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ARTICLE INFO ABSTRACT

Traditional approaches of quantifying population-level exposure to air pollution assume that concentrations of
air pollutants at the residential address of the study population are representative for overall exposure. This
introduces potential bias in the quantification of human health effects. Our study combines new UK Census data
comprising information on workday population densities, with high spatio-temporal resolution air pollution
concentration fields from the WRF-EMEP4UK atmospheric chemistry transport model, to derive more realistic
estimates of population exposure to NO,, PM, 5 and O3. We explicitly allocated workday exposures for weekdays
between 8:00 am and 6:00 pm. Our analyses covered all of the UK at 1 km spatial resolution. Taking workday
location into account had the most pronounced impact on potential exposure to NO,, with an estimated
0.3ugm ™3 (equivalent to 2%) increase in population-weighted annual exposure to NO, across the whole UK
population. Population-weighted exposure to PM, 5 and O3 increased and decreased by 0.3%, respectively, re-
flecting the different atmospheric processes contributing to the spatio-temporal distributions of these pollutants.
We also illustrate how our modelling approach can be utilised to quantify individual-level exposure variations
due to modelled time-activity patterns for a number of virtual individuals living and working in different lo-
cations in three example cities. Changes in annual-mean estimates of NO, exposure for these individuals were
considerably higher than for the total UK population average when including their workday location.
Conducting model-based evaluations as described here may contribute to improving representativeness in stu-
dies that use small, portable, automatic sensors to estimate personal exposure to air pollution.
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not accounted for. The magnitude and direction of this bias is widely
discussed in the environmental exposure and health effects literature,
primarily from the viewpoint of utilising small, portable air pollution
sensors to quantify personal exposure directly on an individual level

1. Introduction

1.1. Background

Traditional approaches to quantifying population-level exposure to
air pollution assume that concentrations of air pollutants at the re-
sidential address of the study population are representative for overall
exposure. However, as early as 1982, Ott highlighted that ‘Many pre-
vious investigators unfortunately calculate “exposures” by relying on data
from fixed air monitoring stations, and they assume that people are located
in the same place, usually their residential address, throughout a 24-h
period’ (Ott, 1982).

This introduces potential bias in the quantification of human health
effects, as the individual and population-level mobility of receptors is

(Steinle et al., 2013, 2015; Buonanno et al., 2012; Gariazzo et al., 2016;
Marek et al., 2016) or mobile devices to assess mobility (Dewulf et al.,
2016; Nyhan et al., 2016; Glasgow et al., 2016; Park and Kwan, 2017).
While results emerging from these studies are important for under-
standing the impact of specific mobility patterns (Setton et al., 2008,
2011; Beckx et al., 2009; Dons et al., 2011; Dhondt et al., 2012; Ragettli
et al., 2014, 2015; Brokamp et al., 2016; Smith et al., 2016), for ex-
posure in different micro-environments and for the relative contribu-
tions of these to overall personal exposure, up-scaling from this in-
dividual level to population level exposure is not straightforward.
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It is in this context that atmospheric chemistry transport models
(ACTMs), which have achieved substantial progress in accuracy, can
provide consistent spatio-temporal air pollution concentration fields for
both individual and population levels of exposure assessment where
personal or stationary observations are not available (including for
historic and future exposure estimates). In addition, in the United
Kingdom (UK) at least, new spatial data on workday location in-
formation is available for the first time from the most recent Census.
Consequently, the motivation of this paper is to answer the following
three research questions:

(1) How does the modelled exposure to key ambient air pollutants
differ when comparing use of residential location only with a
method accounting for workday location at population level?

(2) To what extent does the spatio-temporal variability of different
pollutants affect population exposure regionally?

(3) Can modelled exposure inform the upscaling of personal exposure
monitoring results for ambient air pollution?

1.2. Objectives

In this paper, we illustrate the application of a state-of-the-art ACTM
with high spatio-temporal resolution for the UK (e.g. Vieno et al., 2010;
Vieno et al., 2014; Vieno et al., 2016a,b). We demonstrate how mod-
elled air pollution fields combined with population data, for usual re-
sidential and workday locations can give insight into the different ex-
posures to a range of air pollutants. We analyse the estimated
population exposure variability between working hours and other times
for fine particulate matter (PM, 5), nitrogen dioxides (NO,) and ground-
level ozone (O3). These pollutants have different spatio-temporal var-
iations owing to their different emission sources and different time-
scales of atmospheric physicochemical formation and loss processes.

We further evaluate the results of these calculations both at UK
population level for total estimated exposure and assess potential ex-
posure variability for selected virtual individuals. For the individual
case studies, we assign locations of residence in more or less densely
populated parts of a city, and a city centre place of work, and compare
the extent of individual potential exposure differences to population
level values.

2. Methods
2.1. Population mapping

Fig. 1 illustrates the methodology used to derive the high-resolution
population distribution maps. Data on population distribution for both
residential and workday for the UK is available to the public from
statistical offices in England, Wales, Northern Ireland and Scotland, e.g.
via the Office for National Statistics (ONS). The ‘workday’ population
distributions are a new product, derived from the 2011 Census. ONS
defines the workday population in a geographical area as “all usual
residents aged 16 and above who are in employment and whose
workplace is in the area, and all other usual residents of any age who
are not in employment but are resident in the area” (ONS, 2014). The
geographical areas for which census estimates are provided reflect
different levels of administrative boundaries, from Devolved Adminis-
tration (i.e. England, Wales, Scotland and Northern Ireland) to Output
Areas (OA) as the smallest. OAs were introduced in Scotland at the
1981 Census and elsewhere at the 2001 Census. In England and Wales,
2001 Census OAs were based on postcodes (at Census Day) and fit
within the boundaries of 2003 statistical wards and parishes. The
minimum OA size was 40 resident households and 100 resident people,
with recommended sizes being larger at 125 households. As a con-
sequence of size thresholds, small wards and parishes were in-
corporated into larger OAs.

The OAs are polygons with highly variable sizes and shapes. As the
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model output of atmospheric concentrations is provided on a regular
grid, the population distribution was mapped onto the same grid for
merging with the modelled air pollution concentration fields. This al-
lows for a more uniform spatial analysis based on a regular grid,
whereas mapping pollution fields onto OA shapes may lead to
spreading pollutant concentrations across larger areas in sparsely po-
pulated regions. The dataset used for this study therefore combines
2011 UK Census population data at the OA level with land cover data
(Land Cover Map 2015, Rowland et al., 2017). The categories ‘Urban’
and ‘Suburban’ were aggregated to create a consistent gridded popu-
lation data product to provide a population density surface at
1 km x 1km spatial resolution. The mapping products are based on the
British National Grid (OSGB36 datum). The dataset for both residential
and workday populations has been published and is publicly available
(Reis et al., 2017, https://doi.org/10.5285/0995e94d-6d42-40c1-8ed4-
5090d82471el).

The UK population distribution for both residential (RES) and
workday (WD) populations has been mapped, with differences not easy
to identify at national scale (see Fig. S1, Suppl. mat.). In particular
around urban agglomerations, the full extent of the magnitude and the
spatial patterns of workday mobility effects at population level is most
appropriately revealed by the difference map displayed in Fig. 2.

The three example magnified maps in Fig. 2a—c highlight that in
most cases urban centres gain population during working days due to
commuting, while population density in suburbs and rural areas is re-
duced. The most striking effect is observed for central London (Fig. 2c)
where the residential population is comparatively low, compared with
the marked increase in workday population. During working hours,
population densities exceed 120,000 km ™2, with 10 to 20-fold increases
in the local population density, for instance, for the City of London.

2.2. Atmospheric modelling

The EMEP4UK model used here for quantifying atmospheric pollu-
tant concentrations is a regional ACTM based on version rv4.10 of the
European  Monitoring and Evaluation Programme (EMEP)
Meteorological Synthesizing Centre - West (MSC-W) model (www.
emep.int), which is described in Simpson et al. (2012). A detailed de-
scription of the EMEP4UK model is provided in Vieno et al. (2010,
2014, 2016a,b). The model produces hourly concentrations of a wide
range of gaseous and particulate matter species.

The EMEP4UK model's meteorological driver is the Weather
Research and Forecast (WRF) model version 3.7.1 (Skamarock et al.,
2008). The EMEP4UK and WRF model domain uses a one-way nested
approach with a latitude/longitude grid at a horizontal resolution of
0.5° X 0.5° (~55.5km at the equator) for an extended European do-
main, ~0.055° X ~0.055° (~6.2 km at the equator) for the British Isles
nested domain (UK & Republic of Ireland), and ~0.018° x ~0.0.18°
(~2km at the equator) for the innermost domain covering the United
Kingdom. The boundary conditions at the edge of the European domain
are prescribed concentrations in terms of latitude and adjusted for each
year as described in Simpson et al. (2012).

We used emission data and meteorology for 2015. Land-based an-
thropogenic emissions for the UK were obtained from the National
Atmospheric Emission Inventory (NAEIL, http://naei.beis.gov.uk/).
Elsewhere, the EMEP emission estimates provided by the Centre for
Emission Inventories and Projections (CEIP, http://www.ceip.at/) were
used. Estimates for shipping emissions were derived from Jalkanen
et al. (2016) and were for the year 2011.

2.3. Population and air pollutant data integration

In order to align the pollutant concentration fields with the popu-
lation data, the maps of NO,, PM, 5 and O3 were re-gridded to match
the spatial reference system of the population data (OSGB36 datum).
This was achieved through the linear re-gridding scheme in the UK Met
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British National
UK Census 2011 UK LCM 2015 Output Areas Grid 1 km x 1 km
England & Wales, Scotland, England & Wales, Scotland,
Northern Ireland Northern Ireland
——1
Residential & Workday populations ~ Urban & Suburbqi Land Cover Administrative Boundaries Defi ’"Fd gr '}1 map
Feature Manipulation Engine (FME)
Gridded population based on LCM 2015
Fig. 1. Flowchart for the production of high resolution population maps (FME © Safe Software; LCM = Land Cover Map).
Office's Iris 1.12 Python library (http://scitools.org.uk/iris/docs/v1.12. urban agglomerations on concentrations are apparent — the spatial
0/index.html). The resulting concentration maps are shown in Fig. 3 for patterns in these concentration fields are discussed in Section 3.

all grid cells with a population greater than zero, and illustrate the
spatial distributions of these three pollutants. The influence of the
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Fig. 2. Difference between UK workday and residential population densities (km ~2) (left). Negative values represent a net loss in population during regular working
days, while positive values indicate a net gain. Maps a—c are magnifications for the Central Belt of Scotland, the Liverpool-Manchester-Leeds-Sheffield region, and
Greater London, respectively.
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Fig. 3. Modelled annual mean concentration at 1km x 1 km spatial resolution (see text for details) of NO, (a), PM, s (b) and O3 (c) for the year 2015 (all units
ugm~3). To illustrate the spatial relationship with population distribution, grid cells with no residential or workday populations are shown in white.

2.4. Exposure calculation

Three annual mean population exposures were calculated for each
pollutant in each grid cell for each hour of the year: Residential only
(RE;), Workday only (WE;) and combined Residential-Workday (RWE,).
The RE; and WE; exposures represent scenarios in which the whole UK
population stays all the time at their place of residence and work, re-
spectively, while the RWE; represents a more ‘realistic’ scenario in
which people spend some time at home and some time at work. The RE;
and WE; were calculated as

E =P X 61 1.1

where E; (either RE; for Usual Resident or WE; for Workday) is the an-
nual mean population exposure in grid cell i, P; is the respective po-
pulation number in grid cell i and C; is the annual mean concentration
of the pollutant in grid cell i. For the calculation of RWE,; it is assumed
that the whole UK population is at their workday locations between
8am and 6 pm Monday to Friday and at their home at all other times.
Clock changes to British Summer Time in March and back to Greenwich
Mean Time in October are accounted for, but the 8days of public
holiday in the year are treated as week days. Exposures while in transit
and mode of commuting between work and home cannot be explicitly
modelled in this population-level study. However, for much of the po-
pulation the hours assigned here to workday will include transit time
spent not at their place of residence. In this model, people are assigned
29.8% of time at their workplace and the rest at home. RWE; is then
calculated as

R X Y Cri+ W x Y, G

RWE, = 8760

(1.2)

where RWE,; is the combined mean population exposure in grid cell i, R;
is the Usual Resident population in grid cell i, 2Cp; is the sum of all
hourly concentrations of the pollutant in grid cell i outside working
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hours, W; is the Workday population in grid cell i, 2Cyy; is the sum of all
hourly concentrations of the pollutant in grid cell i during working
hours and 8760 is the number of hours in 2015. As the difference be-
tween the total Residential and Workday populations in the UK is
negligible (minor differences occur due to cross-border and offshore
commuting), the population-weighted mean exposure to a pollutant is
calculated as

Z?:l Ei
P

E= (1.3)
where E is the population-weighted mean exposure for a population
(Usual Resident, Workday, Combined), n is the number of populated
grid cells by a population, E;is the mean exposure in grid cell i for a
population and P is the respective total population. Usual Resident
population is used for the calculation of RWE.

2.5. Individual exposure case studies

In addition to the national-scale assessment of the difference in
population exposure, we have designed a case study with virtual par-
ticipants to illustrate how a model-based estimate as discussed in this
paper may be used to support the design of personal exposure studies.
For this purpose, we spatially allocated pairs of individuals to re-
sidential locations in a low and high built-up area respectively in three
urban areas from north to south (see Fig. 5). For the pair of individuals
in each urban area, the same grid cell was selected for workplace lo-
cation. The objective of these case studies was to illustrate that differ-
ences in individual exposure within small geographic areas could be
captured with our modelling approach. We acknowledge, however, that
due to the size of 1km X 1km grid cells used, actual exposure differ-
ences may potentially be much larger.



S. Reis et al.

Table 1

Residential (RE), Workday (WE) and combined Residential-Workday (RWE)
population-weighted mean exposure to NO,, PM,s and O3 in the UK. Also
shown is the ratio of (RWE/RE).

UK RE WE RWE RWE/RE
(ngm~?) (ngm~?) (Hgm™?)
NO, 14.3 15.2 14.6 1.020
PM, 5 6.7 6.8 6.7 1.003
O3 62.3 61.9 62.1 0.997
3. Results

3.1. Population-level assessment of exposure differences

The population-weighted mean exposures to NO,, PM, 5 and O in
the UK calculated for each population scenario are shown in Table 1.
The results show very small differences between Residential and
Workday population-weighted mean exposures to PM,s and Os.
Therefore accounting for exposure to these pollutants at the place of
work results in negligible exposure differences at the population level.
However, the results for NO, show an increase of 0.9pugm ™2 in the
population-weighted mean exposure for the Workday population re-
lative to the Residential population. Consequently, in the combined
Residential-Workday population scenario, the population-weighted
mean exposure to NO, is 0.3 ug m~3 (or 2%) higher than when using
residential location only to calculate potential exposure. This impact on
population level exposure to NO, is about an order of magnitude
greater than for PM,s and O3 and reflects the much greater spatial
gradients in NO, concentrations compared with those for PM, 5 and O3
illustrated by the scales of the maps shown in Fig. 3. The map for NO,
clearly shows that the highest concentrations and gradients of NO, are
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associated with urban agglomerations. This is due to both the change in
location for population during working hours, as well as the temporal
patterns of ambient concentration changes. At population level, it is not
feasible to quantitatively apportion how the spatial and temporal fac-
tors contribute to the variations in overall exposure; this could only be
done at individual level and would vary with individual.

The greater effect for NO, also reflects the higher temporal varia-
tion, in that concentrations of NO, are generally higher everywhere
during workday hours, and particularly in work place locations (centres
of urban areas) precisely because people are working in these locations.
The resulting increase in population density in urban centres during
working hours leads to a substantial increase in emissions, and in
particular NO, concentrations from fossil fuel combustion. Road traffic
and static combustion are major sources of NO, (NO and NO,) and the
NO, concentrations vary considerably over space and time because of
the rapid dispersion and chemical reactions of NO, — timescales of
minutes to a few hours - in particular the reaction between NO and O;
to form additional NO, (Cyrys et al., 2012). Meteorological factors, as
well as other aspects (e.g. street canyons resulting in complex air flows),
influence the build-up of ambient concentrations and further affect both
the spatial and temporal variability.

Table 1 indicates that there is actually a small decrease in potential
population-level exposure to ground-level O3 when taking into account
workday population distribution. This is because, as shown in Fig. 3c,
O3 is typically slightly depleted in urban areas and along major road
networks. This is the corollary of the reaction between NO and Oj that
leads to enhanced NO, in areas of high NO, emissions simultaneously
reducing concentrations of urban O3. In contrast highest concentrations
of Os are in the most rural areas, along the west coast in particular for
the UK, due to background concentrations stemming from hemispheric
transport and higher levels (because of reduced surface deposition) over
the sea. However populations are much lower in these areas.
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Fig. 4. Comparison of population-weighted concentrations of NO, (in pg m ™~ X persons km ~?) calculated by using the difference between residential and workday
populations (aggregated over all hours of the year, see Section 2.4). Maps a—c are magnifications for the Central Belt of Scotland, the Liverpool-Manchester-Leeds-

Sheffield region, and Greater London, respectively.
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In the case of PM, s, Fig. 3b shows that PM, 5 concentrations exhibit
a fairly smooth pattern across the UK, with a declining gradient from
the southeast to the northwest. This is caused by the transport of sec-
ondary inorganic aerosol and other particles from continental Europe
and has been documented for instance by Vieno et al. (2016a,b) and
Kiesewetter et al. (2015a,b). Superimposed on this are sources of pri-
mary PM, s emissions in UK urban areas but the proportion of these
primary sources to total PM, s is generally not high which is why there
is lower spatial contrasts in PM, s compared with those for NO, and
consequently why changes in population-level exposure to PM, 5 are
much smaller than for NO, when accounting for workday population
movement into urban areas (Table 1). Although the magnitude of the
increased workday population exposure is smaller for PM, s than for
NO, the fact that both are increased reflects also the generally high
spatial correlation between these two pollutants as shown in Fig. 3a and
b.

The impact of taking account of workday population density for
NO, is further emphasised in Fig. 4 which shows the map of population-
weighted exposures to NO, (in pgm™3 x personskm™?) calculated
from the difference between residential and workday populations in-
tegrated over the year. The legend scale of the figure shows that a few
grid cells have very large increases in the product of population density
and NO, concentrations, while a larger number of cells have smaller
reductions in population-weighted exposure values. This is a con-
sequence of both the accumulation of people in urban centres during
working hours and the higher concentrations of NO, in those urban
centres, while lower concentrations in rural and residential areas show
smaller reductions in exposure in contrast (see Figs. 2 and 3). Fur-
thermore, Fig. 4 highlights the corresponding changes between areas
which are predominantly residential, and others where work places are
located. This is visible for all urban areas, but most prominent in the
case of the Greater London area (Fig. 4c). Here, the increase for the City
of London exhibits by far the largest increase in population-weighted
exposure to NO,, reflecting both the substantial increase of population
density and the high ambient NO, concentrations during working
hours.

3.2. Case studies of modelled individual-level exposure differences

The previous section indicates a comparatively small population-
level difference in exposures to NO,, PM, s and O3 between solely using
residential locations, or accounting for workday locations as well.
However, exploratory analysis of the data indicated the potential for
rather marked differences in the exposure of individuals commuting
into areas where ambient concentrations during working hours are
high. To illustrate such differences, we considered three pairs of virtual
individuals in each of the Edinburgh, Manchester and London areas
with a residential address in either a more or less densely built-up area
of their respective cities and a workday location in their city centre.

Table 2 describes the categorisation of those residential and
workday locations and Fig. 5 provides a geospatial reference for each

Table 2
Categorisation of locations for individual exposure calculation (location names
in brackets for reference).

Edinburgh Manchester London
Residential ~Low building A1l Bl C1
density (Gilmerton) (St. George's (Southfields)
Island)
Residential High A2 B2 Cc2
building (Drummond (Didsbury) (Mayfair)
density Street)
Workday City centre A3 B3 Cc3
(West End) (Albert's (City of London)
Square)
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location within the three urban areas. As the 1km X 1km grid cells
comprise mixed land-use categories, the selection was conducted vi-
sually based on Open Street Map (www.openstreetmap.org) and aerial
photography to identify areas with high vs. low density of building
cover. The resulting differences in potential exposure are illustrative for
virtual individuals, but not representative for any specific population
group. Note that the assignment of high or low building density does
not necessarily reflect the radial distance from the urban centre, as the
maps in Fig. 5 clearly show.

For each individual, the difference between a residential-only ex-
posure and combined residential and workday exposures was calculated
using the same approach as described in Section 2.4. Annual mean
concentrations for each individual are displayed in Fig. 6. For NO, the
annual mean concentrations of individuals living in high building
density locations is higher than for those living in low building density
locations, while the opposite is the case for Os. The individual ex-
posures to annual mean PM, 5 differ only marginally, illustrating the
comparatively spatially homogeneous PM, s concentrations and rela-
tively small contributions from local emissions.

Fig. 7 shows the absolute and relative differences in annual mean
exposures to the three pollutants between individuals with residential
addresses in low building density locations or in high building density
locations in the three urban areas. In all cases, the individuals living in
the low building density locations had lower annual mean exposure to
NO, than those living in the high building density locations, with ab-
solute NO, concentration differences ranging from 3.0ugm~2 in
Manchester to 6.3pugm™2 in Edinburgh and 10.6 uygm ™2 in London.
Differences in exposure to O; were smaller and exposure for the in-
dividuals living in the less densely built-up locations was higher (0.7,
4.7 and 7.9 uygm 3 respectively). The differences in absolute exposure
to PM, s of virtual individuals were negligible in all three cities (all
differences < 0.8 ugm™3), but the figure illustrates the influence of
long-range transported fine particles from continental Europe, which
diminishes toward the north of the country.

However, Fig. 7 shows that while absolute differences in exposure to
NO, between the two individuals were largest in London, the relative
difference in NO, exposure was greatest in Edinburgh (35% and 25%,
for Edinburgh and London, respectively). Similarly, while absolute
differences in exposure to PM, 5 between the two individuals in each
city were small, the relative differences were 8.3%, 9.1% and 1.4%,
respectively, for the London, Edinburgh and Manchester examples. A
likely explanation for this can be found in the spatial configuration of
Edinburgh, which is less densely built-up without street canyons and
traffic volumes comparable to London. This leads to lower background
NO, concentrations across the centre of Edinburgh and more pro-
nounced variations between parts of the city within a small area.

4. Discussion

To our knowledge, this is the first time that the impact of workday
population mobility has been investigated at country scale for the UK
and based on routinely collected CENSUS data products. Some previous
papers have investigated differences at country scale based on modelled
data (e.g. for the Netherlands by Beckx et al., 2009), as well as for
individual-level exposures. In a study with some parallels to ours, but
for a much smaller area, Park and Kwan (2017) demonstrated the im-
portance to exposure assessment of air pollution in Los Angeles County
of considering both the spatio-temporal variability of O; and individual
daily movement patterns. They found significant differences across four
different types of exposure estimates: individual movement data and
hourly air pollution concentrations; individual movement data and
daily average air pollution data; residential location and hourly pollu-
tion levels; and residential location and daily average pollution data.
Similarly, Setton et al. (2011) compared exposure estimates in Van-
couver, British Columbia, and Southern California, using paired re-
sidence- and mobility-based estimates of individual exposure to
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Fig. 5. Location of 1 km X 1km grid cells selected for model assessment of virtual individuals living in either a low building density (1) or a high building density (2)
area and working in a city centre (3) location in Edinburgh (A1-A3), Manchester (B1-B3) and London (C1-C3) (see Table 2 for a description of the individual
locations).
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Fig. 6. Comparison of annual mean concentrations for NO,, O3 and PM, 5 ex-
perienced by virtual individuals living in more and less densely built-up loca-
tions, respectively, and working in the city centres of Edinburgh, Manchester
and London. Each graph illustrates a direct comparison between a residential
location and the workday location in each of the cities, for example, a person
living in location Al and working in location A3 in the case of Edinburgh (see
Fig. 5 for the spatial context on locations compared).
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Fig. 7. Absolute (top) and relative (bottom) differences in annual mean con-
centrations for NO,, O3 and PM, 5 - expressed as the difference in pg m~2and in
percent - experienced by individuals living in lower density building and higher
density building locations, respectively, and working in the city centres of
Edinburgh, Manchester and London (see Fig. 5 for details on locations com-
pared).

ambient NO,. They applied error theory to calculate bias for scenarios
when mobility is not considered, and concluded that ignoring daily
mobility patterns may contribute to bias toward the null hypothesis in
epidemiological studies using individual-level exposure estimates.
Likewise, Nyhan et al. (2016) compared population-weighted exposure
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to PM, s, in New York City (NYC) both as “Active Population Exposure”
(using population activity patterns and spatio-temporal PM,s con-
centration levels) and “Home Population Exposure” (assuming a static
population distribution as per Census data). They reported that popu-
lation-weighted exposure for the “Active” scenario was statistically
significantly different to the “Home” scenario for most NYC districts.
Our simulations of example individual potential exposure estimates
presented in Section 3.2 are in line with the conclusions of these pre-
vious studies. de Nazelle et al. (2009) investigated simulated population
exposure variations as a consequence of changes in mobility patterns in
pedestrian-friendly urban designs and found that PM;, and O3 inhala-
tion increased. In a study in Barcelona, Spain, using smartphones to
track individual mobility patterns, de Nazelle et al. (2013) reported that
average travel activities accounted for 6% of people's time, but con-
tributed to 24% of their daily inhaled dose of NO,.

Our study has highlighted the importance of a holistic approach to
consideration of the impacts on population mobility on exposure to air
pollution. Changes in exposure to O3 are in the opposite direction to
NO, and PM, 5 because of the tendency for O3 to be higher in rural
areas and lower in urban areas. This is important in the context of
designing effective interventions (Section 4.1).

The use of small, portable, automatic sensors to estimate personal
exposure to air pollution has become quite widespread (Steinle et al.,
2013, 2015; Buonanno et al., 2012; Gariazzo et al., 2016; Marek et al.,
2016), but although providing opportunities for synergistic monitoring
of other relevant parameters, e.g. individual activity levels (Laeremans
et al.,, 2017), such studies are expensive and time consuming. Con-
ducting model-based evaluations similar to those described here in
preparation of such sensor-based field studies may contribute to a
substantial de-risking and improved representativeness as a result. The
illustrative model-based assessment of ‘personal’ exposure levels for
selected individuals demonstrated in Section 3.2 illustrates, how a
physical personal exposure monitoring study could be tested ex ante to
evaluate aspects of representativeness or the coverage of pollution
hotspots, which may not be evident based on sparse fixed monitoring
network data only.

Our estimate of a 0.3ugm ™2 increase in population-weighted an-
nual mean exposure to NO, when including workday population dis-
tributions may appear small but applies to the total UK population of
63.2 million. For long-term exposure to NO,, the WHO HRAPIE project
(WHO, 2013) estimated a relative risk for mortality of 1.055 (95% CI
1.031-1.080) per 10 ug m 2 increase in concentration, as derived from
a meta-analysis of relevant studies by Hoek et al. (2013). Taking the
central estimate for the relative risk coefficient, our estimate of a
0.3 ugm_3 increase in exposure to NO, equates to an increased risk to
mortality of 1.0017, or 0.17%. Based on an annual UK mortality of
nearly 600,000 (ONS) the additional estimated NO, exposure including
workplace mobility may contribute to approximately 1000 premature
mortalities per year across the UK. The WHO noted that the relative risk
assigned to NO, may include some of the effects due to PM, s, whose
concentrations are often correlated with those of NO, and therefore
difficult to separate in epidemiological studies. An effects overlap of
around 30% (WHO, 2013) would reduce the NO,-atrributable estimates
of premature mortality by a corresponding proportion. However, part
of this reduction would be offset in our analyses by the attributable
premature mortality associated with the small increase in potential
annual mean exposure to PM, s for which there is also a significant
relative risk: COMEAP (2010) estimated a relative risk for all-cause
mortality from long-term exposure to PM, 5 of 1.06 (95% CI 1.01-1.12)
per 10 ugm ™2 increase in concentration.

4.1. Outlook and next steps
Beyond the results of this study, the case for taking account of the

time-activity patterns and commuting behaviour of individuals or po-
pulation sub-groups can be made in support of the ex-ante assessment
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Fig. 8. Implications of differences between workday and residential population densities for the design of air quality interventions depicted by the current Air Quality
Management Area (AQMA) for Glasgow (left) and the existing Congestion Charge Zone (CCZ), as well as the Low Emission Zone (LEZ) In the Greater London area

(right).

of policy interventions. For example, assessment of boundaries for Air
Quality Management Areas (AQMAs) and Low Emission Zones (LEZs)
should account for workday population density, as illustrated by Fig. 8.
In general, interventions with a focus on achieving compliance with air
quality limit values at a small number of existing air quality monitoring
sites cannot be expected to automatically achieve the most effective
reductions in population exposures and hence a substantial improve-
ment of public health.

The analyses discussed in this paper highlight the different impacts
on potential population exposure to NO,, PM, s and O3 when con-
sidering workday population distributions in conjunction with different
spatio-temporal patterns of these pollutants. It is important to recognise
that interventions aiming at the reduction of one pollutant may not
deliver improvements for other pollutants by default. For example,
reductions of NO, emissions to lower NO, concentrations will likely
lead to increases in ambient O3 locally.

Steps to build upon the approach presented here could focus on
several areas.

(1) A more explicit and detailed consideration of commuting patterns,
transport modes and time-activity spent in transit will be feasible
for particular regions or urban environments, e.g. based on data on
the Location of usual residence and place of work by method of travel to
work (NOMIS, 2014). This may require access to individual-level
data on mobility and commuting choice and hence need a safe
haven environment in which to work with potentially disclosive
datasets. Shekarrizfard et al. (2017) demonstrate such an approach
for the Montreal metropolitan area and Int Panis (2010) highlight
the benefits of taking activity patterns into account for epidemio-
logical studies. Alternatively, virtual population data emulating real
commuting and mobility patterns can be generated from disclosive
individual data in order to conduct ex ante model assessments of

interventions (de Nazelle et al., 2009, 2013; Nowok et al., 2016;
Raab et al., 2017). This is a viable approach because the effec-
tiveness of interventions does not rely on individual effects, but is
evaluated against sub-population level exposure reductions.

(2) Modelling cohorts or vulnerable sub-sets of the total population,
e.g. patients suffering from respiratory or cardiovascular diseases
and subject to close surveillance in order to combine individual-
level monitoring with space-time modelling of environmental ex-
posures. Valero et al. (2009) and Schembari et al. (2013) illustrate
the specific need for detailed exposure assessments on the example
of individual exposure patterns of pregnant women. In this context,
modelled data can enhance real-time monitoring approaches such
as described by Marek et al. (2016), utilising Internet of Things
concepts. Reis et al. (2015) make a case for better integration of
modelling and sensors and provide an in-depth discussion of po-
tential pathways to achieve this.

(3) Further detail may include the ‘Location of usual residence and
place of work (OA level)’ dataset (NOMIS, 2011), derived from
Census 2011 data, which would allow for residential and workday
population level exposure differences at the OA scale.

Our results illustrate that, when assessing population-level potential
exposure to air pollution, accounting for location is less relevant than
for individual exposure assessment. In specific contexts, however, for
instance at the level of a large conurbation, Oxley et al. (2015) illustrate
how assessing both the temporal variations in ambient concentrations
of air pollution and the mobility of residential and working populations
can lead to substantial differences in the estimates of life expectancy
gains. In that way, modelling air pollution at both high spatial and
temporal resolution could contribute essential environmental data to
the ‘daycourse of place’ framework developed by Vallee (2017) and
support a more explicit assessment of the ‘social and political rhythms
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of places over a 24-h period and their effects on health inequalities’.
Overall, our work contributes to the discussion on the fusion of en-
vironmental and health data (Kanjo et al., 2018).

4.2. Conclusions

Our study demonstrates the utility of using new UK Census products
comprising information on workday population densities, in combina-
tion with high spatio-temporal resolution atmospheric model output, to
derive more realistic estimates of population exposure to air pollution.
We explicitly allocated workday exposures for weekdays between 8 am
and 6 pm. Our analyses covered all of the UK at 1 km spatial resolution.
Taking workday location into account had the largest impact on po-
tential exposure to NO,, with an estimated 0.3 pgm ™3 (equivalent to
2%) increase in population-weighted annual exposure to NO,, across the
whole population of the UK. Population-weighted exposure to PM, 5
and Oj; increased and decreased by 0.3%, respectively, when including
workday population distribution, reflecting the different atmospheric
processes contributing to the spatio-temporal distributions of these
three pollutants. These findings are in line with other studies, which
identified that accounting for a combination of temporal and micro-
environmental adjustments led to the most pronounced contrasts in
population level and individual exposure.

We also illustrate how the modelling approach applied in this study
can be utilised to quantify individual-level exposure variations due to
modelled time-activity patterns for a number of virtual individuals
living and working in different locations in three example cities.
Changes in annual-mean estimates of NO, exposure with inclusion of
workday location are considerably higher than the population average.
The increase in exposure to PM, s for these virtual individuals was
smaller than for NO, but still several percent. Conducting model-based
evaluations as described here may contribute to improving re-
presentativeness in studies that use small, portable, automatic sensors
to estimate personal exposure to air pollution by identifying areas and
study populations prior to launching field experiments.

The approach presented here can be expanded in several directions,
including more explicit modelling of the mode of transport and time
spent indoors and outdoors, a focus on particular population sub-groups
and better integration of model and sensor and remote-sensing data. In
this study, only single pollutant exposure has been considered. One
advantage of using modelled data allow for a spatio-temporally explicit
quantification of multi-pollutant exposure. This enables the detection of
hotspot locations where several pollutants contribute to local exposure
risks, and hence a better assessment of health risks in mobile popula-
tions.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.envint.2018.10.005.
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