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Abstract  
The coastline of County Down includes sites that are pivotal to understanding the 

history of the last glaciation of the northern Irish Sea Basin in relation to relative sea 

level and regional glacial readvances. The cliff sections display evidence that has 

been used to underpin controversial models of glaciomarine sedimentation in 

isostatically-depressed basins followed by emergent marine and littoral 

environments. They also provide crucial evidence claimed to constrain millennial-

scale ice sheet oscillations associated with uniquely large and rapid sea-level 

fluctuations. This paper reviews previous work and reports new findings that 

generally supports the ‘terresrrial’ model of glaciation, involving subglacial accretion 

and deformation of sediment beneath grounded ice. Deep troughs were incised into 

the till sheet during a post Late Glacial Maximum draw-down of ice into the Irish Sea 
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Basin. Ice retreat was accompanied by glaciomarine accretion of mud in the troughs 

during a period of high relative sea level. The trough-fills were over-ridden, 

compacted, deformed and truncated during a glacial re-advance that is correlated 

with the Clogher Head Readvance. Grounding-line retreat accompanied by rapid 

subaqueous ice-proximal sedimentation preserved a widespread subglacial stone 

pavement. Raised beach gravels cap the sequence. The evidence supports an 

uninterrupted fall in relative sea level from c. 30 m that is consistent with sea level 

curves predicted by current glacio-isostatic adjustment modelling. Critical evidence 

previously cited in support of subaerial dissection of the troughs, and hence rapid fall 

and rise in relative sea level prior to the deposition of the glaciomarine muds, is not 

justified. 

Keywords: Irish Sea ice, glaciomarine, Northern Ireland glacial history, stone 

pavement, sea level change, Clogher Head Readvance. 

1. Introduction 
During the last major glaciation (Middle to Late Midlandian/Devensian) a dynamic ice 

sheet developed over the central lowlands of Ireland sourced from ice centres 

positioned over the peripheral mountain massifs (McCabe, 1987; McCabe, 2008; 

Greenwood and Clark, 2009; Roberson et al., 2016). The onset of glaciation is 

debated (Bowen et al., 2002; Barth et al., 2016), but judging from radiocarbon-dated 

organic material beneath till obtained from the Isle of Man, the Irish Sea Basin (ISB) 

was not glaciated until after 36 ka (Roberts et al., 2007). All of Ireland was covered 

by ice at the Last Glacial Maximum (LGM) when an ice divide stretched across the 

northern ISB between  Northern Ireland and south-west Scotland (Finlayson et al., 

2010, 2014; Ballantyne and Small, 2018) and a vast ice stream flowed through the 

ISB to reach the Isles of Scilly (Scourse and Furze, 2001: Roberts et al., 2007; Ó 
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Cofaigh and Evans, 2007; Scourse et al., 2009; Chiverrell and Thomas, 2010; Ó 

Cofaigh et al., 2012; Hughes et al., 2016; Smedley et al., 2017a) and beyond to the 

continental shelf break beneath the Celtic Sea (Praeg et al., 2015) (Fig. 1). Ice also 

expanded to the shelf break to the west of Ireland (Peters et al., 2015). There are 

different interpretations of the timing of the LGM globally, regionally and locally 

(Clark et al. 2009; Hughes et al. 2013; Lambeck et al. 2014; Hughes & Gibbard 

2015) and different sectors of the last British and Irish Ice Sheet (BIIS) probably 

reached their maximum extent asynchronously (Clark et al., 2012: Hughes et al., 

2016). A recent estimate of c. 30-27 ka for the Atlantic Shelf (Ballantyne and Small, 

2018) is earlier than previous estimates of 24.3-23.1 ka (Clark J. et al., 2012; 

Lambeck et al., 2014), but is in line with the time-slice reconstruction of 27-26 ka for 

the Atlantic sector of the BIIS proposed by Hughes et al. (2016). The Irish Sea Ice 

Stream (ISIS) began to retreat slowly from the Isles of Scilly between 26 and 25 ka 

(Small et al., 2018). There followed a rapid (c. 5 ka), stepped retreat, triggered by 

climatic warming, sea-level rise, reactivation of meridional circulation in the North 

Atlantic and possible mega-tidal amplitudes (Chiverrell et al., 2013; Smedley et al., 

2017b; Small et al., 2018). The margin of the ISIS had probably retreated into the 

northern ISB by 21.3-19.8 ka where it oscillated before a significant readvance 

occurred during the Killard Point Stadial, peaking at c. 16.5 ka (Thomas et al., 2004; 

McCabe et al., 2007b; Clark C et al., 2012; Chiverrell et al., 2013) (Table 1). 

The coast of County Down studied here lies between the ISB and the Mourne 

Mountains, which reach 853 m above Ordnance Datum Belfast (OD) in elevation at 

Slieve Donard (Figs. 2 and 3). These mountains formed of granite presented a major 

topographic obstruction to regional ice flow, as revealed by the long-axes of 

streamlined subglacial bedforms that arc around the northern and southern margins 
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of the Mournes towards the ISB (McCabe, 2008).  The episode of circumventing flow 

that formed these streamlined bedforms followed the creation of a broad belt of 

ribbed moraine that extends eastwards from the central lowlands to the northern 

foothills the Mournes (McCabe et al., 1999) (Fig. 2). The ribbed moraine has been 

subsequently eroded and remoulded subglacially to create the iconic ‘basket of eggs’ 

drumlin topography of County Down (McCabe et al., 1998; Knight et al., 1999; 

McCabe, 2008). In the south-eastern lee of the mountains the gently shelving 

Mourne Plain widens southwards from Annalong towards Carlingford Lough (Fig. 4). 

This coastal plain, which lies at up to 60 m OD, is underlain by a thick sequence of 

glacigenic deposits underlain by Silurian wacke sandstones and mudstones and a 

small outlier of Carboniferous limestone at Cranfield Point (GSNI, 1997; Mitchell, 

2004; Cooper, 2016). The seaward margin of the plain is stepped locally where late-

glacial raised shoreline features are fronted by raised beach deposits (Stephens and 

McCabe, 1977) (Fig. 3).  

The glacigenic deposits exposed along the actively retreating cliffs of the coastal 

plain, and within aggregate quarries immediately inland, have been studied 

extensively in the past, together with many other coastal exposures occurring around 

Dundalk Bay (Fig. 2), in the Republic of Ireland (see McCabe, 2008 for extensive 

description, discussion and references). The coastline includes several sites that are 

pivotal to understanding the complex pattern of glaciation and deglaciation of the 

region in relation to Relative Sea Level (RSL), none more so than between Kilkeel 

and Derryoge (McCabe, 1986; McCabe and Hirons, 1986; McCarron, 2008). These 

sites display critical components of the evidence-base that has been used to deduce 

models of glaciomarine sedimentation in isostatically depressed marine basins 

(McCabe, 1986; Eyles and McCabe, 1989; McCabe, 2008). Also millennial-scale ice 
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sheet oscillations claimed to be associated with large-magnitude sea-level 

fluctuations of circum- North Atlantic, if not global significance (McCabe, 1996; 

McCabe and Clark, 1998; McCabe et al., 1998; Clark P et al., 2004; McCabe et al., 

2005, 2007a, 2007b; Clark P et al., 2009; Clark J et al., 2012). 

Traditionally the deglaciation of the ISB was thought to have involved a general 

stepwise northerly retreat of a vast, grounded ice-sheet lobe that was nourished from 

ice dispersion centres positioned over the Lough Neagh basin and the north-central 

lowlands of Ireland, the Southern Uplands of Scotland and Cumbrian Mountains of 

England (Charlesworth, 1939, 1973; Stephens et al., 1975; Stephens and McCabe, 

1977; McCabe, 1980). This scenario was replaced by a model of relatively early 

collapse of a marine-terminating ice stream followed by widespread glaciomarine 

sedimentation in an isostatically-depressed ISB, into which flowed climatically-

forced, oscillating tidewater glaciers (McCabe, 1986; Eyles and McCabe, 1989; 

McCabe and Dunlop, 2006; McCabe, 2008). 

Here we review the literature and present the results of targeted fieldwork 

undertaken between Kilkeel and Cranfield Point (Fig. 4), where cliff sections reveal 

critical evidence pertinent to the lively debate that has ensued. Whilst the ‘terrestrial’ 

hypothesis involving subglacial processes and deposition in lakes ponded at the 

grounded lateral margin of the ISIS has been largely substantiated by subsequent 

investigations around the ISB (Thomas and Summers, 1983, 1984; Thomas and 

Kerr, 1987; Ó Cofaigh and Evans, 2001a,b; Evans and Ó Cofaigh, 2003; Rijsdijk et 

al., 2010; Thomas and Chiverrell, 2011; van der Meer et al., 2011; Clerc et al., 

2014), and is now generally accepted, the possibility remains that tidewater 

glaciomarine sediments were deposited in the north-east of Ireland during 

deglaciation in a locally isostatically-depressed basin (McCarroll, 2001). We 
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concentrate on scrutinising the evidence at Kilkeel and Derryoge that crucially 

underpins those published relative sea-level curves that indicate uniquely large and 

rapid local sea-level fluctuations (McCabe et al., 2005; McCabe and Dunlop, 2006; 

McCabe et al., 2007c; McCabe, 2008) that are at odds with curves for the region 

predicted by glacio-isostatic adjustment modelling (GIA) (Brooks et al., 2008, Bradley 

et al., 2011) (Fig. 5).  

The aim of this paper is to describe, clarify and interpret the complex Pleistocene 

sequence exposed between Kilkeel and Derryoge in respect to both past and 

present investigations in order to establish the most likely sequence of events that 

have occurred during the last glaciation. The resulting knowledge then will be tested 

against published glacial and sea-level reconstructions for the northern ISB. 

2. Background  

The aerial distribution of subglacial and ice-marginal landforms on the coastal plain 

and south-eastern flanks of the Mournes, together with clast-provenance analyses of 

tills at natural exposures, suggests that the area has been crossed by ice from three 

distinct sources (McCabe, 1986, 2008). At the LGM ice flowed southwards from the 

northern ISB, conjoined by ice flowing over the Mournes and through the Carlingford 

Lough basin (Charlesworth, 1939, 1973; Stephens et al., 1975; Stephens and 

McCabe, 1977; Greenwood and Clark, 2009). The position of the mountains heavily 

influenced local flow patterns, causing ice-flow separation and determining patterns 

of retreat.  

Published stratigraphical evidence supports an early incursion of Irish Sea ice on the 

flanks of the Mournes up to about 500 m OD, the ‘Annalong Phase’ of McCabe 

(1980) (Table 2).  In addition to ubiquitous clasts of Silurian wacke sandstone and 
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siltstone, the silt-rich till associated with this event contains a characteristic suite of 

‘Irish Sea Drift’ erratics (Wright, 1937), including shell fragments, flint and  

microgranite from the island of Ailsa Craig, off the south-western coast of the 

Southern Uplands of Scotland (Fig. 1). During the succeeding ‘Moneydorragh 

Phase’, granite-rich till was laid down in the vicinity of Ballymartin (Fig. 3) following a 

local expansion of ice from the Mournes. Irish Sea ice subsequently reinvaded the 

coast reaching about 120 m OD on the mountain flanks during the ‘Ballymartin 

Phase’ (Hannon, 1974; McCabe, 1980). It laid down silt-rich diamict indistinguishable 

from the lower, ‘Annalong Till’. Irish Sea ice deposited similar tills during the 

succeeding ‘Mourne Phase’, when well-defined drift limits, lateral moraines and ice-

marginal glacial drainage channels were formed whilst ice still encircled the 

mountains.  

The following ‘Derryoge Phase’ of McCabe (1980) is of particular interest here as it 

covers the period during which a suite of channel-like features (troughs) were eroded 

deeply into the glacigenic sequence between Derryoge Bay and Kilkeel (Fig. 6). The 

troughs were subsequently filled mainly with laminated silt, clay and sand containing 

glaciomarine foraminifera and ostracods. These glaciomarine deposits were 

disturbed as a result of a subsequent eastward ice advance from the Carlingford 

Lough basin during the subsequent ‘Ballykeel Phase’, when ice readvanced 

contemporaneously around the northern rim of the Mournes, terminating at the 

‘Dunmore Head Moraine’ (McCabe, 1980) (Fig. 3). Raised late-glacial marine 

shorelines at 28-30 m OD formed at the margin of an ice-free enclave between 

Annalong and Dunmore Head (Stephens and McCabe, 1977). There followed a 

‘phased retreat’ of ice flowing from the Carlingford Lough basin, the ‘Cranfield 

Phase’, when ice stabilized to form the ‘Cranfield Moraine Complex’, a series of 
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arcuate ridges (Stephens et al., 1975; McCabe, 1980) (Fig. 3). Raised shorelines 

formed at between 18 and 19 m OD without this glacial limit. 

Considerable progress has been achieved in the past 35 years regarding the dating 

and correlation of deglacial events during the ‘Last Glacial Termination’ (LGT) 

(McCabe, 1996; McCabe et al., 2005, 2007b; McCabe and Dunlop, 2006; McCabe, 

2008; Clark J et al., 2012). The LGT is generally acknowledged to have occurred 

between c. 21 ka and 11.7 ka (Lowe and Walker, 2015). Based mainly on the results 

of Accelerator Mass Spectrometer (AMS) radiocarbon dating of hand-picked, 

unabraded (in situ), low-species diversity, marine foraminiferids, the resulting 

chronostratigraphy and geochronology is summarized in Table 1. The Ballymartin 

and Mourne phases of McCabe (1980), if not the Annalong and Moneydorragh 

phases too, may now be assigned to the LGM. The channel-infills of the Derryoge 

Phase have been assigned to the Cooley Point Interstadial (c. 20.1-18.2 ka). The 

glacial readvances through the Carlingford Loch basin towards Kilkeel and Cranfield 

Point have been assigned to the Clogher Head Stadial (c.18.2-17.1 ka) and the 

following Killard Point Stadial (17.1-16.0 ka). 

3. Lithostratigraphy 

 

McCabe (1986) recognised four Lithofacies Associations (LA 1-4) that may be 

correlated with the eight informal phases of glaciation that he established earlier 

(McCabe, 1980) (Table 2).  LA 1 consists of lensoidal masses and spreads of mud, 

sand and gravel that crop out sporadically at the base of the cliffs and on the 

foreshore. This unit correlates with the Annalong Phase.  LA 2 is composed 

predominantly of diamict that forms tabular, 200-300 m wide, mesa-shaped units in 

cross section, some 12.5 m in height. It correlates with the Ballymartin Phase. LA 3 
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(Derryoge Phase) consists mainly of mud deposited within the six, 300-600 m-wide 

troughs interspersed with the mesas of diamict. LA 4 comprises a tabular unit, up to 

5 m thick, of well stratified sand and gravel that rests on a laterally extensive planar 

unconformity cutting across the mesas and troughs of LA 2 and 3 respectively, 

underlain by a prominent line of boulders. Lithofacies LA 4 formed during the 

Cranfield and Dunnaval phases.   

The deposits associated with the Annalong and Ballymartin phases of McCabe 

(1980) were subsequently regarded as interdigitating facies of one 

lithostratigraphical unit, the Ballymartin Member (BMM) of the Mourne Formation 

(McCabe, 1999). The trough-fills were assigned to the Derryoge Member (DEM) of 

the formation, whereas the ice-contact and glaciofluvial deposits associated with the 

Cranfield Moraine Complex were assigned to the Cranfield Member (CRM). The late-

glacial raised beach deposits became the Dunnaval Member (DVM). This formal 

lithostratigraphy is adopted here with minor modification for continuity and to help 

determine the superimposition of units following sound geological principles (Table 

2). The Annalong Member (ALM) (LA 1) is re-established as it underlies and does 

not interdigitate laterally with the BMM. The Kilkeel Member (KLM) has been 

introduced here to represent the deposits of a glaciofluvial fan that cuts out both the 

Dunnaval and Cranfield members towards Kilkeel; McCabe (1986) assigned all 

these units to LA 4 (Fig. 6). The absence of bedrock exposures along the foreshore 

indicates that the full Pleistocene sequence is not known. 

4. Methods and locations of targeted fieldwork 
 

This paper investigates the predominantly glacigenic sequence exposed in the cliffs 

between Kilkeel Steps and Crawford Point, particularly those backing Derryoge Bay 
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(Derryoge Harbour) (Fig. 6). These cliff sections lie at the margin of the Cranfield 

Moraine Complex, which is formed of nested arcuate ridges of gravel and sandy 

diamict, up to 30 m high and 300 m wide, that swing around from Cranfield Point 

towards the foot of Knockchree over a distance of 12 km (Fig. 3). The features link 

westwards with kettled ice-marginal terraces, benches and ridges along the slopes of 

Formal Mountain and Knockshee, up to an elevation of 120 m OD (McCabe, 2008). 

A stepped series of steep, ice-proximal slopes face westwards and decline in 

elevation towards Carlingford Lough. The prominent moraine ridge forming Cranfield 

Point (Cranfield Point Moraine) passes eastwards into a flattish outwash plain 

between 12 and 18 m OD that has been quarried extensively, as for example, at 

Sandpiper Pit (Fig. 3 and 7). The plain is dissected by a well-defined, 3 km-long, 

late-glacial shoreline feature at 18-19 m OD that stretches from Cranfield Point 

towards Derryoge (McCabe, 2008) (Fig. 3). This shoreline has been dissected by the 

glaciofluvial fan towards Kilkeel. 

Although many of the cliffs are too high and dangerous to be safely cleaned and 

examined at close hand, the entire, almost continuous cliff line between Cranfield 

Point and Kilkeel has been examined, recorded and photographed by the authors on 

several occasions during the past 30 years. Eleven cliff sections (L1 to L11) have 

been examined closely in this investigation (Fig. 7): summary logs are given in 

Supplementary Information. The sections have been located on the generalized 

transect (Fig. 6) first published by McCabe (1986) (see also McCabe and Hirons, 

1986) for purposes of continuity and comparison. Although parts of the cliff line have 

since retreated by coastal erosion the main elements observed by McCabe (1986) 

remain intact. A new interpretation of the cliff section backing Derryoge Bay is 
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provided in Fig. 6. Graphic logs of representative sections are given in Fig. 8. 

Lithofacies codes follow Evans and Benn (2004) unless stated otherwise. 

Four block samples of deformed laminated clay of the ALM were collected from the 

foreshore in Derryoge Bay using 10 cm cubed, aluminium Kubiena tins. Large format 

thin sections were cut from the resin impregnated blocks, which took over two years 

to cure. They were examined using a standard Zeiss petrological microscope and 

interpreted using the procedures and terminology adopted by Phillips et al. (2011). 

5. Annalong Member (ALM; LA 1) 

5.1. Fine-grained facies 

In the cliffs backing Derryoge Bay the ALM generally consists of diamictic mud (Fmd) 

that is locally interbedded with very poorly sorted sand and gravel (Gm, Sh, Sm) 

(McCabe, 1986). The unit is at least 4.5 m thick and is exposed on the foreshore at 

low tide, where box samples were collected for micromorphological analysis in 2013 

(Fig. 9A). The predominant lithology is pale olive grey, planar, coarsely 

interlaminated clayey silt and very fine-grained sand (Fl, Sh). Laminae are typically 

1-3 mm thick and contained within discrete, cyclic units 30 to 60 mm thick (F-cpl). 

Syn-depositional, soft-sediment deformation structures are commonly displayed at 

both macroscopic (Fig. 9B) and microscopic scale (Fig. 10). There are sparse 

dropstones (Fl-d) and laterally discontinuous laminae of normally graded, fine to 

medium-grained sand up to 10 mm in thickness. The unit is generally fissile, firm to 

stiff, becomes stiffer upwards and includes sub-vertical fissures with ochreous sandy 

fills. Also included are irregular-shaped bodies of silty fine- to coarse-grained sand 

containing granules and fine pebbles. The gravel is composed mainly of pink granite 

with subordinate clasts of hornfelsed wacke sandstone and siltstone, and sparse 
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flint. The quartzo-feldspathic sandy matrix is mainly derived from granite. Lenses 

(<1.5 x 0.5 m) of moderate brown clayey diamict are more common towards the 

base of the unit. Diamict that probably correlates with the ALM is exposed 

occasionally at the base of the cliff line near Kilkeel (Fig. 6, L1-2), where it comprises 

intensively sheared laminated clay. 

The fine-grained laminae within the diamictic mud are locally crinkled and display 

poorly-developed cleavage, especially towards the top of the ALM at locality 10 (Fig. 

9D). A thin section cut perpendicularly to the crinkling observed in the mud sampled 

on the foreshore is shown in Fig. 11. It reveals three distinct sediment units, the 

basal 3 cm-thick one comprising thin (1 – 2 mm) laminae, each fining upwards from 

silt into clay with sharp upper contacts. The middle 5 cm-thick unit comprises 

massive clay with thin partings (2 mm) of coarse silt fining upwards in clay. The 

upper 5 cm-thick unit, like the lowermost, comprises laminae of silt fining upwards 

into clay with sharp upper contacts, but the lamination is a little thicker and more 

diffuse. This unit is affected by small scale (1 mm amplitude) buckle folds that are 

truncated by centimetre-scale shear planes indicating overall sinistral sense of 

displacement. Shear planes of similar orientation also cut the units below, but are 

less common. The orientation of the thin section indicates that shear occurred in a 

roughly east to west direction. Syn-depositional, soft-sediment deformation 

structures affect some of the thicker laminae, as is apparent in the thin section 

shown in Fig. 10, but larger-scale vertical and horizontal structures clearly disrupt the 

lamination. 

5.2. Coarse-grained facies 
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Bodies of sand and gravel have been recorded within the ALM at two localities along 

the coastline, at Ballymartin (Fig. 3), to the north of Kilkeel, and at the southern end 

of Kilkeel Bay (McCabe, 1986). At the latter site (Fig. 6; L4) over 4.4 m of poorly-

sorted gravel crops out beneath stratified diamict of the BMM. The gravel occurs in 

two units separated by a 0.9 x 20 m lens of cross-laminated, fine to coarse-grained 

shelly sand and granule gravel (Fig. 9E). The upper 1.9 m thick unit comprises 

dense, clast-supported gravel with a relatively large proportion of tabular to bladed 

pebbles, but no obvious shell fragments. The unit occupies a channel with the lens of 

sand and granule gravel occurring at its erosional base. The upper gravel unit has 

been locally folded and sheared towards the south together with upper parts of the 

lens with its silt drape (Fig. 9F). The underlying unit of dense, well-packed, fine to 

cobble grade gravel is mainly clast-supported and partially openwork (Go). It is 

generally massive, but grades both laterally and vertically into sandy granule gravel. 

It is locally imbricated, with elongate clasts dipping southwards. The sand and 

granule gravel  lens, and the underlying gravel, both contain abundant marine shells 

including Turritella and Arctica islandica, the former commonly being little abraded 

and packed within discrete thin beds, whereas the latter occur as broken valves. 

McCabe (2008) reports that infinite radiocarbon dates of >40 ka BP were obtained 

from shells collected at Ballymartin, concluding that they were derived and older than 

the deposits in which they occur. Amino Acid Racemisation (AAR) determinations on 

Arctica shells yielded mixed ages, with the youngest assigned to Marine Isotope 

Stage (MIS) 3 (McCabe, 2008). Shells were collected during the present 

investigation from the sand and granule gravel lens and lower unit of gravel for 

additional radiocarbon dating. The new dates range upwards from 48.9 to 39.2 ka 

(Table 3), which is consistent with the previous age determinations.  
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5.3. Interpretation 

The fine-grained facies of the ALM has been interpreted to be glaciomarine in origin 

(McCabe, 1986) and indeed the rhythmic silt and clay couplets with sharp transitions 

from clay to silt and graded transitions from silt to clay are broadly similar to 

cyclopels deposited from overflow and interflow plumes in glaciomarine 

environments (Mackiewicz et al., 1984), if not marine varves (Ó Cofaigh and 

Dowdeswell, 2001). Micro palaeontological analyses of laminated sediments that 

almost certainly occur within the ALM have yielded mixed assemblages in which the 

tests of abraded temperate foraminiferid species occur together with much better 

preserved Arctic species (McCabe, 2008).The size and condition of tests show clear 

evidence of transport and recycling (McCabe, 2008). 

Bedding is gently undulating with open folding into plunging domes and troughs of 

0.5 to 1 m amplitude. These structures may simply result from compaction and 

settlement, but the crinkles that deform the laminated muds were originally 

interpreted as of glacitectonic origin, related to eastward, subglacial emplacement of 

the overlying till (BMM) (McCabe, 1980). However, in McCabe (1986), and 

subsequent publications by this author, the overlying till is re-interpreted as 

glaciomarine diamict and the crinkles, described as ‘wavy lamination’, are interpreted 

as belonging to the set of soft-sediment deformation phenomena. McCabe’s former 

interpretation is supported by evidence of sinistral strain in the thin sections, 

particularly buckle folds dislocated by shears (Fig. 11), the poorly-developed 

cleavage associated with the crinkles and the degree of compaction of the whole 

member, which increases upwards towards the gradational base of the overlying 

diamict of the BMM. Some soft sediment deformation within laminae is most likely to 

have occurred syn-depositionally (Fig. 10), so too the larger structures cutting across 
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laminae that result from water escape (Fig. 11). The latter are unlikely to be related 

directly to the deformation event (glacial over-riding) that created the shear features 

because they are not oriented perpendicularly to them.  

The coarse-grained facies contain a mixed assemblage of shells and McCabe (2008) 

concludes that they were deposited sub aqueously by subglacial meltwater (efflux) 

erosion of ‘shell banks’ previously deposited on the seabed up-glacier of a tidewater 

glacial margin. Indeed, the sedimentology is broadly similar to that of the Killard 

Point Moraine (Fig. 2) described and interpreted by McCabe et al. (1984) as 

subaqueous outwash forming a glaciomarine morainal bank. Shared attributes 

include stacked, multi-storey channels with coarsening upward fills, rapid vertical and 

textural changes with variable grading patterns (massive to graded) and thin mud 

drapes (McCabe, 2008, fig. 9.7).  

The locally over-folded and micro-faulted upper contact of the shelly sand and 

granule gravel lens, together with the compactness and poorly developed, sub-

horizontal stratification observed within the overlying gravel, suggests that the 

deposits have been over-ridden by ice flowing southwards. This probably pulverised 

shells in the upper gravel unit. 

The origin of the gravels remains unclear. They could have been deposited within 

subglacial cavities or ‘canals’ as has been proposed for lenses of sand and gravel 

occurring within ‘Irish Sea Drift’ sequences at Killiney Bay (Clerc et al., 2014) and 

Ballyhorsey (Ravier et al., 2014), 15 and 28 km south of Dublin respectively. In this 

hypothesis the shells would have been scavenged from over-ridden deposits. 

Another possibility is that the gravels form, or originally formed part of a beach, 

which would most likely have been created during a period of lowered sea level in 
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the Middle Devensian. This suggestion is supported by the clusters of relatively 

unabraded shells, the sequence of age determinations that are mainly in 

stratigraphical order (Table 3) and the imbrication of clasts observed in the lower 

gravel unit. In the subaqueous efflux model proposed by McCabe (2008) the shells 

would have been scavenged from sub glacially over-ridden palimpsest shell lags (cf. 

Powell, 1984) or coquinas (Eyles and Lagoe, 1990). Further work is required to 

establish the origin of these gravels, which are only exposed occasionally. 

6. Ballymartin Member (BMM; LA 2) 

The BMM is formed of up to 14 m of flat lying, extremely compact beds of pale 

yellowish brown muddy sandy diamict (Dmm) (Fig. 12A). At Crawfords Point several 

tabular boulders dip into the cliff, towards the north-west, many with bevelled top 

surfaces bearing striae of similar orientation (Fig. 12B). Most beds are sharply 

defined and include moderately well dispersed, angular to sub-rounded clasts (< 1.2 

m). Stone lines and boulder clusters are common, so too gently undulating concavo-

convex discontinuities locally truncating cuspate, deformed gravel-filled lenses (Fig. 

12C). The massive beds typically grade both vertically and laterally into more clast-

rich, stratified varieties (Dcm, Dml-p, Dml-s). The matrix-rich diamict beds are 

generally calcareous, extremely stiff and fissile (Fig. 12D). 

The lower boundary of the member in the headland south of Derryoge Bay reveals 

clasts that have been pressed downwards into silts of the ALM below (Fig. 12E). 

This basal 0.5 m or so of the member commonly includes a relatively large 

proportion of far-travelled clasts, including well-rounded pebbles probably derived 

from Devonian conglomerate, red sandstone, flint, chalk, shell fragments and 

microgranite probably derived from Ailsa Craig (Fig. 1). The upper boundary of the 

member is formed by the sharp, planar to very gently undulating unconformity that 
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truncates the ‘mesa-shaped’ sections of the BMM between Cranfield Point and 

Kilkeel (Fig. 6); it is lined by a prominent line of boulders (Fig. 12A).  

Most clasts in the BMM comprise Silurian wacke mudstone and sandstone, 

commonly hornfelsed, with pinkish Mourne granite. McCabe (1980) reports that 

Carboniferous limestone clasts become common towards Cranfield Point, carried 

from outcrops to the west, but sparse limestone was observed during the present 

investigations. Unless stones include diagnostic fossils, some baked, slightly 

calcareous wacke mudstones can easily be mistaken for limestone. Boulders are 

mainly composed of granite up to 1 m in diameter, many of them probably being 

former regolith corestones carried from the mountains inland. The diamicts typically 

have a gritty, quartzo-feldspathic matrix likely to have been mainly derived from 

crushed granite.  

At Crawfords Point (Fig. 6; L10) the BMM includes folded inclusions of clayey silt and 

gravelly diamict together with some horizontally truncated, concave-upward, 

channel-like structures (1 m across, 0.5 m deep) lined by cobbles pressed into 

underlying diamict. The channels are filled with extremely compact, jointed, 

laminated silt displaying micro-folding and micro-thrusts with southward 

displacement (see Supplementary Information). A boulder in the diamict was 

observed to have been rotated southwards with a sediment prow to the north (Fig. 

13A). In the cliffs backing Derryoge Bay (Fig. 6; L9) gritty, matrix-to clast supported 

diamict of the BMM includes open, decimetre-scale folding of sand lenses plunging 

at 20/285o. The sequence includes 25 to 50 cm thick units of stiff, olive grey, 

laminated silt with compressional micro-folding and disturbance of laminae. The units 

pinch and swell, have erosional bases and horizontally sheared tops. 
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On the southern margin of the deep trough backing Derryoge Bay (Fig. 6; L8) diamict 

of the BMM is intercalated with very stiff clayey silt (Fmd) containing with very well 

dispersed, ice-scratched lonestones (<35 cm diameter) together with cuspate lenses 

(4 m wide, 0.3 m deep) of compact, silty, poorly sorted, matrix-rich sand and gravel. 

One lens included a 35 cm diameter boulder of hornfelsed wacke with a tapering 

wedge of unconsolidated gravelly sand to the south (Fig. 13B). The silty units are 

typically truncated by discontinuities that dip northwards parallel with the base of the 

overlying trough (Fig. 6; T2), beneath which thick lamination has been disrupted by 

shearing and overprinted by a poorly developed, tectonic lamination. This direction of 

strain is also apparent at L1, north of Kilkeel Steps, where a prominent boulder is 

associated with an irregularly-shaped, downward tapering structure filled with sand 

and gravel (Fig. 13C and D). 

6.1. Interpretation. 

  

The BMM is typical of ‘Irish Sea Drift’ in that it has been interpreted in terms of either 

the ‘glaciomarine paradigm’ (McCabe, 1986; Eyles and McCabe, 1989; McCabe, 

2008), or a ‘terrestrial’ model of glaciation with widespread preservation of subglacial 

facies and deformation that support the ‘deforming-bed paradigm’ (Boulton, 1986; 

Hart et al., 1990; Hooke and Iverson, 1995; Benn and Evans, 1996; Eyles and 

Boyce, 1998). As the latter interpretation is now generally accepted, it is not 

considered necessary to provide a comprehensive review and discussion here of the 

opposing views, which have been considered elsewhere (Hart and Roberts, 1994; 

McCarroll, 2001; Knight, 2001; Ó Cofaigh and Dowdeswell, 2001; Ó Cofaigh and 

Evans, 2001a,b; Evans and Ó Cofaigh, 2003; Rijsdijk et al., 2010). However, the 

evidence for subglacial deposition and deformation in the BMM is overwhelming, 

including the considerable consolidation of the sediments, tabular geometry with 
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sharp contacts expressed by sub-horizontal, planar to gently undulating 

discontinuities, boulder lines and pavements of striated clasts, concavo-convex 

discontinuities that possibly include ice-bed separation surfaces (cf. Piotrowski et al., 

2001, 2006), tension fractures and minor thrust faults together with attenuated and 

folded laminae (cf. Benn and Evans, 2010). 

The downward tapering structure recorded at L1 (Fig. 13 C & D) probably formed as 

a hydrofracture (cf. Rijsdijk et al., 1999), and the southward tapering wedge at L8 

(Fig.13 C) in the ‘down-glacier’ pressure shadow of the boulder (cf. Benn and Evans, 

2010). Some sheared and convoluted beds of sand and irregular-shaped masses of 

fine sediment are probably glacial rafts, but their boundaries and geometry could not 

be examined at close hand. 

In common with most recent investigations into the origin of ‘Irish Sea Drift’ 

sequences we interpret most of the massive, matrix-supported diamict units of the 

BMM as ‘subglacial traction till’ or ‘glacitectonite’ sensu Evans et al. (2006) (Ó 

Cofaigh and Dowdeswell, 2001; Ó Cofaigh and Evans, 2001a,b; Evans and Ó 

Cofaigh, 2003). Some lenticular beds of clast-poor, silty diamict may have originated 

as low-viscosity cohesive debris flows, but subsequent glacial loading has generally 

resulted in over-consolidation and both ductile and brittle deformation overprint. Most 

non-graded sandy wisp structures (Dmm-c) that are interpreted by McCabe (1986) 

and Eyles and McCabe (1989) as resulting from glaciomarine bottom-current 

reworking are interpreted to be either glacitectonic laminae formed during 

intergranular shear (Type 1 laminae of Roberts and Hart, 2005), or to be attenuated 

remnants of sedimentary bedding (Type 2 laminae), both resulting from high strain 

conditions during subglacial shear deformation (cf. Hart and Roberts, 1996). 

However, some cuspate lenses of sand and with sharp, planar upper contacts 
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possibly originated as subglacial canal-fills (cf. Evans et al., 1995; Clerc et al., 2014; 

Ravier et al., 2014) during periods of ice-bed decoupling (cf. Piotrowski et al., 2001, 

2006). The origin of the stone lines capping the mesa-shaped sections is discussed 

below. 

7. Derryoge Member (DEM; LA 3) 

The DEM is confined to the six troughs that divide the flat-topped sections formed by 

the BMM (Fig. 6). Towards Kilkeel, the DEM comprises up to 10 m of stiff, olive grey 

to pale olive grey, coarsely-laminated calcareous mud (Fl, Fl-cpl) with subordinate 

laminae of fine to medium-grained sand, massive silt and sparse lonestones (Fl-d) 

(Fig. 14 B). The lamination generally takes the form of sand and mud couplets, each 

consisting of a sand lamina (<2 mm) overlain by, or grading up into a thicker lamina 

of mud (5 mm), as reported by McCabe and Dunlop (2006). Contacts between 

couplets are generally sharp. At Kilkeel Steps the couplets generally thicken 

upwards to about 15 mm with an increase in the relative thickness of sand relative to 

mud (Fig. 14C). The muds exhibit a range of loading structures including wavy to 

convolute bedding, flames, ball-and-pillows (Fig. 14E) and overturned bundles of 

lamina. At Kilkeel (Fig. 6; L1) the laminated muds are overlain by up to 2.5 m of 

compact silty fine-grained sand with discontinuous laminae of medium to coarse-

grained sand and sparse lonestone pebbles. The top of the unit includes some flat-

topped cuspate lenses of silty diamict that become increasingly folded and sheared 

upwards, truncated by sheared, tectonically-laminated silty sand. Nodules are 

common towards the base of the troughs. The trough-fills become more complex and 

deformed towards Derryoge. 
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The base of the DEM is rarely seen as most of the troughs descend below the level 

of the modern beach. Where observed it has a sharp, draped contact, either with an 

underlying stone pavement lining the trough, or a gravel lag at its base (Fig. 15 A 

and B). The upper bounding surface of the member is a planar to very gently 

undulating unconformity that is associated with a discontinuous stone pavement (see 

below) (Fig. 14A). Lenses of silty fine-grained sand occur sporadically beneath the 

unconformity, especially towards Kilkeel (Fig. 14G), suggesting the DEM originally 

coarsened upwards before the sequence was truncated.  

 

Sparse marine microfossils have been identified, both at Derryoge (T2) (McCabe, 

1980) and at Kilkeel Steps (T5) (Haynes et al., 1995; McCabe and Clark, 1998; Clark 

P et al, 2004; McCabe et al., 2005). McCabe (2008) reports that the microfauna is 

dominated by the foraminiferid Elphidium clavatum, with a  good range of size and 

preservation of tests, and the ostracod Roundstonia globulifera, together with its 

intact instars. Accessory forms include miliolids, polymorphininids, Lagena sp., 

Quinqueloculina seminulum and distinctly cold to very cold water forms including 

Cytheropteron dimlingtonense and C. montrosiense. Fragile foraminiferids 

(Pseudopolymorphina novangliae, Lagena clavata, Oolina/Fissurina spp.) are 

present together with articulate valves of Cytheropteron sp. with a range of juveniles. 

Radiocarbon age determinations undertaken on hand-picked tests of Elphidium 

clavatum sieved from samples taken from five consecutive horizons up the cliff 

section exposing the DEM at Kilkeel Steps have yielded dates ranging from 17.0 to 

16.5 14C ka BP (20.1 to 19.7 cal ka BP IntCal 04) (McCabe et al., 2005: Clark P et 

al., 2004). 
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7.1 Interpretation of the depositional environment 

The laminated muds of the DEM have been interpreted to be glaciomarine in origin 

(McCabe, 1986) and the rhythmic silt and clay couplets with sharp transitions from 

clay to silt and graded transitions from silt to clay (Fig. 14C) are comparable with 

cyclopels deposited from overflow and interflow plumes in glaciomarine 

environments (Mackiewicz et al., 1984; Benn and Evans, 2010, fig. 10.77a), if not 

marine varves (Ó Cofaigh and Dowdeswell, 2001). 

The presence of Elphidium clavatum and the ostracod Roundstonia globulifera, 

together with its intact instars, suggested to Haynes et al. (1995) and  McCabe 

(2008) that the microfauna represents an opportunistic biocoenose (living 

assemblage). This interpretation is supported by the reported absence of reworked 

temperate species, the good range of size and preservation of tests, the presence of 

fragile foraminiferids and articulate valves of ostracod with a range of juveniles. 

McCabe (2008) reports that the assemblage occurs in shallow (<30 m) contemporary 

Arctic to sub-Arctic waters recently vacated by tidewater glaciers (cf. Hald et al., 

1994). However, the modern distribution of Elphidium clavatum is apparently not 

restricted to glaciomarine environments and the species is as much an indicator of 

low salinity as of temperature (Hald and Vorren, 1987; McCarroll, 2001). The dates 

are considered to be reliable as they are generally mutually supportive and because 

the dated fauna are exclusively Elphidium clavatum tests that are glassy, well-

preserved and show no signs of reworking from older deposits (McCarroll, 2001). 

The ages therefore probably reflect the true age of the sediment, which was likely to 

have been deposited when RSL stood at up to about 30 m OD considering the 

palaeo-environmental interpretations of Haynes et al. (1995).   



23 
 

7.2 Interpretation of contact relationships and architecture of the troughs 

 

In consideration of the wider significance of the age and depositional setting of the 

dated sequence at Kilkeel Steps in relation to claimed regional changes in RSL, it is 

particularly important to determine contact relationships at the margins and tops of 

the troughs and to interpret evidence of associated deformation. As no large-scale 

thrusting, decollement planes and folding have been recorded along the coastal 

sections examined here, there is little doubt that the troughs result from erosion, not 

glacitectonic stacking. The cut-and-fill architecture of the troughs requires that 

erosion was followed by the depositional phase. McCabe (1986) argues against both 

subglacial and subaqueous erosion mainly on the assumption that the underlying 

BMM is a glaciomarine deposit, rather than one formed sub-glacially. He maintains 

that the troughs were cut sub-aerially by meltwaters draining the Mourne Mountains, 

but this requires sea level to have dropped significantly to -10 m OD or less before 

rising back very quickly indeed (McCabe and Dunlop, 2006; McCabe et al., 2007c; 

McCabe, 2008) (Fig. 5). Subaqueous erosion is dismissed by McCabe (1986) 

because of the apparent absence of associated deltaic deposits in the vicinity and 

because there is no a priori reason why subaqueous processes should switch 

instantaneously from erosional to depositional. 

 

The flanks of the six troughs are generally sharply defined and dip at angles up to 

20o. The laminated muds typically drape on-lapping contacts. The troughs contain 

beds of diamict, gravel, sand and silt that both dip and taper towards the trough axes 

(Fig. 6). This relationship is particular well-displayed on the southern flank of the 

trough backing Derryoge Bay (T2). McCabe (1986) concluded that the position, 

composition and geometry of the tapering units resulted from deposition by 
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subaqueous mass flows and slumps down the flanks. Indeed, the sharp, steeply 

inclined and locally undercut wall towards the base of this trough (L8 and L9) is 

overlain and abutted by compact, extremely poorly sorted, chaotically-bedded gravel 

(Gm) that possibly formed as a cohesionless debris flow. However, most of the 

trough-fill is demonstrably more complex than reported and illustrated by McCabe 

(1986). 

 

A re-interpretation of the architecture of the trough-fill (T2) exposed in Derryoge Bay 

is given in Fig.6, which also shows the original interpretation of McCabe (1986) for 

comparison. The section is largely inaccessible, but the trough clearly includes 

stacked, concave bounding surfaces within the main trough (Fig. 14A). The 

sequence includes several units of extremely compact diamict (Dmm, Dmm-c) with 

well-developed fissility parallel with the gently concave discontinuities. These units 

include coarse-grained, quartzo-feldspathic sand, both in the matrix and in non-

graded, wispy laminae. The massive diamicts are re-interpreted here as subglacial 

traction till, whereas the sandy wisps are considered to be glacitectonic laminae and 

stringers formed under high strain conditions within units of glacitectonite (cf. Evans 

et al. 2006; Roberts and Hart 2005; Lee and Phillips 2008). The diamicts are 

intercalated with discrete units of laminated mud (Fl, Fl-d) that drape concave 

discontinuities lined by stones (L8 and L9).  

 

Crucial evidence of the basal infill and contact relationships of four of the six troughs 

is obscured beneath the modern beach. However, on the southern flank of the 

trough backing Derryoge Bay (T2) a basal bed of gravel rests unconformably on very 

compact diamict of the BMM, at the top of which planar to shallow concave 
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discontinuities are associated with very disturbed, sheared primary coarse lamination 

interpreted here as Type A2 glacitectonite (cf. Evans and Benn, 2004 ). The 

discontinuities dip northwards parallel to the flank of the trough. On the northern 

flank of the trough (T2), boulders forming a stone line are firmly planted into the 

underlying diamict (BMM), in which fissility and compactness becomes more 

pronounced upwards towards the bounding unconformity (Fig. 15A). Some of the 

embedded boulders rest on smaller clasts that have been crushed (Fig. 15B) 

suggesting that this part of the trough, at least, formed subglacially.  

The genesis of the troughs has been puzzling, but on balance a subaerial origin is 

very unlikely. Firstly because no unequivocal subaerial slope deposits such as 

gelifluctate and gelifractate have been identified on the trough margins. Deposits 

such as these should abutt the trough walls, especially were they are locally 

undercut, considering the likely contemporaneous periglacial regime. Secondly, it is 

difficult to explain how the troughs are largely unscathed following the rapid marine 

transgression envisaged by McCabe (Fig. 5). We conclude that a subglacial origin 

for the troughs is most likely, probably involving initial erosion by channelized 

subglacial meltwater followed by modification by ice, much as envisaged for the 

creation of tunnel valleys (Kehew et al., 2012) (Fig. 16). The presence of truncated 

units of laminated mud draping concave, stone-lined discontinuities within the trough 

backing Derryoge Bay (Fig. 14A) suggests that the ice periodically lifted of its bed 

during the infilling of the trough (cf. Boyce and Eyles, 2000; Piotrowski et al., 2001, 

2006). 

7.3. Interpretation of the deformation within the trough-fills. 
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The complexity of the sedimentary architecture and the amount of compaction, 

fissility, homogenisation and deformation of the trough-fills increase southwards 

towards Crawfords Point. For example, the trough backing Derryoge Bay (T2) is 

truncated by a gently concave, stone-lined unconformity that cuts across some 

channelized units of stratified diamict (Dms-r) and very compact, fissile diamictic silt 

(Fmd) (Fig. 6; L8-9; Fig. 15C). McCabe (1980) reported that these channels 

contained over-consolidated and contorted bodies of diamict mixed with laminated 

muds, originally concluding that the deposits had been sheared by over-riding ice. 

The underlying laminated silts with sparse lonestones are extremely stiff and heavily 

jointed. Joints intercept to form rhomboid slabs, 10-40 mm thick, that are locally 

splayed around tight (sheath?) folds plunging gently into cliff-face (Fig. 6; L7; Fig. 

14H). Less intense, open folding is developed at the base of the cliffs nearby (Fig. 6; 

L7; Fig. 17), where laminated clays have been subjected to simple shear towards the 

south-west, as indicated by the fold asymmetry and associated crenulation of poorly-

developed, axial-plane cleavage. 

 

The trough-fills at Kilkeel (T5 and 6) are less deformed than at Derryoge Bay. 

Shallow-plunging isoclinal folds exposed at beach level, just to the south of Kilkeel 

Steps (Fig. 14F), together with large-scale load casts, tear drops and ball-and-pillows 

(Fig. 14E), have been interpreted as vertical deformation structures resulting from 

settlement and slumping of rapidly deposited muds (McCabe, 1986). However, the 

muds become progressively more massive and blocky-fractured upwards (Fig. 14B), 

and the isoclinal folds are associated with poorly developed cleavage (Fig. 14D), 

both likely to result from glacial over-riding. Furthermore, on the southern flank of the 

trough (T5) the uppermost muds lying beneath the bounding, stone-lined 
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unconformity are very consolidated, fissile and include diffuse, ungraded laminae of 

sand with sparse lonestones, characteristic of a Type A glacitectonite (cf. Evans and 

Benn, 2004). Similarly, the upper bounding unconformity of the next trough to the 

north (T6) is underlain by a 0.3 m-thick unit of very stiff, laminated silty sand that is 

interpreted as Type A glacitectonite grading down into Type B glacitectonite (Fig. 

14G). 

 

The troughs appear only to occur between Crawfords Point and Kilkeel, which 

suggests that their occurrence is related in some way to their location in the lee of 

the Mourne Mountains and close to the mouth of the Carlingford Lough basin, which 

was an important conduit for ice flowing from the main dispersion centre of the last 

ice sheet centred over the Loch Neagh basin (Charlesworth, 1939, 1973; Stephens 

et al., 1975; Stephens and McCabe, 1977; Greenwood and Clark, 2009). It is 

therefore likely that the troughs formed at about the location where ice flowing south-

eastwards from the Mournes abutted a more vigorous flow out of the Carlingford 

Lough basin. Subglacial erosion is likely to have been focussed beneath this contact 

(shear margin), where subglacial drainage is also likely to have been focussed. The 

complexity of the sedimentary architecture and the amount of compaction, 

homogenisation and deformation of the trough-fills increases southwards towards 

Cranfield Point, suggesting that there was an increasing influence of Carlingford 

Lough ice in that direction. 

 

Taken together, the pinch-and-swell architecture observed within the DEM at 

Derryoge, the gently concave, discontinuous, stone-lined discontinuities associated 

with glacitectonite and the draped inter-bed elements of laminated mud and stratified 
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clastic sediment (Fig. 14A), suggest that subglacial deformation was punctuated by 

phases of ice-bed separation during the infilling of the troughs (cf. Boyce and Eyles, 

2000; Benn and Evans, 2010 fig. 10.25) (Fig. 16). The troughs at Kilkeel were 

probably only partially infilled before glacial retreat occurred and open-water 

glaciomarine sedimentation began. However, depending on the palaeo-

environmental interpretation of the muds at Kilkeel Steps (T5), specifically that of the 

modern distribution of Elphidium clavatum (see above), it is speculated that most of 

the DEM could have been laid down beneath an oscillating ice shelf, beneath which 

there was low-salinity sea water with periodic inflow of saltier water. 

 

8. The Main Stone Pavement (MSP) 

The line of cobbles occurring towards the top of the cliff line between Cranfield Point 

and Derryoge is referred hitherto as the ‘Main Stone Pavement’ (MSP) (Fig. 6). It is 

most prominent across the mesa-shaped sections at the planar to very gently 

undulating top of the BMM (Fig. 12A), but it also extends across the troughs. This 

relationship can be seen on the southern flank of the trough backing Derryoge Bay 

(Fig. 6, T2), where the pavement over-steps the DEM (Fig. 15C), peters out across 

the centre of the trough (L7), but reappears where the underlying unconformity dips 

gently into the next deep trough to the north (Fig. 6; T3). There it comprises a 

discontinuous lag of bevelled, striated pebbles and small cobbles that are firmly 

lodged into the top of the underlying 40 cm thick unit of silt. The latter is very 

compact, extensively sheared and includes a lens (1 x 0.3 m) of cross-bedded sand, 

probably a glacial raft. The pavement caps till of the BMM along most of the 

coastline between Spa Well and Manse Road (Fig. 6). It is discontinuous at the 

centre of the trough at Kilkeel Steps (T5) and, where it was possible to examine the 
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pavement at close hand, the muds immediately underlying it displayed wavy to 

convolute lamination that was locally overprinted by poorly-developed, sub-

horizontal, secondary (tectonic) lamination. 

 

The MSP is mainly inaccessible, but it was accessed at three sites to measure the 

azimuths of any striae preserved on the upper, bevelled surfaces of cobbles. The 

measurements mainly fall within the south-east to east-south-east quadrants (Fig. 8 

and 18) and elongate stones in the pavement generally dip north-westwards (Fig. 

15C). Exceptionally, subtle sediment prows were observed on the south-eastern 

sides of some clasts forming the poorly-developed pavement that truncates the 

trough near Kilkeel (Fig. 6; L1, T6). Here the stones are relatively small (<120 cm) 

and the underlying sediment relatively soft.  

  

8.1. Interpretation 

 

McCabe (1980) reported that although some of the boulders in the MSP were ice-

scratched there was no preferred orientation suggestive of emplacement by 

subglacial processes. McCabe (1986) interpreted the pavement as a subaqueous 

glaciofluvial or glaciomarine lag that resulted from winnowing of the underlying 

diamict by currents or storm waves (cf. Eyles, 1988), but in later publications the 

pavement is also attributed to marine transgression (McCabe, 2008). Stone lines and 

pavements are subject to variable interpretation (eg. Powell, 1984; Eyles, 1988; 

Hicock, 1991; Clark, 1991; Boulton, 1996; van der Wateren et al., 2000; Benn and 

Evans, 2010), but the firm lodgement of most cobbles and boulders into the 

underlying diamict of the BMM, together with the compaction, fissility, deformation 

and pervasive shearing observed immediately below the pavement, notably at the 



30 
 

top of the troughs, strongly suggests that it formed subglacially. South-eastward flow 

of ice is indicated by the imbrication of many clasts towards the north-west together 

with the sediment prows observed at L1. Prows on the down-flow side of a clast and 

grooves trailing the clast on its up-flow end suggest ploughing of clasts through the 

substrate by active ice (Lesemann et al., 2010, Fig. 8a, b). 

 

The striae measurements made in this investigation reveal two subordinate preferred 

azimuth orientations, one north-south and the other west-east (Fig. 18). One 

explanation of the two preferred orientations could be that scratched elongate clasts 

either swung around parallel to ice flow, or rolled at right angles to it, at the base of 

the over-riding ice. This observation has been reported in tills, where the fabric 

orientation of boulders is much more tightly constrained than smaller clasts (Evans et 

al., 2016). Another explanation, preferred here, is that pavement and striae evolved 

in relation to changing subglacial conditions and regional ice flow direction (cf. 

Davies et al., 2009). The north-south orientated striae were probably formed first, but 

further work is required to determine the relative age of crossing striae. It is 

interesting that McCabe and Haynes (1996) also found that about 50 per cent of the 

clasts forming well-developed boulder pavements around Dundalk Bay bear two or 

more orientation sets of striae, but cited this as evidence for riving by seasonal pack 

ice. 

 

The MSP has been compared with broadly similar cobble lines within diamicts 

exposed between Clogher Head and Dunany Point, to the south of Dundalk Bay 

(McCabe and Dunlop, 2006, plate 24; Knight, 2016a) (Fig. 2). Another well-

developed boulder pavement exposed at Cooley Point, to the north of that bay, has 
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been interpreted as a raised late-glacial intertidal boulder pavement (McCabe and 

Haynes, 1996; McCabe and Dunlop, 2006, plate 21a and b; Knight, 2016b) and cited 

as pivotal evidence of a sea-level low-stand (c. 1-3 m OD) following the Clogher 

Head Readvance (McCabe et al., 2005, 2007b) (Fig. 5).  

It is concluded that the MSP occurring between Derryoge and Kilkeel formed 

subglacially and that the matrix of the partly enclosing and underlying till was 

removed by the combined effects of subglacial meltwater flushing and glacier sliding, 

which isolated the larger clasts (cf. Boyce and Eyles, 2000). A significant glacial, 

short-lived readvance may be inferred that probably correlates with the Clogher 

Head Readvance identified by McCabe et al. (2007b). 

9. Cranfield Member (CRM; LA 4, in part) 

The CRM overlies the Main Stone Pavement along the entire cliff line (Fig. 6). At its 

base, a laterally-discontinuous lag deposit of very poorly sorted gravel (Gm, Gms) 

drapes over, and around, boulders of the pavement that are firmly anchored in the 

underlying diamict (BMM) (Fig. 19A and B). The lag is overlain conformably by up to 

4.5 m of mainly fine-grained sand with silty seams and laminae formed of medium to 

coarse grains and sparse granules (Sh, St). The sand is disposed in south-east-

trending, shallow, multi-storey channels within a stacked architecture. Shallow-

dipping, tangential bedding parallel to the floor of channels is common, but 

northward and southward cross bedding is displayed locally at localities L10 and L3 

respectively. The unit generally coarsens upwards and includes some minor soft-

sediment deformation structures. The member is generally more fine-grained at 

Kilkeel Steps (L2), comprising silty fine-grained sand with 10-15 cm-thick seams of 

silt and sparse lonestone cobbles (Fig. 19C). Wavy to convolute lamination is 

developed locally and individual beds thicken towards the centre of channels. At 
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Manse Road Steps (L3) a channel at the top of the unit contains massive silt into 

which pebbles of an overlying lag deposit have sunk (Fig. 20B). The CRM is 

truncated by a minor planar, horizontal unconformity along most of the cliff line. 

The cliff-top exposures of the CRM are generally inaccessible, but quarry faces in 

comparable sediments have been examined inland. For example, at Sandpiper Pit 

(Fig. 3 and 7), now mainly in-filled, poorly consolidated, trough cross-stratified pebble 

gravel, several metres thick, was interbedded with lenses of planar or ripple-

laminated sand (McCabe, 2008). Lonestones up to a metre or more in diameter lay 

within the sequence (Fig. 19D). The sand and gravel at Sandpiper Pit was capped by 

an extensive tabular unit of stiff, crudely laminated diamict (McCabe, 2008). A similar 

sequence has been examined recently at the neighbouring Balnahatten Pit, 200 m to 

the north of Sandpiper, where the diamict included ice-scratched clasts lodged at its 

base (Merritt, 2016).   

9.1 Interpretation  

McCabe (1980, 1986) concluded that the major unconformity underlying the CRM 

(LA 4) was created by both glaciofluvial and glaciomarine processes and that the 

granular deposits overlying it were deposited as ice-proximal subaqueous 

(glaciomarine) outwash. Indeed, the sedimentology is broadly similar to that of the 

Killard Point Moraine (Fig. 2) described and interpreted by McCabe et al. (1984) as 

subaqueous outwash forming a glaciomarine morainal bank. More specifically, the 

CRM shares attributes with grounding line fans, including the stacked, multi-storey 

channels with coarsening upward fills, sigmoidal to tangential cross-stratification, 

rapid vertical and textural changes with variable grading patterns (massive to 
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graded), evidence of syn-depositional mass flows and thin mud drapes (Powell and 

Alley, 1997; Thomas and Chiverrell, 2006; McCabe, 2008, fig. 9.7).  

McCabe (2008) interprets the whole sequence exposed at Sandpiper Pit to be 

glaciomarine in origin, including the capping of diamict, which includes some 

vertically orientated clasts that he interprets as dropstones (McCabe and Dunlop, 

2006, photograph 17b). However, the over-consolidated condition of the diamict 

(now seen at the adjacent Ballynahatten Pit) coupled with its extensive, planar basal 

contact, pronounced horizontal fissility and inclusion of ice-scratched clasts lodged at 

its base, all suggest subglacial deposition related to a glacial readvance (Merritt, 

2016, fig. 9.2). 

The preservation of some delicate, imbricated, striated cobbles forming the MSP, 

and the poorly sorted and consolidated condition of the sand and gravel draping 

them, suggests that rapid lift-off, carving or grounding-line retreat of ice occurred 

followed by rapid deposition of proximal subaqueous outwash. If subjected to 

terrestrial glaciofluvial, periglacial, littoral or shallow submarine processes the 

pavement should be more eroded and fragmentary than it is. The contemporary RSL 

is not known, but is suggested by the maximum altitude (c. 25 m OD) of eastward 

dipping gravelly foresets in a ridge situated inland of Sandpiper Pit (McCabe, 2008, 

p.180). The CRM and underlying pavement could be considered to provide  a ‘snap-

shot’ of rapid disintegration of ice at a receding grounding line, illustrating how 

pristine subglacial and ice-marginal landforms have been so widely preserved on the 

sea bed of the ISB and around the British Isles (eg. van Landeghem et al., 2009).  
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10. Dunnaval Member (DVM; LA 4, in part) 

 

The DVM comprises up to 3 m of horizontally stratified gravel and pebbly sand (Gh, 

Sh, Go, Gmi) that is locally well size- and shape-sorted (Fig. 20A). Clasts are 

generally well rounded with bladed pebbles generally lying sub-horizontally. The 

basal contact of the unit with underlying sand and gravel of the CRM is generally 

horizontal, sharp and unconformable. The gravels locally display festooning, contain 

erect pebbles and include vertical, downward tapering, sand and gravel-filled cracks 

descending from the land surface.  

10.1. Interpretation 

 

A late-glacial raised shoreline has been identified behind the cliff line between 

Cranfield Point and Spa Well (Fig. 3 and 7), backed by notches at 18-19 m OD that 

tilt gently southwards (Stephens and McCabe, 1977; McCabe, 1980; McCabe and 

Hirons, 1986; McCabe and Dunlop, 2006). The sub-horizontal stratification, together 

with the good rounding, size and shape sorting of pebbles, is fully compatible with a 

littoral origin (cf. Bourgeois and Leithold, 1984). The festooning, erect pebbles and 

downward tapering cracks are interpreted to be ice wedge pseudomorphs (cf. 

Ballantyne and Harris, 1994) and demonstrate that the raised beach deposits have 

been affected by periglacial processes following a drop in relative sea level. McCabe 

and Clark (1998) report that the raised shoreline extends south-westwards towards 

Carlingford Lough, where it is cut out by a glaciofluvial terrace adjacent to, and 

associated with the ‘Cranfield Point Moraine’ (Fig. 3). A date of 15.6-14.7 14C ka BP 

(18.8-17.8 cal ka IntCal 04) obtained from mud underlying coarse gravel and diamict 

forming the terrace is reported to provide an estimate for the maximum age of the 

raised shoreline (McCabe et al., 2005; McCabe and Dunlop, 2006).  



35 
 

11. Kilkeel Member [KLM; LA 4, in part]. 

The raised marine shoreline and associated beach deposits of the DVM have been 

cut-out by a fan-shaped spread of sand and gravel (Kilkeel Fan) that extends inland 

from the coast between Spa Well and Kilkeel (Fig. 3 and 7). The fan deposit, named 

here as the Kilkeel Member, is underlain by very poorly sorted, clast-supported 

gravel (Gm, Gt) that is mainly disposed in stacked shallow channels, the lowermost 

eroded into the underlying sand and gravel of the CRM. Some channels are lined 

with silt (Fm) (L1) and others have near vertical sides (L3). The deposits locally 

coarsen upwards into loose, very poorly sorted gravel (Go) or gravel with thinly 

developed horizontal bedding (Fig. 20B). The channelized deposits display soft-

sediment deformation structures and include isolated pellets (rip-ups) of clayey silt. 

Shallow tangential bedding parallel to the channel floors is commonly developed 

together with mainly northward-dipping, trough cross-bedding. To the north of Kilkeel 

Steps (Fig. 6; L2), a 0.9 by 0.2 m sized rip-up megaclast of laminated sand was 

observed towards the base of a 2.5 m deep channel eroded into silty fine-grained 

sand of the CRM (Fig. 20 C and D). The subangular to subrounded clasts are 

composed mainly of wacke-sandstone and siltstone with some pink granite and 

sparse flint and white quartzite. 

11.1. Interpretation 

 

The KLM lies at a slightly lower elevation than the DVM, from which it has not been 

distinguished hitherto. The sedimentology of the KLM is similar in many respects to 

the CRM, both members comprising sand and gravel disposed in shallow, multi-

storey channels within a stacked architecture and displaying tangential cross 

bedding. The channels in the KLM, however, are generally shallower, steeper-sided, 

more asymmetric in cross profile, and some have been eroded much deeper into 
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underlying sediments. The presence of large megaclasts of unconsolidated sand at 

the base of the unit suggests very rapid accumulation.  

The lateral extent of the Kilkeel Fan suggests that it was formed by meltwaters that 

mainly flowed from the north, via the valley of the Kilkeel River, joined by meltwater 

flowing along the lower Aughrim Valley, from the west (Fig. 3 and 7). Nested sets of 

post-LGM, pre-Younger Dryas recessional moraines have been identified in both 

valleys, indicating retreat of outlet glaciers into the main south-eastern valleys of the 

Mournes (Barr et al., 2017, fig.1). The Aughrim Valley takes a 90o turn towards 

Kilkeel where it meets the Cranfield Moraine Complex (Fig. 3), suggesting that ice 

was probably forming this feature during the creation of the Kilkeel Fan. The thin, 

horizontal bedding typical of beach gravel (Bourgeois and Leithold, 1984) that occurs 

locally towards the top of the KLM (Fig. 20B), at c. 17 m OD, suggests that the 

glaciofluvial fan was modified by littoral processes during its accumulation when RSL 

stood at about this level. 

12. Summary event stratigraphy.  

The most likely depositional environments and passage of events that occurred 

during the last glaciation at the coast between Cranfield Point and Kilkeel are 

summarised below and illustrated in Fig. 21. This event stratigraphy, which is based 

on a parsimonious interpretation of the field evidence presented above, is related to 

the regional chronostratigraphy outlined in Table 1, phases of glaciation originally 

deduced by McCabe (1980) (Table 2) and wider events that affected the northern 

ISB. 

12.1. Annalong Phase (pre-LGM). Subaqueous deposition of laminated mud in a 

probable glaciomarine setting, although reported mixed assemblages of 



37 
 

foraminiferids in the muds suggest at least partial reworking by glacial processes. 

The origin of the shelly gravel bodies within the ALM is uncertain. They were 

possibly deposited by efflux jets at the front of the advancing ISIS, which scavenged 

palimpsest shell lags that had been over-ridden, but they could be glacial rafts of 

beach shingle. Evidence of folding and simple shear within both fine and coarse-

facies of the ALM indicate subsequent over-riding by ice flowing west-south-

westwards onshore. [Build-up of ice within the northern ISB; Fig. 21A]. 

12.2. Ballymartin Phase (LGM). Deposition of a stack of generally planar, 

horizontally-stratified units of subglacial traction till, including glacitectonite, folded 

rafts of subglacially scavenged materials and flat-topped cuspate lenses of sand, 

gravel and diamict likely to have been deposited within subglacial cavities. 

Consistent evidence of strain within the BMM, including minor thrusting and pressure 

shadows, indicate south to south-eastward flow offshore from the Mournes. 

[Extensive glaciation of ISB and surrounding land; Fig. 21B] 

12.3. Mourne Phase (late LGM). An increasing dominance of ice flowing from the 

Carlingford Lough basin and the Mournes resulted in south-eastward flow across the 

Mourne Plain and the subglacial erosion of the seven deep troughs, partially lined by 

stone pavements. The troughs were possibly initially cut by subglacial drainage 

followed by subglacial modification by ice. [Regional ice sheet thinning accompanied 

with draw-down into the southern ISB; Fig. 21C] 

12.4. Derryoge Phase (Cooley Point Interstadial). The architecture of the sediments 

filling the troughs (Fig. 16) suggests that phases of ice-bed separation and 

subglacial, subaqueous accumulation of mud were punctuated by subglacial 

deformation, most noticeably towards Crawfords Point. The troughs at Kilkeel were 

probably only partially infilled before glacial retreat occurred. Arctic to sub-Arctic 
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distal glaciomarine sedimentation of the DEM followed, possibly beneath an ice 

shelf. Five reported radiocarbon dates on sieved foraminiferids (Elphidium clavatum) 

indicate deposition occurred at Kilkeel between 17.0 and 16.5 14C ka BP (20.1 and 

19.7 cal ka IntCal 04) when geomorphological and palaeoenvironmental evidence 

suggests RSL stood at c. 30 m OD (McCabe and Clark, 1998; Clark P et al., 2004).  

[Glaciomarine conditions within the northern ISB following retreat of the ISIS; 

Fig.21D] 

12.5. Ballykeel Phase (Clogher Head Stadial). Glacial readvance across the Mourne 

Plain resulted in the truncation of the entire glacigenic sequence and fashioning of 

the Main Stone Pavement. The deduced south-eastward flow direction suggests that 

the ice was sourced in the Mournes and well as issuing from the Carlingford Lough 

basin. [Clogher Head Readvance of McCabe et al. (2007b); Fig. 21E] 

12.6. Cranfield Phase (Linns Interstadial). Rapid grounding line retreat of the ice 

occurred whilst RSL fell from at least c. 25 m OD, accompanied by rapid 

subaqueous glaciofluvial deposition of the CRM. The Main Stone Pavement was left 

largely in pristine condition. The subsequent ‘active’ retreat of ice toward the 

Carlingford Lough basin formed the Cranfield Moraine Complex, where at Sandpiper 

and Ballynahatten pits ice locally over-rode subaqueous glaciofluvial outwash 

correlated with the CRM, depositing a thin spread of till. [Phased retreat of ice back 

into the Carlingford Lough basin whilst RSL falls; Fig. 21F] 

12.7. Dunnaval Phase (Linns Interstadial). Erosion of shoreline notches at 18-19 m 

OD between Cranfield Point and Spa Well associated with accretion of raised beach 

deposits of the DVM. A maximum age of 15.6-14.7 14C ka BP (18.8-17.8 cal ka 

IntCal 04) has been suggested for the raised beach where it abuts the Cranfield 
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Point Moraine (McCabe and Clark, 1998; McCabe et al., 2005). [Marine regression 

and creation of late-glacial raised beaches; Fig. 21G] 

12.8. Kilkeel Phase (Linns Interstadial). Meltwaters issuing from retreating outlet 

glaciers in the Mournes, circumventing the Cranfield Moraine Complex, formed a 

glaciofluvial fan to the south-east of Kilkeel when RSL stood at c. 17 m OD. [Shortly 

before the Killard Point Readvance; Fig. 21H]  

13. Discussion 

13.1 Glacial limits during the Clogher Head and Killard Point readvances 

The imbrication of cobbles in the MSP indicates that the final flow of ice in the area 

was from the north-west. Grounding line retreat was accompanied by rapid 

subaqueous glaciofluvial sedimentation across coastal parts of the Mourne Plain, 

where few unambiguous ice-marginal features have been identified (Fig. 3), either 

because they are buried beneath sand and gravel, or they have been subsequently 

eroded away. In comparison, the nested series of arcuate ridges of the Cranfield 

Moraine Complex are relatively well preserved and unmodified (Fig. 3). This 

suggests that they are younger and result from ‘active’ retreat of ice back into the 

Carlingford Lough basin after RSL had dropped below c. 25 m OD, otherwise they 

would have been destroyed by marine processes. Locally-sourced ice probably 

retreated into the eastern valleys of the Mournes following the Clogher Head 

Readvance, where poorly-developed recessional moraines have been identified 

(McCabe and Dunlop, 2006, fig. 16; Barr et al., 2016), but the age of these features 

is currently unknown. McCabe (2008) attributes the recessional moraines to the later 

Killard Point Readvance, which, he claims, formed the innermost ridge of the 

Cranfield Moraine Complex at Cranfield Point (Fig. 2). 
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The outer, northern limit of ice emanating from the Carlingford Lough basin during 

the Clogher Head Readvance was established in Ballykeel Bay, 3.5 km north-east of 

Kilkeel (Fig. 3), where a structurally-complex package of over-consolidated 

sediments, including laminated silts and sands are overlain, and intruded by, sandy 

diamict including clasts of granite (Stephens and McCabe, 1977; McCabe, 1980). 

There is no clear geomorphological evidence inland to corroborate this glacial limit, 

but a more convincing one occurs some 10 km to the north, at Dunmore Head (Fig. 

3). This limit was thought to have formed contemporaneously by ice flowing from the 

north (McCabe, 1980, McCabe and Hirons, 1986), although in later publications it 

has also been correlated with the Killard Point Readvance (eg. McCabe and Dunlop, 

2006, fig. 16 and 22; Clark J et al., 2012). The Dunmore Head Moraine links with 

well-developed, lateral ice-marginal features that rise gently northwards around the 

northern rim of the Mournes from c. 35 m OD to c. 150 m OD near Newcastle, some 

7 km farther to the north (McCabe, 2008). 

The highest raised marine shoreline feature etched into the Mourne Plain at c. 28 m 

OD extends from behind the village of Annalong northwards to Dunmore Head (Fig. 

3), where it is thought to have been trimmed by ice during the creation of the 

Dunmore Head Moraine (McCabe and Hirons, 1986; McCabe, 2008). It is generally 

accepted that the Mourne Plain was largely ice-free between Dunmore Head and the 

limit of the mainly Carlingford Lough-derived ice established at Ballykeel (McCabe 

and Dunlop, 2006; McCabe 2008) (Fig. 2). However, the interpretation of the high 

(28 m) shoreline feature is controversial for it was considered earlier to more likely 

represent the innermost edge of a very gently sloping spread of glaciofluvial outwash 

that descends from Dunmore Head towards Mullartown and Annalong (Stephens 

and McCabe, 1977, Fig. 8) (Fig. 3).  
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The Dunmore Head and Ballykeel limits are correlated with the Clogher Head 

Readvance, which was established by McCabe et al. (2007b, fig. 1b) mainly from 

evidence at the Port and Cooley Point sites backing Dundalk Bay (Fig. 2). These 

authors deduce that the event occurred between 18.7 and 18.2 ka, linking it with 

global climatic cooling into the Oldest Dryas recorded in sea-surface temperature 

proxies obtained from other sites around Ireland (Clark J et al., 2012). We conclude 

that the dated glaciomarine mud of the DEM at Kilkeel Steps was over-ridden during 

this event, after 19.8 ka, the youngest of the five readjusted age determinations 

reported by Clark J et al. (2012). Further work is required to identify glacial limits 

inland once better resolution digital terrain models become available. 

13.2 Correlations across the northern Irish Sea basin 

There have been many attempts to correlate limits of glacial readvances across the 

northern ISB (Thomas, 1985, fig. 8.6). This is no longer just an esoteric exercise as 

knowledge of the extent of ice during former retreat stages is necessary in GIA and 

related modelling, which is becoming more temporally resolved and sophisticated 

(Bradley et al., 2011). For example, in palaeotidal modelling of regions in which 

isostatic loading was greater than the global reduction in sea level, ice limits like 

those of the Clogher Head Readvance are required to mask out areas that would 

otherwise be simulated to have been flooded (Ward et al., 2016). 

In many recent reconstructions the northern ISB had become ice free by c. 21.3 ka 

(eg. Clark C et al., 2012; Chiverrell et al., 2013), based on evidence from an off-

shore sampling site positioned midway between Killard Point and the Isle of Man 

(Fig. 1), where cold-stage ice-proximal marine deposits overlie glacigenic material 

(Kershaw, 1986). Calibrated radiocarbon ages of c. 23.3 ka from this site have been 

used to constrain initial deglaciation of the northern ISB (eg. Eyles and McCabe, 
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1989; Clark J et al., 2012), but they should be regarded as maximal age estimates 

as they were obtained from bulk samples of marine carbonate simply for establishing 

post-glacial sedimentation rates, not supported by detailed palaeontological or 

palaeo-environmental analyses. Furthermore, there are uncertainties regarding the 

marine reservoir correction for this period of time. Bayesian modelling control for the 

retreat of the ISIS northwards suggests that a younger age of c. 21.9 - 20.7 ka is 

more likely (Chiverrell et al., 2013), especially as a cluster of four Cosmogenic 

Nuclide (CN) ages of c. 19.2 ka have been obtained from glacially scoured bedrock 

in western Anglesey, off North Wales (McCarroll et al., 2010; Phillips et al., 2009). 

The evacuation of ice from the northern ISB was associated with a phase of ice-

stream drawdown around the Isle of Man (Roberts et al., 2007), which we suggest 

probably also formed the troughs between Derryoge and Kilkeel (Fig. 22B). It is likely 

that the margin of the ISIS retreated farther, more rapidly, more actively and was 

more unstable in the deeper, western ISB that is was in the shallower, eastern ISB 

(Chiverrell et al., 2013, 2016). How far the ice margin retreated to the north is not 

known, nor is its position across the northern ISB during the subsequent Clogher 

Head Readvance (Roberts et al., 2006). For the latter it is tempting to resurrect the 

glacial reconstruction of ice in the northern ISB offered by Thomas (1985), in which 

an ice shelf extends from Dundalk Bay across to the western coast of the Isle of Man 

(Fig. 22C). If correct, the glaciomarine muds at Kilkeel may correlate with the Dog 

Mills Member of the Orrisdale Formation on the Isle of Man (cf. Thomas et al., 2004, 

fig. 8b). These muds were also subsequently over-ridden by ice during a substantial 

glacial readvance from the north, but the event is correlated with the Killard Point 

Readvance by Thomas et al. (2004), who also conclude that the foraminiferal 

assemblages in the Orrisdale Formation are derived and cannot be used to confirm 
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the existence of raised, fully glaciomarine deposits on the Isle of Man. Roberts et al. 

(2006), however, suggest that reduced salinity conditions in a shallow water, ice-

proximal marine embayment may have occurred. 

Low-salinity, proglacial glaciomarine muds similar to the Dog Mills Member underlie 

the Vannin Sound, some 20 km to the south-east of the island, which possibly then 

linked to open water in the southern ISB (Thomas, 1985; Pantin, 1978) (Fig. 22C). 

The Vannin Muds contain dropstones and ice-berg dump structures that were 

interpreted by Pantin (1978) to have accumulated sub-tidally by sediment-laden 

meltwater plumes adjacent to a floating ice shelf. These coarsely laminated muds, 

up to 35 m thick, could perhaps have been deposited from low-velocity hyperpycnal 

flows, a style of sedimentation that was apparently characteristic of conditions in the 

North Atlantic during Heinrich Event 1 (H1), particularly between 16.7 and 15.1 ka 

BP (Stanford et al., 2011). The Vannin muds are truncated by an unconformity of 

regional extent that has been traced across the eastern ISB from geophysical 

records and correlated tentatively with a significant readvance (Blackhall Wood-

Gosforth Oscillation) that affected the Solway Lowlands and the west Cumbrian 

coast (Livingstone et al., 2012) (Fig. 22C). 

The limit of the Killard Point Readvance at c. 16.5 ka (Table 1) is generally accepted 

to have stretched between Killard Point (Fig. 1) and the Bride Moraine, on the 

northern tip of the Isle of Man (Thomas et al., 2004; Roberts et al., 2007), and thence 

either with the Kirkham Moraine in Lancashire (Chiverrell et al., 2013, 2016), or a 

limit off the west Cumbrian coast (Livingstone et al., 2012) (Fig. 22D). However, 

these publications all generally either ignore, or play down the regional significance 

of the earlier Clogher Head Readvance, which is more firmly established here.  
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13.3. Sea-level change 

Clark P et al. (2004) proclaimed the international importance of the sequence 

exposed between Derryoge and Kilkeel, stating that it contains unique evidence of 

rapid fall in RSL during the Last Glacial Termination from about +30 m to -10 m OD 

(or lower) followed by even more rapid (<500 years) rise back to +20 m OD at about 

19 ka BP (Fig. 5). They correlated the rise with Global Meltwater Pulse 1A (Peltier, 

2005) and subsequently reinforced their story through the acquisition of new AMS 

radiocarbon dates on foraminifera collected from raised marine muds at other sites in 

the north and west of Ireland (McCabe et al., 2005; McCabe and Dunlop, 2006; 

McCabe et al., 2007b; McCabe 2008; Clark J et al., 2012). However, although this 

substantial sea-level fluctuation is ‘new to the construction of sea level curves in the 

British Isles….and truly remarkable’ (Whitehouse et al., 2008), it was not included in 

a review of sea level change in Ireland (Roe, 2008) and has not been 

accommodated in subsequent glacio-isostatic adjustment (GIA) modelling (Brooks et 

al., 2008; Bradley et al., 2011). This circumspection by the GIA community was 

challenged by McCabe in his formal reply to Brooks et al. (2008) and in McCabe 

(2008).  

The dates and palaeoenvironmental interpretation of the glaciomarine muds of the 

DEM at Kilkeel Steps reported by Clark P et al. (2004) and McCabe et al. (2005) 

were generally accepted by Roberts et al. (2006) in a review of Holocene sea levels, 

LGM glaciomarine environments and geophysical models for the northern ISB. 

However, the Kilkeel data were categorised as ‘secondary’ sea-level index points in 

a database developed by Brooks and Edwards (2006) in which observations of RSL 

were screened and classified according to established protocol for the analysis of 

sea-level data. Secondary points such as these were derived from sites where the 
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environment of deposition was unclear or contested. No evidence was reported that 

clearly contradicted the interpretation of Clark P et al. (2004) and McCabe et al. 

(2005) that the Kilkeel dates indicate RSL to have stood at up to about +30 m OD at 

c. 19 ka BP, but this level was up to 20 m higher than predicted by the GIA models of 

Lambeck (1996), Lambeck and Purcell (2001), Peltier et al. (2002) and Shennan et 

al. (2006). Some of these models were questioned by McCabe (1997) and McCabe 

(2008). 

The GIA modelling for the region has been improved firstly by Brooks et al. (2008) 

and then Bradley et al. (2011), primarily by accepting an earlier and more extensive, 

thicker ice sheet (700 m) over north and central Ireland at the LGM, together with 

substantial thinning after 19 ka BP. These models incorporate a modest increase in 

ice thickness during the Killard Point Stadial, but still predict RSL at Kilkeel at 19 ka 

BP to be some 6 m lower than suggested by the evidence presented here (Fig. 5). 

This small discrepancy may result from continued underestimation in the modelling 

of ice thickness at the LGM (cf. Kuchar et al., 2012) together with the time-span of 

the LGM that has was adopted in the calculations. For example, Bradley et al. (2012) 

assume that deglaciation began at 21 ka BP, whereas there is now a convergence of 

evidence that the ISIS began to retreat some 2000 years or more earlier (Smedley et 

al., 2017) (Fig. 1). The models of Brooks et al. (2008) and Bradley et al. (2011) also 

do not factor in any build-up of ice during the Clogher Head Stadial, although 

regional glacio-isostatic loading seems to control the isostatic component of the local 

RSL record, rather than short term perturbations in the ice thickness and residence 

time (Roberts et al., 2006). 

The results of this investigation clearly indicate that crucial evidence cited by 

McCabe (1986) and thereafter in support of subaerial dissection of the troughs 
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occurring between Derryoge and Kilkeel, and hence rapid fall and rise in RSL prior to 

the deposition of the glaciomarine muds dated at Kilkeel, is not justified. We find 

evidence only for falling RSL during deglaciation that is compatible with published 

sea-level curves in the region (Carter, 1982, 1983) and current GIA modelling. 

14. Conclusions 

 This review and targeted reinvestigation of the Pleistocene sequence exposed 

between Derryoge and Kilkeel broadly supports traditional interpretations of 

the last glaciation of the region, involving subglacial accretion and deformation 

of till beneath grounded ice during the LGM, followed by local glacial 

readvances. 

 A series of deep troughs were eroded subglacially into the till sheet during a 

post-LGM drawdown of ice into the northern ISB. The architecture of the 

sediments filling the troughs suggests that phases of ice-bed separation and 

subglacial, subaqueous accumulation of mud were initially punctuated by 

episodes of subglacial erosion and deformation. 

 Glaciomarine muds were deposited in the troughs at Kilkeel following retreat 

of ice from the coast and whilst RSL stood at up to about 30 m OD. The five 

published age determinations on hand-picked foraminiferids of between 17.0 

and 16.5 14C ka BP (20.1 - 19.7 cal ka IntCal 04) reported by Clark P et al. 

(2004) and McCabe et al. (2005), are accepted. 

 The trough-fills were over-ridden, compacted, deformed and truncated during 

a re-advance of ice from inland. A widespread subglacial stone pavement was 

formed during this event, which is correlated with the Clogher Head 

Readvance established by McCabe et al. (2007b). 
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 Grounding line retreat was accompanied by rapid accretion of ice-proximal, 

subaqueous glaciofluvial sand and gravel. Ice emanating from the Carlingford 

Lough basin subsequently stabilized and retreated to form the nested arcuate 

moraine ridges of the Cranfield Moraine Complex situated inland of Derryoge. 

Ice locally over-rode outwash deposits to lay down till. 

 The coastal sequence was truncated during marine regression, which created 

a raised shoreline at 18-19 m OD. The beach gravels were subsequently 

dissected by meltwater flowing towards Kilkeel from inland whilst RSL stood 

at c. 17 m OD. 

 There was an apparently uninterrupted fall in RSL from c. 30 m OD that is 

consistent with the pattern of RSL curves for the region predicted by current 

GIA modelling. 

 Crucial evidence cited by McCabe (1986) in support of subaerial dissection of 

the troughs and large-magnitude sea-level fluctuations of supposed circum- 

North Atlantic significance (McCabe, 1996; McCabe and Clark, 1998; McCabe 

et al., 1998; Clark P et al., 2004; McCabe et al., 2005, 2007a, 2007b; Clark P 

et al., 2009; Clark J et al., 2012), is not justified.  

 Despite laborious efforts during the past 35 years, much of the research 

reviewed here has focussed on gathering bits of evidence from many sites to 

support and refine hypotheses, rather than testing them critically against all 

the evidence available at specific sites. This inductive approach to science is 

inherently weak, has led to a polarisation of views and unfortunately has 

resulted in confusion. 

 Further work is now required to review and firmly establish the stratigraphical, 

sedimentological and geomorphological context of all the published dates on 
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raised marine muds that underpin the generally-accepted chronostratigraphy 

of the region (Clark J et al., 2012; Table 1), and to correlate ice limits across 

the northern ISB. 
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Full Figure and Table captions 

Figures 

1. Median deglacial ice sheet limits around the Irish Sea Basin (after Hughes et al., 

2016). Inset: maximum limits of the BIIS at the LGM.  

2. Bedforms, flowlines and glacial readvance limits in north-eastern Ireland (based 

on McCabe et al., 2005 and McCabe and Dunlop, 2006).   

3. Digital surface model of the Mournes and Mourne Plain showing key 

geomorphological features. CMC, Cranfield Moraine Complex; CPM, Cranfield Point 

Moraine; DHM, Dunmore Head Moraine; F, Formal Mountain; K, Knockchree; KF, 

Kilkeel Fan; KS, Knockshee; SP, Sandpiper Pit.  Digital surface model reproduced 

with the permission of Land & Property Services under delegated authority from the 
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Controller of Her Majesty’s Stationery Office, © Crown copyright and database right 

MOU577.3 (2018). 

4. The Mourne Plain looking northwards towards Kilkeel and the Mountains of 

Mourne. Photograph reproduced with permission of NIEA. 

5. Sea level curves for north-eastern Ireland. Grey line and associated data points 

after McCabe (2008). Red line is derived from the new ice model of Bradley et al. 

(2011), based on the optimum earth model inferred in Bradley et al. (2009). 1) 

Raised beach notches bordering the Mourne Plain near Annalong (McCabe, 1986); 

2) Low-stand recorded by supposed subaerial channels (troughs) between Derryoge 

and Kilkeel (Clark et al., 2004); 3) Dated glaciomarine muds at Kilkeel Steps (Clark 

et al., 2004); 4) Dated marine muds at Cooley Point and Port (McCabe and Haynes, 

1996; McCabe et al., 2007b); 5) Readvance to Clogher Head (McCabe et al., 

2007b); 6) Dated marine mud at Cranfield Point and reported intertidal boulder 

pavement at Cooley Point (McCabe et al., 2005); 7) Readvance to Killard Point 

limits; 8) Drapes of dated red marine mud on subglacial bedforms and formation of 

late-glacial raised shoreline on Rough Island, Strandford Lough (McCabe et al., 

2005); 9) Creation of gravel barrier on Rathin Island (Carter, 1993); 10) Submerged 

beach and intertidal sands, Belfast Lough (Kelley et al., 2006).   

6. Generalized section between Kilkeel and Crawfords Point (modified after McCabe 

and Dunlop, 2006) with new interpretation of the section backing Derryoge Bay. 

Localities 1-11 are sited in next figure.  

7.   Localities L1 to 11 critically re-examined in this study. Generalised logs are given 

in Supplementary Information. Digital surface model © Crown copyright and 

database right MOU577.3 (2018). 

8. Graphic logs at selected localities, showing new radiocarbon dates on shells and 

pie diagrams of striae measurements on stone pavements that are enlarged in a 

following figure. 

9. Images of the Annalong Member (ALM): A) laminated silt on foreshore, Derryoge 

Bay [L9], from where sediment blocks were taken for thin sectioning; B) 

intraformational deformation within laminated mud [L9]; C) diamict of BMM resting on 

deformed laminated mud of ALM (L9); D) crinkly deformation on bedding planes 

(arrowed) within open-folded laminated mud [L7]; E) cross-stratified gravel with shell 

fragments beneath the BMM [L4]; F) folded and sheared bed of gastropod shells 

within cross-stratified gravel [L4].  

10. Thin section of laminated silt of the ALM at L9, showing coarsely interlaminated 

clayey silt and very fine-grained sand with evidence of syn-depositional soft-

sediment deformation (1) and micro-thrusting (2). 

11. Annotated thin section of crinkled laminated silt of the ALM at L9 with close-up of 

buckle folding. 
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12. Images of the Ballymartin Member (BMM): A) typical sequence at Crawfords 

Point [L11] with diamict including stone lines and clusters truncated by the Main 

Stone Pavement, overlain by sand (CRM) and capped by raised beach gravel 

(DVM); B) bevelled boulder of granite with striae on upper surface orientated NW-SE 

[L11]; C) gravel lens within diamict interpreted as subglacial nye-channel fill, Kilkeel 

[L1]; D) fissile muddy diamict towards base of the BMM at Manse Road steps, 

Kilkeel [L3]; E) diamict at base of the BMM with relatively far-travelled pebbles 

pressed down into mud of the ALM [L9]; F) ) intensely sheared laminated mud of the 

ALM beneath the BMM at L1-2 (white helmet for scale). 

13. Structures within the BMM: A) sketch of a rotated boulder [L10]; B) boulder with 

tapering lens of sandy gravel (above the trowel) on down-glacier side (left) [L8]; C) 

gravel-filled structure beneath boulder [L1]; D) annotated sketch of the structure 

shown in the previous image interpreted as a hydrofracture. 

14. Images of the Derryoge Member (DEM): A) sequence of muds and diamict filling 

the trough (T2) backing Derryoge Bay with arrow showing a draped contact; B) 

blocky-fractured massive mud passing down into relatively undisturbed laminated 

mud [L2]; D) rhythmically laminated mud interpreted as glaciomarine cyclopels [L2] 

(pound coin for scale); D) compact laminated mud towards base of trough (L2), 

displaying steep-angled fissility (to right of the scale) and shearing; E) ball-and-pillow 

structure [L2]; F) folded laminated mud towards base of trough [L2]; G) poorly-

developed stone pavement (MSP) capping sheared mud (glacitectonite) including 

lens (raft) of sand (above hammer) towards top of the trough [L1]; H) folded and 

heavily jointed, fissile muds within the trough [T2] backing Derryoge Bay [L7-6]. Sub-

horizontal joints intercept incipient axial-plane cleavage (top left to bottom right) to 

form rhomboid slabs that are diffracted around the tight (sheath?) fold that plunges 

into the cliff-face (arrowed). 

15. Images of stone pavements: A) mud of the DEM resting on a stone pavement 

that lines the base of the northern limb of the trough [T2] backing Derryoge Bay [L6]; 

B) crushed pebbles beneath a boulder in the pavement shown in the adjoining 

image; C) the Main Stone Pavement, beneath sands of the CRM, truncating a minor 

silt and diamict-filled channel structure lined by another stone pavement (arrowed) 

atop the main trough backing Derryoge Bay [L8-9]. Note that boulders of both 

pavements dip into the cliff face towards the WNW; D) bevelled stones of a delicate 

stone pavement capping the trough at Kilkeel [L1], with striae (arrowed) dipping 

gently into the cliff-face (towards handle of hammer). 

16. Conceptual model for the formation, in-filling and deformation of the troughs 

backing Derryoge Bay: A) subglacial erosion of the BMM caused by drawdown of ice 

into the ISB (towards viewer) with localized subglaciofluvial erosion and deposition at 

base of troughs. Glacitectonite and boulder pavements are formed beneath ice; B) 

subglacial accumulation of mud within troughs punctuated by episodes of subglacial 

erosion leading to local development of glacitectonite, subglacial traction bed till and 
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boulder pavements, open folding and soft-sediment deformation; C) continued 

subglacial accumulation of mud within troughs punctuated by episodes of subglacial 

erosion, with local subglaciofluvial sheet flow resulting in interbeds of very fine-

grained sand; D) either continued subglacial accumulation of mud within troughs 

punctuated by episodes of subglacial erosion, or retreat of ice followed by open 

glaciomarine sedimentation of mud, as probably occurred towards Kilkeel; E) 

thickening and readvance of ice leads to severe compaction, folding and fissuring of 

muds within the troughs and truncation of the entire sequence together with creation 

of the Main Stone Pavement. 

17. Image and annotated sketch of open-folded muds of the DEM at the base of the 

trough [T2] backing Derryoge Bay [L7], showing structural measurements.  

18. Azithimuths of striae measured on bevelled clasts of the Main Stone Pavement. 

19. Images of the Cranfield Member (CRM): A) boulder lodged firmly into top of the 

BMM, draped by poorly consolidated sand and gravel [L11]; B) recording azimuths of 

striae on the Main Stone Pavement atop the diamict and mud-filled trough [T2] 

backing Derryoge Bay [L8]; C) trough-cross stratified sand with a truncated channel 

filled with massive mud, overlain unconformably by horizontally stratified gravel 

(KLM) at top of section L3; D) sand, gravel and diamict formerly exposed at 

Sandpiper Pit. Reproduced from McCabe and Dunlop (2006) with thanks. 

20. Images of gravel units capping the succession: A) horizontally stratified gravel of 

the DVM associated with a raised shoreline behind the section at 18 m OD, south of 

Crawfords Point [L11] (Reproduced from McCabe and Dunlop, 2006, with thanks); B) 

laminated silty sand (CRM) overlain by shallow trough-cross stratified sand and 

gravel and capped by horizontally stratified (beach?) gravel [L3], note cobbles sunk 

into top of the silty sand (arrowed); C) channelized glaciofluvial gravel (KLM) 

containing a rip-up body of the underlying sand (CRM) atop the trough at Kilkeel 

Steps [L2]; D) close-up of the rip-up body. 

21. Cartoon figures illustrating the most likely sequence of events during the last 

glaciation of the Mourne Plain. 

22. Speculative reconstructions for the last glaciation of the northern ISB: A) build-up 

of ice leading into the LGM (based partly on Greenwood and Clark, 2009; Roberts et 

al., 2007; Phillips et al., 2009; Finlayson et al., 2010); B) draw-down into ice-streams 

following the LGM (based partly on Roberts et al., 2007: van Landeghem et al., 

2008; Phillips et al., 2009; Greenwood and Clark, 2009); C) Clogher Head 

Readvance (based partly on Thomas, 1985; Merritt and Auton, 2000; McCabe et al., 

2007b; Livingstone et al., 2012); D) Killard Point Readvance (after McCabe and 

Dunlop, 2006; Roberts et al., 2007; Livingstone et al., 2012).  

Tables 
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1. Chronostratigraphy for the north-east of Ireland (modified after Clark J et al., 

2012).  

2. Lithostratigraphy for the Pleistocene deposits underlying the Mourne Plain. 

Lithofacies associations after McCabe (1986); informal phases after McCabe (1980). 

3. New radiocarbon dates on shells collected from the Annalong Member. 

Supplementary Information 

Generalised logs of cliff sections between Kilkeel and Crawfords Point.   
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Table 1. Chronostratigraphy for the north-east of Ireland (modified after Clark J et al., 2012). 

Stage 14C ka 
BP* 

Calib  14C 
ka BP 

Palaeoenvironment References 

Last Glacial 
Maximum 

 30 
27 

Full glaciation of Ireland and Irish 
Sea Basin 

Small and 
Ballantyne, 2018 

[Greenland 
Interstadial 2] 

 23.3 
22.9 

Stepped retreat of ISIS from the 
Isles of Scilly from 26-25 ka 

Small et al., 2018; 
Rasmussen et al., 
2014 

Cooley Point 
Interstadial (CPS) 

≥17  
≤15.0 

≥20.1 
 
≤ 18.2 

Deposition of raised massive to 
laminated glaciomarine muds 
along coast of South Down. 

McCabe, 1997; 
McCabe and Clark, 
1998; McCabe et 
al., 2005 

Clogher Head 
Stadial (CHS) 

≤ 15.0 
≥ 14.2 

≤18.2 
 
≥17.1 

Glacial readvances into Dundalk 
Bay, Carlingford Lough and 
northern ISB. Local subglacial 
deformation of glaciomarine mud. 

McCabe and Clark, 
2003; McCabe et 
al., 2005, 2007b 

Linns Interstadial 
(LI) 

≥14.2 
≥13.8 

≥17.3 
≥17.0 

Mud deposition in open marine 
embayments following limited 
glacial retreat. 

McCabe et al., 2005 

Killard Point 
Stadial (KPS) 

≥ 14.2 
≥13 

≥17.1 
≥16.0 

Deposition of glaciomarine mud 
coeval with glacial readvance to 
limits within those of the CHS.  

McCabe et al., 
1984;  McCabe and 
Clark, 1998 

Rough Island 
Interstadial (RII) 

c. 13.0 ≥16.0 
12.9 

Drawdown of ice into marine 
calving bays followed by rapid 
Stagnation Zone Retreat inland. 

McCabe and  
Haynes, 1986; 
McCabe and Clark, 
1998; McCabe 2008 

Mainly based on AMS radiocarbon dating of monospecific samples of Elphidium clavatum, corrected 

for 400 yr reservoir effect only.   
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Table 2. Lithostratigraphy for the Pleistocene deposits underlying the Mourne Plain. Lithofacies associations after 
McCabe (1986); informal phases modified after McCabe (1980). 

Lithostratigraphy 
 

Depositional facies Lithofacies 
Association 

Phase 

Kilkeel Member (KLM) 
Dunnaval Member (DVM) 
Cranfield Member (CRM) 
Derryoge Member (DEM) 
Ballymartin Member (BMM) 
 
Annalong Member (ALM) 

Subaerial outwash/beach LA 4 in part Kilkeel 

Beach LA 4 in part Cranfield>Dunnaval 

Subaqueous outwash LA 4 in part Ballykeel>Cranfield 

Distal glaciomarine? LA 3 Derryoge 

Subglacial traction till and 
glacitectonite 

LA 2 Ballymartin>Mourne 

Glaciomarine LA 1 Annalong 

  



74 
 

Table 3. New radiocarbon dates on shells collected from the Annalong Member. 

UBA No Sample ID Material 14C Age  ± F14C ± 

UBA-31643 SS0226 Turritella 39,176* 522 0.0076 0.0005 

UBA-31644 SS0227 Turritella 39,938* 607 0.0069 0.0005 

UBA-31645 SS0228 Turritella 44,429* 1014 0.0040 0.0005 

UBA-31646 SS0229 Turritella 47,475 1774 0.0027 0.0005 

UBA-31647 SS0230 Turritella 48,069 1671 0.0025 0.0005 

UBA-31648 SS0231 Arctica 48,899 1803 0.0023 0.0005 

 



 

Figure 1. Median deglacial ice sheet limits around the Irish Sea Basin (after Hughes et al., 2016). Inset: maximum limits of 
the BIIS at the LGM. 



 

Figure 2. Bedforms, flowlines and glacial readvance limits in north-eastern Ireland (based on McCabe et al., 2005 and 
McCabe and Dunlop, 2006).   



 

Figure 3. Digital surface model of the Mournes and Mourne Plain showing key geomorphological features. CMC, Cranfield 
Moraine Complex; CPM, Cranfield Point Moraine; DHM, Dunmore Head Moraine; F, Formal Mountain; K, Knockchree; KF, 
Kilkeel Fan; KS, Knockshee; SP, Sandpiper Pit.  Digital surface model reproduced with the permission of Land & Property 



Services under delegated authority from the Controller of Her Majesty’s Stationery Office, © Crown copyright and database 
right MOU577.3 (2018). 



 

Figure 4. The Mourne Plain looking northwards towards Kilkeel and the Mountains of Mourne. Photograph reproduced with 
permission of NIEA. 



 

Figure 5. Sea level curves for north-eastern Ireland. Grey line and associated data points after McCabe (2008). Red line is 
derived from the new ice model of Bradley et al. (2011), based on the optimum earth model inferred in Bradley et al. (2009). 
1) Raised beach notches bordering the Mourne Plain near Annalong (McCabe, 1986); 2) Low-stand recorded by supposed 
subaerial channels (troughs) between Derryoge and Kilkeel (Clark et al., 2004); 3) Dated glaciomarine muds at Kilkeel Steps 
(Clark et al., 2004); 4) Dated marine muds at Cooley Point and Port (McCabe and Haynes, 1996; McCabe et al., 2007b); 5) 
Readvance to Clogher Head (McCabe et al., 2007b); 6) Dated marine mud at Cranfield Point and reported intertidal boulder 
pavement at Cooley Point (McCabe et al., 2005); 7) Readvance to Killard Point limits; 8) Drapes of dated red marine mud on 
subglacial bedforms and formation of late-glacial raised shoreline on Rough Island, Strandford Lough (McCabe et al., 2005); 
9) Creation of gravel barrier on Rathin Island (Carter, 1993); 10) Submerged beach and intertidal sands, Belfast Lough 
(Kelley et al., 2006).   



 

Figure 6. Generalized section between Kilkeel and Crawfords Point (modified after McCabe and Dunlop, 2006) with new 
interpretation of the section backing Derryoge Bay. Localities 1-11 are sited in next figure. 



 

Figure 7. Localities L1 to 11 critically re-examined in this study. Generalised logs are given in Supplementary Information. 
Digital surface model © Crown copyright and database right MOU577.3 (2018). 



 

Figure 8. Graphic logs at selected localities, showing new radiocarbon dates on shells and pie diagrams of striae 
measurements on stone pavements that are enlarged in a following figure. 



 

Figure 9. Images of the Annalong Member (ALM): A) laminated silt on foreshore, Derryoge Bay [L9], from where sediment 
blocks were taken for thin sectioning; B) intraformational deformation within laminated mud [L9]; C) diamict of BMM 
resting on deformed laminated mud of ALM (L9); D) crinkly deformation on bedding planes (arrowed) within open-folded 
laminated mud [L7]; E) cross-stratified gravel with shell fragments beneath the BMM [L4]; F) folded and sheared bed of 
gastropod shells within cross-stratified gravel [L4].  



 

Figure 10. Thin section of laminated silt of the ALM at L9, showing coarsely interlaminated clayey silt and very fine-grained 
sand with evidence of syn-depositional soft-sediment deformation (1) and micro-thrusting (2). 



 

Figure 11. Annotated thin section of crinkled laminated silt of the ALM at L9 with close-up of buckle folding. 









 



 

Figure 12. Images of the Ballymartin Member (BMM): A) typical sequence at Crawfords Point [L11] with diamict including 
stone lines and clusters truncated by the Main Stone Pavement, overlain by sand (CRM) and capped by raised beach gravel 
(DVM); B) bevelled boulder of granite with striae on upper surface orientated NW-SE [L11]; C) gravel lens within diamict 
interpreted as subglacial nye-channel fill, Kilkeel [L1]; D) fissile muddy diamict towards base of the BMM at Manse Road 
steps, Kilkeel [L3]; E) diamict at base of the BMM with relatively far-travelled pebbles pressed down into mud of the ALM 
[L9]; F) ) intensely sheared laminated mud of the ALM beneath the BMM at L1-2 (white helmet for scale). 



 

Figure 13. Structures within the BMM: A) sketch of a rotated boulder [L10]; B) boulder with tapering lens of sandy gravel 
(above the trowel) on down-glacier side (left) [L8]; C) gravel-filled structure beneath boulder [L1]; D) annotated sketch of 
the structure shown in the previous image interpreted as a hydrofracture. 



 

Figure 14. Images of the Derryoge Member (DEM): A) sequence of muds and diamict filling the trough (T2) backing 
Derryoge Bay with arrow showing a draped contact; B) blocky-fractured massive mud passing down into relatively 
undisturbed laminated mud [L2]; D) rhythmically laminated mud interpreted as glaciomarine cyclopels [L2] (pound coin for 
scale); D) compact laminated mud towards base of trough (L2), displaying steep-angled fissility (to right of the scale) and 



shearing; E) ball-and-pillow structure [L2]; F) folded laminated mud towards base of trough [L2]; G) poorly-developed stone 
pavement (MSP) capping sheared mud (glacitectonite) including lens (raft) of sand (above hammer) towards top of the 
trough [L1]; H) folded and heavily jointed, fissile muds within the trough [T2] backing Derryoge Bay [L7-6]. Sub-horizontal 
joints intercept incipient axial-plane cleavage (top left to bottom right) to form rhomboid slabs that are diffracted around 
the tight (sheath?) fold that plunges into the cliff-face (arrowed). 



 

Figure 15. Images of stone pavements: A) mud of the DEM resting on a stone pavement that lines the base of the northern 
limb of the trough [T2] backing Derryoge Bay [L6]; B) crushed pebbles beneath a boulder in the pavement shown in the 
adjoining image; C) the Main Stone Pavement, beneath sands of the CRM, truncating a minor silt and diamict-filled channel 
structure lined by another stone pavement (arrowed) atop the main trough backing Derryoge Bay [L8-9]. Note that boulders 
of both pavements dip into the cliff face towards the WNW; D) bevelled stones of a delicate stone pavement capping the 
trough at Kilkeel [L1], with striae (arrowed) dipping gently into the cliff-face (towards handle of hammer). 



 

Figure 16. Conceptual model for the formation, in-filling and deformation of the troughs backing Derryoge Bay: A) 
subglacial erosion of the BMM caused by drawdown of ice into the ISB (towards viewer) with localized subglaciofluvial 
erosion and deposition at base of troughs. Glacitectonite and boulder pavements are formed beneath ice; B) subglacial 
accumulation of mud within troughs punctuated by episodes of subglacial erosion leading to local development of 
glacitectonite, subglacial traction bed till and boulder pavements, open folding and soft-sediment deformation; C) 
continued subglacial accumulation of mud within troughs punctuated by episodes of subglacial erosion, with local 
subglaciofluvial sheet flow resulting in interbeds of very fine-grained sand; D) either continued subglacial accumulation of 
mud within troughs punctuated by episodes of subglacial erosion, or retreat of ice followed by open glaciomarine 
sedimentation of mud, as probably occurred towards Kilkeel; E) thickening and readvance of ice leads to severe compaction, 
folding and fissuring of muds within the troughs and truncation of the entire sequence together with creation of the Main 
Stone Pavement. 



 

Figure 17. Image and annotated sketch of open-folded muds of the DEM at the base of the trough [T2] backing Derryoge 
Bay [L7], showing structural measurements. 



 

Figure 18. Azithimuths of striae measured on bevelled clasts of the Main Stone Pavement. 



 

Figure 19. Images of the Cranfield Member (CRM): A) boulder lodged firmly into top of the BMM, draped by poorly 
consolidated sand and gravel [L11]; B) recording azimuths of striae on the Main Stone Pavement atop the diamict and mud-
filled trough [T2] backing Derryoge Bay [L8]; C) trough-cross stratified sand with a truncated channel filled with massive 
mud, overlain unconformably by horizontally stratified gravel (KLM) at top of section L3; D) sand, gravel and diamict 
formerly exposed at Sandpiper Pit. Reproduced from McCabe and Dunlop (2006) with thanks. 



 

Figure 20. Images of gravel units capping the succession: A) horizontally stratified gravel of the DVM associated with a 
raised shoreline behind the section at 18 m OD, south of Crawfords Point [L11] (Reproduced from McCabe and Dunlop, 
2006, with thanks); B) laminated silty sand (CRM) overlain by shallow trough-cross stratified sand and gravel and capped by 
horizontally stratified (beach?) gravel [L3], note cobbles sunk into top of the silty sand (arrowed); C) channelized 
glaciofluvial gravel (KLM) containing a rip-up body of the underlying sand (CRM) atop the trough at Kilkeel Steps [L2]; D) 
close-up of the rip-up body. 



 

Figure 21. Cartoon figures illustrating the most likely sequence of events during the last glaciation of the Mourne Plain. 



 

Figure 22. Speculative reconstructions for the last glaciation of the northern ISB: A) build-up of ice leading into the LGM 
(based partly on Greenwood and Clark, 2009; Roberts et al., 2007; Phillips et al., 2009; Finlayson et al., 2010); B) draw-down 
into ice-streams following the LGM (based partly on Roberts et al., 2007: van Landeghem et al., 2008; Phillips et al., 2009; 
Greenwood and Clark, 2009); C) Clogher Head Readvance (based partly on Thomas, 1985; Merritt and Auton, 2000; McCabe 
et al., 2007b; Livingstone et al., 2012); D) Killard Point Readvance (after McCabe and Dunlop, 2006; Roberts et al., 2007; 
Livingstone et al., 2012). 
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Supplementary Information: Generalised cliff section logs 

between Kilkeel and Crawfords Point 
Logs are located on Figure 6 and 7 of the main paper. Original locality registration 

numbers in brackets. Lithofacies and terminology after Evans and Benn (2004) 

 

Locality 1. Composite log of cliffs 50 to 150 m north of Kilkeel Steps; 1a (JWM303/ME673) 
within Trough 6; 1b (JWM304/ME674) to the south. 

m Facies Notes Interpretation Member 

<1 Gh Gravel, clast-supported, sharp, gently 
undulating erosional base. Inaccessible. 

Glaciofluvial fan 
interdigitating 
with beach 

Kilkeel 

<2 St, Gt Loose, interbedded sand and gravel, 
pinching out southwards. Erosional base. 

<0.2 Dmm Lens of diamict deforming underlying sand. 
Probable nose of a cohesive debris flow. 

Subaqueous 
glaciofluvial 

Cranfield 

<2.5 St (Fm) Silty coarse-grained sand, coarsening up 
overall, some troughs lined with silt, some 
graded beds and flame structures. Draped 
on sharp, erosional basal contact cutting 
out underlying units southwards onto till, 
lined by a laterally discontinuous pebble 
lag. This unit thins southwards to 1m, 
becoming more gravelly and resting on a 
discontinuous boulder pavement (BL). 
Most cross-bedding dips southwards. 

(<2.5) Fl, Fl-d, 
(Dms, Sh) 

Locally composed of compact silty fine 
sand with discontinuous laminae of 
medium to coarse sand and sparse 
lonestone pebbles. Some flat-topped 
cuspate lenses of silty diamict, becoming 
increasingly folded and sheared upwards 
(B2 glacitectonite) capped by 0.3 m unit of 
pseudohorizontally laminated silty sand 
(A2 glacitectonite). 

Subglacially 
deformed 
glaciomarine 
deposit 

Derryoge 

<5  Firm to stiff, thickly laminated, dark 
yellowish brown to olive grey, calcareous 
silt with sparse lonestones, becoming very 
stiff and massive in uppermost 1.5 m, with 
hackly fracture.  

Glaciomarine 
cyclopels 

Derryoge 

<12 Dmm 
(Dcm) 

Very stiff diamict with moderate yellowish 
brown, sandy silty clayey matrix, clast-
supported at base becoming less stony and 

Subglacial 
traction till 
including sub-

Ballymartin 



siltier upwards. SA-SR clasts <25 cm mostly 
wacke mudstone with granite and sparse 
flint. This unit thickens southwards to 
about 12 m, being mostly massive with 
gently undulating concavo-convex 
discontinuities locally bounding small 
gravel-filled lenses (subglacial cavity-fills). 
One large boulder is associated with a sand 
and gravel-filled, downward tapering 
structure (hydrofracture). 

glaciofluvial 
cavity fills. 

<1 Fmd, Fl 
(Dmm) 

Extremely stiff, fissile, intensely-sheared, 
pale yellowish brown, sandy mud diamict 
with well dispersed SA-R clasts of wacke 
and granite. Traces of original coarse 
lamination. Laterally discontinuous seams 
(<30 mm) of moderate brown stony clayey 
diamict. Undulating, gradational contact 
with unit above. 

Penetrative 
glacitectonite 

Annalong 

 

Locality 2. Log of cliffs at Kilkeel Steps within Trough 5 (JWM305/ME675). 

m Facies Notes Interpretation Member 

<0.3 Gh Poorly exposed, locally disturbed 
periglacially. 

Glaciofluvial fan 
interdigitating 
with beach 

Kilkeel 

<2.5 Gm, Gt 
(Go) 

Gravel, clast-supported, loose, very poorly 
sorted, with mainly SA-SR clasts of wacke 
with pink granite and sparse flint and white 
quartzite. Sharp, erosional, channelized 
base. Rip-up megaclast of laminated sand 
observed towards base (0.9 x 0.2 m). 

<3  Sl, Sh, 
Sr(S), Fl-w, 
Fm 

Silty fine sand with 10-15 cm-thick seams of 
silt and sparse lonestone cobbles, 
coarsening upwards. Wavy to convolute 
lamination developed locally. Sharp, draped, 
undulating basal contact. Individual beds 
thicken towards centre of swale, on-lapping 
onto the swale margins. 

Subaqueous 
glaciofluvial 

Cranfield 

<6 Fl, F-cpl, 
Fl-w 

Thickly laminated, dark yellowish brown to 
olive grey, firm to stiff, calcareous silt. 
Individual beds typically 10-15 mm thick, 
generally fining upwards, but with variable 
subordinate fine lamination. Spectacular 
shallow-plunging, isoclinal folds are exposed 
within this unit at beach level, associated 
with an incipient penetrative fabric. Fissures 
dip 4/258, 3/345, 12/160, 0/186, 7/212 

Glaciomarine 
cyclopels, 
glacially 
compacted. 

Derryoge 

 

 

 



Locality 3. Log of southern margin of Trough 5, south of Manse Road steps; 3a (JWM96; 3b 
(JWM306/ME676). 

m Facies Notes Interpretation Member 

0.8 Gm, Gms Gravel, locally matrix-rich, probably 
cryoturbated. Inaccessible. 

Head Kilkeel 

<2.5 Gm, Gt 
(St)(Gh) 

Gravel, very poorly sorted, in stacked 
shallow channels, the lowermost cut 
sharply into the underlying sand unit, 
locally with near vertical sides. Generally 
coarsening upwards. Local horizontal 
bedding in uppermost 1 m. Local 
northward dipping sigmoidal cross 
bedding towards base. Inaccessible. 

Glaciofluvial fan 
interdigitating 
with beach 

2.5 Sh Silty sand, mainly fine grained with 
laminae of medium to coarse, and sparse 
granules. General horizontal to gently 
undulating lamination. Locally siltier, more 
massive and with pebble lag set into the 
top. Some stacked shallow channels, 
including one filled with massive silt 
towards top. Draped on sharp, gently 
undulating basal contact. Unit pinches out 
southwards. 

Subaqueous 
glaciofluvial 

Cranfield 

<1.5 Fl, Fm-d Stiff, pale olive grey, laminated silt, locally 
folded and contorted, with diffuse 
laminae (possibly tectonic laminae) of 
medium to coarse sand and sparse 
lonestones towards top. Blocky fracture 
with ochreous staining. Top inaccessible. 
Draped on sharp, subhorizontal planar top 
of underlying unit. 

Subglacially 
deformed 
glaciomarine 
cyclopels 

Derryoge 

<2 Dms, Gms 
(Gt) 

Very compact, interstratified pale olive 
grey fine to coarse-grained silty sand, 
matrix-rich gravel and silty gravelly 
diamict, locally including flat-topped 
lenses (1 x 0.25 m) of poorly sorted gravel 
(subglacial channel infills).  Sharp, gently 
undulating basal contact. 

Subglacial 
traction till 
including sub-
glaciofluvial 
cavity fills. 

Ballymartin 

<10 Dmm 
(Dms) 

Very stiff, stony diamict with pale 
yellowish brown, sandy silty clayey matrix, 
including diffuse lenses (<1.5 x 0.3 m) of 
laminated silty fine to coarse-grained 
sand. Clasts mainly wacke mudstone and 
granite, some facetted and striated, 
mostly dispersed, but including some 
clusters. 

Subglacial 
traction till 
including sheared 
sub-glaciofluvial 
cavity fills. 

 

 



 

Locality 4. Shell site midway between Kitty’s Road and Spa Well. 

m Facies Notes Interpretation Member 

>2.5 Gt, St Statified gravel and sand. Inaccessible. Subaqueous 
glaciofluvial 

Cranfield 

0.2 BL Stone pavement. Ice-bed separation Ballymartin 

4.6 Dmm Pale yellowish brown, very silty diamict, 
firm to very firm, with weak horizontal 
fissility in uppermost 1.2 m. 

Subglacial traction 
till 

2  Poorly exposed transition from sheared 
gravel up into diamict. 

Glacitectonite 

1.9 Gm Dense, clast-supported gravel, fine to 
coarse with sparse cobbles, with silty 
coarse sand matrix, occupying channel 
structure. Relatively large proportion of 
tabular to bladed pebbles, which reveal 
local folding associated with southward 
displacement of underlying sand lens. 

Subglacially 
tectonized gravel 

Annalong 

<0.9 St Lens (< 30 cm thick) of fine to coarse-
grained shelly sand and granule gravel, 
capped by a drape of clay that is locally 
folded over towards the south together 
with cross lamination within the unit. 
Erosional, channelled base. 

Subglacially 
deformed sub-
glaciofluvial 
channel fill? 

<0.25 Gm, Gms Dense gravel, mainly clast-supported 
and locally openwork, becoming 
matrix-supported upwards. Fine to 
cobble grade, generally massive, but 
with local weak subhorizontal 
stratification. Local imbrication with 
elongate clasts dipping southwards. 

Beach deposit? 

0.8 Gms Dense gravel occupying channel 
structure, fine to coarse with sparse 
cobbles, matrix-supported, well packed. 
Numerous shell fragments. 

>0.6 Gm, Gms Dense gravel, clast-supported, fine to 
cobble grade, well packed, normally 
graded with numerous shell fragments 
including little-abraded gastropods 
sitting within sub-horizontal laminae 
and large, broken bivalve shells. Locally 
shape-sorted with relatively large 
proportion of tabular and bladed 
pebbles displaying imbrication with 
elongate clasts dipping southwards. 

 

 



Locality 5. Log of cliffs north of Derryoge Bay within Trough 3 (JWM311/ME681) 

m Facies Description Interpretation Member 

c. 
1.5 

Gh Gravel, horizontally bedded. Inaccessible. Raised beach Dunnaval 

c. 
2.5 

Gt Gravel and sandy gravel, tangentially bedded. 
Inaccessible. 

Subaqueous 
glaciofluvial 

Cranfield 

0.1 BL Gently concave unconformity lined with a 
discontinuous pavement of bevelled, striated 
pebbles and small cobbles firmly planted into the 
top of the underlying unit and aligned SE or E. 

Ice-bed 
separation 

Derryoge 

> 
2.5 

Fmd, 
Fl-cpl 

Very stiff, fissile, pale olive grey silt with folds, 
convolute lamination and ball-and-pillow 
structures. Detached balls of silty fine-grained 
sand. Becoming progressively more fissile and 
blocky-fractured upwards. Uppermost 40 cm is 
extensively sheared and includes a lens (1 x 0.3 
m) of cross-bedded sand, possibly a glacial raft. 

Subglacially 
deformed 
glaciomarine 
cyclopels 

 

 

Locality 6.  Combined log of cliffs on northern margin Trough 2 (Derryoge Road); 6a 
(JWM309/ME679); 6b (JWM93); 6c (JWM308/ME678). 

m Facies Notes Interpretation Member 

<1.5 Gh, Sh, St Sand and gravel exhibiting periglacial 
festooning and an ice wedge 
pseudomorph. Inaccessible. 

Raised beach Dunnaval 

<1.5 St Sand. Inaccessible. Subaqueous 
glaciofluvial 

Cranfield 

<5 Fl Stiff, fissile, thickly laminated, pale olive 
grey silt. Locally folded, contorted and 
heavily fissured. Draped upon underlying 
boulder pavement.  

Subglacially 
deformed 
glaciomarine 
cyclopels 

Derryoge 

0.3 BL Stone pavement on southward sloping 
unconformity. Some boulders are firmly 
planted into underlying diamict, others are 
wrapped within extremely poorly sorted 
gravel. Crushed clasts occur beneath some 
boulders. 

Ice-bed 
separation 

 

<2 Dmm Very stiff, sandy silty stony diamict, 
including lenses (shallow channel features) 
of very poorly sorted gravel. Sub-
horizontal fissility becomes more 
pronounced upwards. 

Subglacial 
traction till with 
sub-glaciofluvial 
cavity fills 

Ballymartin 

 

 

 



 

Locality 7. Log of cliffs at Derryoge Road within Trough 3 (JWM307/ME677) 

m Facies Notes Interpretation Member 

<1.5 Gh, Sh Gravel overlying silty sand and gravel, 
locally exhibiting periglacial festooning. 
Inaccessible. 

Raised beach Dunnaval 

<4.5 St, Gt Sand, mainly fine grained with laminae of 
medium to coarse, and sparse granules. 
Locally gravelly at top. Mainly sigmoidal 
trough bedding. Base sharp and gently 
undulating. 

Subaqueous 
glaciofluvial 

Cranfield 

>7 Fl, Fl-cpl Very stiff, heavily jointed, pale olive grey 
silt with sparse lonestones. Joints 
intercept to form rhomboid slabs, 10-40 
mm thick, that are locally defracted 
around tight (sheath?) folds plunging 
gently into cliff-face, displaying incipient 
axial-plane cleavage. General hackly 
fracture. Open folding at base. 

Subglacially 
deformed 
glaciomarine 
cyclopels 

Derryoge 

 

 

 

Locality 8. Log of cliffs backing Derryoge Bay on southern margin of Trough 2 
(JWM310/ME680) 

m Facies Notes Interpretation Member 

<2.5  Gh, Gt Gravel, mostly horizontally to shallow 
tangentially bedded, coarsening upwards, locally 
with erect pebbles at top and festooned. Sharp, 
channelized erosional contact with sands below. 

Raised beach Dunnaval 

2 Sh, St Mainly coarse-grained sand with silty seams, 
occupying a stack of shallow channels, 
coarsening upwards overall, with soft-sediment 
deformation structures and isolated pellets of 
clayey silt. Shallow tangential bedding parallel to 
floor of channels and basal contact of unit. 
Bedding draped over and around boulders of 
pavement below. Local pockets of gravel at base 
between boulders. 

Subaqueous 
glaciofluvial 

Cranfield 

1 BL Stone pavement with bevelled, striated boulders 
(<1.2 m) firmly planted into underlying diamict 
or the silt-filled channel locally below. Elongate 
boulders commonly dip gently NW into cliff face 
with striae orientated between E and SSW. 

Ice-bed 
separation 

Derryoge 

1 Fm, Fl Very stiff, fissile, olive grey silt, occupying 5 x 1 m 
channel with sharp base lined by boulders 
dipping northwards. Locally overlain either by < 

Subglacially 
deformed 



0.3 m diamict, like that below, or capped directly 
by the boulder pavement. Local sheath fold dips 
into cliff-face beneath pavement. 

subglacial 
channel fill mud 

<2.5 Dmm 
(Gm) 

Extremely compact, dark yellowish brown, silty 
clayey sandy diamict with A-SR clasts (<1 m). 
Well developed, sub-horizontal fissility and much 
comminuted granite in matrix. Locally includes a 
sharply-defined channel structure filled with 
unconsolidated sandy gravel with scattered 
cobbles. Lower contact of diamict is sharp and 
even. 

Subglacial 
traction till with 
sheared sub-
glaciofluvial 
channel-fills 

<1.5 Fmd 
(Gm, 
Dmm) 

Stiff, pale to dark yellowish brown, fissile clayey 
silt with very well dispersed, ice-scratched 
lonestones. Upper contact associated with thin 
lenses of gravelly sand intercalated with fissile 
silt. Lower contact sharp, draped on gravel 
below. Thickening northwards towards axis of 
swale. 

Subglacially 
deformed 
subglacial 
channel fill mud 

<1 Gm Compact, extremely poorly sorted sand and 
gravel, chaotically-bedded, with A-SR clasts <0.8 
m diameter, lying on sharp, irregular, locally 
undercut surface of trough, dipping steeply to 
the north. 

High-energy 
sub-glaciofluvial 
or cohesionless 
debris flow  

<1.5 Dmm, 
Dms 

Very stiff, sandy clayey silty diamict with well 
dispersed SA-SR clasts (< 0.8 m). Grading 
upwards and southwards into more clast-rich 
diamict with stratification and planar 
discontinuities dipping tangentially northwards 
parallel to margin of the overlying trough.  

Subglacial 
traction till 

Ballymartin 

<2.5 Fmd Stiff, fissile, pale to dark yellowish brown clayey 
silt with sparse lonestones and cuspate lenses 
(<4 x 0.3 m) of compact, silty, poorly sorted, 
matrix-rich sand and gravel. Includes a 35 cm 
diameter boulder of hornfelsed wacke with a 
tapering wedge of unconsolidated gravelly sand 
to the south (in pressure shadow). Some very 
disturbed (sliced-up) primary thick lamination 
and poorly developed, tectonic lamination 
sloping to the north parallel to the base of the 
overlying diamict. Gravelly diamict at base 
grading down into underlying silts. 

Subglacially 
deformed 
subglacial 
channel-fill mud 
and 
glacitectonite 

>0.5 Fl Stiff, pale yellowish brown, coarsely laminated 
silt, as exposed on foreshore. 

Glaciomarine 
cyclopels 

Annalong 

 

 

 



Locality 9. Combined log of foreshore (9a: JWM 87/ME 587; 9b: JWM90) and cliffs (9c: 
JWM88/ME586; 9d: Loc 002) backing centre of Derryoge Harbour (Trough 2). 

m Facies Notes Interpretation Member 

<4.5  Gt, St Sand and gravel resting on planar, sub-horizontal 
unconformity.  

Beach and 
subaqueous 
glaciofluvial 

Dunnaval 
and 
Cranfield 

1 BL Stone pavement with boulders (<1.5 m) firmly 
planted into underlying diamict. 

Ice-bed 
separation 

Derryoge 

4.2 Fmd, 
Fl, 
Dmm 

Poorly-exposed, laterally and vertically variable 
package of stiff to extremely stiff, mainly olive 
grey (5 Y 4/1) diamictic clayey silt grading 
upwards and southwards into more clast-rich 
diamict. Heavily fissured with vivid orange 
staining. General hackly fracture. Package 
includes poorly-defined masses of very stiff to 
hard, massive silty clay-clayey silt that are 
probably glacial rafts. Sharp, uneven base. 

Subglacially 
deformed 
subglacial 
channel-fill 
mud, rafts and 
glacitectonite 

0.7 Fl-d Stiff, olive grey, laminated silt with sparse 
lonestones. Draped base. 

Subglacially 
deformed 
channel-fill mud 

1.0 Dmm Gritty matrix-to clast supported diamict with 
some large boulders. 

Subglacial 
traction till 

Ballymartin 

<0.5 Dmm Gritty matrix-to clast supported diamict with 
open, decimetre-scale folding of included sandy 
lenses. Plunges 20/285o. Uneven top gradational 
over 5 cm. 

Glacitectonite 

<0.5 Fl Stiff, olive grey, laminated silt with 
compressional micro-folding and disturbance of 
laminae on cm scale. Unit pinches and swells 
between 25 and 50 cm in thickness and has 
sharp undulating base and sheared top. 

Subglacially 
deformed 
subglacial 
channel-fill mud 

0.8 Dmm 
(Dcm) 

Diamict with a stiff matrix of coarse quartzo-
feldspathic sand. Clasts up to boulder size of 
granite and hornfelsed wacke sandstone, with 
sparse WR pebbles derived from Devonian 
conglomerate, red sandstone, flint, chalk and 
shell fragments.  

Subglacial 
traction till 

0.2 Dmm Extremely stiff, fissile admixture of diamict and 
silt with uneven, sharp to gradational contacts 
(over 0.1 m). Stones (<0.5 m) are pressed into 
the underlying silts.  

Glacitectonite 

>4.5 Fl Pale olive grey (5Y 5/2), coarsely laminated silt 
and very fine-grained sand, exposed on 
extensive wave-cut platform. Firm to stiff, 
becoming very stiff upwards. Laminae typically 
1-3 mm thick, normally graded with local intra-
bed soft sediment deformation structures. 
Crinkly bedding/cleavage intersection lineations 
are commonly developed towards top, 
orientated NNW-SSE. The package includes 

Glaciomarine 
cyclopels and 
rain-out  

Annalong 



sparse laminae (<10 mm) of fine to medium-
grained sand, irregular bodies of matrix-rich, 
quartzo-feldspathic granule gravel composed of 
SR-R clasts (<8 mm), and lensoidal beds (<30 
mm) of A-SR gravel composed of mostly of pink 
granite with hornfelsed wacke siltstone and very 
sparse flint, locally cemented with iron pan. 
Irregular bodies (1 to 1.5 m across and 0.5 m 
thick) of gravelly diamict with clasts <0.4 m are 
common towards base. 

 

Locality 10. Composite log of cliff sections at headland immediately south of Derryoge 
Harbour (Trough 1).  (Upper 6 m is 10a: JWM302/ME672 and 10b: Loc 001, some 20 m to 
the north of JWM301). Basal 6 m based on 10c: JWM301/ME671 and 10d: JWM 89/ME 588 
8 m to south). 

m Facies Notes Interpretation Member 

c.2 Sh, Gh, Gt Inaccessible. Cross-bedding locally 
northward-dipping. 

Subaqueous 
glaciofluvial 

Cranfield 

0.3 BL Stone pavement with boulders firmly 
planted into underlying diamict. 

Ice-bed 
separation 

 

1.2 Fl 7 m-wide channel filled with stiff, coarsely 
laminated silt with laminae of fine to 
medium-grained sand. Heavily fissured. 
Laminae typically 10 mm thick, many 
graded. Sharp, draped basal contact. 

Cyclopels within 
subglacial 
channel 

Derryoge 

6 Dmm (Dms) Dark yellowish brown, calcareous diamict, 
generally matrix-supported, locally 
stratified, with folded inclusions of clayey 
silt and gravelly diamict, laterally and 
vertically variable clast content, including 
granite boulders <1.5m in diameter. Some 
channel-like structures and truncation 
surfaces(1 m across, 0.5 m deep) lined by 
cobbles pressed into underlying diamict 
and filled with extremely compact, jointed 
laminated silt with some microfolding and 
micro-thrusts showing southward 
displacement*. One clast clearly rotated 
southwards with a sediment prow to the 
north. Closely-spaced, gently undulating 
fissility and hackly fracture becoming 
more prominent upwards where unit 
comprises extremely compact pebbly 
silt**. Uneven, 10 cm-thick gradational 
basal contact. 

Subglacial 
traction till, 
glacitectonite 
and sheared sub-
glaciofluvial 
channel-fills 

Ballymartin 

1.2 Fl-d (Fcpl, 
Dm) 

Stiff, fissile, clayey silt, thinly to coarsely 
laminated within discrete, cyclic, 3-6 cm 
thick beds. Sparse dropstones, laterally 
discontinuous laminae of sand and thin 

Glaciomarine 
cyclopels  

Annalong 



lenses of granule gravel. Ochreous 
staining on subvertical fissures, hackly 
fracture. Draped basal contact.  

>1.2  Gm 
(Gms,Fl,) 

Densely-packed, very poorly sorted, SA-SR 
clasts < 80 cm, wacke and granite, some 
imbrication and silt draped reactivation 
surfaces. 

Ice-proximal 
glaciomarine? 

*measurements on planar joints; 030/39NW, 044/35NW, 026/46NW, 145/52E, 141/46E, 

143/45E.  **Measurements on prominent fissures; 142/50 SW, 232/18 NW  

 

 

Locality 11. Representative log of cliffs at Crawfords Point (JWM300/ME670). 

m Facies Notes Interpretation Member 

3  Gh (Go,Gmi) Locally well size and shape sorted gravel. 
Sharp planar base. 

Raised beach Dunnaval 

2  Sh/Gh (St) Sand and gravel draped on stone pavement 
with lag of very poorly sorted gravel. 

Subaqueous 
glaciofluvial 

Cranfield 

0.3  BL Stoner pavement with boulders firmly 
planted into underlying diamict. 

Ice-bed 
separation 

Ballymartin 

>7  Dmm (Dcm, 
Dml-p, Dml-s 

Extremely compact, pale yellowish brown 
diamict with muddy sandy matrix, A-SR 
clasts including stone lines and clusters, 
becoming less stony and fissile towards 
base*. Boulders mostly granite, but smaller 
clasts dominated by hornfelsed wacke 
sandstone with some slaty wacke 
mudstone and vein-quartz, and sparse 
microgranite, basalt, mica schist and black 
chert. Many bevelled boulders dipping 
gently into the cliff-face with striae 
orientated NW-SE. 

Subglacial 
traction till 

* measurements on prominent fissures; 180/40 E, 072/39 N, 144/68 W 

 


