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Abstract2

A geochemical anomaly is a concentration of an element or other constituent in a3

medium (soil, sediment or surface water) which is unusual in its local setting. Geochemi-4

cal anomalies may be interesting as indicators of processes such as point contamination or5

mineralizations. They may therefore be practically useful, indicating sources of pollution6

or mineral deposits which may be of economic value. As defined, a geochemical anomaly7

is not merely a large (or small) concentration of a constituent as compared to the marginal8

distribution. To detect anomalies we must therefore do more than simply map the spatial9

distribution of the constituent. One proposed approach makes use of a singularity index10

based on fractal representation of spatial variation. The singularity index can be com-11

puted from local concentration measures in nested windows. In this paper we propose an12

approach to compute threshold values for the index to identify enrichment and depletion13

anomalies, separate from background information. The approach is based on a mixture14

model for the singularity index, and it can be supported by computing a distribution for15

background values of the index by parametric bootstrapping from a robustly-estimated16

variogram model for the target constituent. This approach is illustrated here using data17

on elements in the soil in four settings in Great Britain and Ireland.18
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1. Introduction21

1.1 The problem22

Soil geochemical data comprises information on the concentration of elements in soil23

(e.g. heavy metals, micronutrients such as selenium and potentially harmful elements such24

as As), compounds (e.g. specific organic pollutants, ions such as nitrate or phosphate)25

and other constituents such as organic carbon. The soil may be a convenient medium for26

geochemical survey (e.g. Breward, 2007) focussed on mineral exploration or to support ge-27

ological mapping. Soil geochemical data may also support the management of agricultural28

soils (e.g. Lark et al., 2014) or the assessment of particular threats to soil quality (e.g.29

Rawlins et al., 2006). In all cases a common objective in the analysis of soil geochemical30

data (as with data in other media such as stream sediments), is the identification of anoma-31

lies. A geochemical anomaly is a measurement, or local cluster of measurements, which32

have markedly large or small concentrations in local context. Anomalies may be impor-33

tant as indicators of mineralizations which could be economically important, or they may34

reflect point pollution processes which must be understood for environmental protection.35

The detection of anomalies requires more than the mapping of large or small con-36

centrations. Rather it is the identification of local accumulation or depletion which is37

anomalous in context. One method that has been used to tackle this problem invokes38

a multifractal model of spatial variation under which variation may include local singu-39

larities (e.g. Chen et al., 2007). This paper proposes an approach to the detection of40

anomalies in data on soil which is based on this method. The next section outlines the41

approach based on singularities in more detail. The methods used in this paper are then42

described (section 2.1) and then applied in four case studies on concentrations of elements43

in four contrasting settings in the United Kingdom and Ireland.44

1.2 Anomalies and singularities45

In the approach to anomaly detection based on a multifractal model the local46

anomalous accumulation of material (or equivalently, depletion), arising from local het-47
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erogeneities or cascade processes is treated as a singularity characterized by the local48

singularity index. A fuller account of the underlying theory is given by Cheng (2007;49

2012) and Agterberg (2012), but we summarize here.50

We denote a local support in d dimensions (e.g. a square or circle when d = 2)51

centred at location x and of (linear) size ε by Bx (ε). The amount of some material52

within the support, µ (Bx (ε)) depends on the local background concentration c(x) scaled53

according to a local singularity index, α(x):54

µ (Bx (ε)) = c(x)εα(x). (1)

The equivalent expression for the mean concentration over the support is55

ρ (Bx (ε)) = c(x)εα(x)−d. (2)

Allégre and Lewin (1995) reviewed the range of processes which give rise to observed56

distributions of geochemical variables. In many cases a normal or log-normal distribution57

may be expected under which the expected value of α(x) over a domain of interest is equal58

to d. In the presence of local anomalies, however, the variation is multifractal with local59

values of α(x) < d where there is local enrichment of the material of interest and α(x) > d60

where there is depletion.61

For a multifractal process the set of points with a particular singularity index value62

itself constitutes a fractal set. This provides the basis for the practical approach taken to63

the identification of anomalies from the singularity index by the concentration-area model64

(Cheng, 2012). Under this model the area over which the singularity index is larger than65

some value, α, A [> α], the survival function of α, follows a power-law,66

A [> α] ∝ α−β, (3)

although there may be several values of β over distinct sub-ranges of the value of α. When67

the survival function is plotted on double-log axes these ranges should be revealed as linear68

segments of the plot. Liu et al. (2014) fit such linear segments and, from the break-points69

3



between them, identify a range of values of α which correspond to the background process70

and limits which define the range for enrichment and depletion anomalies respectively.71

In this paper we consider case studies in which the singularity index was computed72

for the concentration of different elements in the topsoil across four different areas. In no73

case did the double-log plot of the empirical survival function of α clearly resemble a limited74

number of linear segments, rather, like any non-linear plot, it could be approximated to75

some arbitrary degree of accuracy by increasing numbers of such segments (see Figure76

26) which makes the outcome for the range of values of the index assumed to correspond77

predominantly to background normal or log-normal variation essentially arbitrary. This78

is unsatisfactory. For this reason we propose an alternative approach. The singularity79

index under the normal or log-normal monofractal background model is assumed to have80

a distribution conditional on the spatial correlation of the variable, the distribution of81

the sample points and the scales examined. It is assumed that the distribution of the82

index for the whole field can be represented as a mixture of normal distributions, of83

which the dominant component represents the background. The mixture also includes84

one or more additional components which introduce mass into one or both tails of the85

overall distribution, representing anomalies. Note that previous workers have used mixture86

models for the concentrations of elements in soil to represent background and anomalous87

concentrations (e.g. Liu et al., 2010). It is important to remember that, in this paper,88

we model the singularity index rather than the concentrations themselves as a mixture of89

components.90

In the remainder of the paper we describe the methods used and outline the results91

for the case studies.92

2. Materials and Methods93

2.1 Computation94

The data used in this paper are described in detail in sections 2.2–2.5. In all cases95
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the data were total concentrations of an element in the topsoil (soil to a depth of 15 cm96

from the surface). As described for each section, summary statistics and histograms of the97

data were obtained, and a decision was made as to whether a transformation was required98

prior to geostatistical analysis to ensure the plausibility of an assumption of normality99

(although the computation of the singularity index was done on the data on their original100

units of measurements, mg kg−1).101

2.1.1 The singularity index. In all case studies the singularity index was computed on102

the nodes of a 100-m square grid. At any node the mean concentration of the variable103

of interest was calculated within four local supports, each circular areas of radius 1000,104

2000, 4000 and 8000 m. The ordinary least squares regression coefficient for the regression105

of log-transformed mean concentration on log-transformed radius of the circular support106

centered at x provides an estimate of α(x) − d. Because d is a constant (2 in this case107

with the analysis in two dimensions) the estimate of α(x) is easily obtained.108

The ordinary least squares estimate of the regression coefficient must be treated109

with some caution in these circumstances. This is because the circular supports are nested110

within each other and so the residuals from the fitted line cannot be treated as independent.111

However, we make no assumptions of independence in any subsequent inferences, and the112

parametric bootstrapping of the background distribution of the index, described in section113

2.1.3, explicitly reproduces this dependence.114

For comparability we used the same radii for the four windows in all case studies.115

In the first study (section 2.2 below) with the sparsest sampling the mean concentration116

could not be evaluated at all nodes for the smallest radius, but checks showed that a value117

could be obtained for all radii of 2000 m or more.118

2.1.2 Geostatistics. To allow the bootstrapping of the distribution of the background119

values of the singularity index we required a variogram function for the target variable.120

This was computed for the variable after any transformation. Because the aim is to121

obtain the variogram for the background process we wanted to minimize the effects of any122
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outlying observations, including spatial outliers which appear unusual only in their local123

context, since such values can have a disproportionate effect on estimates of the variogram124

(Lark, 2000). We therefore estimated the variogram using the standard estimator due to125

Matheron (1962), but also the alternative estimators due to Cressie and Hawkins (1980),126

Dowd (1984) and Genton (1998). Lark (2000) reviews these estimators and provides127

further detail. We applied them using the georob package for the R platform (Papritz,128

2016; R core team, 2014). Initially we estimated the variograms for different directions,129

but there was no marked anisotropy, particularly at lags corresponding to the scales at130

which the singularity index was computed, and so isotropic variograms were used.131

Each variogram model was assessed by cross-validation. Each observation was re-132

moved from the data set in turn and predicted from the remaining ones by ordinary kriging.133

The standardized squared prediction error (SSPE) was computed for each cross-validation134

prediction:135

θ(x) =

{
Z̃(x)− z(x)

}2

σ2OK(x)
, (4)

where Z̃(x) is the ordinary kriging prediction at location x, z(x) is the corresponding136

observed value and σ2OK(x) is the corresponding ordinary kriging variance. The expected137

value of this statistic over all observations is one if the variogram model is correct, but138

outlying observations will affect both the numerator and denominator. We therefore ob-139

served the histograms of the cross-validation errors, and if the assumption that these were140

normal seemed plausible we examined the median value of the standardized squared pre-141

diction error. This should be close to 0.455 if the variogram model is correct, and will142

tend to be smaller if outliers are affecting the estimated variogram. On this basis one of143

the proposed variogram models was selected for further work.144

2.1.3 Mixture modelling and parametric bootstrapping. The histograms of the singularity145

index values were examined. In all cases an assumption of a normal distribution with some146

additional mass in one or both tails seemed plausible, and so a mixture of normal distri-147

butions was fitted using the mixtools package in R, (Benaglia et al., 2009). The boot.comp148
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procedure in the package was applied to a simple random sample of 1000 observations to149

evaluate the evidence that two or more components should be included in the model. This150

procedure undertakes bootstrap resampling of the likelihood ratio statistic to evaluate the151

evidence to include p + 1 rather than p component distributions for p = 1, 2 . . .. Once152

the number of components had been selected a normal mixture model with this number153

of constituent distributions was fitted with the normalmixEM procedure. This estimates p154

sets of parameters (mean and standard deviation) and the proportions of each constituent155

distribution: λ1, . . . , λp−1. From these estimates one may compute the posterior density156

for each component at any value of α. Lower and upper threshold values, αL and αU, were157

identified to define the range of values of α to be identified with the background process.158

The threshold values were those such that the posterior density of the component of the159

mixture model identified with the background process was larger than that for any other160

component for some α where αL < α < αU.161

The next question is how to identify which component of the mixture model rep-162

resents the background. We would expect it to have a mean close to 2, and to be the163

dominant component (largest value of λ). To support this inference, and to provide evi-164

dence for the appropriateness of the mixture model approach to analysis of the singularity165

index, we undertook a parametric bootstrap estimation of the parameters of the index166

for a normal random variable (perhaps after transformation) with the same variogram167

parameters as the data and the same spatial distribution. The process was as follows.168

a. For the n data used in the computation of the observed values of the singularity169

index, compute the distance matrix and from this the covariance matrix given the170

estimated variogram parameters from the model selected by cross-validation.171

b. Compute 1000 realizations of the normal variable with this covariance matrix, and the172

mean of the (transformed) values of the original data using the mvnorm procedure173

from the MASS package in R (Venables and Ripley, 2002).174

c. For each realization in turn, back-transform the simulated values to the scale of the175
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original measurements.176

d. Compute the singularity index from these data at the same grid locations as used in177

the analysis of the real data, and with for the same set of windows.178

e. Compute the mean and standard deviation of the singularity index of the simulated179

data over all nodes and record these statistics.180

f. Iterate steps (c)–(d) for each realization.181

2.2 Case study 1: Zn east of Dartmoor, south-west England182

This study area (see Figure 1) is a region within which anomalous concentrations183

of soil zinc might be expected. This is because of the presence of stratiform sulphide184

mineralizations in the region (Benham et al., 2005) which has a history of metal mining185

from prior to the Roman occupation of Britain. Benham et al. (2005) report assessments186

of geological information, geophysical surveys, information on known deposits and geo-187

chemical data to support the expectation of such mineralizations. The latter data include188

anomalous zinc concentrations in streambed sediment surveys and identification of zinc189

enrichment in soils associated with magnetic anomalies identified by geophysical surveys.190

The soil data from south-west England analysed in this paper were collected in191

2013 according to the protocols of the Geochemical Baseline Survey of the Environment192

(G-BASE) of the British Geological Survey (Johnson et al., 2005). The sample points193

were located at more or less regular intervals, subject to constraints in the field, at a194

density locally of about one sample per 8 km2. Each sample was a composite formed from195

cores collected at the centre and vertices of a 20-m square. The cores were length 15 cm196

excluding surface litter. Material was subsequently air-dried, disaggregated and sieved to197

pass 2 mm and sub-sampled by coning and quartering. A 50-g sub-sample was ground198

in an agate planetary ball mill until 95% of the material was finer than 53 µm. Total199

concentrations of each of some 50 elements were determined for each sample by X-Ray200

Fluorescence Spectrometry.201
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2.3 Case study 2: As in Counties Monaghan and Armagh, north of Ireland202

The Longford-Down terrane in the north-east of Ireland has a history of mineral203

exploration; lead and zinc vein deposits have been worked since the nineteenth century. In204

recent years the area has been recognised for its gold prospectivity. Dublin based junior205

exploration company, Conroy Gold and Natural Resource, have defined a 30 mile gold206

trend with a number of gold targets identified. These include the Clontibret gold target in207

County Monaghan and additional targets that are identified along trend to the north east208

at Clay Lake in County Armagh and to the south west in County Monaghan. The gold209

mineralisation is associated with arsenopyrite and as such arsenic is used as a ‘pathfinder’210

element for precious metal mineralisation. We therefore examined soil geochemical data211

for anomalous As concentrations.212

The soil data from Ireland analysed in this paper were collected in two surveys, the213

Tellus survey of Northern Ireland and the Tellus Border survey of the six border counties214

of the Republic of Ireland. The study area is shown in Figure 1. The geochemical survey215

activities in these two projects are described by Young et al. (2016).216

The sampling of soil in both Tellus and Tellus Border followed the field protocols of217

G-BASE as described in section 2.2. In the Tellus survey soil sampling was undertaken218

at a density of one sample per 2 km2 and in Tellus Border at a density of one sample219

per 3.6 km2. Samples were dried and disaggregated by hand, then sieved to pass through220

2 mm. The sub-2 mm fraction was milled using an agate planetary ball mill to produce221

a sample of predominantly < 53 µm fraction. A 1-g sub-sample of the milled material222

was treated by two-acid (ratio of 2:1 HNO3:HCl aqua regia variant) sample digestion,223

and the digestate was analysed for concentrations of a range of elements including As by224

multi-element ICP-MS analysis (Knights, 2013).225

2.4 Case study 3: Pb in the Trent valley, East Midlands of England226

This study area (Figure 1) comprises land primarily in rural environments around227

the River Trent in the East Midlands of England, although the urban centres of Worksop228
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and Doncaster lie respectively on the southern and northern corners of its western edge.229

It was selected for examination for anomalies in soil lead concentration. The area does230

not include any known geogenic sources of lead, being some way to the east of the nearest231

mineralization domains for this element (Ander et al. 2013). It does not include a major232

urbanised domain for lead, as identified by Ander et al. (2013) but anthropogenic sources233

of lead from industrial activity, paint, leaded petrol and other sources are possible in the234

west due to the populated areas of Worksop and Doncaster and associated small towns.235

A priori, a likely source of lead is the alluvium of the River Trent. It is known that the236

Trent alluvium may have instances of large concentrations of lead (Izquierdo et al., 2014).237

Isotopic studies of this lead (Izquierdo et al., 2014) show that it has multiple sources238

including geogenic ones — lead mineralization in the Peak District of Derbyshire in the239

East Midlands of England upstream and to the west of the selected study area. This240

region includes deposits of lead which have been mined since the Roman occupation, and241

are also subject to natural weathering. Lead also occurs in East Midlands coal deposits.242

There is also evidence for anthropogenic lead, at least some of which can be attributed to243

lead tetraethyl which was used as an additive in petrol in the United Kingdom until 1999,244

although the lead content of petrol in the UK was reduced from 1986 (Noble et al., 2008).245

Geogenic sources of lead contribute to alluvium through weathering and transport by246

water. The anthropogenic sources of lead contribute through discharge of wastes directly247

into rivers and onto soils.248

The soil data used for this case study were collected as part of the G-BASE pro-249

gramme following the same protocols as described for the Zn data in section 2.2, but with250

sampling at a density of approximately one sample per 2 km2 with samples located as251

close as possible to the centres of alternate 1-km2 cells of the British National Grid.252

2.5 Case study 4: Hf in north Norfolk, eastern England253

This study area is in the north of Norfolk in eastern England (Figure 1). The254

element considered here is hafnium (Hf). This element is known to be relatively enriched255
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(along with zirconium) in aeolian deposits (Taylor et al., 1983), and this association has256

been confirmed for the loess deposits and coversands of eastern England by Scheib and257

Lee (2010). These aeolian deposits are of late Pleistocene origin when the southern limit258

of the British ice sheet was just to the north of the study area. Loess is found in the259

north-eastern part of the selected area and coversands in the south-west.260

The soil data used in this case study were collected according to the same field and261

analytical protocols as the lead data described in section 2.4, with sampling at a mean262

density of one sample per 2 km2.263

3. Results264

3.2 Case study 1: Zn east of Dartmoor, south-west England265

On the original scale of measurement (mg kg−1) the data on Zn concentration are266

somewhat skew (Figure 2, Table 1) but this is reduced by transformation to logarithms.267

Most of the larger concentrations are in the east of the region in soil formed over sand-268

stones, mudstones, metasandstones, metamudstones and slates, the latter formed by meta-269

morphosis under the influence of the igneous granite intrusion in the east of the region270

which underlies Dartmoor (British Geological Survey, 1995).271

There are some differences among the empirical variograms obtained with different272

estimators (Figure 4). The histograms of the cross-validation errors suggest that these may273

be assumed to be normal (Figure 5) and the median SSPE (Table 2) for the variogram274

fitted to estimates obtained by the robust estimator of Cressie and Hawkins (1980) is275

closest to the expected value of 0.455, so this was used for the parametric bootstrapping276

of the singularity index for the background random variable (Table 3).277

Table 4 shows that the two-component mixture model was favoured for the values278

of the singularity index for the Zn data. The dominant component has a standard de-279

viation of 0.304, which is close to the median value of the standard deviation over the280

1000 parametric bootstrap resamples (Table 3) and within the interquartile range. This281

supports the interpretation of the mixture model as showing, in the dominant component,282
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the singularity index values for the background process, with additional mass in the tails283

of the distribution, corresponding to anomalies, introduced by a minor component with a284

larger standard deviation (Figure 6). The posterior likelihood of this second component is285

larger for values of the singularity index smaller than 1.51 and larger than 2.85, so these286

values were used as thresholds (Figure 7).287

Most of the enrichment anomalies in Figure 7 appear in the east of the region.288

Note in particular that there are three clusters which lie on a line approximately north289

north-east to south south west, aligned with the distribution of known sites with stratified290

mineralization in the area. This suggests that the geochemical anomalies identified by the291

analysis are, at least in part, the result of local mineralization, some of which may be of292

economic significance.293

3.3 Case study 2: As in Counties Monaghan and Armagh, north of Ireland294

The original data on As were markedly skew (Figure 8, Table 1) and this was reduced295

by transformation to logarithms although the histograms suggest that a contaminated296

normal model may be appropriate with additional observations in an upper tail. There297

are marked differences between the variograms estimated by different methods (Figure298

10). The cross validation errors in Figure 11 suggest that a normal model of these is299

plausible. The median SSPE for the variogram model fitted to estimates obtained with300

the estimator proposed by Dowd (1984) is 0.41, closer to 0.455 than that for any other301

model. This was used to obtain the parametric bootstrap samples of the statistics for the302

singularity index in Table 3.303

Table 4 shows that a two-component mixture model was favoured for the singularity304

index. The dominant component had a standard deviation of 0.182. This was somewhat305

smaller than the median value of the parametric bootstrap resamples of the singularity306

index (Table 3) and outside the 95 percentile range (0.193–0.280). On the assumption that307

the dominant component represents the background process the thresholds for anomalies308

are 1.67 and 2.54 (Figure 13).309
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The arsenic enrichment anomalies evident in Figure 13 correspond to known arsenic310

(and gold) mineralisation identified through mineral exploration in the area. Both oc-311

cur as coincident discrete packages along the line of the Orlock Bridge Fault, which is312

believed to be a controlling feature. The anomaly at location 270 500E (Irish National313

Grid, ING), 327 000N(ING) (County Monaghan) is located on the northern edge of the314

previously-identified gold anomaly at the Glenish gold target. The Clay Lake target at315

282 000E(ING), 335 100N(ING) shows good correlation with the singularity anomaly in316

that location. However of particular interest, the Clontibret gold deposit at location317

275 800E(ING), 330 000N(ING) shows no corresponding singularity anomaly in the soil318

dataset, based on the thresholds used. A minor anomaly is evident along strike between319

Glenish and Clay Lake which sits in the general gold trend identified. A further anomaly320

is located along trend to the south west at 257000E(ING), 311000N(ING) which may be321

related to the same mineralisation event. This anomaly at 257 000E(ING), 311 000N(ING)322

is located to the south of the mapped location of the Orlock Bridge Fault, rather than to323

the north as is the case at Glenish and Clay Lake.324

In addition to the major NE - SW basement orientation, structural mapping in the325

area has identified NNE and NW trending lineaments and faults. Further anomalies in the326

area could be interpreted to follow the discrete package style of occurrence which typifies327

the mineralisation along the Orlock Bridge fault, in these other orientations.328

3.4 Case study 3: Pb in the Trent valley, East Midlands of England329

The original data on lead concentrations were very strongly skewed (Figure 14, Table330

1) and this was reduced by log transformation although the coefficient of skewness for the331

transformed data still exceeds 1. There are marked differences between the variograms332

estimated by different methods (Figure 16) and the median SSPE for the variogram model333

fitted to estimates obtained with the estimator proposed by Dowd (1984) is 0.46, which334

is very close to the expectation for normal kriging errors with a correct variogram model.335

This mode was used to obtain the parametric bootstrap samples of the statistics for the336
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singularity index in Table 3.337

The two-component mixture model was favoured for the singularity index (Table 4,338

Figure 18). The standard deviation of the dominant component was 0.140, which is just339

outside the 95 percentile range for the bootstrap resampled estimate of this statistic under340

the lognormal model (0.11–0.13). Under the two component mixture model the minor com-341

ponent has a mean somewhat less than 2.0 (1.85) and so introduces most additional mass342

into the lower tail, corresponding to enrichment anomalies. The thresholds for anomalies343

under the mixture model were 1.81 and 2.52.344

Figure 19 shows the singularity index and the thresholded values. It is clear that345

much of the region corresponding to enrichment anomalies is close to the course of the346

River Trent, shown by a white line in Figre 19b. There are also other patches with347

enrichment anomalies, notably to the west of the river. The largest such patch is near348

the British National Grid coordinates 470 000E, 381 000N. This corresponds to the small349

town of Retford in Nottinghamshire. While this town does not have a heritage of heavy350

industry it is a significant point of convergence for transport routes with two railway lines,351

significant trunk roads and a canal historically used for transport of industrial goods.352

The River Idle also passes through the town. This river, a tributary of the Trent, has353

a low water quality rating due to the urban setting of its tributaries and its reception354

of significant discharges from sewage treatment works (Environment Agency, 2006). In355

summary, much of the spatial distribution of enrichment anomalies is accounted for by356

the course of the Trent, and other enrichment anomalies are likely, as with the patch near357

Retford, to reflect anthropogenic factors.358

3.5 Case study 4: Hf in north Norfolk, eastern England359

The data on hafnium concentrations on the original scale are mildly skewed (Table360

1, Figure 20) and have a marked negative skew on the logarithmic scale. For this reason361

a transformation to square roots was used. The larger Hf concentrations are seen in the362

north east and south west of the region (Figure 21) corresponding to known loess and363
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cover sand deposits respectively. There are differences between the variogram estimates364

obtained with different estimators (Figure 22) and the cross validation supports the use365

of the model fitted to estimates obtained with the estimator proposed by Dowd (1984).366

A two-component mixture model was favoured (Table 4). The dominant component367

has a standard deviation of 0.082 which is close to the median value for the parametric368

bootstrap resample estimates (0.087) and is within the 95 percentile range (0.076–0.101).369

The mixture model introduces very little additional mass from the second component,370

for which λ = 0.03. The threshold values for identification of anomalies according to the371

mixture model are 1.69 and 2.24. Very few values fall outside these limits, as can be seen372

in Figure 25. This suggests that, while there are areas with larger concentrations of Hf373

than others, and these can be explained from the known distribution of aeolian deposits,374

this spatial variation is consistent with the (trans) normal distribution and there is no375

evidence for substantial local enrichment or depletion inconsistent with this background376

variation.377

4. Discussion and Conclusions378

In this study we examined data on concentrations of four elements in the soil in379

four contrasting settings. In three of these cases there was clear evidence for geochemical380

anomalies, predominantly enrichment. In these cases the pattern of anomalies was consis-381

tent with independent knowledge about sources, geogenic or anthropogenic, of enrichment382

— the stratiform mineralizations near Dartmoor, the geogenic gold/arsenic mineral oc-383

currences in the Longford-Down terrane, the Trent alluvium and anthropogenic sources384

of lead in the East Midlands of England. There was no substantial evidence of anomalies385

in the data on Hf in north Norfolk. While elevated values were indeed found as expected386

in areas with known aeolian deposits, these are consistent with a simple (trans)normal387

process, with no evidence of locally anomalous behaviour at the scales examined.388

In all cases the likelihood ratio tests favoured a mixture of normals model with two389

but no more components. In all the minor component (smaller λ) had the larger standard390
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deviation and so introduced additional mass into both tails of the overall distribution,391

although in most cases this was not symmetrical, and in the case of lead in the East392

Midlands of England the mean of the minor component was markedly smaller than 2.0,393

accounting for a marked lower tail in the overall distribution of the singularity index. The394

double-log plots of the empirical survival function of α for each case study (Figure 26) do395

not, in any of the cases, clearly comprise linear segments. This suggests that the mixture396

model used here is a more suitable way to determine threshold values of the singularity397

index.398

In the case of Zn and Hf the standard deviation of the major component in the399

mixture model fell within the 95 percentile range of the parametric bootstrapped values400

extracted from values simulated with the selected variogram. In the case of Pb and As the401

standard deviation fell just outside this range, but was much closer to the bootstrapped402

values than was the standard deviation for the minor component. This supports the403

mixture interpretation of the singularity index values, and the thresholds derived from404

this. It is possible that the differences reflect limitation of the robust estimation of the405

variogram. It may also be that, while the assumption of normality for the transformed406

data seemed reasonable, as judged by the histograms, there may be structure in the spatial407

variation with non-normal higher-order moments — features which require multiple-point408

geostatistics (Meerschman et al., 2013).409

It is notable that the two-component mixture model for the singularity index is com-410

patible with a wide range of behaviours by the variable of interest. The mass introduced411

into the tails of the distribution may be very small in both tails if the standard deviation412

of the minor (non-background) component is not much larger than the standard deviation413

of the major component. That was seen in the case of hafnium in this study. With a414

larger standard deviation for the minor component, more mass can be introduced into415

both tails, modelling the presence of both enrichment and depletion anomalies. A strong416

preponderance of enrichment anomalies can be modelled if the mean for the minor compo-417
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nent in the model is markedly smaller than two (as with lead). In a case where there was418

a combination of locally intensive enrichment (e.g. from industrial contamination) and419

more diffuse enrichment by processes such as wind dispersal, this might be represented by420

a minor component in the mixture model with a large standard deviation creating a heavy421

lower tail for the overall distribution of the singularity index, although in some cases more422

than two components might be required in the mixture model.423

If the mean of the background process is not stationary (e.g. there is a spatial424

trend) then this should not markedly affect the corresponding component of the distri-425

bution model for the singularity index as this depends on the local variability in much426

the same way that ordinary kriging is robust to trends (Goovaerts, 1997). However, if427

the background process is not stationary in the variance and autocorrelation, then a more428

complex model would be necessary, and this is a topic for further study. Note that if there429

was non-stationarity in the variance then the median value of SSPE, examined in the430

cross-validation of the variogram models (Table 2) would be expected to deviate markedly431

from 0.45 (Lark, 2009).432

To conclude, it has been shown that anomalous values (or their absence) can be433

identified in soil geochemical data by means of the singularity index, and that the inter-434

pretation of this index can be facilitated with a mixture model. More work is needed on the435

statistics of the index, particularly for the robust characterization of the background dis-436

tribution under a null (trans)normal distribution, and for the modelling of non-stationary437

background processes.438
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Table 1: Summary statistics for soil variables on original and transformed scale

Variable Mean Median Standard Skewness Quartile 1 Quartile 3
deviation

Zn mg kg−1 96.64 78.05 77.70 3.35 45.42 126.93
Zn log

(
mg kg−1

)
4.34 4.36 0.68 0.07 3.82 4.84

As mg kg−1 8.00 5.76 9.48 6.58 3.91 8.53
As log

(
mg kg−1

)
1.79 1.75 0.71 0.42 1.36 2.14

Pb mg kg−1 49.52 35 62.98 11.16 28 49
Pb log

(
mg kg−1

)
3.68 3.56 0.56 1.44 3.33 3.89

Hf
(
mg kg−1

)
7.59 7.3 2.37 1.40 6.1 8.6

Hf
(
mg kg−1

)0.5
2.72 2.70 0.41 0.46 2.47 2.93
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Table 2: Mean and median standardized squared prediction error for cross-validation on
each variable

Variable Standardized squared prediction error

Variogram estimator

Matheron Cressie– Dowd Genton
Hawkins

Mean Median Mean Median Mean Median Mean Median

Zn log
(
mg kg−1

)
0.90 0.32 1.27 0.43 1.71 0.51 1.17 0.39

As log
(
mg kg−1

)
0.86 0.25 1.09 0.33 1.35 0.41 1.13 0.34

Pb log
(
mg kg−1

)
1.02 0.23 1.58 0.34 2.15 0.46 1.71 0.37

Hf
(
mg kg−1

)0.5
0.96 0.29 1.19 0.37 1.35 0.43 4.25 1.31
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Table 3: Mean and quantiles of parameters of the parametric-bootstrapped singularity
index under the (log)normal null model

Mean of α Standard deviation of α

Quantile 0.025 0.25 0.50 0.75 0.975 0.025 0.25 0.50 0.75 0.975

Variable
Zn log

(
mg kg−1

)
2.02 2.05 2.08 2.10 2.17 0.235 0.272 0.298 0.331 0.413

As log
(
mg kg−1

)
2.03 2.05 2.06 2.07 2.09 0.193 0.216 0.228 0.243 0.280

Pb log
(
mg kg−1

)
2.010 2.015 2.018 2.022 2.030 0.109 0.117 0.121 0.125 0.134

Hf
(
mg kg−1

)0.5
2.002 2.007 2.009 2.011 2.016 0.076 0.083 0.087 0.0912 0.101

24



Table 4: Mixture fitting for singularity index

Log-likelihood ratio and P -values Mixture-model parameters
2 components 3 components Component 1 Component 2

L P L P λ µ σ λ µ σ

Variable

Zn log
(
mg kg−1

)
17.56 0.010 9.65 0.1 0.73 2.12 0.304 0.27 2.03 0.487

As log
(
mg kg−1

)
39.59 <0.001 5.05 0.28 0.81 2.08 0.182 0.19 2.00 0.364

Pb log
(
mg kg−1

)
104.05 <0.001 6.78 0.16 0.81 2.10 0.140 0.19 1.85 0.319

Hf
(
mg kg−1

)0.5
13.38 0.04 4.68 0.30 0.97 2.01 0.082 0.03 2.11 0.157
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Figure captions

Figure 1. Map of the United Kingdom and Ireland showing the locations of the rectan-

gular regions within which the singularity index was evaluated for some element in

the topsoil. a). East of Dartmoor in the south-west of England (Zn); b). Longford-

Down terrane in Counties Monaghan and Armagh in the north of Ireland (As); c).

Part of the Trent valley in the East Midlands of England (Pb) d). Part of North

Norfolk in eastern England (Hf).

Figure 2. Boxplots and histograms for (2a and 2b) soil Zn content from the south-west

study area and (2c and 2d) soil Zn content transformed to natural logarithms.

Figure 3. Post-plot of the Zn data, the symbols distinguish sample points in the quartiles

of the distribution. Coordinates are in metres relative to the origin of the British

National Grid.

Figure 4. Empirical variograms for Zn content from the south-west study area with

fitted models. Estimators are Matheron (4a), Cressie-Hawkins (4b), Dowd (4c) and

Genton (4d).

Figure 5. Histograms of cross-validation errors for Zn content from the south-west study

area. Estimators are Matheron (5a), Cressie-Hawkins (5b), Dowd (5c) and Genton

(5d).

Figure 6. Histogram of the singularity index for Zn content from the south-west study

area with PDFs for two components of the mixture superimposed.

Figure 7. (Top) values of the singularity index for Zn and (bottom) values thresholded

on the basis of the mixture model: enrichment anomaly in black, background in

grey, depletion anomaly hachured. The dark grey symbols indicate the locations of

known stratiform mineral deposits in the area, the grey star indicating a deposit

where Zn is a major ore element. Coordinates are in metres relative to the origin of

the British National Grid.
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Figure 8. Boxplots and histograms for (8a and 8b) soil As content from the Longford-

Down terrane and (8c and 8d) soil As content transformed to natural logarithms.

Figure 9. Post-plot of the As data, the symbols distinguish sample points in the quartiles

of the distribution. Coordinates are in metres relative to the origin of the Irish

National Grid.

Figure 10. Empirical variograms for soil As content from the Longford-Down terrane

with fitted models. Estimators are Matheron (10a), Cressie-Hawkins (10b), Dowd

(10c) and Genton (10d).

Figure 11. Histograms of cross-validation errors for soil As content from the Longford-

Down study area. Estimators are Matheron (11a), Cressie-Hawkins (11b), Dowd

(11c) and Genton (11d).

Figure 12. Histogram of the singularity index for soil As content from the Longford-

Down study area with PDFs for two components of the mixture superimposed.

Figure 13. (Top) values of the singularity index for As and (bottom) values thresholded

on the basis of the mixture model: enrichment anomaly in black, background in

grey, depletion anomaly hachured. Coordinates are in metres relative to the origin

of the Irish National Grid.

Figure 14. Boxplots and histograms for (14a and 14b) soil Pb content from the East

Midlands study area and (14c and 14d) soil Pb content transformed to natural

logarithms.

Figure 15. Post-plot of the Pb data, the symbols distinguish sample points in the

quartiles of the distribution. Coordinates are in metres relative to the origin of the

British National Grid.

Figure 16. Empirical variograms for soil Pb content from the East Midlands study area

with fitted models. Estimators are Matheron (16a), Cressie-Hawkins 16b), Dowd
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(16c) and Genton (16d).

Figure 17. Histograms of cross-validation errors for soil Pb content from the East

Midlands study area. Estimators are Matheron (17a), Cressie-Hawkins (17b), Dowd

(17c) and Genton (17d).

Figure 18. Histogram of the singularity index for soil Pb content from the East Midlands

study area with PDFs for two components of the mixture superimposed.

Figure 19. (Top) values of the singularity index for Pb and (bottom) values thresholded

on the basis of the mixture model: enrichment anomaly in black, background in grey,

depletion anomaly hachured. The white line shows the course of the River Trent.

Coordinates are in metres relative to the origin of the British National Grid.

Figure 20. Boxplots and histograms for (20a and 20b) soil Hf content from the North

Norfolk study area and (20c and 20d) soil Hf content transformed to natural loga-

rithms.

Figure 21. Post-plot of the Hf data, the symbols distinguish sample points in the

quartiles of the distribution. Coordinates are in metres relative to the origin of the

British National Grid.

Figure 22. Empirical variograms for soil Hf content from the North Norfolk study area

with fitted models. Estimators are Matheron (22a), Cressie-Hawkins (22b), Dowd

(22c) and Genton (22d).

Figure 23. Histograms of cross-validation errors for soil Hf content from the North

Norfolk study area. Estimators are Matheron (23a), Cressie-Hawkins (23b), Dowd

(23c) and Genton (23d).

Figure 24. Histogram of the singularity index for soil Hf content from the North Norfolk

study area with PDFs for two components of the mixture superimposed.
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Figure 25. (Top) values of the singularity index for Hf and (bottom) values thresholded

on the basis of the mixture model: enrichment anomaly in black, background in

grey, depletion anomaly hachured. Coordinates are in metres relative to the origin

of the British National Grid.

Figure 26. Plots of the empirical survival function of the singularity index, i.e. the area

corresponding to values of the index less than α on double-log axes for a) Zn in the

south-west study area; b) As at Longford-Down; c) Pb in the East Midlands and d)

Hf in North Norfolk.
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