pos/neg  1       

Deschampsia flexuosa pos/neg  2   inconsistent positive  positive 

Digitalis purpurea pos  1       

Diphasiastrum alpinum pos  2       

Dipsacus fullonum pos  1       

Drosera anglica pos  2       

Drosera intermedia pos  2       

Drosera rotundifolia pos  1       

Eleocharis multicaulis pos  2       

Elodea canadensis / nutallii neg 1 1       

Elytrigia atherica pos  2       

Empetrum nigrum pos  1       

Epilobium hirsutum pos  1       

Equisetum arvense pos  2       

Equisetum fluviatile pos  2       

Equisetum palustre pos  2       

Erica cinerea pos  1       

Erica tetralix pos  1       

Eriophorum angustifolium pos  2       
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Eriophorum vaginatum pos  2    positive   

Euonymus europaeus pos  2       

Euphorbia amygdaloides pos  1       

Euphorbia exigua pos  1       

Euphorbia helioscopia pos  1       

Filago minima pos  2       

Filipendula ulmaria pos  1       

Filipendula vulgaris pos  1       

Fragaria vesca pos  1       

Fumaria sp. pos 1 1       
Galium album (Galium 
mollugo) pos  1       

Galium aparine neg  1       

Galium boreale pos  2       

Galium odoratum pos  1       

Galium palustre pos  2       

Galium saxatile pos  1   inconsistent    

Galium sterneri pos  2     negative  
Galium verum pos  1       

Genista anglica pos  2       

Genista tinctoria pos  2       

Gentianella amarella pos  2     negative  
Geranium robertianum pos  1       

Geranium sanguineum pos  2       

Geranium sylvaticum pos  2       

Geum urbanum pos  1       

Glaucium flavum pos  1       

Glaux maritima pos  2       
Glebionis segetum 
(Chrysanthemum segetum) pos  2       

Glechoma hederacea pos  1       
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Glyceria maxima neg  2       

Gymnadenia conopsea pos  2       

Gymnocarpium dryopteris pos  2       

Hedera helix pos/neg  1       
Helianthemum 
nummularium pos  1       
Helminthotheca echiodes 
(Picris echioides) pos  2       
Heracleum 
mantegazzianum neg  2       

Heracleum sphondylium pos  1       

Hippocrepis comosa pos  1       

Hippuris vulgaris pos  1       

Holcus lanatus pos  2   positive    

Honckenya peploides pos  2       

Hordeum secalinum pos  2       

Hottonia palustris pos  2       

Huperzia selago pos  2       

Hyacinthoides non-scripta pos  1       

Hydrocharis morsus-ranae pos  1       

Hydrocotyle vulgaris pos  1       

Hypericum elodes pos  2       

Hypericum tetrapterum pos  2       

Hypochaeris radicata pos  2   inconsistent    

Ilex aquifolium pos  1       

Impatiens glandulifera neg  1       

Inula conyzae pos  2       

Iris pseudacorus pos  1       

Jasione montana pos  2       

Juncus gerardii pos  2       
Juncus inflexus / effusus / 
conglomeratus pos/neg 1 1       
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Juncus squarrosus pos  2       

Juniperus communis pos  1       

Kickxia elatine pos  1       

Kickxia spuria pos  2       

Knautia arvensis pos  2  hump-backed     

Lactuca serriola pos  2       

Lamiastrum galeobdolon pos  1       

Lamium amplexicaule pos  2       

Lathyrus linifolius pos  2       

Lathyrus pratensis pos  1       

Lemna gibba pos  2       

Lemna trisulca pos  1       

Leucanthemum vulgare pos  1       

Ligusticum scoticum pos  2       

Limonium sp. pos 1 1       

Linum catharticum pos  1     negative  
Littorella uniflora pos  1       

Lobelia dortmanna pos  2       

Lonicera periclymenum pos  1       

Lotus corniculatus pos  1   inconsistent negative   

Lotus pedunculatus pos  1       

Luzula multiflora pos  2       

Luzula sylvatica pos  2       

Lycopodium clavatum pos  2  small magnitude     

Lycopus europaeus pos  1       

Lysichiton americanus neg  1       

Lysimachia nemorum pos  1       

Lysimachia vulgaris pos  1       

Lythrum salicaria pos  1       

Matricaria recutita pos  2       

Medicago lupulina pos  2       
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Melampyrum pratense pos  2       

Melica uniflora pos  1       

Mentha aquatica pos  1       

Menyanthes trifoliata pos  1       

Mercurialis perennis pos  1       

Milium effusum pos  2       

Minuartia verna pos  2       

Moehringia trinervia pos  1       

Molinia caerulea pos  2 negative  inconsistent   positive 

Montia fontana pos  2       

Mycelis muralis pos  2       

Myrica gale pos  2       

Myriophyllum aquaticum neg  2       

Nardus stricta pos  2   inconsistent positive   

Narthecium ossifragum pos  1       
Nasturtium officinale 
(Rorippa nasturtium-
aquaticum) pos  2       
Neottia cordata (Listera 
cordata) pos  2       
Neottia ovata (Listera 
ovata) pos  2       

Nuphar lutea pos  1       

Nymphaea alba pos  1       

Odontites vernus pos  2       

Ophioglossum vulgatum pos  1       

Orchis mascula pos  1       

Oreopteris limbosperma pos  2       

Origanum vulgare pos  1       

Ornithopus perpusillus pos  2  negative     

Osmunda regalis pos  1       

Oxalis acetosella pos  1       
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Oxyria digyna pos  1       

Pastinaca sativa pos  2  small magnitude     

Pedicularis palustris pos  2       

Pedicularis sylvatica pos  2       

Persicaria amphibia pos  1       

Persicaria bistorta pos  1       

Persicaria lapathifolia pos  2       

Persicaria vivipara pos  2  

small 
magnitude/hump-
backed/negative     

Petasites hybridus pos  2       

Phalaris arundinacea pos  2       

Pilosella officinarum pos  1       

Pimpinella major pos  2       

Pinguicula lusitanica pos  2       

Pinguicula vulgaris pos  1       

Plantago coronopus pos  1       

Plantago lanceolata pos  1 negative  inconsistent    

Plantago maritima pos  1       

Plantago media pos  1       

Platanthera bifolia pos  2  negative     

Polygala serpyllifolia pos 1 1   negative    

Polygala vulgaris pos 1 1   inconsistent    

Potamogeton crispus pos  1       

Potamogeton perfoliatus pos  2       
Potamogeton 
polygonifolius pos  1       

Potentilla anserina pos  1       

Potentilla erecta pos  1   inconsistent    

Potentilla reptans pos  1       

Potentilla sterilis pos  1       
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Poterium sanguisorba 
(Sanguisorba minor) pos  1  inconsistent     

Primula veris pos  1       

Primula vulgaris pos  1       

Prunella vulgaris pos  1       

Prunus spinosa pos/neg  1       

Pteridium aquilinum neg  1       

Puccinellia maritima pos  2       

Ranunculus acris pos  1       

Ranunculus bulbosus pos  1       

Ranunculus repens pos/neg  1       

Ranunculus sceleratus pos  1       
Ranunculus sp. (water-
crowfoots) pos 1 1       

Reseda lutea pos  1       

Reseda luteola pos  1       

Rhamnus cathartica pos  2       

Rhinanthus minor pos  1       

Rhododendron ponticum neg  1       

Rhynchospora alba pos  2       

Rorippa palustris pos  2       

Rosa rugosa neg  1       

Rubus chamaemorus pos  2  small magnitude     

Rubus fruticosus neg  1       

Rubus saxatilis pos  2  hump-backed     

Rumex acetosa pos  1   positive    

Rumex acetosella pos  1   inconsistent    

Rumex crispus pos  1       
Rumex crispus / 
obtusifolius neg 1 1       

Rumex hydrolapathum pos  2       
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Ruscus aculeatus pos  2       

Sagina apetala pos  2       

Sagina nodosa pos  2       

Sagittaria sagittifolia pos  1       

Salix repens pos  1       

Salvia verbenaca pos  2       

Sanguisorba officinalis pos  1       

Sanicula europaea pos  1       

Saxifraga aizoides pos  2       

Saxifraga granulata pos  1       

Saxifraga hypnoides pos  2       

Saxifraga oppositifolia pos  1       

Saxifraga stellaris pos  2       

Saxifraga tridactylites pos  1       

Scabiosa columbaria pos  2       
Schoenoplectus lacustris 
(Scirpus lacustris) pos  2       

Schoenus nigricans pos  2       

Scirpus sylvaticus pos  2       

Scutellaria galericulata pos  2       

Scutellaria minor pos  1       

Sedum acre pos  2       

Sedum anglicum pos  2       

Sedum rosea pos  1       

Senecio aquaticus pos  2       

Senecio erucifolius pos  2       

Senecio jacobaea pos/neg  1       

Serratula tinctoria pos  2       

Sherardia arvensis pos  1       

Silaum silaus pos  2       

Silene dioica pos  1       
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Silene flos-cuculi (Lychnis 
flos-cuculi) pos  1       

Silene latifolia pos  1       

Silene uniflora pos  1       

Solanum dulcamara pos  1       

Solidago virgaurea pos  2   inconsistent    

Sonchus arvensis pos  2       

Sonchus asper pos  2       

Sonchus oleraceus pos  2       

Sorbus aucuparia pos  1       

Sparganium erectum pos  2       

Spartina anglica neg  2       

Spergularia marina pos  2       

Spergularia media pos  2       

Spergularia rubra pos  2       

Spirodella polyrhiza pos  2       

Stachys palustris pos  2       

Stellaria graminea pos  1       

Stellaria holostea pos  1       

Stellaria media neg  1       

Suaeda maritima pos  2       

Succisa pratensis pos  1   negative    

Symphoricarpos albus neg  1       

Symphytum officinale pos  2       

Tamus communis pos  1       

Teucrium scorodonia pos  1       

Thalictrum flavum pos  2       

Thalictrum minus pos  2       
Thymus polytrichus / 
pulegioides pos 1 1       

Torilis japonica pos  2       
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Trichophorum germanicum 
 (Trichophorum 
cespitosum) pos  2       

Trientalis europaea pos  2  

small 
magnitude/hump-

backed     

Trifolium campestre pos  2       

Trifolium dubium pos  2       

Trifolium fragiferum pos  2       

Trifolium pratense pos  1       

Trifolium repens pos  1       

Trifolium striatum pos  2       

Triglochin maritimum pos  2       

Triglochin palustre pos  2       
Tripleurospermum 
inodorum pos  2       

Trollius europaeus pos  1       

Typha latifolia pos  1       

Ulex europaeus neg  1       

Ulex gallii / minor pos 1 1       

Urtica dioica pos/neg  1       

Vaccinium myrtillus pos  1       

Vaccinium oxycoccos pos  1       

Vaccinium vitis-idaea pos  1  negative     

Valeriana dioica pos  1       

Valeriana officinalis pos  1       

Valerianella locusta pos  2       

Veronica arvensis pos  1       

Veronica beccabunga pos  2       

Veronica montana pos  2       

Veronica officinalis pos  1   inconsistent    

Vicia cracca pos  1       
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Vicia hirsuta pos  1       

Viola arvensis pos  1       

Viola hirta pos  2       

Viola lutea pos  2       

Viola palustris pos  1       
Viola riviniana / 
reichanbachiana pos 1 1       
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Work Package 2  

Task 1: Metrics of pollution impacts and the NPMS 
 

Introduction 
The body of work on detecting the impacts of pollutants on biodiversity is extensive (Rowe et al., 

2017). Where nitrogen (N) deposition is concerned, several recent projects have evaluated the types 

of metrics that are likely to provide the most information on change in species, communities, and 

other aspects of habitat structure and function (Emmett et al., 2011; Rowe et al., 2017; Stevens et 

al., 2011c). Given that work on N is the most developed among the various air pollutants, we briefly 

summarise and review the conclusions of this body of work below. This is followed by a short 

consideration of how these findings may relate to other pollutants, with a particular focus on ozone. 

The key suggested metrics contributable by the National Plant Monitoring Scheme (NPMS) are 

considered throughout. 

Stevens et al. (2011c) examined species and habitat structural trends for acidic and calcareous 

grassland, heathland and bogs across eight large datasets. These included datasets that were largely 

the result of volunteer effort (typically larger-scale1 ‘Atlas’-type data), as well as several datasets 

from professional surveys (smaller-scale quadrat datasets). The larger-scale analyses of Stevens et al. 

(2011c) were also presented in Henrys et al. (2011; for vascular plants) and Stevens et al. (2012; for 

lichens). The significant relationships detected by Stevens et al. (2011c) for NPMS indicator species 

were extracted from this report and are presented within Appendix 1 of Work Package 1 (WP1; 

Pescott et al., In press.)  

Emmett et al. (2011) further considered the results of Stevens et al. (2011c), placing them in the 

context of UK biodiversity conservation objectives, and making specific recommendations for the 

improvement of “broad scale vegetation surveillance schemes”. These recommendations are 

reproduced in Table 1 below; information relating to the status of the recommendation in relation to 

the NPMS has been added for this report. 

                                                           
1 “Small” and “large” scale are used here in the loose sense of most ecologists, rather than the strict sense of 
geographers. That is, small-scale is used to refer to small spatial units (e.g. on the order of metres), whereas 
large-scale is used to refer to much larger units (e.g. on the order of kilometres). 
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Table 1. The recommendations of Emmett et al. (2011) for changes to field-based surveillance schemes for improving the 
detection and attribution of N pollution effects at different scales. U = unsuitable; E = essential; D = desirable. Columns one 
to four are reproduced verbatim from Emmett et al. (2011). 

Recommendation 

Broad-
scale 

hectad / 
tetrad 

Broad-
scale 

quadrat 

Site-
specific 

Currently used in 
NPMS? / (Possible 
future addition?) 

Use a defined area for recording, preferably 2x2m. 
U E E 

Yes 
(but a slightly 

larger unit) 

Record quadrat locations so they can be re-found. U E E Yes 

Record presence of taxa known to be N-sensitive. 
D D D 

In part  
(see WP 1, 

Appendix 1) 

Identify all taxa to species level, including bryophytes 
and lichens. 

D D D 

No 
(Vascular plants 

only, and coverage  
dependent on 

participation level) 

Estimate cover as well as presence. U D D Yes 

Estimate grass:forb2 cover ratio in the field. U D E No  (Possible) 

Record the Broad Habitat within which each 
measurement is taken. 

E E E 

Yes 
(See WP1 for more 

information on 
NPMS habitat 

correspondences) 

Record the height of the vegetation (including tree 
canopy) e.g. by visual estimation or using a laser 
range-finder. 

D D D In part 

Record the standing biomass of the vegetation e.g. by 
harvesting a defined area. 

U U D No (No) 

Record the potential production of the vegetation e.g. 
by installing exclosures and measuring peak biomass. 

U U D No (No) 

Sample soil and analyse for simple indicators of 
acidification and eutrophication (see below). Sampling 
the 0-15 cm depth layer allows comparison with the 
large Countryside Survey dataset. 

U D/E D/E No (Possible) 

Measure soil pH. U E E No (Possible) 

Maintain accessible databases, including metadata on 
units and methods, preferably on the National 
Biodiversity Network (http://www.nbn.org.uk/). 

U D D 
Yes 

(Data archived on 
NBN and EIDC) 

Measure soil total N% and C%. U D D No (Possible) 

Measure soil available N. U D D No (Possible) 

Measure soil organic horizon depth. U D D No (Possible) 

Measure N content in standard plant tissue. U D D No (Possible) 

Record the location of soil sampling in relation to 
floristic recording. 

U E E No (Possible) 

Install suction lysimeters to sample soil solution and 
analyses for NH4, NO3 and if possible dissolved organic 
N. 

U U D No (No) 

 

Rowe et al. (2017) also reviewed a large set of ecological measures of N deposition (Ndep). Their 

most relevant conclusions for the current task are reproduced in Table 2 below. The various 

conclusions and recommendations of these reports are further considered below at the two 

different scales mentioned above: the plot scale, and the larger, ‘Atlas’-type scales of 1 x 1, 2 x 2 and 

10 x 10 km. Other relevant studies are also discussed as appropriate.

                                                           
2 See footnote in Table 3 below. 
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Table 2. Recommended metrics for monitoring the ecological impacts of Ndep. The first four columns are transcribed 
verbatim from Rowe et al. (2017), except for where square-bracketed clarifications have been inserted. 

Metric Appropriate for Recommended 
calculation method 

Evaluation Considerations for 
NPMS 

Mean 
Ellenberg N 

Habitats where 
relationship with 
deposition has been 
demonstrated. All 
deposition rates. 

Record plant species 
present, calculate mean 
Ellenberg N, and 
compare with typical 
values for the habitat 
e.g. using relationships 
from Stevens et al. 
(2011c) 

Pros: well-related to 
theoretical and 
observed effects of N 
on species-
assemblages; can be 
modelled and also 
easily measured. 
Cons: affected by other 
factors other than N; 
[precise ecological] 
meaning not 
immediately present.  

Indicator (and 
Wildflower) plots only 
have a subset of 
species present. This 
may affect the 
sensitivity of the 
metric’s response to 
gradients of, or 
temporal change in, N 
deposition. 

Species 
richness 

Grasslands, potentially 
other habitats such as 
mires. All deposition 
rates. 

Record plant and lichen 
species present, 
calculate species 
richness, and compare 
with typical values for 
the habitat e.g. using 
relationships from 
Maskell et al. (2010)  

Pros: readily 
understood. 
Cons: affected by other 
factors other than N; 
not applicable to all 
habitats. 
 

As above. 

Habitat 
Suitability 
Index (HSI) 

All habitats. All 
deposition rates. 

Mean simulated habitat 
suitability for ‘species 
of interest’ (Posch et 
al., 2014) 

Pros: potentially better-
related to ‘favourable 
conservation status’ 
[(JNCC, 2004)] than 
species richness. 
Cons: needs careful and 
transparent definition. 

As above.  
The HSI is based on 
(empirically-based) 
models of species’ 
responses to key 
gradients. However, 
the placement of plots 
in HSI ‘space’ will still 
be limited by the 
reduced species 
information available 
for NPMS Indicator and 
Wildflower plots. 

 

Synthesis 

Data at small-scales 

Within quadrat datasets, ordination methods such as constrained correspondence analysis (CCA) 

have often been used to examine the relationships between pollutant driver variables and individual 

species’ responses (Stevens et al., 2009, 2011b, 2011c). These analyses work on the basis of species’ 

cover values (including zeros) within small plots (Kent, 2012). Other approaches to quadrat datasets 

include regression-type modelling of plot summary metrics (e.g. species richness, average Ellenberg 

Nitrogen values; Table 2). For acid grassland, Stevens et al. (2009) investigated the dataset of 

Stevens et al. (2004) and data from the UK Countryside Survey within this framework. These authors 

found that the ratio of graminoid:forb covers within a plot exhibited the strongest relationship to 

Ndep across the two datasets (a result also implied by the geographically broader study of Stevens 

et al., 2011a), although species richness and forb richness were also highlighted as Ndep indicators 

with potential value for this habitat. Maskell et al. (2010) expanded this general approach to the 

1998 Countryside Survey dataset, identifying a number of relationships between Ndep and potential 

indicators in heathland, acid grassland, and calcareous grassland plots. In acid grassland and 

heathland, trait changes indicated that acidification was the main impact of Ndep, whilst a main 

impact of eutrophication was suggested for calcareous grasslands (note that other, apparently less 

significant impacts, were also suggested for these habitats by the study of Maskell et al. 2010). 
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The study of Maskell et al. (2010) is an important piece of evidence for correlative studies of Ndep, 

as it demonstrated that its effects are detectable in a national-scale observation network not 

specifically designed to detect the particular impacts of that pollutant class (unlike the focused study 

of Stevens et al. 2004), whilst controlling for other variables. Partly for this reason, Maskell et al. 

argued that the impact of Ndep on habitats is likely to be significant across the UK. More recently, 

Field et al. (2014) assembled a new dataset of field observations representing several habitats (acid 

grassland, bog, lowland heath, upland heath, and sand dune), and subjected these to a standard 

regression-based analysis in order to detect relationships between species richness and Ndep. Field 

et al. reported that, “in every habitat, we found reduced species richness and changed species 

composition associated with higher nitrogen deposition, with remarkable consistency in species loss 

across ecosystem types”; graminoid cover was also found to increase. Note that one potential 

weakness is many of these field-based studies is the failure to include spatial auto-correlation in 

analyses; additionally, many studies in this area (Field et al., 2014; Stevens et al., 2004, 2010) have 

also used stepwise variable selection to simplify regression models, which is not a recommended 

strategy (e.g. Whittingham et al., 2006).3 Maskell et al. (2010) is one of the few studies not to have 

used this method, and to have taken into account hierarchical variance structures in analyses – 

another reason to place confidence in the relationships between Ndep and species richness 

estimated by this piece of work. 

Rowe et al. (2016) took a rather different approach to the issue of Ndep impacts on habitats, 

surveying conservation managers in order to discover which metrics this group took as indicators of 

habitat quality. The number of positive indicator species (sensu JNCC, 2004) present was correlated 

with habitat quality in seven of the nine habitat classes addressed by the study. This result perhaps 

tells us more about how conservation managers are used to evaluating sites than about the ecology 

of Ndep impacts, but the priorities of conservation professionals will clearly be of importance in 

determining management, and knowing how ‘quality’ is perceived on the ground can be as 

important as abstract, generalised measures constructed from national datasets. It is perhaps also 

more likely to have links to the perceptions of users of the countryside, i.e. there is an obvious link to 

ecosystem “cultural services” (Kareiva et al., 2011). 

Payne et al. (2013) used both the dataset of Stevens et al. (2004), and another two heathland 

datasets (Caporn et al., 2009; Edmondson et al., 2010), to establish multivariate regression-based 

“transfer functions” (Telford and Birks, 2005). These use estimated species-environment 

relationships to predict new environments based on new plot observations. Although they reported 

promising results, it is worth noting that Payne et al. (2013) only tested their transfer functions in 

the context of Ndep, and that the inclusion of other, confounding, environmental variables could 

strongly influence results (Telford and Birks, 2005). Typically transfer functions only include variables 

found to explain significant, non-confounded, variation in initial multivariate analyses (e.g. Davies et 

al., 2002). 

Stevens et al. (2010) also used the dataset of Stevens et al. (2004) to investigate the potential of 

other indicator metrics at the plot scale in calcifugous (i.e. acidic) grassland. Specifically, mean ‘CSR’ 

(competitor-stress tolerator-ruderal) signatures (Grime et al., 2007), mean cover weighted and 

unweighted Ellenberg N (fertility) and R (acidity/pH) were investigated, as was an index of acid soil 

indicator species. Only Ellenberg R scores and the index of soil acidity indicated significant 

relationships with Ndep, although the authors note that a number of other studies have identified 

                                                           
3 The biostatistician Frank E. Harrell, in his Regression Modelling Strategies (p. 67, 2015, 2nd Ed., Springer), 
notes “if this procedure [stepwise variable selection] had just been proposed as a statistical method, it would 
most likely be rejected because it violates every principle of statistical estimation and hypothesis testing.” 
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significant links between Ndep and Ellenberg N at the plot scale across different habitats (e.g. Bennie 

et al., 2006; Pitcairn et al., 2002; Smart et al., 2005).  

Emmett et al. (2011) summarised their recommendations for the “analysis of variables that can be 

derived from field data, to improve detection and attribution of N pollution effects”. This is 

reproduced below (Table 3), with additional comments on the NPMS provided. 

Table 3. Emmett et al. (2011) recommendations for the “analysis of variables that can be derived from field data, to 

improve detection and attribution of N pollution effects”, with comments on the possibility of the use of NPMS data for the 

production of the recommended metrics. 

Recommendation  
(Emmett et al. 2011) 

Cost  
(Emmett et al. 2011) 

Comments in relation to 
NPMS 

Analyse floristic presence/cover data 
for species richness and Shannon 
diversity/evenness index 

Low if data exist Straightforward for Inventory (i.e. 
full) plots. Survey level would need to 
be included as a covariate to account 
for the effects of partial surveying at 
the Indicator and Wildflower levels. 

Analyse floristic presence/cover data 
using species-groups based on: 

Low if data exist See individual metrics below. 

 Proven N-sensitivity Low if data exist Straightforward for Inventory plots. 
See WP1, Appendix 1 for a cross-
tabulation of key N indicators from 
the literature alongside NPMS 
Indicator status. 

 Ellenberg N score Low if data exist Straightforward for Inventory (i.e. 
full) plots. Survey level could be 
included as a covariate to account for 
the effects of partial surveying at the 
Indicator and Wildflower levels. 

 Ellenberg R score Low if data exist Straightforward for Inventory (i.e. 
full) plots. Survey level could be 
included as a covariate to account for 
the effects of partial surveying at the 
Indicator and Wildflower levels. 

 Grass:forb cover ratio4 Low if data exist Not estimated directly by surveyors, 
but could be calculated for Inventory 
plots. 

 Typical height of present species Low if data exist Straightforward for Inventory (i.e. 
full) plots. Survey level could be 
included as a covariate to account for 
the effects of partial surveying at the 
Indicator and Wildflower levels. 

 Typical Specific Leaf Area of 
present species 

Low if data exist Straightforward for Inventory (i.e. 
full) plots. Survey level could be 
included as a covariate to account for 
the effects of partial surveying at the 
Indicator and Wildflower levels. 

Maintain accessible databases, 
including metadata on units and 
methods, preferably on the NBN. 

Medium NPMS data are archived in full on the 
EIDC and data.gov.uk. Species 
occurrence data are sent to the NBN 
at full resolution, except for Northern 
Ireland (1 x 1 km resolution). 

 

                                                           
4 Note that Stevens et al. (2009) investigated graminoid:forb cover ratio, rather than grass:forb. Grass:forb was 
specifically investigated in Maskell et al. (2010). Graminoid means ‘grass-like’, and normally covers grasses, 
sedges and rushes. 
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Few Ndep studies have investigated the percentage-cover responses of individual species in a 

univariate context (i.e. outside of the context of plot data), although Stevens et al. (2009) present 

eight bivariate plots charting the relationship between species percentage cover and Ndep. 

However, all of these have low R2 values, and it is not clear that the peculiar distributional properties 

of percentage cover data were properly accounted for in these analyses (e.g. the moss Hylocomium 

splendens appears to have a strong decreasing relationship with Ndep in Fig. 2b of Stevens et al. 

(2009), but the R2 reported is one of the weakest at 0.02). These species-specific relationships could 

be profitably reinvestigated using the zero-inflated Beta distribution, which is better suited to 

percentage cover data, and can change (ecological) conclusions (Irvine et al., 2016). 

Habitat quality metrics 

One final area that should be considered for plot data is the construction of indicator metrics based 

on assessments of stand quality. These are essentially indices that are constructed in order to 

measure some conception of the intrinsic value of a community. They are closely related to metrics 

constructed from Ellenberg values or intrinsic plant traits such as Specific Leaf Area, in that they 

average over, or perform some other type of mathematical operation on, a number of species, each 

of which has been assigned some indicator value (e.g. of habitat quality or representativeness). 

Some examples of these follow: 

 Rowe et al. (2011) construct a habitat-specific quality index from empirical species-specific 

niche models originally fitted to the extensive Countryside Survey datasets (Henrys et al., 

2015; Smart et al., 2010). The site-specific suitability (based on modelled or measured 

abiotic variables, namely pH, soil C:N, N and S deposition) for each species is then estimated 

for the relevant set of habitat positive and negative indicators. In this case the Common 

Standards Monitoring species are used (JNCC, 2004). The final metric is the average of the 

positive indicator species relative suitability, minus the same measure for the negative 

indicators. That is, higher scoring sites will be, in theory, more likely to have positive than 

negative indicators. Rowe et al. (2009) describe the same method. 

 Posch et al. (2014) present a similar approach to Rowe et al. (2011), this being the ‘Habitat 
Suitability Index’ (HSI) recommended by Rowe et al. (2017; see Table 2). The HSI is 
essentially the same as the indicator of Rowe et al. (2011), except for the fact that negative 
indicators are not included. That is, the HSI is the average relative suitability of the relevant 
positive indicators for the habitat under consideration. Where the site-specific and 
maximum suitabilities are the outputs of pre-existing niche models (previously 
parameterised using extensive national plot datasets as described above). 
 

Ultimately these indicators either require well-parameterised niche models (Rowe et al., 2011, 

2015), and the abiotic data with which to make site-specific estimates for sets of species, or the 

acceptance of a set of broader quality indicators, such as a species’ national frequency (at some 

agreed scale) or standard conservation value, which have also been linked to models of abiotic 

processes and pollutant deposition (Van Dobben and Wamelink, 2009; Van Dobben et al., 2015). Van 

Dobben et al. (2015) review the area of “plant species diversity indicators for use in the computation 

of critical loads and dynamic risk assessments”. These authors review a number of basic plant 

diversity indicators, and cover similar ground to Rowe et al. (2015) and van Dobben and Wamelink 

(2009). 

Although the HSI, and related approaches, are well-developed techniques, they may not be 

immediately suitable for the NPMS. Plant communities as recorded in the NPMS would have to be 

back-transformed to the implied abiotic variables, which could then be back-transformed to 

estimated pollutant loads (the idea here is similar to the transfer functions of Payne et al. 2013). As 
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mentioned above, another (not mutually exclusive) option would be to estimate, or measure, 

environmental variables at sites for use in existing empirical niche models, with the resulting species’ 

suitabilities potentially then being combined into an HSI (Van Dobben et al., 2015; Table 2). In theory 

such measures could then be compared to what was actually recorded by surveyors. These options 

are similar to the integration of national datasets with local evidence suggested by Jones et al. 

(2016). These are interesting areas to consider for the future of the utility of NPMS data, but they do 

not appear to be short-term answers to the question of producing cost-efficient air pollution 

indicators using NPMS data. 

Data at large-scales 

Stevens et al. (2011c) and Henrys et al. (2011) investigated a number of UK surveillance networks for 

their potential to detect signals relating species frequencies to Ndep. At a large scale (2 x 2 and 10 x 

10 km) two datasets from the Botanical Society for Britain and Ireland (BSBI) were used. One is a 

national Atlas dataset at 10 x 10 km (Preston et al., 2002), the other the result of a structured, 

systematic sample of UK tetrads (2 x 2 km) discussed in Braithwaite et al. (2006). (See also Pescott et 

al., 2015 for general discussion of these datasets). 

These studies were restricted to species at intermediate frequencies in the datasets, this is required 

for the detection of spatial or temporal relationships with covariates at the scale analysed (Henrys et 

al. 2011). The smaller the scale the greater the number of species that are likely to be analysable. 

Species-broad habitat associations from PLANTATT (Hill et al., 2004), along with land cover mapping 

(Land Cover Map 2007) were used in order to restrict analyses of change to species populations’ 

within particular habitats. That is, species presence data was only analysed within that set of grid 

squares containing land cover types associated with that species’ characteristic broad habitat 

(Henrys et al., 2011; Stevens et al., 2011c).  

Overall, mean Ellenberg N showed “a significant increase with increasing N deposition in almost all 

habitats across both surveys [Preston et al. 2002; Braithwaite et al. 2006] indicating increased 

fertility” (Henrys et al., 2011). In addition, “many individual species showed strong relationships with 

N deposition, and clear negative trends in species prevalence to increasing nitrogen were found in all 

habitats”. (Such species were extracted from Stevens et al. 2011c under Work Package 1 of the 

current report). 

The only other significant large-scale investigation into the impacts of air pollutants on plant species 

or vegetation of which we are currently aware is the work of McClean et al. (2011). These authors 

also utilised the 10 x 10 km Atlas data presented in Preston et al. (2002), but constructed lists of 

species lost from particular grid cells post-1986. The mean Ellenberg N of such ‘lost’ species (per grid 

cell) was compared with the mean post-1986 signal. This difference was then analysed in a 

regression framework, with estimates of both reduced and oxidised N included. Among other 

variables, reduced N was found to be a driver of the post-1986 change in Ellenberg N at the 10 km 

grid cell level. 

Ozone 
The only study that we have located to date that included some measure of ozone in its analyses of 

extensive vegetation data is that of Payne et al. (2011). Payne et al. (2011) also analysed the dataset 

of Stevens et al. (2004)5 in an ordination framework (although using Redundancy Analysis, RDA, 

                                                           
5 Note the number of times this dataset has been analysed. Multiple re-analyses of the same dataset must 
inevitably generate false associations; moreover, citing the multiple papers that have arisen from the analysis 
of this dataset gives an impression of an evidence-base that is larger and, more independent, than is actually 
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rather than the Constrained Correspondence Analysis favoured by all of the other studies 

investigating this dataset).6 The ozone data included in the models was tropospheric ozone extracted 

from APIS (the particular time frame is not specified). Payne et al. (2011) found that their ozone data 

explained around 4.5% of the variation in their vegetation dataset when it was the only variable in 

the model; in the full model (i.e. conditional on the influence of other covariates), ozone was the 

strongest variable, but explaining only 3.5% of the variation. An indicator species analysis of high 

versus low ozone sites revealed six plant species (bryophyte and vascular plants) that were 

associated with these conditions. Payne et al. (2011) reviewed experimental evidence of these 

species, providing some corroboration of their results. 

More recently, Mill et al. (2016) have provided a review of the “process-oriented perspective on the 

combined effects of ozone (O3), climate change and/or nitrogen (N) on vegetation”, however, the 

process-focus of this paper is not particularly relevant for our current review. Hayes et al. (2012) 

report experimental impacts of ozone on flowering, which may be more relevant for developments 

to the NPMS monitoring strategy. 

Recommendations 
Here we make some brief recommendations for the development and use of air pollution impact 

metrics derivable from NPMS data. Specifically, the NPMS will consider the inclusion and derivation 

of the following measures: 

 Mean Ellenberg N (and R) depending on habitat, have broad support at multiple scales, 

although, as with any correlative analysis, responses can be complicated by other covariates 

(e.g. contemporary/historic management). 

 Species/indicator richness – again, varied evidence depending on habitat and study, but 

there is considerable evidence that this measure does respond to indices of Ndep pollution. 

 NPMS Partnership to consider the inclusion of grass:forb ratio within its field protocol. 

 NPMS Partnership to consider the inclusion of flower counts, or related measure, on its field 

protocol. 

Acknowledgements 
Thank you to Clare Whitfield (JNCC), David Vowles (Defra) and Graham Earl (Natural England) for 

useful comments on this work. 

 

                                                           
the case. However, we are not suggesting that all re-use is bad: combining datasets can be a powerful route to 
inference. 
6 Note that these two ordination techniques imply different models of individual species’ responses to 
environmental gradients, and that both cannot be optimal for any given dataset. 
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Task 2: Power and sensitivity of NPMS data for the attribution of air pollution effects 
 

Summary 

 The models analysed here give a standard power analysis result, in that a correctly 

diagnosed decline or increase (here in species richness) becomes more likely with an 

increasing number of sites. Declines or increases in richness are also more easily detected 

from a higher starting richness, and when the decline or increase is of a larger magnitude. 

Declines are slightly easier to detect than increases, all else being equal. Comparisons of the 

number of NPMS plots for the 2015-16 seasons suggest that at the current time only the 

larger increases or declines in species richness are likely to be reliably detected. 

 Considerations of power for other metrics, such as Ellenberg N or R, suggested that changes 

across time within plots are likely to be small, and that the numbers of plots required to 

detect such changes are likely to be outside the scope of the NPMS. However, Ndep impacts 

on these metrics have been detected in other studies using space-for-time substitution 

techniques (Maskell et al., 2010; Stevens et al., 2010), and a framework for analysing NPMS 

data in this way has been developed (WP2 Task 4). Average Ellenberg plot metrics calculated 

for NPMS Indicator-level surveys may be relatively robust across plots; the filtering created 

by recording a subset of species means that Ellenberg plot metrics are more likely to exhibit 

‘stepped’, rather than gradual, changes in their values. 

 In relation to nationwide ecological gradients, the species filtering imposed by recording at 

NPMS Indicator or Wildflower levels did cause changes in the position of plots along these 

gradients, but there was no evidence that this filtering left significant sections of these 

gradients under-represented. Indeed, apart from the impacts of NPMS Wildflower filtering 

on the ability of plots to represent succession and disturbance, both NPMS levels had 

remarkably little impact on recovery of the range of each ecological gradient. The reduced 

species recording of the lower levels of the NPMS may not seriously reduce the ability of 

analysts to detect change relating to these major gradients.
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Section 1 – Power 
What intensity of monitoring activity is sufficient to detect a statistically significant change in 

abundance, or some other measure, if one has actually occurred? This is the question addressed by 

power analyses (Jones, 2013; Pescott et al., 2016). Conducting an appropriate power analysis for a 

monitoring scheme involves deciding on a set of relevant scenarios to investigate, covering a range 

thought plausible once the proposed scheme is established. Important variables affecting the quality 

of inference include those that represent the underlying structure of the data, e.g. the number of 

years of monitoring, the number of sites monitored or the arrangement of repeated site visits in 

time and space (Urquhart, 2012), and those that represent the hypothetical effect that the 

monitoring is intended to capture, e.g. changes in species’ abundances or distributions within a 

specified time frame. This could be, for example, a constant change of a fixed number of organisms 

or area of cover per year, or a proportional change in such a measure. 

Here we investigate power in the context of two metrics that can be derived from National Plant 

Monitoring Scheme (NPMS) data (www.npms.org.uk), and which could potentially contribute to the 

detection of air pollution impacts on biodiversity (see WP2 Task 1 for more information). 

Species and indicator richness 

Task 1 of this work package concluded that species richness and Ellenberg N (i.e. fertility) metrics are 

likely to be the most tractable metrics of Ndep for spatially extensive, correlative studies, although 

Ellenberg R (i.e. acidity) may also be useful in certain habitats. Other metrics that are not explicitly 

collected by the NPMS at the current time, but which could be in the future, include the grass (or 

graminoid) to forb cover ratio; note, however, that the introduction of new measures to the NPMS 

will be dependent on volunteer engagement, as well as scientific need (Walker et al., 2015). As also 

indicated in WP2 Task 1 (Table 3), the power of certain metrics to detect change will be influenced 

by the amount of data available, which is in turn largely determined by the number of plots surveyed 

at the Inventory7 level within a particular NPMS habitat. Any reduction in information on the 

presence of a certain species within a plot, as occurs if a survey is conducted at the Wildflower or 

Indicator levels, will reduce the information content of any summary metric. This can be partly 

adjusted for by introducing a survey-level covariate into data analyses (e.g. see WP2, Task 4); that is 

to say, the level at which a survey is conducted has an estimable effect on the metric of interest (e.g. 

species richness), which can then be accounted for when estimating the effects of other variables, 

such as that of a pollutant. Assuming that NPMS Indicator and Wildflower plots retain some ability to 

detect important ecological change (see Section 2 below), then amalgamating these reduced plot 

data with the full NPMS Inventory data is likely to increase the power to detect ecological changes of 

interest on average, even if the reduced species complement of these plots reduces their sensitivity 

to change. 

In order to investigate some of these questions, NPMS Inventory (i.e. full plot) and Indicator richness 

trends were simulated in a generalised linear model framework (Gelman and Hill, 2007; Johnson et 

al., 2015; Miller and Mitchell, 2014). Here we focus mainly on acid grassland, given that it is one of 

the habitats for which the most evidence of Ndep impacts has been reported; we also consider 

calcareous grassland. In order to parameterise certain aspects of these models, we use a set of 

pseudo-quadrats based on the UK National Vegetation Classification, as well as actual NPMS data 

collected to date. The NVC pseudo-quadrats are a randomly generated set of ‘fake’ quadrats, 

                                                           
7 Recall that the NPMS has three levels, Wildflower, Indicator and Inventory, where the Inventory is a full 
census of the vascular plants present within a plot, and Wildflower and Indicator plots are monitored for 
reduced sets of positive and negative indicator species (see www.npms.org.uk and/or Walker et al. 2015 for 
more background information). 

http://www.npms.org.uk/
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generated from the synoptic plant community tables from the published NVC handbooks (Rodwell, 

1991). The full detail of their generation is given in the online supplementary material of Tipping et 

al. (2013). 

Acid grassland 

The full set of the 44,753 NVC pseudo-quadrats was filtered to the NVC communities that are 

represented by the upland and lowland acid grassland communities in the NPMS (these being U1, 

U2, U3, U4, U5, U6, U7, U8, U9, U10, U11, U12, U13, U14, U19, U20, SD10, SD11; see Work Package 

1). This left 1831 NVC pseudo-quadrats. The median species richness of these quadrats, after 

eliminating bryophytes and lichens, was 11 (17 before filtering). Filtering to retain only positive 

NPMS Indicator species of lowland and upland acid grassland resulted in a median species richness 

of 4 (1762 plots). These values were subsequently used as the mean starting richness values (i.e. the 

intercepts) in the following power analyses. These values are also very similar to the average 

empirical richnesses from the NPMS 2015 and 2016 data collected from the dry acid grassland and 

montane grassland habitats (Table 1).  

Table 1. NPMS Average species richnesses by fine-scale habitat and survey level (rounded to the nearest integer). 

2015 Avg. spp. richness 

Dry acid grassland 11 

Wildflower survey 4 

Indicator survey 6 

Inventory survey 15 

Montane acid grassland 11 

Wildflower survey 6 

Indicator survey 7 

Inventory survey 17 

2016 Avg. spp. richness 

Dry acid grassland 10 

Wildflower survey 5 

Indicator survey 7 

Inventory survey 20 

Montane acid grassland 13 

Wildflower survey 2 

Indicator survey 6 

Inventory survey 16 

 

The size of the current NPMS plot resource varies depending on habitat (Pescott et al., In press.); for 

acid grassland habitats, the variation is within the 0-100 range (note that we only consider plots 

recorded at the fine-scale habitat level here, the resource could potentially be increased by including 

those plots recorded at the broad-scale level; Table 2). This, therefore, is a conservative estimate of 

the NPMS resource. 
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Table 2. The number of samples of plots for the first two years of the NPMS, for the two acid grassland habitats covered by 

the scheme. These are subdivided by the level at which they were surveyed (where Inventory level is a full vascular plant 

survey of a plot). 

2015 117 

Dry acid grassland 76 

Wildflower survey 7 

Indicator survey 25 

Inventory survey 44 

Montane acid grassland 41 

Wildflower survey 15 

Indicator survey 6 

Inventory survey 20 

2016 129 

Dry acid grassland 88 

Wildflower survey 41 

Indicator survey 16 

Inventory survey 31 

Montane acid grassland 41 

Wildflower survey 6 

Indicator survey 4 

Inventory survey 31 

 

The power analyses for richness (whether full vascular plant richness or indicator richness) were 

conducted according to the scenarios detailed in Table 3 below. We simulate scenarios for numbers 

of sites between 1 and 250, rather than the 0-100 noted above, as the range within which the NPMS 

data resource currently sits. This was in order to explore the number of sites required for 80% power 

across as many scenarios as possible. The declines below are specified in terms of an overall linear 

loss relative to the original starting richness, rather than a year-on-year proportional (i.e. 

exponential) decline. 

Table 3. Parameter values explored in the acid grassland power analyses. 

Parameter Values explored 

Number of sites (i.e. annual plot samples) 1-250 

Number of years 10 

Starting species richness 4 (Acid grassland Indicator plots) 
11 (Acid grassland Inventory plots) 

Temporal change (i.e. the overall trend) 33% decline over ten years 
10% decline over ten years 
10% increase over ten years 
33% increase over ten years 

 

Poisson generalised linear models (GLM) were used for all power analyses. No additional random 

effects were explored (e.g. additional variance in starting abundances (the intercept), slopes, or 

overall error); this was because after exploring data simulated using the Poisson distribution, the 

variance inherent in this distribution appeared realistic in relation to the real world species 

richnesses expected for these habitats, and to the current NPMS dataset. Incorporating too many 

sources of variance into simulations using the Poisson distribution can result in unrealistic values 

being encountered in some individual simulations, leading to counter-intuitive conclusions regarding 
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power (Pescott et al., 2015). Examples of individual simulations conducted using some of these 

parameter combinations are given below (Figure 1). For each scenario, 500 of these individual 

simulations were run. Poisson GLM fits were evaluated using the rtrim package8; temporal 

autocorrelation was taken into account when assessing trend significance (serialcor = TRUE in the 

trim function of rtrim). 

 

  
50 sites, 10 years, starting richness 11, decline 33% over 
10 years 

50 sites, 10 years, starting richness 4, decline 33% over 10 
years 

  
50 sites, 10 years, starting richness 11, increase 10% over 
10 years 

50 sites, 10 years, starting richness 4, increase 10% over 5 
years 

 
Figure 1. Examples of individual simulations for species richness power analyses. Points ‘jittered’ for clarity (this accounts 
for some points occasionally being below zero). Note the different scales on the y-axes. Smoothers are local regression 
(‘loess’) smoothers. 

                                                           
8 https://cran.r-project.org/package=rtrim 
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33% decline over 10 years, starting abundance 4 33% decline over 10 years, starting abundance 11 

Figure 2. Power curves for acid grassland, indicator (starting abundance 4) and inventory (starting abundance 11) simulated 

data. Underlying simulations (500) exhibited an average overall decline of 33% in initial species richness over 10 years. 

 
 

 

10% decline over 10 years, starting abundance 4 10% decline over 10 years, starting abundance 11 

Figure 3. Power curves for acid grassland, indicator (starting abundance 4) and inventory (starting abundance 11) simulated 

data. Underlying simulations (500) exhibited an average overall decline of 10% in initial species richness over 10 years. 
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10% increase over 10 years, starting abundance 4 10% increase over 10 years, starting abundance 11 

Figure 4. Power curves for acid grassland, indicator (starting abundance 4) and inventory (starting abundance 11) simulated 

data. Underlying simulations (500) exhibited an average overall increase of 10% in initial species richness over 10 years. 

  
33% increase over 10 years, starting abundance 4 33% increase over 10 years, starting abundance 11 

Figure 5. Power curves for acid grassland, indicator (starting abundance 4) and inventory (starting abundance 11) simulated 

data. Underlying simulations (500) exhibited an average overall increase of 33% in initial species richness over 10 years. 

Calcareous grassland 

In contrast to acid grassland, calcareous grasslands in Britain are typically relatively species rich (Lake 

et al., 2014; Rodwell, 1992). Therefore we repeated the above analysis for these communities within 

the NPMS, in order to bracket the range of species richnesses expected within the scheme. As 

before, the full set of the NVC pseudo-quadrats is 44,753. Filtering to the NVC communities 

represented by the NPMS, dry calcareous grassland and montane calcareous grassland (NVC 

communities CG1-CG14; see Work Package 1), leaves 2455 NVC pseudo-quadrats. The median 

species richness of these quadrats, after eliminating bryophytes and lichens, was 22 (25 before 

filtering). Filtering to retain only positive NPMS Indicator species of lowland and upland calcareous 

grassland resulted in a median species richness of 7 (2453 plots). These values were subsequently 

used as the mean starting richness values (i.e. the intercepts) in the power analyses. These values 

are, as for acid grassland, reassuringly similar (although slightly more variable) to the average 

empirical richnesses from the NPMS 2015 and 2016 data collected from the relevant habitats (Table 

4).
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Table 4. NPMS Average species richnesses by fine-scale habitat and survey level (rounded to the nearest integer). 

2015 Avg. spp. richness 

Dry calcareous grassland 10 

Wildflower survey 4 

Indicator survey 7 

Inventory survey 25 

Montane calcareous grassland 17 

Wildflower survey 19 

Indicator survey - 

Inventory survey 20 

2016 Avg. spp. richness 

Dry calcareous grassland 13 

Wildflower survey 6 

Indicator survey 8 

Inventory survey 21 

Montane calcareous grassland 6 

Wildflower survey 5 

Indicator survey 3 

Inventory survey 20 

The scenarios explored for calcareous grassland are detailed below in Table 5. 
Table 5. Parameter values explored in calcareous grassland power analyses. 

Parameter Values explored 

Number of sites (i.e. annual plot samples) 1-250 

Number of years 10 

Starting species richness 7 (Calcareous grassland Indicator plots) 
22 (Calcareous grassland Inventory plots) 

Temporal change (i.e. the overall trend) 33% decline over ten years 
10% decline over ten years 
10% increase over ten years 
33% increase over ten years 

 

  
33% decline over ten years, starting abundance 7 33% decline over ten years, starting abundance 22 

Figure 6. Power curves for calcareous grassland, indicator (starting abundance 7) and inventory (starting abundance 22) 

simulated data. Underlying simulations (500) exhibited an average overall decline of 33% in initial species richness over 10 

years. 
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10% decline over ten years, starting abundance 7 10% decline over ten years, starting abundance 22 

Figure 7. Power curves for calcareous grassland, indicator (starting abundance 7) and inventory (starting abundance 22) 

simulated data. Underlying simulations (500) exhibited an average overall decline of 10% in initial species richness over 10 

years. 

  
10% increase over ten years, starting abundance 7 10% increase over ten years, starting abundance 22 

Figure 8. Power curves for calcareous grassland, indicator (starting abundance 7) and inventory (starting abundance 22) 

simulated data. Underlying simulations (500) exhibited an average overall increase of 10% in initial species richness over 10 

years. 

 
 

33% increase over ten years, starting abundance 7 33% increase over ten years, starting abundance 22 

Figure 9. Power curves for calcareous grassland, indicator (starting abundance 7) and inventory (starting abundance 22) 

simulated data. Underlying simulations (500) exhibited an average overall increase of 33% in initial species richness over 10 

years. 
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Average Ellenberg N and R (i.e. soil fertility and reaction) 

The 2007 Countryside Survey examined change in unweighted (i.e. simple averaged) Ellenberg 

indicator values between the 1998 and 2007 surveys for most habitats. For the two grassland 

habitats that are our focus in this report, calcareous grassland plots showed no detectable change in 

any Ellenberg indicator value, whilst acid grassland plots showed changes in both Ellenberg fertility 

and pH indicators (Carey et al., 2008). The main acid grassland plots (i.e. those placed according to a 

robust methodology) showed a small, significant increase for Ellenberg R (reaction, a pH indicator) in 

England, whilst the targeted plots in this habitat showed increases in Ellenberg N at the scale of 

Great Britain, and for England and Wales at the country scale. Overall, the average changes reported 

for the whole of Great Britain were small; for example, the significant increase in Ellenberg N in the 

targeted acid grassland plots was from 3.03 to 3.12. 

An analytical calculation of power (Chow et al., 2007) using these two means and a standard 

deviation of 0.51 (estimated empirically from the NVC acid grassland pseudo-quadrats discussed 

above), suggests that a sample size of 1570 plots would be required to detect this size of difference 

with power of 80% and a significance threshold of 0.05. Recall, however, that a statistically 

significant change is not necessarily the same as a biologically (or ecologically) significant one. 

Maskell et al. (2010) examined the 1998 Countryside Survey data in isolation, within a ‘space-for-

time’ substitution framework. That is to say, a contemporary gradient in N deposition pollution was 

used as an explanatory variable in a model of spatial variation in Ellenberg indicator values and other 

metrics. In this framework, community-weighted Ellenberg N and R both showed significant changes, 

declining in acid grassland with increasing Ndep. However, these authors did not specify the size of 

these changes, and therefore it is not possible to use them to inform prospective power analyses. 

The NVC pseudo-quadrats may, however, be useful for examining the likely impact of the loss of 

information of the Indicator surveys (relative to the Inventory surveys) when calculating average 

Ellenberg indicator values for plots. Following the filtering steps explained above in the ‘Acid 

grassland’ section, the taxonomy in the NVC pseudo-quadrat dataset was matched to that in 

PLANTATT (Hill et al., 2004), and average Ellenberg N and R values for the quadrats were calculated 

for vascular plants. As before, the pseudo-quadrat data were subsequently filtered and the 

summaries recalculated. 

As can be seen from Figure 10 below, the main impact on the plot Ellenberg N values is to create a 

more clumped, multi-modal distribution. The reason for this is that as plots are filtered to retain 

NPMS Indicator species only, many plots retain only one or two such species, and the rarer, less 

typical associate species, are lost. This means that particular mean plot values for the Ellenberg 

indicator become more common in the dataset. It is notable that visualising the full distribution is 

crucial for this insight; mean, median, and standard deviation statistics showed little change 

between the Inventory and Indicator datasets for Ellenberg N. A similar pattern was found for 

Ellenberg R plot values (Figure 11). 
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Figure 10. Distributions of average Ellenberg N plot values across all acid grassland NVC pseudo-quadrats, filtered to NPMS 

Indicator species, and unfiltered (Inventory). 
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Figure 11. Distributions of average Ellenberg R plot values across all acid grassland NVC pseudo-quadrats, filtered to NPMS 

Indicator species, and unfiltered (Inventory). 
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Discussion 

The models analysed here give a standard power analysis result, in that a correctly diagnosed decline 

increase (here in species richness) becomes more likely with an increasing number of sites. Declines 

or increases in richness are also more easily detected from a higher starting richness, and when the 

decline or increase is of a larger magnitude. Declines are slightly easier to detect than increases, all 

else being equal. 

Tables 6 and 7 present the plot counts (i.e. the number of unique spatial locations being surveyed) 

for all NPMS fine and broad scale habitats recorded between 2015 and 2016. Comparison of these 

numbers to the power curves presented above provide a rule of thumb by which to judge the 

current likelihood of a particular change being detected over 10 ten years for any given habitat. For 

example, for dry acid grassland (Table 6), the total number of plots currently available is around 53 

(a few more will have been added in 2017) when one considers both Indicator and Inventory plots. 

This suggests that at the current time only the larger increases or declines in richness are likely to be 

reliably detected (Figs 2-5). 

Table 6. The numbers of plots recorded for NPMS fine habitats, 2015-2016. 

NPMS fine habitat Indicator survey Inventory survey 

Acid fens, mires and springs 25 23 

Arable field margins 75 64 

Base-rich fens, mires and springs 10 23 

Blanket bog 18 18 

Coastal saltmarsh 18 23 

Coastal sand dunes 5 21 

Coastal vegetated shingle 16 18 

Dry acid grassland 22 31 

Dry calcareous grassland 42 45 

Dry deciduous woodland 110 125 

Dry heathland 60 30 

Hedgerows of native species 147 126 

Inland rocks and scree 10 8 

Maritime cliffs and slopes 18 8 

Montane acid grassland 6 26 

Montane calcareous grassland 1 5 

Montane dry heathland 6 5 

Montane rocks and scree 4 6 

Native conifer woods and juniper scrub 7 12 

Neutral damp grassland 46 51 

Neutral pastures and meadows 87 118 

Nutrient-poor lakes and ponds 12 6 

Nutrient-rich lakes and ponds 15 32 

Raised bog - 3 

Rivers and streams 21 31 

Wet heath 35 26 

Wet woodland 22 26 
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Table 7. The numbers of plots recorded for NPMS broad habitats, 2015-2016. Note that the information for arable margins 

and native pine woods is presented in Table 5, because in these cases there is no distinction made between fine or broad 

definitions. 

NPMS broad habitat Indicator survey Inventory survey 

Bog and wet heath 47 8 

Broadleaved woodland, hedges and scrub 39 54 

Coast 11 5 

Freshwater 10 7 

Heathland 17 3 

Lowland grassland 77 62 

Marsh and fen 8 10 

Rock outcrops, cliffs and scree 2 4 

Upland grassland 7 3 

 

Considerations of power for other metrics, such as Ellenberg N or R, suggested that changes across 

time within plots are likely to be small, and that the numbers of plots required to detect such 

changes are likely to be outside the scope of the NPMS. However, Ndep impacts on these metrics 

have been detected in other studies using space-for-time substitution techniques (Maskell et al., 

2010; Stevens et al., 2010), and a framework for analysing NPMS data in this way has been 

developed (WP2 Task 4). 

The reduction in the number of species recorded at the NPMS Indicator level does affect the 

calculation of Ellenberg metrics, as would be expected, however, measures of central tendency such 

as the mean and median appear to be relatively robust to this loss of information. The resulting 

distributions of Ellenberg plot metrics after filtering are multi-modal, this suggests that a selective 

loss of species, driven by a process that preferentially retained or excluded particular species (e.g. 

eutrophication or acidification) could result in a ‘jump’ in a Ellenberg plot metric; at this point, 

changes in Ellenberg measures across time or space may become easier to detect. (This is akin to 

basing assessments of eutrophication on the appearance or disappearance of one or two species, i.e. 

an indicator-based approach). Section 2 investigates the effects of reducing the number of species 

recorded in plots in relation to broader environmental gradients. 
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Section 2 – Investigating the sensitivity of NPMS Indicator species to broad environmental 

gradients 

Introduction 

The National Plant Monitoring Scheme (NPMS) targets areas of semi-natural habitat within 1 km 

squares that have larger areas of rarer land cover types (according to the CEH Land Cover Map 

2007).  Contributors are provided with a set of randomly locations to sample within habitat parcels, 

but for practical reasons, plots in areas that are not publically accessible are likely to be under-

represented.  Further, in order to encourage the widest possible participation, taxonomic recording 

in the NPMS can be carried out at three levels that differ in the required botanical skill. Inventory 

level plots are assumed to be a complete census of the plants present; Indicator level plots allow the 

recorder to focus just on a predetermined list of species that includes more challenging grasses and 

sedges; Wildflower level allows recording of a smaller number of flowering plants that are easier to 

identify. These varying levels of difficulty allow for different points of entry into the scheme; 

however, given that around 60% of plots are being recorded at Indicator or Wildflower level, the 

utility of the plot data for answering ecologically interesting and policy-relevant questions about 

change in vegetation condition is likely to be affected.  

Careful construction of the Indicator and Wildflower lists aimed to maximise the relevance and 

sensitivity of the data recorded at these reduced levels (Pescott et al., 2014; Walker et al., 2015). For 

example, the Indicator list comprises numerous Common Standards Monitoring indicators as defined 

by JNCC (2004). Changes in species composition among Indicator level plots should therefore be 

useful in monitoring condition change in the wider countryside in semi-natural habitats sampled by 

NPMS volunteers. An obvious and important question to ask is whether the NPMS plot data at the 

two lower levels of recording intensity (i.e. Wildflower, Indicator) could be used to express species 

compositional change along broad ecological gradients. 

Assuming that recording all plant species in a plot maximises the chance of detecting ecological 

change, it follows that recording only species listed on the reduced Indicator and Wildflower lists 

could reduce the sensitivity of the NPMS data to detect change, and may introduce bias so that the 

position of a reduced-effort NPMS plot along key ecological gradients might be significantly different 

from its position if all species had been recorded. Here we investigate the effects of filtering quadrat 

samples using the NPMS species lists. Specifically, a subset of Countryside Survey (CS) quadrats were 

selected to, as far as possible, match the habitat coverage of the NPMS and the size of quadrat 

typically used. The principal ecological gradients in the CS data were identified by an ordination 

approach. The same dataset was then filtered to include only species included within NPMS 

Indicator or Wildflower sampling levels and plot scores on each axis were recalculated. An analysis of 

the differences in ordination scores of the original unaltered quadrat species lists versus the filtered 

lists was then carried out to determine the effect of reduced species recording on the position of 

plots along the principal environmental gradients.   

Data assembly 

CS quadrat data are an unbiased sample of British plant communities. Random sampling is stratified 

by physiographic zones and by Broad and Priority Habitat according to the UK Biodiversity Action 

plan of 2000 (Jackson, 2000) and subsequent country-level updates. Being a random sample, rarer 

habitats are under-represented. However samples are numerous and can be analysed to provide an 

unbiased representation of the species compositional range of Broad and more common Priority 

Habitats, and of the major ecological gradients along which species assemblages arrange 

themselves. 
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To match the target habitats and plot size of the NPMS we extracted all ‘X’-plots from the 2007 

Countryside Survey where any plot was located in a semi-natural broad habitat (BH) type with 

enough data to allow analysis at the within-habitat level (Table 7). In many instances the plot will 

have been assigned to a Priority Habitat (PH) in accordance with the UK Biodiversity Action Plan at 

that time. Since all PH can be referenced to a parent Broad Habitat the dataset will include sampled 

PH assemblages. However, using BH as the selection criterion ensured that a range of lower ‘quality’ 

assemblages were also included, since these are likely to represent the floristic endpoints of 

undesirable change occurring within a PH, and are likely to be sampled by the NPMS. 

X plots in CS are 200 m2 in size but are nested. We selected only species recorded up to nest 2, which 

is a 5 x 5 m square quadrat and therefore of the same size as most NPMS plots. A much larger 

number of plots are available in the CS database and these would increase sample sizes for the rarer 

habitats but plot sizes are different (2 x 2 m) and so we restrict the analysis here just to X plots, since 

these can be made equivalent in size to NPMS. Consequently Montane and Calcareous grassland 

were excluded. 

Table 7. Broad Habitats and numbers of CS X plots that were selected for analysis. 

Broad Habitat 
Number of X plots 
in 2007 

Bracken  46 

Neutral grassland 322 

Calcareous grassland 9 

Acid grassland 212 

Dwarf Shrub Heath 187 

Bog 282 

Fen, Marsh & Swamp 63 

Montane 5 

Broadleaved, Mixed & Yew Woodland 185 

 

Ensuring consistent nomenclature 

Species names and codes from NPMS and CS were compared. Both use the BRC code system yet 

both schemes amalgamate some taxa given difficulties with reliable identification. The principal 

requirement was to ensure that species grouped together in either NPMS or CS lists were identified 

and an entry for the aggregate inserted into each list. This was necessary to ensure that each 

amalgam received a species axis score so the information carried by the aggregate could still 

influence the position of each plot in the reduced datasets. 

Applying NPMS recording levels to CS data 

Taxa included in the CS data but not included in the NPMS Indicator or Wildflower lists were deleted, 

thereby reducing the information content of the CS data to the equivalent NPMS level. These two 

datasets – NPMS Indicators or Wildflowers only – therefore convey how each NPMS recording level 

would represent the vegetation in each CS plot.   

Analysis 

Detrended Correspondence Analysis (DCA) was applied to the unfiltered CS plot dataset. The 

species-environment relationship for each major axis was interpreted by inspecting the species 

points in the ordination space and by passively adding in mean Ellenberg values and cover-weighted 

canopy height and examining their correlation with each axis.  

New plot scores for each axis were produced by calculating averages of the species scores for each 

plot but based on only the NPMS Indicators or NPMS Wildflowers present in each plot. These new 

plot scores were then added passively into the ordination space. Means and 95% confidence 
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intervals on the difference between axis plot scores were calculated using a generalised linear mixed 

model (GLMM) on pairs of plots using the R package lme4 (Bates et al., 2015). That is, the axis plot 

score based on just the NPMS Indicators or Wildflowers present was subtracted from the axis plot 

score based on all species present. If the 95% confidence intervals derived from the samples of 

differences do not include zero then the mean scores are significantly different as a result of filtering 

by NPMS list. (This is the same statistical principle as the more familiar paired t-test).  

Results  

The CS dataset comprised 19228 records for 578 taxa distributed among 1311 plots. The number of 

records and species reduced to 12101 records for 257 species at indicator level and 7560 records for 

156 species at wildflower level. 

Ordination of CS2007 ‘X’-plot data 

An ordination of the CS plot data extracted two principal axes, the first correlated with substrate 

fertility and the second with vegetation height, disturbance and successional stage (Fig. 12). The 

omission of improved grasslands is likely to have strengthened the correlation between high pH and 

high fertility at the right-hand end of axis 1. If included they would have been much more likely to 

characterise this end of the axis rather than high pH, less fertile habitat types. A number of arable 

weeds characterise the disturbed, high fertility, high pH region at top right. These are associated 

with weedy ex-arable neutral grasslands. Broadleaved woodland is associated with the bottom right 

region of the ordination. The narrow range of axis 2 scores at the least fertile left-hand side of the 

ordination reflects the dominance of bog, heath and fen, all habitats with a similar successional 

status, and the low frequency of wet, sphagnum dominated woodland. Broadleaved woodlands in 

Britain that are as wet, acid and infertile as Bog are rare.  

A somewhat different pattern might have resulted from ordination of actual NPMS datasets in which 

different habitats may be represented with differing frequency of occurrence. However, it seems 

unlikely that different ecological gradients would emerge from analysis of a similarly representative 

NPMS sample of British plant communities. 

The effect of NPMS species filtering on association with ecological axes 

Differences between unfiltered CS scores and the scores for the NPMS-filtered plots were 

statistically significant in three out of four instances (Fig. 13). Along axis 1 (fertility; Fig. 12), filtering 

quadrat lists by NPMS Indicator resulted in a significant shift toward the less fertile end of the axis 

while filtering just on NPMS Wildflowers shifted mean scores in the opposite direction. However, the 

magnitude of these significant changes was small with these differences amounting to a 0.6% and 

0.4% change respectively along the length of the fertility axis.  Along axis 2 (disturbance/succession; 

Fig. 12) filtering by Indicators made no difference to mean scores, but filtering just on Wildflowers 

moved the mean axis score for the plots by 6.6% of the total length of the axis and toward taller 

vegetation (Fig. 12). It is likely that this reflects the omission of grass species that in general are 

characteristic of grazed, mid-successional vegetation. The minor impact of these changes on the 

distributions of amended plot scores is also shown in Figure 14. The most obvious effect is for the 

tail of scores associated with the most highly fertile vegetation to have been truncated when species 

lists were reduced to NPMS Wildflowers only. This may reflect the absence of arable grass weeds 

from the Wildflower list. They feature in the CS plot data because the Neutral Grassland subset 

includes a proportion of plots in weedy ex-arable grasslands. 
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Figure 12. A DCA ordination showing axes 1 and 2. Mean Ellenberg values (N – fertility, R – pH, and F – moisture) and cover-
weighted mean canopy height for each CS plot have been added passively to illustrate the association of each axis with 
ecological factors. 
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Figure 13. Plot of mean and 95% confidence intervals for the paired differences between axis 1 and 2 scores for CS plots 
and the same plots but filtered by the NPMS Indicator or Wildflower species lists. 
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Figure 14. Density/distribution plots of DCA axis scores for the full CS dataset and for the same plots having been filtered 
by NPMS species lists.  
 

Discussion 

We identify the direction and magnitude of changes in the position of plots along major ecological 

gradients that result from reducing the number of species recorded in each plot according to the 

NPMS Indicator and Wildflower lists. Such changes are artefactual, in that they are a property of the 

recording scheme and not of nature. The difference between axis scores for the full versus filtered 

datasets are a measure of the information cost versus participatory benefit of increasing scheme 

uptake by reducing the number of species that need to be identified in each plot.  

Different levels of change were associated with each DCA axis. This suggests that the absence of a 

species can have a different impact depending on the gradient concerned (i.e. different species carry 

different amounts of information in relation to specific environmental drivers). Significant 

differences in filtered versus unfiltered plot scores were demonstrated, but the size of the resulting 

shift along ecological gradients was small. Moreover, there was no evidence that filtering of the 

species lists left significant sections of ecological gradients under-represented. Indeed, apart from 

the NPMS Wildflower filtering on axis 2 (succession/disturbance), both NPMS filters had remarkably 

little impact on recovery of the range of each axis.  

In conclusion it seems that reduced species recording is not likely to seriously reduce the 

representativeness of NPMS samples as a sample of the targeted habitats. However, it would be 
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desirable to perform the same analysis carried out here but using an actual sample of NPMS plots to 

confirm the findings. Possible further areas for exploration include testing the feasibility of including 

the mean difference between NPMS Inventory level and filtered plots by habitat type as an 

analytical covariate to adjust for variation in recording intensity when it comes to actual analysis of 

NPMS data. 
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Task 3: Air Pollution Datasets available for use with the National Plant Monitoring 

Scheme as Indicators of Pollutant Impacts 
 

Air pollution datasets review 
Three independent models are in operational use at the Centre for Ecology and Hydrology for the 
calculation of the spatial distribution of nitrogen (N) and sulphur (S) deposition across the United 
Kingdom. These are: Concentration Based Estimated Deposition (CBED), the Fine Resolution 
Atmospheric Multi-pollutant Exchange model (FRAME) and EMEP4UK. 
 
CBED is an inferential model which makes use of measurements of concentrations of nitrogen and 
sulphur compounds in air and precipitation from the United Kingdom Eutrophying and Acidifying 
Pollutants (UKEAP) monitoring network (http://uk-air.defra.gov.uk/networks/network-
info?view=ukeap). The concentrations of ammonium (NH4

+), nitrate (NO3
-) and sulphate (SO4

2-) in 
precipitation from 37 sites are interpolated across the UK and combined with annual precipitation 
from the UK Met Office national precipitation monitoring network to calculate wet deposition of N 
and S at a 5 × 5 km resolution. Monitoring data of both gas (NH3, NO2, HNO3, SO2) and particulate 
(NH4

+, NO3
- and SO4

2-) concentrations are used with spatial modelling to generate pollutant air 
concentrations across the UK. This is combined with estimates of deposition velocity from a ‘big leaf’ 
model (Smith et al., 2000) to calculate dry deposition to vegetation. CBED deposition data is updated 
each year as a three year rolling annual average and is available through the Air Pollution Information 
System (http://www.apis.ac.uk/apis-home?page=1) for the years 2005-2015. The data is used to 
calculate the exceedance of critical loads for acid deposition and nutrient nitrogen deposition, and to 
provide evidence to policy makers on the threat to natural ecosystems. 
 
FRAME is a Lagrangian atmospheric chemistry transport model (ACTM) which simulates the emission 
of pollutants, their vertical diffusion, horizontal transport, atmospheric chemical transport and wet 
and dry deposition to the surface. The model calculates the annual average deposition of N and S, as 
well as gas and particulate concentrates, and can be run at either a 5 × 5 km or a 1 × 1 km resolution 
over the UK. Model performance is evaluated annually by comparison with measurements from the 
UKEAP monitoring network (Dore et al., 2015). The model has been applied to simulate the historic 
trends in N and S deposition since 1970 (Matejko et al., 2009) and used with projections of pollutant 
emissions to estimate deposition for the year 2030 and future changes to ecosystem impacts. Source-
receptor data calculated with the model (Oxley et al., 2013) is used in integrated assessment 
modelling to provide advice to policy makers on cost-effective strategies to abate pollutant emissions 
and protect human health and natural ecosystems. Historical deposition data are available through 
the CEH Environmental Information Platform (https://eip.ceh.ac.uk/). A more recent dataset of N and 
S deposition in the UK for the period 1800 - 2015 is available, but not currently in the public domain. 
NH3 concentrations are calculated at a high resolution (1 × 1 km) for the UK, updated annually as a 
three year rolling average and used to calculate the exceedance of the critical level (Hallsworth et al., 
2010). 
 
EMEP4UK is a nested Eulerian ACTM which runs at a 5 × 5 km resolution over the UK. This model is 
driven by dynamic meteorological data calculated with the Weather Research Forecast (WRF) model 
(www.wrf-model.org), and uses photo-oxidant chemistry to simulate the four-dimensional physical 
and chemical state of the atmosphere with data output at a 3-hourly time resolution. The model 
simulates a comprehensive suite of gas and particulate concentrations including O3 as well as N and S 
deposition. A technical description of the model is given in Simpson et al. (2012). The model is applied 
at a European scale in support of the Convention on Long Range Transboundary Air Pollution (CLRTAP) 
and is used to assess the impact of air pollution on both human health and natural ecosystems across 
Europe. EMEP4UK has been applied over the UK to investigate surface ozone (Vieno et al., 2010) and 

http://uk-air.defra.gov.uk/networks/network-info?view=ukeap
http://uk-air.defra.gov.uk/networks/network-info?view=ukeap
http://www.apis.ac.uk/apis-home?page=1
https://eip.ceh.ac.uk/
http://www.wrf-model.org/
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the long range transport of nitrate particulates (Vieno et al., 2014). Deposition and concentration data 
for the period 2001-2015 are also available through the CEH Environmental Information Platform. 
 
In addition, the Pollution Climate Mapping (PCM) model, developed at Ricardo-AEA, provides 
concentrations of NOx and SO2 at a 1 × 1 km resolution for the UK (Brooks et al., 2015). The model 
uses a combination of monitoring data for rural background sources, combined with dispersion 
modelling of large and small point sources and spatial mapping of the contribution from traffic 
sources.  
 
The ability of ACTMs to represent the air concentration and deposition of pollutants relies on 
comparison with independent measurements to demonstrate that the models are fit for purpose. A 
number of different ACTMs, including FRAME and EMEP4UK, were compared with measurements of 
concentrations of gases, aerosols and precipitation for nitrogen and sulphur compounds as part of the 
Defra model inter-comparison exercise (Carslaw, 2011; Dore et al., 2015). Generally the models were 
demonstrated to be fit for purpose based on calculation of the normalised mean bias and the factor 
of two metric (i.e. the fraction of points greater than half and less than than twice the measured 
values). The Lagrangian FRAME model performed well for gas concentrations (SO2, NO2, NH3), this was 
attributed to its high vertical resolution (1 m at the surface) and explicit plume rise representation for 
point sources. The Eulerian models performed well for particulate concentrations due to their more 
complex dynamics and chemical schemes. Overall the models tended to predict lower values of 
concentration in precipitation than those measured by the UKEAP monitoring network. This may be 
partly caused by the use of bulk collectors in the national chemistry precipitation monitoring 
newtwork which can over-estimate precipitation concentrations caused by dry deposition to the 
collector surface (Cape et al., 2009). 
 
Estimates of uncertainty in the deposition calculated by ACTMs can be made using multiple 
simulations in which model parameters are varied within their range of uncertainty (i.e. Page et al., 
2008; Aleksankina et al., 2018). However this only provides an estimate of uncertainty due to the 
selection of model parameters, and does not include the uncertainty associated with the fundamental 
assumptions made in constructing a numerical simulation which parameterises highly complex 
meteorological, physical and chemical processes. One advantage of the approach used in ACTMS over 
an approach based on interpolation of monitoring data is that ACTMs can be run both backwards and 
forwards in time provided reliable estimates of atmospheric emissions are available (e.g. Tipping et 
al., 2017). Monitoring-based approaches however are limited temporally by the availability of data. 
 
Whilst the spatial grid resolution of CBED is 5 × 5 km, the FRAME model is operational at the higher 
spatial resolution of 1 km x 1 km. Some regional studies have also been undertaken with EMEP4UK at 
a higher 1 × 1 km spatial resolution. Acurate predictions of air concentration and deposition at high 
resolution requires accurate estimates of model parameters at this resolution, including atmospheric 
emissions (of NH3, NOx and SO2), precipitation and land use, which are freely available (i.e. national 
atmospheric emissions data base, http://naei.beis.gov.uk/; CEH GEAR precipitation, 
https://eip.ceh.ac.uk/rainfall). However, it is also important to note that uncertainty in concentration 
and deposition estimates at individual grid squares can increase as the model grid resolution is 
increased. Hallsworth et al. (2010) applied the FRAME model at a high 1 × 1 km resolution to simulate 
NH3 concentrations and the exceedance of the critical level. It was shown that the use of high spatial 
resolution was effective in spatially separating low emission areas (e.g. nature reserves) from high 
emission areas of intensive agriculture. This led to more realistic estimates of NH3 concentrations, 
particularly over small nature reserves which in a model resolved to 5 x 5 km would not be spatially 
distinct from the surrounding agricultural land. 

http://naei.beis.gov.uk/
https://eip.ceh.ac.uk/rainfall
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Table 1. Summary details for the models discussed. 

Model: CBED FRAME EMEP4UK 

Pollutants modelled 
Wet and dry 

deposition of N & 
S 

Wet and dry 
deposition of N & 

S 

 (plus gaseous and 
particulate 

components) 

O3, N and S 
deposition  

(plus gaseous and 
particulate 

components) 

Spatial scales 5 km 1 or 5 km 5 km 

Time period 2005-2015 1800-2015 2001-2015 

Data platform APIS CEH EIP CEH EIP 

 

NPMS-specific considerations 
NPMS surveyors are monitoring plots within 1 × 1 km squares; plot data are then collected at the 

finer scale of the plot (areas on the order of metres), and entered into the NPMS website at this 

resolution (www.npms.org.uk). The vast majority of records collected by the scheme then, are 

resolved to at least 10 x 10 m accuracy. In order to achieve the most sensitive inference from 

statistical, or other analytical, models applied to the data to uncover associations between air 

pollutant drivers and vegetation or plant response metrics, it is desirable to match NPMS plot or 

square data to indices of air pollution at the finest scale available. This will increase the ability of a 

model to discriminate finer relationships between an air pollutant and, e.g., species richness or a 

species cover, particularly if different types of land cover (e.g. semi-natural vegetation versus 

intensive agriculture; Hallsworth et al. 2010) are effectively discriminated at this finer scale. This 

argues that, with the exception of O3 (available only from EMEP4UK at 5 km at the current time; 

Table 1), the 1 x 1 km predictions of the FRAME model are likely to be provide the most analytical 

power for inferring relationships with NPMS data at the current time. Distinguishing between the 

impacts of different components of N (i.e. reduced versus oxidised) is possible in theory, however, 

sensible answers in this regard, and for that matter with respect to the overall impact of N 

deposition in toto, is dependent on minimising bias and variance in the datasets being used. 

Inference will always be challenged by small effects (e.g. small ‘true’ regression coefficients) in noisy 

datasets. 

 

http://www.npms.org.uk/
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Task 4: Developing a framework for linking NPMS plant data to pollutant metrics using 

Bayesian spatio-temporal models 

Summary 
National Plant Monitoring Scheme data represent species richnesses within plots across a range of 

UK habitats. As for other monitoring schemes and surveys, such data can be used to quantify the 

relationships between covariates and response variables. However, such landscape-scale, correlative 

frameworks can create problems for statistical inference, in that various temporal and spatial 

correlations, and other effects (e.g. surveyor level), must be taken into account. Unbalanced data 

(e.g. variable numbers of data points per combination of covariates) can also create problems for the 

interpretation of such data. Here we investigate a series of models within a Bayesian inferential 

framework with the aim of finding the ‘best’ model for the data. ‘Best’ here is judged in terms of the 

deviance information criterion (DIC), a within-sample measure of the expected out-of-sample 

predictive accuracy; the models compared were specified a priori using our knowledge of the 

expected variables of importance; no further variables were entered into or deleted from models. 

Using integrated nested Laplace approximation (INLA), a model that jointly estimates an inferred 

spatial-temporal auto-correlation structure underlying the data was found to give the lowest DIC. 

Estimates of year and surveyor level effects can be extracted from this model for particular habitats, 

and examples are provided. The relationship between nitrogen deposition (Ndep) and species 

richness within two habitats considered to have been impacted by Ndep in the recent past was also 

investigated, and the marginal relationship between these two variables is displayed graphically. An 

unexpected sign for this relationship led to a post hoc investigation of possible confounding 

elements within our dataset, and an increased variability in Wildflower level survey returns at low 

levels (below the median for the samples considered) relative to high levels is suggested as a 

possible culprit. The model structure presented thus provides a way of exploring relationships 

between indices of pollution load and response variables of conservation importance (e.g. species 

richness), whilst accounting for complex dependency structures between data points.  

 

Introduction 
Indicators should be straightforward and easily interpretable. Here we develop a Bayesian 

framework within which plant species richness data from the NPMS can be related to environmental 

covariates, including pollution data, whilst also taking account of spatial and temporal correlations. 

The framework is flexible, and could be extended to incorporate plot data collected under other 

schemes (e.g. the Countryside Survey; CS). 

Framework 
NPMS volunteers record species within small plots (typically 5 x 5 m) across the British countryside 

(NPMS, 2015). Once the plots are selected (an activity restricted to the first year of a volunteer’s 

engagement with the scheme), the volunteer makes two decisions: which level of habitat 

discrimination to record at (broad or fine) and which level of expertise to record at (Wildflower, 

Indicator, and Inventory). The volunteer then subsequently aims to visit their plots twice a year, per 

year, although some plots will be resampled less frequently. 

The simplest approach to modelling these data, whilst also allowing for the focus on different 

subsets of species implied by the two decisions relating to participation level described in the 

previous paragraph, is to model species richness, adjusting for the different recording level and 

habitat type. Such an approach allows for the incorporation of all NPMS data and for the estimation 

of the effects of covariates (such as surveyor level) as an integral part of the modelling process. We 

note that additional plot data could also be jointly analysed under such a scheme by including 
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additional covariates to account for scheme type (e.g. NPMS versus CS). Measures of pollutant 

deposition can be incorporated as covariates, as for other approaches to estimating the effects of 

pollutants on plant species richness using correlative modelling frameworks (e.g. Maskell et al., 

2010). 

Modern approaches to Bayesian statistics provide a relatively straightforward way of running 

hierarchical models (i.e. models with various types of non-independence between data points), 

whilst also allowing for missing data, and accounting for unbalanced and/or small samples (which is 

likely to be the case for some combinations of habitat and surveyor level within the NPMS). 

Integrated nested Laplace approximation (INLA), a deterministic algorithm used for rapid Bayesian 

inference (Rue et al., 2009), uses Laplace approximations to produce marginal posterior distributions 

for all estimated parameters (Blangiardo and Cameletti, 2015; Rue et al., 2009), and is used here due 

to its relative speed and flexibility compared to Markov chain Monte Carlo-based (MCMC) methods. 

As noted above, the response (i.e. dependent) variable modelled here is species richness per sample 

(i.e. a visit by a surveyor to a plot). The dataset used is NPMS data collected between 2015 and 2017. 

The covariates considered are:  

 Nitrogen deposition 1996-2000, a 5 x 5 km average (keq ha-1 y-1) estimated from the FRAME 

model v.7.0 (Dore et al., 2007; Matejko et al., 2009) (see Task 3 for more information on this 

process model). 

 The first two principal components of a principal components analysis (PCA) of 10 x 10 km 

climate data for the UK (including January average temperature 1981-2010; July average 

temperature 1981-2010; mean number of wet days per year 1981-2010; percentage of 

peaty soil; and percentage of calcareous rock. Variables likely to be correlated with 

estimates of Nitrogen deposition (e.g. percentage of arable land and population density), 

were not included in the PCA (cf. Pescott and Roy, 2016) to avoid confounding and 

unidentifiable parameters. 

 Year – NPMS data for all years of the survey (2015-2017) were included. 

 Survey type (i.e. Wildflower, Indicator, and Inventory; see NPMS, 2015 for more information 

on what these levels mean). 

 NPMS habitat (again, see the NPMS website and guidance materials for a complete 

breakdown of the habitat types that surveyors are asked to look for). 

The model development below builds on the framework laid out in Pescott et al. (In press.), in that 

models treating both spatial and temporal auto-correlation are ultimately considered, and in that 

both N deposition (Ndep) and climate variables are included.  After a description of the model 

development process, predictions for species richness as a function of Ndep are presented for two 

NPMS fine-scale habitats of interest: dry acid grassland and dry calcareous grassland. 

Model development 
We start with a basic spatial model, whereby year, nitrogen deposition and the two climate principal 

components (PC1 and PC2) are modelled as fixed effects, surveyor type and broad habitat are 

modelled as random effects, and a random spatial field representing a continuous spatial ‘process’ 

(i.e. a particular model of spatial auto-correlation), also treated as a random effect, takes account of 

spatial autocorrelations. In the model descriptions this is denoted by f(SPDE), where an SPDE 

(stochastic partial differential equation) is a computationally efficient approach to modelling spatial 

and spatio-temporal processes (Blangiardo et al., 2013). In all models, species richness is modelled 

with a Poisson error distribution, as is often the case for low-prevalence count data. Models 1-4 
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include both spatial and temporal effects, but separately, whereas models 5-8 model them jointly as 

an intrinsic component of the spatio-temporal models. 

 

Model 0: 

The base model as described above. 

SppRichnessij  = 𝛽0 + 𝛽1 ∗ 𝑦𝑒𝑎𝑟 + 𝛽2 ∗ 𝑁𝑑𝑒𝑝 +  𝛽3 ∗ 𝑃𝐶1 +  𝛽4 ∗ 𝑃𝐶2  +  f(type) + f(habitat) + 

f(SPDE) + 𝜀𝑖,𝑗 

Where: 

i = plot; j = monad (i.e. 1 x 1 km square);  

𝜀𝑖,𝑗 ~ Poisson(λ) 

𝛽𝑖 is the year, Ndep, PC1 or PC2 effect, for i= 1,2,3,4 respectively; 

f(SPDE) takes account of between-monad spatial autocorrelation; 

f(type) takes account of the dependencies within surveyor level (i.e. level as a random effect); 

f(habitat) takes account of the dependencies within NPMS broad habitat (i.e. habitat as a random 

effect). 

 

This formulation states that beta0 is the mean intercept across all plots and monads; 𝜀𝑖,𝑗 is the random 

Poisson error term for a sample in plot i within monad j; and λ is the parameter that defines the 

Poisson process. 

 

Model 1: 

This modifies Model 0 by allowing year to follow a first-order auto-regressive process, AR1, whereby 

species richness observations at the same site, one year apart, follow a deterministic relationship, 

whereas observations two or more years apart do not follow the same relationship. This model 

omits surveyor type and broad habitat as random effects. 

 

SppRichnessij  = 𝛽0 + 𝛽1 ∗ 𝑁𝑑𝑒𝑝 +  𝛽2 ∗ 𝑃𝐶1 +  𝛽3 ∗ 𝑃𝐶2  + f(SPDE)  + f(year) + 𝜀𝑖,𝑗; 

f (year) takes the AR1 format. 

 

Model 2: 

This modifies Model 0 by letting year follow a first-order random walk process, RW1, whereby 

species richness observations at the same site, one year apart, follow a stochastic process, whereas 

observations two or more years apart do not follow the same relationship. This model omits 

surveyor type and broad habitat as random effects. 

 

SppRichnessij  = 𝛽0 + 𝛽1 ∗ 𝑁𝑑𝑒𝑝 +  𝛽2 ∗ 𝑃𝐶1 +  𝛽3 ∗ 𝑃𝐶2  + f(SPDE)  + f(year) + 𝜀𝑖,𝑗; 

f (year) takes the RW1 format. 

 

Model 3: 

This modifies Model 1 by adding the random effects for surveyor type and broad habitat. 

 

SppRichnessij  = 𝛽0 + 𝛽1 ∗ 𝑁𝑑𝑒𝑝 +  𝛽2 ∗ 𝑃𝐶1 +  𝛽3 ∗ 𝑃𝐶2  + f(SPDE)  + f(year)  + f(type) + f(habitat) + 

𝜀𝑖,𝑗; 

f (year) takes the AR1 format. 

 

Model 4: 

This modifies Model 2 by adding the random effects for surveyor type and broad habitat. 
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SppRichnessij  = 𝛽0 + 𝛽1 ∗ 𝑁𝑑𝑒𝑝 +  𝛽2 ∗ 𝑃𝐶1 +  𝛽3 ∗ 𝑃𝐶2  + f(SPDE)  + f(year)  + f(type) + f(habitat) + 

𝜀𝑖,𝑗; 

f (year) takes the RW1 format. 

 

Model 5 onwards can be written in the generic form: 

𝑆𝑝𝑝𝑅𝑖𝑐ℎ𝑛𝑒𝑠𝑠𝑖,𝑗 =  𝛽0 + ∑ 𝛽𝑖𝑥𝑖

𝑖

+  𝜔𝑖,𝑡   

Where 𝜔𝑖,𝑡 is a latent spatio-temporal process (i.e. mathematical ‘structure’): 

𝜔𝑖,𝑡  =  𝑎𝜔𝑖,𝑡−1 + 𝜉𝑖,𝑡 

which changes with first order autoregressive dynamics and spatio-temporal covariance function 𝜉𝑖,𝑡 . 

 

Model 5: 

This modifies Model 1 by changing the separate spatial and temporal processes into a jointly 

modelled spatio-temporal process, with the temporal process taking the AR1 structure. 

 

𝑆𝑝𝑝𝑅𝑖𝑐ℎ𝑛𝑒𝑠𝑠𝑖,𝑗 =  𝛽0 +  𝛽1 ∗ 𝑁𝑑𝑒𝑝 +  𝛽2 ∗ 𝑃𝐶1 + 𝛽3 ∗ 𝑃𝐶2 + 𝜔𝑖,𝑡  

 

Model 6: 

This modifies Model 2 by changing the separate spatial and temporal processes into a jointly 

modelled spatio-temporal process, with the temporal process taking the RW1 structure. 

 

𝑆𝑝𝑝𝑅𝑖𝑐ℎ𝑛𝑒𝑠𝑠𝑖,𝑗 =  𝛽0 +  𝛽1 ∗ 𝑁𝑑𝑒𝑝 +  𝛽2 ∗ 𝑃𝐶1 + 𝛽3 ∗ 𝑃𝐶2 +  𝜔𝑖,𝑡 

 

Model 7: 

This modifies Model 3 by changing the separate spatial and temporal processes into a jointly 

modelled spatio-temporal process, with the temporal process taking the AR1 structure. 

 

𝑆𝑝𝑝𝑅𝑖𝑐ℎ𝑛𝑒𝑠𝑠𝑖,𝑗 =  𝛽0 +  𝛽1 ∗ 𝑁𝑑𝑒𝑝 +  𝛽2 ∗ 𝑃𝐶1 + 𝛽3 ∗ 𝑃𝐶2 +  𝜔𝑖,𝑡 + 𝑓(𝑡𝑦𝑝𝑒) + 𝑓(ℎ𝑎𝑏𝑖𝑡𝑎𝑡) 

 

Model 8: 

This modifies Model 4 by changing the separate spatial and temporal processes into a jointly 

modelled spatio-temporal process, with the temporal process taking the RW1 structure. 

 

𝑆𝑝𝑝𝑅𝑖𝑐ℎ𝑛𝑒𝑠𝑠𝑖,𝑗 =  𝛽0 +  𝛽1 ∗ 𝑁𝑑𝑒𝑝 +  𝛽2 ∗ 𝑃𝐶1 + 𝛽3 ∗ 𝑃𝐶2 + 𝜔𝑖,𝑡 + 𝑓(𝑡𝑦𝑝𝑒) + 𝑓(ℎ𝑎𝑏𝑖𝑡𝑎𝑡) 

 

Table 1 below summarises the estimates of spatial variance across models. The Deviance 

Information Criterion for each model is also provided as a comparator of model fit. 

 

Table 1. Estimates of spatial variance and relative fits across models. DIC = Deviance Information 

Criterion. 

Model Spatial variance:  
Median (95% credible interval) 

DIC 

Model 0 2.19 (1.63, 3.21)) 57,898.23 

Model 1 7.82 (5.99, 10.21) 67,216.44 

Model 2 8.02 (6.04, 11.07) 67,216.02 

Model 3 2.66 (2.12, 3.66) 57,897.04 
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Model 4 2.04 (1.65, 2.73) 57,893.55 

Model 5 345.5 (252.4, 550.0) 62,489.47 

Model 6 162.8 (96.1, 281.6) 63,192.93 

Model 7 9.07 (2.86, 31.55) 56,299.72 

Model 8 75.3 (43.5, 134.8) 56,662.03 

 

Note that the estimated spatial variance is much larger in the models which do not take account of 

surveyor type and broad habitat, and this increases when we move from separate spatial and 

temporal processes to a joint spatio-temporal process. Adjusting for these two random effects 

decreases the spatial variance, this is very likely to be due to the fact that the spatial variability in 

species richness may be partially explained by habitat type (and possibly also surveyor type to a 

lesser extent). 

 

Model 7 is not only the best fitting model (lowest DIC), but also the model which takes explicit 

account of the spatio-temporal processes assumed to underlie the data. Model 7 is therefore taken 

forward as the model from which we extract habitat-specific and year-specific estimates of species 

richness, as well as estimates of the relationship between the Ndep covariate and species richness 

for two example NPMS habitats which have previously been the focus of Ndep impact research. 

 

Table 2 presents the estimated species richness for a single habitat type, Broadleaf woodland, across 

years and survey types. The random spatial fields for 2015, 2016 and 2017 are plotted in Figure 1.  

 

Table 2. Spatio-temporal Model 7 applied to various linear combinations of covariates, using 

standardised weights for the spatial field (pers. comm. to MJ, R-INLA Helpdesk/Finn Lindgren, 2017). 

Broad habitat Year Survey type Estimated species richness (95% cred. interval) 

Broadleaf woodland 2015 Overall 
    Indicator 
    Inventory 
    Wild flower 

7.30 (3.94, 13.51) 
    5.59 (4.90, 6.35) 
    14.43 (12.67, 16.39) 
    4.82 (4.23, 5.49) 

Broadleaf woodland 2016 Overall 
    Indicator 
    Inventory 
    Wild flower 

7.32 (3.96, 13.56) 
    5.61 (4.92, 6.38) 
    14.48 (12.72, 16.45) 
    4.84 (4.25, 5.51) 

Broadleaf woodland 2017 Overall 
    Indicator 
    Inventory 
    Wild flower 

7.33 (3.96, 13.57) 
    5.61 (4.92, 6.38) 
    14.49 (12.73, 16.46) 
    4.85 (4.25, 5.51) 
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Figure 1. Spatial random fields (mean and standard deviation) for Model 7, split by year.  

 

Both the mean and the standard deviation of the (spatial) random field provide an estimate of the 

mean species richness (and its standard deviation) on the log scale. Although there are only about 

900 monads for which we have data, the remainder of Great Britain has been estimated using the 

spatial representation of GB modelled by the SPDE. 
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Model 7 was also used to examine the estimated relationship between species richness and Ndep 

across all the NPMS data 2015-2017. The relationships for dry acid grassland and dry calcareous 

grassland (NPMS fine habitats) were estimated using Model 7 and are plotted in Figure 2. The Ndep 

values (keq ha-1 y-1) for which estimates of species richness were made are given in Table 3. 

 

Table 3. Nitrogen deposition deciles (kiloequivalents ha-1 y-1) across all NPMS records for the spatio-

temporal analysis (Model 7). These values are based upon 9,214 plot samples from 684 surveyed 

monads, 2015-2017; plots were matched to the corresponding 5 x 5 km grid cell Ndep value from 

the FRAME v.7.0 model (1996-2000, 5 x 5 km average). 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

0.32 0.77 0.9 1.03 1.14 1.23 1.35 1.45 1.62 1.85 3.17 

 

 
Figure 2. Estimated species richness for the decile levels of nitrogen deposition (Table 3) for dry acid 

grassland and dry calcareous grassland. 

 

Figure 2 (estimated species richness against nitrogen deposition for both dry acid grassland and dry 

calcareous grassland) suggests a positive relationship, this is somewhat at odds with previous 

relationships reported in the literature (see WP2, Task 1). 

 

To confirm this relationship we examined the dry acid grassland data in isolation within a mixed 

effects modelling framework using the R package ‘lme4’ (Bates et al., 2015). We used a model 

structure based on our INLA Model 7 to ensure that the results were as comparable as possible: 

nitrogen deposition, year, PC1 and PC2 were entered into the model as fixed effects, whilst monad 

and surveyor type were added as random effects (random intercepts); a Poisson error structure was 

used. We again found an average positive relationship between species richness and Ndep; 

however, after removing surveyor type as a random effect this relationship became negative. When 

surveyor type was reinstated in the model, but with the nested level for Wildflower surveyors being 

dropped, the association between nitrogen deposition and species richness remained negative. This 

suggests that the subcategories within surveyor type may be confounding the relationship between 

nitrogen deposition and species richness (see below). It should also be borne in mind that the 

relationships plotted in Figure 2 contain enough uncertainty that both zero and negative slopes 

remain possible. 
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We investigated the possibility of a confounding effect between surveyor level and species richness 

through graphical exploration (Figs 3, 4, 5). Splitting the dry acid grassland plots into two categories, 

above and below the median Ndep across all dry acid grassland plots, and subsequently visualising 

the distribution of species richnesses across surveyor levels, revealed no clear relationship between 

these variables (Figure 3), although there is an indication that richnesses recorded at the Wildflower 

level were considerably more variable in the lower range of Ndep (Fig. 3). Given the current 

uncertainty in the model outputs generally (Fig. 2), this increased variability in the Wildflower data 

may be the reason that the estimated average relationship between Ndep and species richnesses 

changes sign when the Wildflower data are dropped from the analysis. 

 

We also investigated the distribution of surveyor levels across monads for dry acid grassland. It is 

possible that an association between surveyor level and regional within-habitat variation could also 

affect the average relationship between Ndep and species richness. There are 20, 27 and 18 unique 

monads surveyed across the three years for Indicator, Inventory and Wildflower surveys, 

respectively and their distributions are given in Figure 4. There was, however, no obvious 

relationship between surveyor level and geography within the dry acid grassland data. 

 

A similar situation to that described above pertained to dry calcareous grassland; the same types of 

graphical exploratory data analysis revealed a similar situation to dry calcareous grassland (e.g. see 

Fig. 5). 

 

In conclusion, we have demonstrated the possibility of using a novel Bayesian modelling framework 

to explore relationships between indices of pollution load and response variables of conservation 

importance (species richness), whilst accounting for hierarchical dependency structures between 

data points. We expect that this basic model framework will allow for estimates of both within-year 

relationships between Ndep (or other) pollutant indices and richness (or other responses), and also 

changes in these relationships across time, as data accumulate. Note, however, that, if, as hoped, 

Ndep declines further across the British Isles, then change in Ndep within grid cells, or other model 

configurations, rather than absolute deposition estimates, may provide better inferences with 

respect to recovery in the medium term.  

 

 

  



April 2018  v.0.3 

 

Figure 3: Boxplot of species richness by surveyor type, split by nitrogen deposition (below and above 

the median). 
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Figure 4. Distribution of monads surveyed, by surveyor type, for dry acid grassland. 
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Figure 5. Distribution of monads surveyed, by surveyor type, for dry calcareous grassland. 
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