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Abstract 
In the Zhouqu region (Gansu, China), landslide distribution and activity exploits geological weaknesses in the 

faultcontrolled belt of low-grade metamorphic rocks of the Bailong valley and severely impacts lives and 

livelihoods in this region. Landslides reactivated by the Wenchuan 2008 earthquake and debris flows triggered 

by rainfall, such as the 2010 Zhouqu debris flow, have caused more than 1700 casualties and estimated economic 

losses of some US$0.4 billion. Earthflows presently cover some 79% of the total landslide area and have exerted 

a strong influence on landscape dynamics and evolution in this region. In this study, we use multi-temporal 

Advanced Land Observing Satellite and Phased Array type L-band Synthetic Aperture Radar (ALOS PALSAR) 

data and time series interferometric synthetic aperture radar to investigate slow-moving landslides in a 

mountainous region with steep topography for the period December 2007–August 2010 using the Small Baseline 

Subsets (SBAS) technique. This enabled the identification of 11 active earthflows, 19 active landslides with 

deformation rates exceeding 100 mm/year and 20 new instabilities added into the pre-existing landslide 

inventory map. The activity of these earthflows and landslides exhibits seasonal variations and accelerated 

deformation following the Wenchuan earthquake. Time series analysis of the Suoertou earthflow reveals that 

seasonal velocity changes are characterized by comparatively rapid acceleration and gradual deceleration with 

distinct kinematic zones with different mean velocities, although velocity changes appear to occur 

synchronously along the landslide body over seasonal timescales. The observations suggest that the post-seismic 

effects (acceleration period) on landslide deformation last some 6–7 months. 
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1. Introduction 
Landslides play a prominent role shaping landscapes through the episodic redistribution of materials under  

lithological,  climatic, and tectonic control (Burbank and Anderson 1985; Korup et al. 2010; Crosta et al. 2013). 

Consequently, landslides can cause significant structural, social, and economic impacts, particularly in areas 

under pressure from ongoing urbanization and infrastructure development (Schuster and Highland 2007; Del 

Soldato et al. 2017). An improved understanding of displacement characteristics of landslides combined with an 

analysis of their geomorphological setting can assist the reconstruction of the long-term evolution of landscapes 
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(Agliardi et al. 2013). In addition, investigation of landslides and ground deformation patterns results in an 

enhanced capacity to design, construct, and manage appropriate landslide risk reduction infrastructure and 

strategies. 

The Zhouqu region, located in the middle reaches of the Bailong River Corridor, is characterized by high 

mountains and deeply incised valleys providing limited suitable space for regional development and construction. 

Large landslides and debris flows form a frequently occurring geohazard posing significant risk to lives and 

livelihoods. This is illustrated by the re-activation of large landslides by the Wenchuan earthquake (May 12, 2008) 

(Yin et al. 2009) and the disastrous, rainfall-triggered debris flow that occurred on October 8, 2010, resulting in 

more than 1700 fatalities and a gross-estimated economic loss exceeding US$0.4 billion (Tang et al. 2011; Bai 

et al. 2012; Dijkstra et al. 2012; Cui et al. 2013). Slow-moving, deep-seated earthflows (Varnes 1978; Hungr et al. 

2014) form a dominant landslide category in the Zhouqu study region; a detailed analysis of surface 

displacements can help understand their potential to cause significant harm to lives and livelihoods (Hungr et al. 

2014; Teshebaeva et al. 2015; Calvello et al. 2017). The displacement rates of earthflows range from a few 

millimeters per year to more than 1 m/year and are often characterized by long periods of relatively slow 

movements (with deformation most likely concentrated along the main shear surface) interspersed by surges in 

movement (when multiple shear surfaces can become active, distributing internal strains and resulting in a flow-

like morphology; Hungr et al. 2014). These surges in movement are often triggered by external disturbances 

such as prolonged or excessive rainfall and/or seismic shocks that can lead to a cascade of elevated pore 

pressures and loss of shearing resistance (Mansour et al. 2011; Travelletti et al. 2014; Schlögel et al. 2016). In 

some cases, the mobility of earthflows is a response to the rise and fall in groundwater levels or soil moisture 

changes due to thawing soils, rainfall, or snowmelt (Malet et al. 2005; van Asch et al. 2007). Field monitoring and 

geomorphological observations play an important role in deriving an appropriate suite of assumptions that feed 

into numerical simulations (Malet et al. 2005). 

Compared to traditional methods such as Global Navigation Satellite System (GNSS), optical remote sensing, 

and geophysical surveys on regional or basin scales, the interferometric synthetic aperture radar (InSAR) 

technique is one of the most efficient methods for slow-moving landslide observation, monitoring, interpretation, 

and assessment, due to its high accuracy, large coverage, and long-term acquisition under all weather conditions 

(Bürgmann et al. 2000; Hanssen 2001; Cigna et al. 2013; Wasowski and Bovenga 2014; Zhang et al. 2016; Calvello et 

al. 2017). A wide range of algorithms have been developed to produce InSAR time series of ground deformation and 

minimize errors associated with temporal decorrelation and topography (Osmanoğlu et al. 2016). The time 

series InSAR method has been applied successfully in a range of landslide studies, not only to locate landslides, 

but also to identify spatial-temporal patterns of movement (Necsoiu et al. 2014; Wasowski and Bovenga 2014; 

Zhang et al. 2016; Tomás et al. 2016; Bouali et al. 2017). Moreover, analysis of InSAR-generated displacement time 

series has the potential to identify periods of accelerated landslide deformation and to evaluate correlations with 

different triggers (rainfall, earthquakes). 

We recognize that forecasting the movement of earthflows requires detailed observations of the geometry and, in 

particular, the observation of surface deformation in zones of compression and extension, coupled with careful 

reconstruction of basal slip surfaces. This study reports on the characterization of landslide dynamics in the Zhouqu 

region of China—a unique natural laboratory for studying large-scale landslides and their interactions with tectonic 

and meteorological processes shaping a regional landscape. In this region, PSInSAR (permanent scatterer InSAR) 

and SBAS (small baseline subset) techniques have been applied previously to detect ground deformation. 



 

Wasowski et al. (2014) detected ground deformation over 100 mm/year by processing X-band (COSMO-SkyMed) data 

acquired from 2010 to 2012 using PS. Sun et al. (2015) and Zhang et al. (2016) identified ground deformation ≥ 50 

mm/year from 2007 to 2010 using L-band (Advanced Land Observing Satellite and Phased Array type L-band 

Synthetic Aperture Radar (ALOS PALSAR)) and C-band (ENVISAT ASAR) data processed using the SBAS 

technique. 

This study builds on this previous work and demonstrates the advantages and limitations of InSAR-derived 

ground deformation time series by combining the interpretations of these time series with field monitoring and 

geomorphological mapping/characterization of landslides at regional and slope scales. This multi-faceted approach 

enables careful evaluation of the geomorphological and geological controls on earthflows and their impacts on local 

topography. The Suoertou earthflow is used as an example to assess the possible controls (hydro-geological, 

geomorphological, anthropogenic) that affect movements of earthflows in this region. 

 

2. Study area 
The Zhouqu area sits in the upper-middle reaches of the Bailong River basin, just west of the confluence 

with the Min River in southern Gansu Province (Fig. 1). The study area forms part of the eastern margins of the 

Qinghai–Tibetan Plateau and lies to the south of the Chinese Loess Plateau and north of the Sichuan Basin in a 

region that has been identified as one of highest landslide susceptibility areas of China (Scheidegger and Ai 1987; 

Meng et al. 2013). This region has been significantly affected by the Indosinian (Triassic), Yanshan (Jurassic–

Cretaceous), and Himalayan (Miocene–present) orogenic deformations with several NWW–SEE trending and 

NEE–SWW trending active faults representing a complex tectonic system (Dewey and Burke 1973; Molnar 

and Stock 2009; Bai et al. 2012; Zheng et al. 2016). 

The topography is characterized by rugged mountains and deeply incised valleys with elevations ranging 

from 1200 m to more than 4000 m a.s.l. which has a strong influence on local climate: high relative relief 

causes rainfall to concentrate in the high-altitude areas, with much less precipitation in the valleys, resulting in 

the so-called dry and hot valleys system in this region as defined in Yu et al. (2015). 

The drainage consists of numerous deeply incised valleys and gullies that eventually feed into the Bailong 

River. The region is dissected by Guanggaishan–Dieshan (GD) thrust which is composed of three subparallel 

active faults: the North GD fault, the Pingding– Huama (PH) fault, and the Zhouqu fault (Fig. 1). As an 

indication of neotectonic activity in the region, Yu et al. (2012) reports a vertical slip rate of the PH fault strikes 

of 0.49 ± 0.08 to 1.15 ± 0.28 mm/year. 

Persistent stress accumulation on fault surfaces is also manifested in the form of numerous earthquakes. A 

most severe recent earthquake (the Ms. 7.9 Wenchuan earthquake of May 2008), with the epicenter 

approximately 320 km from our study area, induced 102 new landslides, re-activated many more landslides, and 

impacted the local economy by more than US$0.4 billion in Zhouqu (Huang and Li 2009; Bai et al. 2012, 2013; 

Chen et al. 2014). The earthquake resulted in extensive crack systems in valley-based deposits, and this likely 

contributed to the initiation of a devastating debris flow on August 8, 2010. The debris flow event transported 

more than 1.4 × 106 m3 of sediment, destroyed many buildings, and killed more than 1700 people in Zhouqu 

(Cui et al. 2013; Dijkstra et al. 2012; Xiong et al. 

 



 
 

Fig. 1 Geological overview map of the Zhouqu region. (1) River; (2) faults; (3) earthflows; (4) other landslides; (5) 

Quaternary deposits (gravels and sands in the river valleys, silts and clays mainly on valley shoulders); (6) Triassic and 

Jurassic conglomerates, mudstones, siltstones, and shales; (7) Carboniferous and Permian limestones, dolomites, intercalated 

phyllites, slates, and shale; (8) Devonian slates and phyllites; (9) Silurian phyllites, sandy slates, sandstones, and intercalated 

limestones. Contains geological data from the Geological Environment Monitoring Institute of Gansu Province, China 

 

3 Datasets and methodology 

 
3.1 Landslide inventory 

The pre-existing landslide inventory consisted of point locations generated from previous research (Bai et al. 

2013; Chen et al. 2014; Yu et al. 2015). Enhancing this initial landslide distribution involved careful mapping of 

the landslides updating the points into polygons with additional attributes including movement direction, 

landslide type (according to Hungr et al. 2014), length, and area. We prepared the inventory using satellite 

imagery acquired by the ZY-3 satellite (sjfw.sasmac.cn/en/ZY-3.html), GoogleEarth™, Digital Terrain Model 

(DTM, 5 m spatial resolution), derived products (slope, hillshade), and 1:100,000 geology map (provided by the 

Geological Environment Monitoring Institute of Gansu Province, China) and validated it with literature review 

and field data. The initial landslide map was produced using remote sensing interpretation in ArcGIS and was 

modified through field surveys. The main objectives of the field surveys were to validate the remotely sensed 

mapped features and to better understand the characteristics of the landslides. The final map and landslide 

inventory includes 80 landslides, covering 28.8 km2 over a mapped area of approximately 400 km2. The main 

type of landslide comprises slow-moving earthflows (Fig.1). The 11 largest earthflows cover an area over 

22 km2 , representing more than 79% of the total area affected by landslides. The largest earthflow is 4500 m 

long and covers an area of 3.9 km2. Earthflows develop along or are in close proximity to the active faults while slip 
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surfaces are often positioned along stratigraphical boundaries  between  Permian  limestones,  and Devonian 

limestones and slates. Some of them have been demonstrated to be active for a few decades, destroying roads 

and damming the Bailong River on several occasions (Yang et al. 2013; Jiang et al. 2016). Even though at present it 

does not appear likely that these earthflows will dramatically accelerate, their ongoing deformation coupled 

with the large volumes involved poses significant hazards to the development of this region. 

 

3.2 Topographic visibility 

Topographic settings play an important role in controlling the quality and quantity of ground motion 

information from InSAR data (Cigna et al. 2014; Notti et al. 2014). The SAR visibility of any area depends on the 

local terrain characteristics (slope and aspect) and satellite acquisition geometry (incident angle and heading 

angle), and it is represented by the R-Index (Notti et al. 2010; Cigna et al. 2014; Novellino et al. 2017). The 

latter is an indication of the ratio between the pixel size in slant and ground range geometry. To identify the 

geometrical distortions of SAR data, the R-Index and visibility were calculated using the formulas and criteria in 

Cigna et al. (2014) and Notti et al. (2014). 

The topography of the Zhouqu region represents a major constraint on the efficacy of ALOS PALSAR data (Fig. 2), 

with shadow, layover and foreshortening affecting 2.6, 11.8, and 38.8% of the landscape (corresponding to 15, 68.7, and 

226 km2 over a total mapped area of 582 km2). The results of the geometric distortion show that shadow effects 

identified for ALOS PALSAR data are characterized by deeply incised valleys with slopes steeper  than 52.3°. Areas 

resulting in layover are characterized by slopes facing West, with an R-index between − 1 and 0. The total area of all 

type of distortions is 83.7 km2 (~ 14.4%), while the area of good visibility covers 272.6 km2 (~ 46.8%). Fortunately, 

most of the mapped landslide polygons are located in areas with higher R-index values, providing a good 

opportunity to monitor displacements. 
 
 

 
 

Fig. 2 Topographic distortions and terrain visibility to the ALOS PALSAR LOS geometry in ascending mode over Zhouqu 

region. The histogram shows total area statistics which are based on the 30 m SRTM 

 
3.3 InSAR 

In this paper, the SBAS technique is combined with geomorphological investigations to obtain a detailed distribution of 



active landslides and assess, from their temporal displacement patterns, the possible influence of the 2008 Wenchuan 

earthquake. To enable this, 16 ascending ALOS PALSAR images acquired from December 2007 to August 2010, with the 

central incident angle of 37.7°, were processed using the better ability of L-band SAR data to detect large and faster landslide 

deformation (Chen et al. 2013; Schlögel et al. 2015; Zhao et al. 2016). The ALOS PALSAR data were provided by the Japan 

Aerospace Exploration Agency (JAXA) with a HH polarization including eight scenes of fine beam single polarization and 

eight scenes of fine beam dual polarization. To reduce the decorrelation over a large area, a small subset of images was 

selected, covering a 436 km2 study area. The 1-arcsecond (~ 30 m) Shuttle Radar Topography Mission (SRTM) DEM 

data from the United States Geological Survey (USGS) was used (1) to remove the topographic phase and (2) for geocoding 

the InSAR products. 

All SBAS steps (Berardino et al. 2002) were processed using SARscape software (Sarmap 2005). For a small 

number (< 20) of images, the SBAS technique was selected to obtain deformation results. 

 

 

2016).  
 

Fig. 3 Workflow of time series InSAR processing of Single Look Complex (SLC) products of ALOS PALSAR data. GCPs 

indicates ground control points 

 

Figure 3 shows the flow chart outlining the procedure of SBAS for detecting ground deformation along line of 

sight (LOS) direction. All the SAR images were co-registered and 52 interferograms were generated with a 

perpendicular baseline threshold of 3700 m and a temporal baseline of 365 days (Fig. 4). A multi-look of 1 × 5 in range 

and azimuth direction, respectively, in addition to the Goldstein filter method (Goldstein and Werner 1998), was used to 

increase the signal-to-noise ratio and the coherence within the interferograms. As the phase in the interferograms is 

wrapped between − 2π and 2π, the phase of coherent targets (CTs) was unwrapped with the minimum cost flow 

(MCF) algorithm (Costantini 1998; Pepe and Lanari 2006). Some pairs with average low coherence and 

unwrapped phase errors in our study area were discarded. Interferometric coherence represents the magnitude of 

the cross-correlation coefficient between two coregistered complex images. The residual phase content and phase 

ramps were calculated to correct the unwrapped phase by selecting and refining stable ground control points 



 

(GCPs). All GCPs (mainly buildings in the valley floor) were selected in flat and  stable  area  based  on  the  

experience  of  field  survey  and understanding of interferograms. The preliminary displacements were 

estimated using a linear model, and residual topography was also removed. Finally, the atmospheric signal 

phase was observed and removed from the original displacement component with a high-pass temporal filter 

and a low-pass spatial filter. For the application of the InSAR time series, the final deformation result should be 

based on the reference point where the absolute velocity is deemed to be zero. Since there is no ground truth 

observation in our study area, a reference point was selected using the following criteria to ensure the 

reliability of the retrieved deformations: it is located on buildings in a flat area of the main valley floor (i) 

where field observations confirm that the point does not exhibit clear deformation (ii). 

 

 
 

Fig. 4 Spatial–temporal distribution of interferogram formation. Green dots and black lines represent images and 

interferometric pairs, respectively. Yellow dot is the master images used for the co-registration 

 

After processing the InSAR time series in SARscape, the LOS displacement rates (VLOS) were projected along the steepest 

slope direction (Vslope) using the formula in Zhao et al. (2012) and Cigna et al. (2013). As the ratio between VLOS and Vslope could 

tend to zero (which could induce anomalous solutions) due to DTM inaccuracies, the values between 0 and 0.3 were 

rounded to 0.3, and the values between 0 and − 0.3 were rounded to − 0.3. Positive values in Vslope indicate movement 

uphill, while negative values indicate movement downhill. 

 

4. Results and analysis 

4.1 InSAR displacement rates 

The mean velocity map obtained from the ascending ALOS PALSAR datasets is illustrated in Fig. 

5a. The surface displacement rates are extracted for points with a temporal coherence threshold ≥ 0.6. The 

coherence threshold (CT) was selected using two criteria: (1) low geometrical and temporal coherence due to 

the high relief, seasonal vegetation coverage, and quick movements of landslides and (2) assurance of a sufficient 



pixel density. A total of 80,010 detected CTs cover the clipped SAR image (approximate area 436 km2) providing 

an average density of 378 CTs km−2. The density of detected CTs for the L-band data is three times greater than 

using C-band data processed in Zhang et al. (2016). The displacement was extracted along the Line-Of-Sight 

(LOS) of the satellite with an angle of 23.3° from the vertical at the centre of the scene. Negative values represent 

ground motion away from the satellite, while positive values represent movement towards the satellite. The CTs 

were mostly located on the westward and eastward slopes with a slope angle below 52.3° due to radar shadow 

and layover phenomena. The InSAR results show high consistency with the geometric distortion results. Deeply 

incised valleys and steep escarpments show an absence of CTs, with a correspondingly low R-index values and 

topographic distortions (Fig. 2). 

 

 
 

Fig. 5 Displacement rate map along LOS (a) and the steepest slope (b) derived by SBAS technique from ALOS PALSAR data 

plotted in shaded relief over Zhouqu region 

 



 

In the Zhouqu region, displacement rates between 120 and − 175 mm/year were detected along the LOS 

direction (VLOS) (Fig. 5a). Both positive and negative displacements could be found in different sections of slopes. 

Most of the highest deformation rates occurred in or around areas affected by landslides with many earthflows 

(e.g., Suoertou, Daxiaowan, Zhenjie, Shijiashan, Zhongpai, Liaodong, and Huama) showing displacement  rates 

over 100 mm/year (Fig. 5a). According to Chen et al. (2013) and Schlögel et al. (2015), the downslope 

deformations on moderately steep sections (slope angle <37.7°) of slopes facing the satellite could show as an 

uplift along the LOS. Therefore, even positive VLOS could still represent downslope deformation in these types of 

slopes. Displacements along the steeper slope direction (Vslope) provide a more direct indication of slope deformation 

(Fig. 5b). 

Deformations with Vslope > 500 mm/year were detected. Coinciding with displacements along the LOS, most of 

large Vslope  (> 200 mm/year) occurred in or around the area influenced by landslides, especially in earthflows 

(Figs. 1 and 5b). However, Vslope > 200 mm/year was also found in some slopes that were outside of the mapped 

landslide polygons and this has helped to update the landslide inventory. In addition, Vslope of around 100 mm/year was 

found in some small valleys, gullies, and gentle slopes. These deformations might be the result of erosion, rock 

weathering, debris movement (e.g., rockfall or collapsible anthropogenic deposits, etc.), and deformation in poorly 

constructed buildings that is not ground related. 

A coherence-based method was used to estimate precision measurement. 

    𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = �1−𝛾𝛾2

2𝛾𝛾2
× 𝜆𝜆

4𝜋𝜋
         (1) 

where γ is the interferometric coherence, and λ is the wavelength of the L-band ALOS PALSAR sensor (23.5 

cm). Since the calculated precision is a positive value, the negative value of displacement rates was 

multiplied by − 1 to compare with precision results. Figure 6 shows the distribution of the precision combined 

with absolute value of displacement rates. The points to the right of the red line indicate displacement rates 

that are larger than the precision values, implying that these points are reliable. Based on the density analysis 

of precision, we found that the 30 mm/year is at an 80% confidence level (Fig. 6). It can be seen that pixels with 

displacement rates over 30 mm/year form a reasonable minimum threshold. 
 
 

 
 

Fig. 6 Comparison of estimated displacement rates precision computed based on coherence. The red line represents the same 

value between displacement rate and precision. Blue line represents the displacement rates equal to 30 mm/year at 80% 



confidence level 

 
4.2 Landslide CT coverage and activity evaluation  

Several previous studies assessed the state of activity of landslides by calculating the average Vslope  of the 

landslides that contains sufficient number of CTs and defined the Vslope stability threshold statistically (Colesanti and 

Wasowski 2006; Meisina et  al.  2008; Notti et al. 2010; Cigna et al. 2013; Herrera et al. 2013; Bonì et al. 2016). The 

Vslope stability threshold for our study area was calculated to be − 43.6 mm/year. This value was obtained by 

averaging two indicators: the Vslope standard deviation (− 42.9 mm/year; cf. Bonì et al. 2016) and the Vslope value 

representing 68% of the CT population (− 44.3 mm/year; cf. Herrera et al. 2013). To identify an active  landslide,  the  

polygon  should  contain  at  least  three  CTs  exceeding this threshold. Based on above criterion, 20 new slopes were 

classified as landslides that were not previously mapped in the landslide inventory. 

 

 

 
 

Fig. 7 Landslides classified by the detection capacity of InSAR results. The black star with yellow outline indicates the 

location of the rainfall station 

 

Table 1 Number and displacement rates of detected landslides with sufficient CTs. No. of CTs/landslide indicates the average  

number of CTs in each landslide. Vslopemax and Vslopemean indicate the maximum and mean displacement rate of each 

type of landslides number of CTs in each landslide. Vslopemax and Vslopemean indicate the maximum and mean 

displacement rate of each type of landslides 

 

 Mapped Detected Instability 
detected 

Instability 
added 

No. CTs 
/landslide 

Vslope
max 

(mm/y) 
Vslope

mean 
(mm/y) 

Earthflows 11 11 11 0 485 -550 -71 
Other landslides 69 25 15 20 92 -307 -65 

 

The statistical results and landslide detection capacity are summarized in Table 1 and Fig. 7. The comparison of  the 



 

spatial distribution of the InSAR results, with the 80 inventoried landslides, reveals that velocity mapping detected 11 

(100%) of the earthflows and 25 (36%) of the other types of landslides within sufficient CTs, which represent 45% of  

mapped landslides. The results suggest that 11 earthflows and 15 other landslides are unstable, which comprise 38% of 

mapped landslides and 72% of detected landslides. The additional 20 landslide polygons were added to the landslides 

inventory map. 

The large area and gentle slope gradient of the earthflows generally allowed detection of many CTs in each landslide 

body, with the exception of the Xieliupo earthflow, where the displacement rates exceed the monitoring ability of the 

InSAR technique (Fig. 8). Compared to other types of landslides, earthflows showed faster Vslop 
max and Vslop 

mean 

during 2007 and 2010. 

 

 
 

Fig. 8 Movements of Xieliupo landslide exceed the InSAR detection limits. a InSAR results over Xieliupo landslide. b, c 

Photographs of the upper section of Xieliupo landslide taken on March 26, 2016 and June 16, 2017 

 

Table 2 Characteristics of earthflows 

Name Dominant 
Bedrock 

Area 
(km2) 

Length 
(m) 

Maximum 
Width 

(m) 

Relief 
(m) 

Mean 
slope 

(°) 

Mean 
Vslope 

(mm/y) 

Yading Slate, Phyllite 3.21 2680 1530 536 13.7 -25 
Suoertou Limestone, Slate 3.17 4560 1160 1075 14.7 -67 
Zhenjie Slate, Phyllite 0.54 1300 625 263 15.1 -94 
Shijiashan Slate, Limestone 2.48 2930 1625 552 15.3 -61 
Zhongpai Slate, Limestone 3.95 4040 1380 905 15.5 -124 
Wutanshan Slate, Phyllite 2.27 4120 710 862 15.8 -31 
Jingbian Limestone, Slate 1.09 1830 790 432 15.9 -60 
Huama Limestone 2.78 3440 1030 932 16.7 -82 
Xieliupo Slate, Phyllite 1.46 2700 830 870 17.2 -27 
Liaodong Limestone 0.58 1770 710 530 21.3 -59 
Daxiaowan Limestone 1.21 3800 470 1163 21.5 -52 

 

4.3 Controls and impacts of earthflow movements 



With the large coverage and faster movement, the 11 earthflows in the Zhouqu region involve entire slope segments 

from the local erosion base to the top of the local catchment and have characteristic displacement rates of the order of 10 to 

103 mm/year(Yangetal. 2013; Wasowski and Bovenga 2014; Zhang et al. 2016; Jiang et al. 2016). These earthflows move over 

a complex set of basal slip surfaces where ongoing deformation of the landslide body is accommodated by multiple 

internal shear surfaces and viscous deformation (Yang et al. 2013; Hungr et al. 2014). The composition of earthflow bodies 

comprises the main local weak rock lithologies (dominated by slates and phyllites) and a cover of loess and fractured rock.  

The basal slip surface depth varies from  8  to 50 m (Huang et al. 2013; Yang et al. 2013; Jiang et al. 2016). 

We analyzed the controls of movement of these earthflows by combining the characteristics of earthflows 

with displacements identified by the InSAR technique and the main lithology (Table 2). The lower slope 

gradients of earthflows suggest that on average residual shear strength values (effective angles of internal friction) 

are likely to be lower than approximately 13° to 15°. However, no apparent correlation between shape, relief, 

and mean displacement rates was observed. 

There appears to be a correlation between the movement rates and the complexity of the fault system. 

Earthflows with larger displacement rates, such as at Zhongpai, Zhenjie, Huama, and Shijiashan, are 

concentrated near the confluence of the Bailong River and the Min River, where many faults intersect each 

other (Fig. 1). High fault density and complexity indicate greater fracturing of the bedrock, and combined with 

a steeper topography following local incision, this would provide suitable predisposing conditions for landslide 

movements with greater displacement rates. The distribution of earthflows shows a regional linear clustering 

controlled by the Zhouqu and PH active faults. Major faults crossing these earthflows also strongly affect their 

morphology resulting in a trough-like shape where side scarps are generally very well developed and fault 

controlled. However, in most cases, an obvious back scarp is missing. 

With respect to the orogenic evolution, the Bailong River basin is located between the mainly left-lateral strike-

slip faults (the west Qingling fault and the east Kunlun fault), which transfers stress from the east Kunlun fault to 

the west Qingling fault, controlled and influenced by uplift and compression to northeast of Qinghai– Tibet plateau 

(Dewey and Burke 1973; Van Der Woerd et al. 2002; Molnar and Stock 2009; Kirby and Harkins 2013; Bi et 

al. 2016; Zheng et al. 2016). As response to compression and uplift, the Bailong River has incised more than 140 

m during the Quaternary (Yu et al. 2012) exploiting geological weaknesses including the fault-controlled belt of low-

grade metamorphic rocks (e.g., slates, phyllites). This led to a cascade of erosional/denudational processes in the 

form of deeply incised gullies and the increase of relative relief/gravitational energy contributing to the long-term 

development of large-scale, slow-moving landslides. In addition, the uplifting ridges and incising valley 

bottom constrain the head and toe of these earthflows. 

The earthflow movements have the capability to significantly affect regional topography. The impacts of 

earthflows can be observed by comparing the distribution of slope gradients inside the landslide polygons with that 

of a zone immediately surrounding the polygon (Agliardi et al. 2013; Crosta et al. 2013) (Fig. 9). This difference in 

slope gradient characteristic was analyzed for the 11 large earthflows using a buffer of 0.5 km. The slope 

distribution results show significant reduction in slope gradient (14°) inside the earthflows compared to the 

adjacent areas (18°; Fig. 9). The lower slope gradient and the large areas covered by the earthflows illustrate the effect 

that these landslides have on the morphology of the landscape of this region, generally reducing slope angles and 

flattening relative relief. In the long term, the movement of these earthflows results in a local relief with characteristic 

slope angles of less than 13° controlled by an equilibrium between available shearing resistance and precipitation-

induced pore pressure variations coupled with additional stresses induced by periodic seismic acceleration resulting 



 

from regional earthquake activity. Over time, the elevation differences between the landslide body and the adjacent 

ridges will increase and the linear clustering of these landslides is therefore likely to further develop into a large 

elongated trench that can be further exploited by fluvial erosion of the Bailong River. 

 
 

 
 

Fig. 9 Relative frequency distributions of slope angle; all values were computed from the DTM inside earthflows area (red 

rectangle) and in neighboring areas within 0.5 km buffers (black circles). The distributions of slope angle were fitted by 

Gaussian distribution functions (line) 

 

5 The Suoertou landslide 
The Suoertou landslide, located to the west of Zhouqu County town, is a large earthflow intersected by the Zhouqu fault. 

This complex earthflow comprises one major flow body and six secondary small slides that contribute materials onto 

the main flow (Fig. 10). The head scarp of the earthflow is absent as it forms a watershed with an adjacent large 

earthflow, while the side scarps are interacting with the fault scarps. The bedrock not only is characterized as shales, slates, 

and phyllites, but also contains sections where limestone is carried along by the landslide. The landslide has a length of 4.5 

km, and widths range from 120 to 400 m with an area exceeding 3 km2. It is estimated that the average thickness of the 

landslide is ~ 65 m with a volume of approximately 80 × 106 m3 (Huang et al. 2013). The current elevation difference 

from top to toe is approximately 900 m. Monitoring data from ground-based instruments and InSAR techniques provide a 

record of displacement since 2000 (Huang et al. 2013; Wasowski and Bovenga 2014; Zhang et al. 2016). In addition, there is 

a rainfall station close to this earthflow, providing sufficient precipitation records to analyze the potential correlation with 

the time series displacements (Fig. 7). 

This earthflow poses a serious threat to more than 2000 people living on the landslide body. Moreover, this 

landslide has the potential to block the Bailong River, destroy the hydropower station, and generate floods 

and secondary geohazards to the Zhouqu County town, which is less than 1 km downstream.



 

 
 

 
 

Fig. 10 Suoertou earthflow complex. a Shaded relief map of Suoertou earthflow complex. b Slope map 

 

Figure 11 shows the mean displacement rates map of Suoertou earthflow converted into the steepest slope 

direction (the negative values indicate downslope movement). Combined with the initial geomorphological 

mapping, the spatial deformation patterns of the earthflow are revealed. The SE aspect and lower slope angle 

(about 12°) aid the detection of CTs of the ascending orbit ALOS PALSAR satellites. Overall, the average of 



 

 

more than 1600 CTs covering the Suoertou earthflow provides an indication of downslope movement of 67 

mm/year. However, significantly greater velocities of up to 370 mm/year were measured on the upper and lower 

portions of the earthflow. The large movements on the upper portion correspond to highly fractured surfaces 

covered by many local slides, rock flows, rockfalls, and collapses (Fig. 14a). In addition, the upper portion 

is split into two parts by a SWtrending escarpment, which differentiates an unstable (south) and stable 

sector (north). There are no CTs in middle portion of major earthflow body, which is most likely the result of 

displacement velocities that exceed the thresholds of the InSAR technique. The variations of deformation velocity 

in the lower portion are consistent with the location of edges and escarpments. The northeastern part of the lower 

earthflow is relatively stable compared to central/southwestern parts. The village of Suoertou is located in this 

more active part where deformation velocities of more than 300 mm/year have been measured. In an attempt to 

stabilize this part of the earthflow, an integrated set of works has been carried out that include anchored retaining 

walls and piles (Fig. 14c–e). 

 

 
 

Fig. 11 Displacement rate map along the steepest slope of the Suoertou earthflow. The labels (a, b) indicate the location of 

time series displacements in Fig. 15 

 

To balance the InSAR coverage and reveal the spatial patterns of earthflow deformation, a series of 

deformation maps was generated at a lower coherence threshold of 0.35. However, the deformations of the 

Suoertou earthflow associated with long-duration (> 46 days) interferograms exceed the phase-change 

threshold, which induces decorrelations or unwrapping errors in the InSAR results (Stimely 2009; Handwerger et 

al. 2015). This was observed for the central section of main earthflow (Fig. 11). Therefore, the two best 



 

interferograms were processed with a larger filtering window size (96 or 128) to solve the problems with the 

phase jump in a few unwrapped interferograms, and this assisted with the interpretation of the spatial pattern 

of earthflow deformation. 

 
 

Fig. 12 Interferograms and displacements of Suoertou earthflow. a–c The filtered interferogram, LOS displacements, and the 

steepest slope displacement (Dslope) for the period August 5, 2009–September 20, 2009. d–f The filtered interferogram, LOS 

displacements, and the steepest slope displacement (Dslope) for the period December 21, 2009–February 5, 2009. a, d In SAR 

geometry. The black line in f indicates the location of profiles for Dslope and geology in Fig. 13. The color bar in the bottom 

indicate the changes of movements of c and f 

 

Figure 12 shows the displacement results of two interferograms in summer (August 5, 2009–September 20, 2009) 

and winter (December 21, 2009–February 5, 2009). Because of short temporal (46) and spatial (< 700 m) baselines, 

most of the earthflow area is correlated. Both interferograms are considered of good quality because more than 90% 

of the phase values are unwrapped, and no phase jump is observed. As these two interferograms were selected before 

the final displacements inversion in the SBAS process, the errors induced by residual topography phase and 

atmospheric effects have been removed. For the purpose of classifying the motion zones, we generated and 

analyzed the profile of displacement associated with geological profiles of the landslide (Fig. 13). 

The deformation map and profile of displacements generated from the interferograms enable segmentation 

of the major flow body into four zones: an upper transport zone (UT), a middle accumulation zone (MA), a 

lower transport zone (LT), and a lower toe zone (Toe; Figs. 13 and 14). The displacement data for the two periods 

shows that (1) the zone of greatest movement is UT and LT, with displacement along slope (Dslope) of more than 

10 cm in summer and 5 cm in winter; (2) the positive ground motion greater than 1 cm indicating accumulation 

was detected in MA in winter while a negative displacement of about 1 to 2 cm was observed in summer; and (3) 

the Toe zone has accumulative displacements of approximately 1 cm both in summer and winter. Comparing these 



 

 

four zones with the geological profile of the Suoertou landslide, the variation of motion in the zones follows the 

variation of the shape of the basal slip surface (Fig. 13). MA is located on a bulge in this surface, and this causes 

the InSAR results to show a local accumulation in this area. The Toe zone shows a slight accumulation which is 

likely caused by a gentle reverse of sliding surface due to the engineering interventions in this section (Fig. 14c–

e). The anomalous deformation signal in Fig. 13 might be the result of a local and rapid accumulation (as in MA) 

at the top of the Quaternary deposits or a sudden change in the direction of sliding. 

 

 

 
 

Fig. 13 Detected deformation zones and profile of Suoertou earthflow. Top is the profile of displacement. Bottom is the 

geological profile of Suoertou earthflow provided by the Geological Environment Monitoring Institute of Gansu Province, 

China. The location of profile is shown in Fig. 12f. UT, MA, LT, and Toe indicate the upper transport zone (UT), middle 

accumulation zone (MA), lower transport zone (LT), and lower toe zone (Toe) of the landslide, respectively. The stars 

indicate the location of generated time series displacement in Fig. 15. (1) anti-slide piles, (2) Quaternary deposits, (3) 

Devonian slates and phyllites, and (4) Carboniferous limestones 

 

Based on the above analysis, the motion of the earthflow shows clear seasonal kinematic behavior. Significant 

differences can be observed between the UT and MA zones. The whole upper portion transports material downhill 

fast and then, where the bulge of the slip surface is located, this appears to slow down in summer, while it is partly 

stable and accumulating slightly in MA zone in winter. In the LT and Toe zone, similar movements are observed 

in both summer and winter, showing strong downslope transport in LT and slight accumulation in the Toe zone. 

The time series displacement curves were analyzed to investigate the possible relationships between the landslide 

movement, precipitation, and seismic activity. The average daily precipitation is derived from daily records in the 

Zhouqu station (Fig. 7). To investigate the temporal kinematics of the landslide system, time series displacement 



 

curves were generated for three zones: UT, LT and Toe (locations are shown in Figs. 11 and 13). Displacements 

from ten pixels were plotted to show the representative movement of the landslide in each location (Fig. 15). 

Based on the 3-year InSAR data series, the displacement rate variations show continuous and seasonal 

movements and high correlation with precipitation. The low dispersion of each acquisition in the UT and LT 

zones shows consistent movement in each zone. The larger dispersion in the Toe zone could be caused by 

engineered interventions in this area. Buildings could show different deformations along various directions. In 

these three zones, UT has the greatest movement while the Toe has the smallest movement. 

 

 
 

Fig. 14 Photos of Suoertou landslide. a UT zone. b MA zones. c Toe zone. d Anti-slide concrete wall. e Piles in Toe zone. a, 

b, and c were taken in March 2014. d was taken in June 2017. e is generated from Google Earth image acquired in September 

2014. Red rectangles highlight the location of piles 



 

 

 
 

Fig. 15 Box charts of time series displacement of CTs detected in the Suoertou earthflow at location a, b, and c with respect to 

average daily rainfall for each neighboring acquisition pairs. The lines indicate the linear simulations of average displacement 

in three periods (pre-acceleration (blue line), acceleration (red line), and postacceleration (green line)). The a1, a2, and a3 

indicate the slopes of linear simulation for three periods respectively. The vertical red line highlights the Wenchuan 

earthquake event 

 

Different displacement rates characterize periods corresponding or following intense rainfalls (Fig. 15). The 



 

time series show that the sliding motion of the whole earthflow tends to accelerate during the summer rains from 

May to October. The data show that the acceleration in 2008 is much larger than it was in 2009 and 2010, which 

is correlated with the Wenchuan seismic event on May 12, 2008 along with exceptionally high rainfall. It is 

therefore difficult to distinguish and quantify the influence of Wenchuan earthquake, based on these trends. 

However, the influence period of the earthquake could potentially be observed from the shape of trends in Fig. 15. 

The time series displacements show a markedly different acceleration period from May to December in 2008. It 

suggests that the earthquake’s influence lasted for about 6– 7 months. Further interpretation of the trends 

was carried out by applying simple linear regressions for characteristic segments covering three assumed periods 

related to the Wenchuan earthquake’s influence on landslide stability: (a1) pre-acceleration, (a2) acceleration, and 

(a3) post-acceleration. In this interpretation it is assumed that the four acquisitions before the earthquake 

represent the characteristic movement of the landslide. The slopes of linear regressions thus indicate the 

displacement rates of each period. 

Interestingly, the simulation indicates that the displacement rates in post-acceleration period (− 0.433 mm/day 

for LT, −0.058 mm/day for Toe) are relatively lower that before the earthquake in the LT (− 0.498 mm/day) and Toe 

zone (− 0.146 mm/day; Fig. 15), while a3 (− 0.419 mm/day) is slightly larger than a1 (−0.415 mm/day) in the UT. 

Considering the acquisitions before the earthquake are in a dry season, it can be expected that post-acceleration 

displacement rates would be greater. It is postulated that the earthquake accelerated the release of the energy within 

the landslide during the acceleration period and that, following this acceleration, the landslide needs to re-

accumulate enough material in the UT to enable deformations to progress into the Toe zone (similar to the way 

a glacier surges). The landslide also shows different accelerations, with the UT zone having the largest 

acceleration rate (a2-a1 = − 0.783 mm/day) compared to the LT (a2-a1 = – 0.359 mm/day) and the Toe (a2-a1 = − 0.139 

mm/day). 

 

6 Conclusion 
This study demonstrates the ability and limitations of the InSAR technique in detecting and monitoring 

landslides at large scale in the Zhouqu region where a total of 46 instabilities have been mapped. Most of the 

landslides occur within the Permian limestones, and Devonian limestones and slates, indicating a strong 

lithologic control on their spatial distribution. 

The SBAS technique has been able to detect ground deformation rates over 100 mm/year by processing 16 

ALOS PALSAR images acquired between 2007 and 2010. A multi-disciplinary analysis was applied to 

identify the predisposing factors of 11 detected earthflows, and statistical analysis was used to identify the 

contributions of the earthflows on local relief. The conclusions of this study are summarized as follows: 

 

1. The coherent target density and mean displacement rates generated in this high relief area by the SBAS 

technique from ALOS PALSAR data were far higher than that by SBAS or PSI from ENVISAT data 

(Wasowski et al. 2014; Zhang et al. 2016). Despite this, the shadow, layover and foreshortening result in the 

lack of coherent targets for steep areas. The analysis of topographic distortions of SAR data shows 

that shadow, layover, and foreshortening affect 2.6, 11.8, and 38.8% of the region, corresponding to 15, 

68.7, and 226 km2 over a total area of 582.3 km2. In total, 80,010 coherent points were extracted, covering 

an approximate area of 436 km2, that is, 378 coherent points km−2. 

2. Spatial distribution of InSAR results provide sufficient CTs for detecting 11 (100%) of the earthflows and 25 



 

 

(36%) of the other types of landslides in the inventory map, which represent 45% of the total number of mapped 

landslides. The InSAR deformation analysis helped to determine that 11 earthflows and 15 other landslides are 

unstable, comprising 38% of total mapped landslides and 72% of detected landslides. The final landslide 

activity map was checked based on the distribution of CTs within each landslide and verified by field survey. In 

addition, 20 landslides were added based on displacement rates and geomorphological  features, which improved 

the pre-existing landslides inventory map produced by interpretation of optical images and DTMs. 

3. In addition to lithological and topographic controls, the distribution of earthflows is also affected by the long-

term orogenic evolution and tectonic movements. Earthflows play an effective role in controlling the regional 

relief towards a dynamic equilibrium of slope gradient controlled by rainfall and tectonic movements. 

4. At local scales, the combination of deformation map from InSAR techniques with lithology and morphology 

allowed the spatial motion patterns of landsliding to be distinguished. The analysis of time series displacements 

enabled an evaluation of the temporal motion patterns of sliding, which could be established by correlations 

between displacement variation and precipitation and earthquake events. In the case of the Suoertou earthflow, 

four motion zones were differentiated based on the deformation map combined with engineering geological 

observations and geomorphological mapping. The linear simulation of available displacements during three 

periods (pre-acceleration, acceleration and post-acceleration) reveals that the acceleration from the Wenchuan 

earthquake may have lasted up to 6–7 months. The earthquake contributed to the release of energy resulting 

in a temporal acceleration of these earthflows, but following this acceleration, it appears that deformation rates 

have slowed down and that it will take time for new material to accumulate to stimulate sliding to the extent 

that was observed before the acceleration period. 
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