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Abstract
Ellenberg indicator values (EIVs) are a widely used metric in plant ecology com-
prising a semi-quantitative description of species’ ecological requirements. 
Typically, point estimates of mean EIV scores are compared over space or time to 
infer differences in the environmental conditions structuring plant communi-
ties—particularly in resurvey studies where no historical environmental data are 
available. However, the use of point estimates as a basis for inference does not 
take into account variance among species EIVs within sampled plots and gives 
equal weighting to means calculated from plots with differing numbers of spe-
cies. Traditional methods are also vulnerable to inaccurate estimates where only 
incomplete species lists are available. We present a set of multilevel (hierarchi-
cal) models—fitted with and without group-level predictors (e.g., habitat type)—
to improve precision and accuracy of plot mean EIV scores and to provide more 
reliable inference on changing environmental conditions over spatial and tempo-
ral gradients in resurvey studies. We compare multilevel model performance to 
GLMMs fitted to point estimates of mean EIVs. We also test the reliability of this 
method to improve inferences with incomplete species lists in some or all sample 
plots. Hierarchical modeling led to more accurate and precise estimates of plot-
level differences in mean EIV scores between time-periods, particularly for data-
sets with incomplete records of species occurrence. Furthermore, hierarchical 
models revealed directional environmental change within ecological habitat 
types, which less precise estimates from GLMMs of raw mean EIVs were inade-
quate to detect. The ability to compute separate residual variance and adjusted 
R2 parameters for plot mean EIVs and temporal differences in plot mean EIVs in 
multilevel models also allowed us to uncover a prominent role of hydrological 
differences as a driver of community compositional change in our case study, 
which traditional use of EIVs would fail to reveal. Assessing environmental 
change underlying ecological communities is a vital issue in the face of accelerat-
ing anthropogenic change. We have demonstrated that multilevel modeling of 
EIVs allows for a nuanced estimation of such from plant assemblage data changes 
at local scales and beyond, leading to a better understanding of temporal 
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1  | INTRODUC TION

Resurvey studies, where communities are resampled after years or 
decades have elapsed, are becoming increasingly common in ecol-
ogy due to interest in how ecosystems are responding to global en-
vironmental change (e.g., Diaz, Keith, Bullock, Hooftman, & Newton, 
2013; Krause, Culmsee, Wesche, & Leuschner, 2015). However, 
contemporaneous environmental data alongside historical data on 
species records are often lacking, which can hamper attempts to 
identify drivers of community change. As one solution, Ellenberg 
Indicator Values (EIVs) are widely used to infer environmental 
change over time where no data are available for abiotic conditions 
(Häring, Reger, Ewald, Hothorn, & Schröder, 2014; Krause et al., 
2015; McGovern, Evans, Dennis, Walmsley, & McDonald, 2011; 
Newton et al., 2012; Prach, 1993; Wesche, Krause, Culmsee, & 
Leuschner, 2012). EIVs score plant species on an ordinal scale based 
on estimated optimal environmental conditions for moisture, light, 
soil nutrient levels, reaction (pH), and salt tolerance (F, L, N, R, and S 
respectively) (Ellenberg, 1988; Hill, Preston, & Roy, 2004). Typically, 
ecologists compare mean EIV scores of plants sampled from stands 
of vegetation to infer differences in abiotic conditions (Diekmann, 
2003). However, use of point estimate plot mean EIVs fails to ac-
count for variation in EIV scores of plant species within sample 
plots, which we hypothesize could improve accuracy of inferences 
if included. Furthermore, incomplete species occurrence records for 
some or all plots may lead to inaccurate estimates of plot means and 
thus poor inference of environmental changes over time.

The population parameter one attempts to estimate when calcu-
lating a mean EIV score from plant occurrence records—for example, 
describing soil reaction (EIV R)—is the mean EIV score for all plant 
species able to establish at this plot given the soil pH, all other things 
being equal (Dupré, 2000; Ellenberg, 1988). However, as well as en-
vironmental filtering for pH, a myriad of factors, including abiotic 
conditions and interactions with other species present in the com-
munity, will affect the probability of a particular species establishing 
a local population (Grime, 1977; Keddy, 1992; Vellend, 2016). This 
complex filtering process leads to the diverse plant assemblages we 
see in nature, which in turn lead to variation in EIV scores of species 
within and between plots.

Environmental heterogeneity is an important factor in plant 
ecology studies generally (e.g., Maslov, 1989), and by failing to ac-
count for different levels of variation within a system, traditional 

methods discard much information, which may result in over-  or 
underestimation of the extent of change over time (Gelman & Hill, 
2006). Figure 1 depicts three distinct levels of variation that can be 
identified within a typical ecological study estimating environmen-
tal change using EIVs: (a) variation among EIV scores of species re-
corded within sampled plots (σspecies); (b) variation between plots in 
mean EIV scores (σα); and (c) variation in between time-period differ-
ences in plot mean EIVs as environmental conditions change differ-
entially across a landscape over time (σβ). Traditional methods using 
point estimates of mean EIVs from sampled plots (the x̄’s in Figure 1) 
to infer differences between groups of plots in space or time—either 
broken down by a grouping factor (e.g., habitat type), or on average 
across all sample plots—fail to incorporate variation within plots in 
species EIV scores (σspecies).

The suitability of hierarchical modeling to account for structure 
and variability in ecological systems is well established (Cressie, 
Calder, Clark, Hoef, & Wikle, 2009; Kéry & Royle, 2016; Royle & 
Dorazio, 2008), and this approach provides an ideal framework to 
account fully for the structure and variability identified in Figure 1. 
Instead of using point estimates of mean EIVs, data enter the model 
as species-specific EIV scores, and inferred plot means—with all of 
their associated uncertainty—are estimated and used at a higher 
level within the model to infer differences between groups of plots in 
space and time (McElreath, 2016). In this way, information is shared 
between plots, with mean EIV estimates augmented through partial 
pooling—that is, plot-level estimates being pulled towards the over-
all mean to an extent dependant on the number of species a mean 
estimate is composed of, and the variability of estimates between 
plots (Gelman & Hill, 2006). More fully accounting for uncertainty 
in this way should lead to more reliable estimates of individual plot 
mean values, and of differences between groups of plots in space 
and time (Gelman & Hill, 2006). Furthermore, because estimates 
are pooled according to shared information content, differences be-
tween any pair or combination of individual plots or habitats in the 
system can be inferred without having to contend with the issue of 
multiple comparisons, which should provide more power to detect 
change over time in conventional null hypothesis testing frameworks 
(Gelman, Hill, & Yajima, 2012).

A multilevel (hierarchical) modeling approach may also help to 
improve estimates of plot mean EIVs in instances where lists of re-
corded species are incomplete for some or all plots. Incomplete sam-
pling is a common nuisance in ecological studies as some species 

dynamics of ecosystems. Further, the ability of these methods to perform well 
with missing data should increase the total set of historical data which can be 
used to this end.
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are more difficult to detect than others, and ease of detection may 
vary depending on the time of year a particular plot is sampled, and 
among species (Chen, Kéry, Plattner, Ma, & Gardner, 2013; Kéry, 
2004; Kéry & Gregg, 2003). This issue may be further compounded 
if recorders with differing botanical skills sample different plots, or 
in resurvey studies where it can be difficult to confirm the complete-
ness of records, and where differing sampling methods may have 
been used. As long as data are not missing systematically across all 
plots, multilevel modeling should improve mean estimates for plots 
with missing data—and any inference based on these estimates—by 
pooling information across plots.

The aim of this study was to demonstrate how hierarchical mod-
eling can lead to higher discriminatory power than traditional meth-
ods when using EIVs to assess environmental changes underlying 
plant communities. This is achieved by accounting for uncertainty 
at all levels of the ecological system and by explicitly identifying 
and estimating components of temporal and spatial variation in plot 
mean EIVs.

We demonstrate the utility of this method in studies with both 
complete and incomplete plot records for species occurrence by 
fitting models to a real resurvey dataset. The models describe two 
scenarios: (a) A set of plots across a landscape, resampled in a sec-
ond time-period, assumed to be replicates of a similar habitat type; 

and (b) a similar set of plots sampled in two time-periods, but in this 
case groups of plots differ by some grouping factor (e.g., habitat type 
in our case study). We ask: (a) Do inferences on changes in envi-
ronmental conditions in space and between time-periods differ be-
tween hierarchical models of EIVs with a full multilevel structure and 
models using point estimates of raw mean EIVs from sampled plots 
as data, to an extent that will effect conclusions about change in the 
system? (b) Do hierarchical models improve mean estimates—and 
consequently inferences on temporal differences based on these es-
timates—for datasets where the full cohort of species is not recorded 
in all sampled plots? We provide code in the Supporting Information 
Data S1 to fit the models in R and Jags.

2  | METHODS

2.1 | Data

All models were fitted to a real ecological dataset for EIVs de-
scribing moisture, light, soil nutrient levels, reaction (pH), and 
salt tolerance (F, L, N, R, and S, respectively) from the PLANTATT 
dataset which provides EIVs adjusted for use in the UK and Ireland 
(Hill et al., 2004). Historical data were collected by Cyril Diver 

F IGURE  1 Typical spatiotemporal sampling structure of a resurvey study where Ellenberg Indicator Values (EIVs) are used to infer 
environmental differences underlying plant assemblages. Each color/number combination represents the EIV score of a specific plant 
species. In this example, plots are sampled within two separate ecological habitat types, and plant species occurrences are recorded for all 
plots in two separate time-periods. The σ values denote components of variation (a) in EIVs among species within sampled plots (σspecies), (b) 
in mean EIVs between plots (σα), and (c) in differences in plot mean EIVs between time-periods (σβ). Methods using preaveraged mean values 
(x̄’s) as a starting point for inference fail to account for σspecies, and as a result can lead to less reliable plot mean estimates and inferences 
across the wider landscape and between time-periods
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and contemporaries in the 1930s from the Studland Peninsula, 
Dorset, UK (Lat: 50.66, Lon: −1.9) (Diver, 1938; Good, 1935). The 
Peninsula consists of a habitat mosaic (~3 km2) characterised as 
dune, dune heath, tertiary heath, woodland, harbour shore, marsh, 
and edge aquatic plant assemblages. Diver and colleagues re-
corded lists of species occurrences in 74 sample plots (“compart-
ments”) which varied in size and shape (size in m2: min = 899.98, 
max = 200764.4, mean = 44452.52), and were based on the 
topographical properties and local ecological characteristics of 
Studland (Diver, 1938). The sampling compartments of Studland 
fall somewhere between Permanent and Quasi-permanent cat-
egories by the framework presented in Kapfer et al., 2017, as 
though they were relocated using various physical indicators and 
detailed ordinance survey maps, the precise boundaries between 
them may not always be in the exact same positions for histori-
cal and contemporary sampling. The National Trust resurveyed 
the area between 2013 and 2015 in a citizen science initiative 
coined “The Cyril Diver Project” following Divers’ original sam-
pling plots. (https://www.nationaltrust.org.uk/studland-beach/
features/the-cyril-diver-project). Both sampling and resampling 
efforts aimed to record all species present in their respective 
time-periods by repeatedly visiting plots throughout the year and 
scouring them carefully in teams for the duration of respective 
study periods. The number of species in each sample in each plot 
time-period, area, and coordinates of sample plots is detailed in 
Supporting Information Data S2.

2.2 | Models

2.2.1 | Estimating environmental change over time 
in resurvey studies

The first scenario we consider is one in which we estimate between 
time-period differences in mean EIVs for a resurvey study, where 
sample plots are considered replicates of similar, homogenous 
stands of vegetation in the same type of habitat. As such, model M1 
below is equivalent to compiling a series of t-tests, one for each plot, 
to estimate differences in mean EIV scores at plot level—although to 
use it for statistical testing in this manner would require major cor-
rections for multiple testing. We formulate this simple linear model 
to emphasize fully the progression from fixed effects models with 
no-pooling, to those with partial pooling under a multilevel struc-
ture—and to use as a baseline against which to compare plot mean 
estimates from hierarchical models. The appropriateness of using 
mean values of ordinal EIVs and means of ordinal values more gener-
ally has been widely discussed in the literature and is not the topic 
of this paper; however, we agree that it has proven a useful method 
in applied plant ecology and should continue to be so (Diekmann, 
2003; Pasta, 2009).

yi is the EIV score for species i in plot j, and σspecies is the esti-
mated residual variance for EIV scores of n species within sampled 
plots. In this no-pooling model, the αj values are the plot means from 
time-period 1, and each βj parameter is an estimate of the difference 
in mean EIV in compartment j between time-periods 1 and 2. xi is the 
binary (0,1) predictor for the time-period that species yi was sampled 
in.

To move from “no-pooling” to hierarchical models, we allow 
the αj ’s and βj ’s from model M1 to share information through par-
tial pooling, changing them from fixed to random effects. As such, 
model M2 below can be viewed as a type of mixed effects model 
which allows us to use more conservative estimates of plot-level 
between time-period differences (slopes) by sharing information 
content across plots and thus arrive at a more accurate estimate 
of overall change.

Slope and intercept parameters are constrained to come from 
bivariate normal distribution (MVN) with mean vector (�� ,�� ) to 
account for correlation between them (Gelman & Hill, 2006). The 
covariance matrix is defined by the variance in plot intercepts (��) 
and slopes (�� ), and the covariance between the two sets of pa-
rameters (��2

�
�2
�
), where ρ is the correlation coefficient. Allowing 

information on temporal differences across plots to be shared in 
this way makes sense particularly if the sampled plots come from 
a spatial area within which we expect abiotic drivers of change to 
be linked.

2.2.2 | Inferences between plots differing by a 
grouping factor

Sampled plots may differ by some categorical factor (e.g., Habitat 
type, grazing regime, etc.). We can extend model M2 to include a 
group-level predictor within the sub-models of αj’s and βj’s. Thus 
plot-level estimates in model M3 below are improved when groups 
of plot differ by habitat, as now the estimates are pooled toward the 
habitat-level mean value rather than the mean across all plots. M3 
also allows us to estimate differences in mean changes at habitat 
level.

In hierarchical model M3, the data (yi) still enter the model at 
the level of plant species within plots, and the plot intercepts and 
slopes are still constrained to come from a multivariate normal dis-
tribution. Here, however, the means of this distribution (��[k]) and 

M1

yi∼N(�j[i]+�j[i]xi,�species), for i=1,… ,n

M2

yi∼N(�j[i]+�j[i]xi,�species), for i=1,… ,n

(�j,�j)∼MVN((�� ,�� ),(�� ,�� ,��
2
�
�2
�
)), for j=1,… ,j

M3

yi∼N(�j[i]+�j[i]xi,�species), for i=1,… ,n

(�j,�j)∼MVN(��[k],��[k]),(�� ,�� ,��
2
�
�2
�
)), for j=1,… ,j

https://www.nationaltrust.org.uk/studland-beach/features/the-cyril-diver-project
https://www.nationaltrust.org.uk/studland-beach/features/the-cyril-diver-project
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(��[k]) take on a different value for each of k groups (habitat types 
in our case study). σα and σβ now estimate variation in plot-level 
intercepts and slopes respectively, after taking habitat type into 
account.

Model M3 allows us to estimate differences between groups 
of plots by essentially nesting a two-way ANOVA within the model 
structure. To compare inferences on habitat-level differences from 
the hierarchical model with those using point estimates of mean EIVs 
as data, we fitted generalized linear mixed models (GLMMs) with 
plot ID as a random effect nested in time-period to account for re-
peat sampling. While this technically is a hierarchical model, it does 
not incorporate the multilevel structure which is the focus of this 
study. We compared these models to their hierarchical (multilevel) 
counterparts in terms of differences in magnitude, precision, and 
sign of habitat level estimates, and whether differences in habitat-
level EIVs between time-periods were significant at the standard 
α = 0.05 significance level. To perform these tests of significance, 
habitat-level differences in EIVs for each GLMM were corrected for 
multiple comparisons using the multcomp package in R (Hothorn, 
Bretz, & Westfall, 2008). We also calculated Bayesian R2 for each 
level within the hierarchical models (data level, varying intercepts, 
and varying slopes) (Gelman & Pardoe, 2006).

2.2.3 | Analyses with incomplete species records

We refitted the models with incomplete sets of species artificially 
subsampled from a selection of plots to test model performances in 
predicting plot mean EIVs where not all species present in a plot are 
recorded. As improving plot mean EIV estimates by pooling infor-
mation across plots—and thus improving inferences based on these 
estimates—is the mechanism by which we suggest that multilevel 
modeling is an improvement on methods using point estimates of 
plot mean values as data, this missing species analysis also served 
as our most important validation procedure (following Lin, Gelman, 
Price, & Krantz, 1999). If these methods can accurately estimate plot 
mean values primarily from information shared across plots, with 
most of the species missing from the focal plot, then it is clear that 
the models use the pooled information in a valuable way.

Plots were chosen in a random stratified manner; one plot with 
>50 recorded species from each habitat type in each time-period (14 
total). About 90% of species in each of these 14 plots were selected 
at random and excluded from the dataset, representing severe 
undersampling. Models M1, M2, and M3 were refitted and model 
outputs compared to the raw mean values when all data were in-
cluded, under the assumption that plots with >50 species provided 
an adequate estimate of the “true mean” value. This process was 
repeated iteratively 120 times with a different random 90% of spe-
cies removed from each plot during each iteration. Model perfor-
mances were compared graphically, and using calculated summary 
statistics to assess precision and accuracy of plot level estimates 
for plots with missing species. Precision was assessed as the mean 
width of 50% and 95% credible intervals of plot estimates, and as the 
inverse variance of plot mean estimates. Accuracy was assessed as 

the proportion of times the “true mean” value was within the 50% 
and 95% credible intervals, and as the mean distance of point mean 
estimates from the “true mean” value.

2.3 | Software and validation

Models were fitted in JAGS and R version 3.3.1 using package 
runjags with minimally informative priors following Gelman & Hill, 
2006 (see Supporting Information Data S1 for a description of the 
models in the Jags language) (Denwood, 2016; R Core Team 2017). 
Additional R packages were used for analyses of mcmc chains and 
graphics (Plummer, Best, Cowles, & Vines, 2006; Wickham, 2009). In 
addition to the validation discussed in Section 2.2.3, we performed a 
range of posterior predictive checks and comparisons between sim-
ulated and real-world datasets to assess model adequacy (following 
Gelman & Hill, 2006; Kéry & Schaub, 2012).

3  | RESULTS

3.1 | Analyses with incomplete species records

Multilevel model estimates from both models M2 and M3 were con-
sistent across separate runs of the simulation, regardless of which 
10% species remained, with high levels of precision and accuracy 
(Figure 2, Table 1). Plot mean estimates with missing species were 
closer to the true means for hierarchical vs. nonhierarchical mod-
els for all four EIVs, often by more than a factor of two—averaging 
across replications and depleted plots (Table 1). The proportions of 
“hits” for 50% and 95% credible intervals about the mean estimates 
differed between models and EIVs, but underperformed for some 
hierarchical models due to consistent misses across replications for 
some individual sample plots (Figure 2). Models without group-level 
habitat predictors performed slightly better in this respect (Table 1).

3.2 | Plot-level inference

Out of sample predictive accuracy was markedly better in hierarchi-
cal vs. nonhierarchical models for all five EIVs as estimated by DIC 
(ΔDIC between 8.6 and 40), and models including group-level habi-
tat predictors (M3) were invariably the best by this criteria (Table 2). 
Estimates of variance among species EIVs within sample plots 
(σspecies) from hierarchical models were much larger in all cases than 
between plot (σα) and between time-period (σβ) variance estimates. 
The inclusion of ecological habitat type in the M3 models signifi-
cantly reduced residual variance in plot-level intercepts and slopes 
(σα and σβ) for models of all EIVs. The extent to which intercepts and 
slopes were pooled (��) and (�� ) differed between models of the 
five EIVs, but was much higher for model M3 versus M2 in all cases, 
which exemplifies how adding habitat type provided a better target 
for pooled estimates by reducing residual variance in plot-level pa-
rameter estimates (Table 2). The inclusion of ecological habitat type 
in the M3 models explained over 40% of variation in the pooled plot-
level slope parameters for EIVs L, N, R, and S, while it explained 33% 
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for EIV F, which also had higher estimates of σβ both before and after 
the inclusion of habitat than the other EIVs (Figure 3).

3.3 | Habitat-level inference

Estimates of change in mean habitat-level EIVs between time-
periods 1 and 2 differed to a large extent between full multilevel 
models (M3) and GLMMs using raw mean EIVs as data (Figure 4). 
While mean estimates of habitat level change were often similar 
between the two sets of models, hierarchical model estimates were 
more precise with narrower 95% Bayesian credible intervals than 
GLMM estimates. Furthermore, to infer differences at the standard 
α = 0.05 level as commonly practiced, GLMM confidence intervals 
need to be adjusted for multiple comparisons, whereas pooled esti-
mates from hierarchical models do not (Gelman et al., 2012), which 
led to a rejection of a null hypothesis of no change in environmental 
conditions in six of 35 instances in this system using estimates from 
the full multilevel model where we would have to accept the null 
hypothesis of no change using the GLMM estimates (Figure 4). This 
may lead one to conclude that there has been no significant change 
in the harbour shore habitat from GLMM results for instance, 
whereas hierarchical model results show strong, precise directional 

change in soil nutrients (N), pH (R), and salinity (S) underlying these 
assemblages. Similarly, GLMM results would underestimate the ex-
tent of change in the marsh, woodland, and dune heath habitats 
compared with the more precise hierarchical estimates. However, 
despite the adjusted confidence intervals in the GLMMs, pooling 
of estimates in the multilevel models led to more conservative es-
timates of change in the dune habitat, which would lead us to con-
clude minimal change over time (accept the null hypothesis of no 
change) for EIVs L and S, while we would conclude stronger nega-
tive change from GLMM estimates (reject the null hypothesis of no 
change).

4  | DISCUSSION

We have shown that multilevel modeling provides improved discrimi-
natory power when estimating differences in mean Ellenberg indica-
tor values between historical and contemporary plant assemblages, 
both at the level of individual plots and across the wider commu-
nity. Multilevel models suggested a prominent role of hydrological 
changes—alongside succession processes—in driving compositional 
change between sampling periods in our case study, the extent of 

F IGURE  2 Mean estimates with 50% uncertainty intervals of plot-level Ellenberg Indicator Values (EIVs) F, L, N R, and S from plots with 
a random 90% of species removed. One plot with 50 or more recorded species was randomly chosen from each habitat type in each of two 
sampling periods. Red lines are plot mean EIVs with full cohort of species remaining. The three clouds of points from left to right in each grid 
panel display uncertainty intervals from: (a) No-pooling models, representing raw mean estimates of 10% of species randomly remaining 
in each iteration; (b) Estimates from hierarchical models with partial pooling of plot intercept and slope parameters, and; (c) Estimates from 
hierarchical models with partial pooling including group level habitat predictors. Plot shows a subset of 20 of 120 iterations run in total for 
clarity
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which would not be revealed by inference using point estimates of 
plot mean EIVs as data. When we removed 90% of plant species 
from a selection of species rich plots, estimates of plot mean EIVs 
from hierarchical models were very close in the majority of cases to 
mean values with the full cohort of species remaining. This was in 
stark contrast to raw means for randomly remaining species, and it 
demonstrates the rich potential for improving estimation and infer-
ence by pooling information across plots in hierarchical models in 
instances of nonsystematic missing data, which are common in eco-
logical studies. Taken together these findings highlight the potential 
value of information discarded when point estimates of plot mean 
EIVs are used as the starting point for inference and show how hi-
erarchical modeling can increase the utility of EIVs in suggesting the 
nature of environmental factors likely underlying changes in plant 
community composition.

4.1 | Model performance with missing data

The phenomenon of recorders overlooking species present when 
performing surveys is a consistent feature of ecological sampling 
and can lead to bias in estimates of many ecological rate and state 
variables (Chen et al., 2013; Kéry, 2004; Kéry & Gregg, 2003). While 
missing species may not be an issue when using weighted averages 
of EIVs (Ewald, 2003), our analyses on artificially depleted plots for 
presence/absence data show the utility of hierarchical models to 

help alleviate inaccuracy in estimates due to imperfect sampling and 
non-systematic missing data. The ability of the multilevel models to 
estimate plot mean EIVs accurately when the majority of species are 
missing should also allay any apprehensions over using the ordinal 
EIVs fit to a Gaussian distribution at the data level of these models; 
improvement in plot mean values is the primary aim of this study and 
results from analyses on depleted datasets demonstrate that this has 
been achieved.

4.2 | Habitat-level inference

Hierarchical model performances improved with habitat type as 
a group-level predictor by providing better targets for pooled es-
timates. Furthermore, the ability to infer change over time from 
resulting habitat estimates without correcting for multiple compari-
sons allows us to build a more nuanced and precise picture of envi-
ronmental change over time. Effect sizes for changes in habitat level 
mean EIVs in the Studland case study were small (<1) in all cases, but 
as these specify average changes across entire habitats they still in-
dicate meaningful directional changes in environmental conditions. 
With small effect sizes—as will usually be the case given the scale 
on which EIVs are quantified—the increased precision of estimates 
gained from hierarchical modeling is a major advantage in reveal-
ing the direction and magnitude of environmental change in a study 
system.

TABLE  1 Model performances from analyses of plots with a random 90% of species removed. All statistics were calculated for 14 
depleted plots over 130 simulations of the validation analysis

Model Mean width 0% CI Mean width 95% CI Mean precision
Proportion of 
hits 50% CI

Proportion of 
hits 95% CI

Avg. dist. 
from true 
mean

EIV F

RV M1 0.87 2.54 3.97 0.53 0.96 0.51

RV M2 0.61 1.77 14.58 0.58 0.96 0.32

RV M3 0.51 1.5 27.48 0.53 0.87 0.36

EIV L

RV M1 0.46 1.33 11.52 0.52 0.96 0.25

RV M2 0.2 0.6 412.84 0.46 0.89 0.15

RV M3 0.19 0.57 429.94 0.39 0.82 0.17

EIV N

RV M1 0.83 2.41 4.02 0.54 0.97 0.46

RV M2 0.36 1.07 193.62 0.45 0.99 0.2

RV M3 0.39 1.05 170.69 0.58 1 0.16

EIV R

RV M1 0.78 2.25 4.45 0.5 0.97 0.44

RV M2 0.39 1.16 77.89 0.5 0.92 0.26

RV M3 0.37 1.09 96.02 0.55 0.9 0.21

EIV S

RV M1 0.54 1.58 32.99 0.64 0.92 0.3

RV M2 0.24 0.72 671.08 0.66 0.89 0.18

RV M3 0.21 0.62 605.52 0.55 0.85 0.19
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Broad increases in EIV N across the habitats of Studland are 
in-line with studies over a similar period both across the county of 
Dorset (Newton et al., 2012) and further afield (Bennie, Hill, Baxter, 
& Huntley, 2006), possibly resulting from atmospheric nitrogen 
deposition. Other trends are likely more specific to Studland, includ-
ing wetter conditions across the marsh habitat, and decreases in EIV 
L across the woodland and dune heath habitats probably indicating 
ecological succession. Such location specific changes in the environ-
ment could have important effects on co-occurring animal assem-
blages. For example, changes in precipitation levels can lead to shifts 
in vegetation structure and resulting changes in rodent community 
composition (Ernest, Brown, Thibault, White, & Goheen, 2008). The 
wetter marshes of Studland may have similarly affected local inver-
tebrate and mammal assemblages, and we have shown that hierar-
chical modeling is better suited to uncover such effects when using 
EIVs.

While pooled habitat level estimates from multilevel models 
suggested more widespread change across the Studland system 
than did estimates from the GLMMs, they were also more conser-
vative than the GLMM estimates in an important way, exemplified 
by the dune habitat. Larger changes estimated from the GLMMs 
in dune plots result from a large influence of one plot (dune plot 
number 6, Figure 3), whereas in the multilevel models, the influ-
ence of this plot was dampened by the pooling of this plot’s slope 
(β) estimate. In time-period 1, this was a newly formed dune which 

only seven plant species had colonized. From typical dune suc-
cession, we would expect this plot to become more shaded, more 
acidic, and more nutrient rich over time (Jones, Sowerby, Williams, 
& Jones, 2008). While the raw mean estimates do suggest that it 
has become more shaded and more acidic by time-period 2, they 
would also suggest that it has become less nutrient rich. It seems 
likely that the apparent decrease in soil nutrient levels in this plot 
is a confounded estimate driven by the strong correlation between 
EIV R and N (Diekmann, 2003), at a plot where soil pH was proba-
bly a stronger driver of species recruitment in time-period 1 (Jones 
et al., 2008). We would suggest that without specific ecological 
knowledge of a plot, in general it is a worthwhile trade-off to un-
derweight plot mean values as the multilevel models should do, 
rather than overweighting it as is probable using point estimates 
from plots with sparse data. This should reduce overconfidence in 
specific plot values, giving a more accurate estimate of change in 
this plot despite the few plant species present in the 1930s, while 
also reducing the effect of outliers on habitat-level estimates of 
change (McElreath, 2016).

4.3 | Plot-level inference

Using hierarchical models to account explicitly for different 
variance components in a study system, we can build a more 
in-depth picture of changes that have occurred. In the Studland 

TABLE  2 Residual variance (σ), Bayesian R2, mean pooling of estimates (λ), effective number of parameters (pD), and DIC values for 
models fit to Ellenberg Indicator Values F, L, N, R, and S of plant species from a re-visitation study on the Studland peninsula between the 
1930s and 2010s. NP are “no-pooling,” H are “hierarchical,” and HG are “Hierarchical with group-level predictor” models. Parameters with 
subscripts α and β were estimated at the level of varying intercepts and slopes, respectively

Model σplant σα σβ R
2
plant

R2
�

R
2
�

λα λβ pD DIC

EIV F

M1(NP) 1.74 — — 0.22 — — — — 149.1 36,391.8

M2(H) 1.74 1.09 0.62 0.22 0 0 0.05 0.25 127.5 36,383.2

M3(HG) 1.74 0.47 0.53 0.22 0.83 0.33 0.3 0.38 117.8 36,371.2

EIV L

M1(NP) 0.91 — — 0.12 — — — — 148.9 24,561.4

M2(H) 0.91 0.28 0.18 0.12 0 0 0.13 0.41 98.7 24,526.8

M3(HG) 0.91 0.18 0.15 0.12 0.63 0.41 0.36 0.61 94.7 24,521.9

EIV N

M1(NP) 1.64 — — 0.06 — — — — 148.8 35,330.1

M2(H) 1.64 0.33 0.3 0.06 0 0 0.24 0.42 90.4 35,290.8

M3(HG) 1.64 0.25 0.24 0.06 0.42 0.44 0.43 0.62 87.1 35,289.5

EIV R

M1(NP) 1.56 — — 0.08 — — — — 148.9 34,100.7

M2(H) 1.54 0.45 0.35 0.08 0 0 0.17 0.42 107.5 34,071.4

M3(HG) 1.54 0.34 0.28 0.08 0.43 0.44 0.33 0.6 100.9 34,068.6

EIV S

M1(NP) 1.08 — — 0.22 — — — — 148.9 27,596.9

M2(H) 1.08 0.56 0.21 0.22 0 0 0.06 0.52 108 27,577

M3(HG) 1.08 0.27 0.18 0.19 0.76 0.43 0.29 0.62 95 27,563.6
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case study, variance in EIV scores among plant species within 
sample plots (σspecies) was larger in all cases than variance be-
tween plots (σα) and variance in plot-level changes between 
time-periods (σβ) for all EIVs, which illustrates the value in pool-
ing information between plots in this way to improve estimates 
of plot mean values. High variance estimates within plots reflect 
the fact that the environmental parameter an EIV represents 

tends to play just a small role in determining whether a plant spe-
cies occurs in a given area, and that in any sample plot only a sub-
set of species likely to occur despite environmental constraints 
will do so at a given time (Pärtel, 2014). Species may be absent 
from plots they could potentially occupy for various stochastic 
and mechanistic reasons (Callaway & Walker, 1997; Chave, 2004; 
Leibold et al., 2004), or they may be missed by recorders in a 

F IGURE  3 Changes in Ellenberg Indicator Values (EIVs) between sampling in the 1930s and resampling in 2010s. Plots show mean and 
95% Bayesian credible intervals for estimates of plot-level changes between sampling periods for each of seven habitats (Map inset). Each 
grid cell contains varying slope parameters (β’s) from models M1 (no-pooling), M2 (hierarchical), and M3 (hierarchical) from left to right, 
respectively. Horizontal red lines indicate zero change between sampling periods. White textboxes show unexplained variance in slope 
parameters in hierarchical models with and without habitat as a predictor (�M2

�
 and �M3

�
, respectively) and the estimated proportion of 

variance explained by habitat as a group-level predictor for slope parameters (Bayesian R2). Each column represents numbered plots within 
habitat types
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given sampling instance as previously discussed (Kéry & Andrew 
Royle, 2010). Computation of separate R2 values for variance ex-
plained by habitat type for intercept and slope parameters is also 
highly valuable, as practitioners will often be interested only in 
the changes over time, and not the baseline differences between 
habitat types.

The ability to provide a plot-specific picture of local change 
alongside estimates of average trends across the wider landscape 
should also prove valuable to those wishing to concentrate on 
finer details to aid management, or to use as indicators of dynam-
ics affecting ecological communities contemporaneous with plant 
assemblages. For example, when we look at changes in plot mean 
EIVs over the 80-year period across the Studland Peninsula (β pa-
rameters), we see it was far more variable for EIV F (moisture) than 
for the other EIVs both before and after accounting for habitat 
type. While some changes in this system—such as levels of shade 
(EIV L) across the woodland plots—may have clear ecological expla-
nations (e.g., succession) specific to habitat types, highly variable 
changes in plot mean EIV F estimates suggest that changes in the 
hydrological profile of the peninsula is an important abiotic driver 
of change in community composition across habitat boundaries. 
With hierarchical models, we can pinpoint outliers or plots within 
which change does not match plots in a similar habitat because 
pooling allows us to view each estimated plot mean in isolation 
with more confidence that it is a balanced estimate (Gelman et al., 
2012). Inspection of these plot values could lead one to develop 
new hypotheses about drivers of change—for instance spatial 
proximity to a body of water, or height above sea level—which can 
be easily incorporated back into the model once data is compiled 
on them to assess their influence. In this way, hierarchical models 
can be used in conjunction with knowledge of the details of a spe-
cific system to uncover drivers of change as part of an iterative 
scientific process.

4.4 | Model extensions and flexibility

The multilevel models presented here, particularly fitted in a flex-
ible Bayesian framework, can be extended or adapted to specific 
study systems in many useful ways. For instance, other grouping 
factors—in place of or in addition to habitat type—may be added 
to the submodels for intercepts and/or slopes (e.g., natural vs. 
semi-natural, grazing regime, management practice). Similarly, con-
tinuous predictors could be added if they are of interest (e.g., plot 
elevation, plot area). One could also add predictors at the level of 
species within plots such as %cover or invasive vs. noninvasive spe-
cies, depending on specific study aims. Informative or regularizing 
priors may be used, which could be particularly useful in instances 
of small sample sizes in terms of numbers of plots or species rich-
ness within plots (McElreath, 2016). Finally, the method could be 
adapted for use on any quantitative trait values which are averaged 
across species, which may help address issues of robustness (Aiba 
et al., 2013).

5  | CONCLUSIONS

The increasing prevalence of resurvey studies in plant ecology, cou-
pled with the importance of understanding accelerating environ-
mental change, has led to Ellenberg indicator values becoming an 
important tool in the ecologists’ kit. We have demonstrated how mul-
tilevel modeling can provide a more powerful discriminatory frame-
work when using EIVs to hypothesize the nature of environmental 
dynamics underlying compositional change in plant communities. 
These methods also perform very well in situations where some or 
all plots sampled do not have the full cohort of species recorded. 
Our contribution describes one more way hierarchical modeling, 
particularly applied in a flexible Bayesian framework, provides an 

F IGURE  4 Mean and 95% Bayesian 
credible intervals (top) and confidence 
intervals (bottom) for habitat level 
differences in mean Ellenberg Indicator 
Values (EIVs) for Moisture (F), Light (L), 
Nutrients (N) Reaction (R) and Salinity 
(S) on the Studland peninsula between 
the 1930s and 2010s. Top row shows 
estimates from multilevel models with 
recorded species EIVs as data (model M3 
from text), while the bottom row shows 
estimates from mixed effects models 
using raw means of plot EIVs as data. 
Red extensions to the GLMM confidence 
intervals represent corrections for 
multiple testing; hierarchical estimates do 
not need to be corrected due to pooling of 
estimates
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ideal way to describe the multitude of hierarchical structures we see 
at all levels in biological systems, from cells to meta-communities. 
Furthermore, we contest that identifying and explicitly modeling 
components of variation within an ecological system in this way can 
lead to the development of further hypotheses about environmental 
drivers shaping plant community functional characteristics in a way 
that is difficult using traditional statistical techniques, as our case 
study demonstrates.
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