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Abstract 1 

Spatial environmental heterogeneity (EH) is an important factor determining species 2 

richness among many taxa across spatial scales. Increased EH may support higher diversity 3 

mainly by providing a higher number of ecological niches. However, the shapes of the EH-4 

diversity relationships and their influence on diversity measures at landscape scales are 5 

poorly understood. We used random forests regression models to assess the relationships 6 

between different components of EH and bird species richness across Great Britain. Bird 7 

data were obtained using BTO/JNCC/RSPB Breeding Bird Survey methods across 335 UK 8 

Countryside Survey (CS) 1-km squares in 2000. Data on components of EH, including; 9 

vegetation, habitat diversity, and habitat structure were collected in associated field surveys. 10 

Using the results of our EH component-bird richness models, we applied the case of the 11 

likely decline of the ash tree, a species of conservation concern and a key component of 12 

British landscape complexity, to create predictive scenarios of future bird richness. We 13 

found that EH components had a strong positive effect on bird richness and identified six 14 

key components that explained over 70% of variance in bird richness. Bird richness 15 

responses were strongly dependent on the specific EH components and were generally non-16 

linear, especially for habitat structural variables, such as lines of trees and hedges.  Our 17 

predictive scenarios showed a decrease in bird species richness only for simulated ash tree 18 

decreases within the habitat structural variables of over 90%, and only for areas where this 19 
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tree species was a particularly abundant component of the landscape. Our findings, showing 20 

that bird richness responses differ for EH components, and that non-linear responses are 21 

common, could help the ‘design’ of landscapes that enhance bird diversity. In particular, our 22 

study indicates that, in some cases, increasing the occurrence of key structural components 23 

of habitat (such as ensuring a minimum of 700 m of managed hedges or a minimum of 70 24 

individual trees per km square), could have disproportionally positive impacts on bird 25 

richness.  26 

 27 

Keywords: ash tree, Countryside Survey, environmental heterogeneity, linear features, 28 

random forests models, predictive diversity maps   29 
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1. Introduction 30 

A major concern for ecologists and conservationists is understanding why some areas are 31 

richer in species than others. Spatial environmental heterogeneity (EH), understood as all 32 

aspects of complexity, diversity, structure or variability of the environment (Stein et al., 33 

2015), is known to be an important factor for determining species richness and abundance 34 

among many taxa across spatial scales (Stein et al., 2014). Increased EH might support a 35 

higher diversity by providing higher numbers of ecological niches in the form of habitat 36 

types, resources or structural diversity (Tews et al., 2004). Based on this, one might expect 37 

positive and linear relationships between EH and species diversity (Seiferling et al., 2014). 38 

Although examples of negligible or negative relationships can be found, most studies show 39 

such positive relationships (see review by Stein et al. (2014)). However, the study of non-40 

linear patterns may be particularly important for understanding complex EH-diversity 41 

relationships (Stein et al., 2014), and could help in the identification of environmental 42 

tipping points (Oliver et al., 2015). 43 

Models based on island biogeography have suggested that EH can have a unimodal effect 44 

on species diversity (Kadmon and Allouche, 2007), arising from the trade-off between the 45 

increase of ecological niches and the effects of the reduction in area of suitable habitats for 46 

each individual species. This trade-off may be strongly dependent on the scale of 47 

observation, as larger-scale diversity patterns may be driven by demographic processes, 48 



4 
 

while small-scale patterns may instead reflect behavioural processes (Chocron et al., 2015). 49 

In a meta-regression study, Tamme et al. (2010) found that negative EH-diversity 50 

relationships are more common at smaller scales. Factors such as the level of urbanization 51 

(Seiferling et al., 2014) or the size (area coverage) of the niches required by the species 52 

considered (Allouche et al., 2012) could also affect the shape of the EH-diversity curve. 53 

Another key issue for understanding how EH regulates species diversity is that these 54 

relationships may depend heavily on the definition of EH, or on the measured heterogeneity 55 

components. For example, fern species richness in the Alps had different response curves for 56 

habitat diversity, land cover, elevation or climate variables (Marini et al., 2011). Scottish 57 

soil-fauna diversity had hump-shaped relationships with land-cover percentages, but linear 58 

ones with habitat diversity (Vanbergen et al., 2007). Understanding the contribution of 59 

different components of EH to these relationships may be critical, but presents several 60 

challenges. 61 

The interaction between different components of EH makes the study of individual 62 

variables difficult, as autocorrelation and indirect effects on diversity might be common in 63 

these systems. Although the study of the interactions between different EH components and 64 

their disparate effects on diversity should help to explain the observed array of EH-diversity 65 

relationships, this topic has rarely been addressed (Stein et al., 2014). Understanding how 66 

individual components of EH influence overall EH-diversity relationships could help with 67 



5 
 

conservation planning, as optimal levels for the maintenance of biodiversity could be 68 

identified independently for different, manageable EH components.  69 

In this study, we tested how a combination of different components of EH could explain 70 

bird richness gradients across Great Britain (GB) and studied the shape of relationships 71 

between individual EH components and bird richness. Birds are good indicators of the 72 

general health of biodiversity and ecosystems (Furness and Greenwood, 2013). Maintaining 73 

bird diversity is important due to its role in the provision of cultural and ecosystem services 74 

(Whelan et al., 2008). Some aspects of EH, such as habitat diversity or structural 75 

complexity, including, for example, the presence of linear landscape features such as 76 

hedgerows, have been shown to affect bird abundance (Pearce-Higgins and Grant, 2006) and 77 

diversity at local scales within certain habitat types (Pickett and Siriwardena, 2011; 78 

Zellweger et al., 2016; Sullivan et al., 2017). However, nationally representative data 79 

demonstrating how fine-grain EH regulates bird richness is lacking, largely due to the lack 80 

of highly resolved co-located bird and habitat/landscape feature surveys. Here we use fine-81 

grain (field) environmental data to characterize habitats in terms of heterogeneity features, 82 

as opposed to the standard approach of considering habitat extent. Detailed measurements of 83 

landscape features are often neglected in EH-diversity studies despite their potential 84 

importance at certain scales (Tews et al., 2004) because they are rarely recorded 85 

comprehensively in the field. Given that particular fine-scale landscape features are 86 

generally not dominant in the landscape and that they add structural complexity, which is 87 
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additional to existing habitat heterogeneity, they can be considered to be positive 88 

contributors to heterogeneity as well as to habitat amount. 89 

In order to assess the relationships between EH and bird richness across GB, we first 90 

tested the extent to which a combination of EH components explained the observed 91 

differences in bird richness between squares. Second, we tested whether the responses of 92 

bird richness were similar for each of the key EH components. Finally, to give an example 93 

of how understanding these relationships can be useful in conservation and management 94 

planning, national scale predictive maps of bird richness were created. We used the case of 95 

the decline of the ash tree (Fraxinus excelsior), a species of conservation concern and a key 96 

component of British landscape complexity (Mitchell et al., 2014), to create scenarios of 97 

future bird richness. 98 

2. Materials and methods 99 

2.1 Environmental heterogeneity variables 100 

This study focused on features considered likely to be relevant for bird diversity at the 1-km 101 

scale that contribute to overall EH. We analysed biotic EH components (Stein et al., 2014) 102 

including; land cover, habitat features and vegetation. These components are important at 103 

landscape scales (Tews et al., 2004), and include aspects of both spatial and, in particular, 104 
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structural diversity, such as borders between habitats or individual trees. Abiotic EH 105 

components, such as climate or soil, were not used because their heterogeneity is difficult to 106 

detect at 1-km scale and they often influence bird richness indirectly through resource 107 

provision and vegetation effects (Ferger et al., 2014). 108 

The EH predictors used were based on data collected during the UK Countryside Survey 109 

of 2000 (CS2000) (Howard et al., 2003). CS2000 compiled detailed information on the 110 

landscape across a randomly stratified sample of nationally representative 569 1-km squares 111 

of rural GB collected in 1998/1999. The sample was stratified according to the UK Institute 112 

of Terrestrial Ecology (ITE) land classes which classify all 1km squares across GB 113 

according to a range of biophysical variables (Bunce et al., 1991). The variation of these 114 

biophysical variables was minimised within the strata and maximised between strata. A 115 

subset of 335 squares, for which bird survey data was collected as well as EH variables, was 116 

used for this study. During the CS2000 surveys, the landscape was mapped and described at 117 

a scale of 1:500, identifying the land cover of each parcel within each square, as well as a 118 

wide variety of point and linear landscape features. All of the features present in non-urban 119 

areas with a minimum length (>20m) and area (>0·04ha (minimum mappable unit (MMU))) 120 

together with point features (including individual trees with diameter at breast height 121 

(DBH)>5cm and other significant features below the MMU, such as ponds or patches of 122 

scrub) were recorded.  123 
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Three types of CS-derived variables were used as components of EH within a square: 124 

plant species diversity, habitat cover diversity and the presence of a range of landscape 125 

features. The total number of plant species per square, recorded across all plot types in the 126 

CS2000 surveys (Barr et al., 2003), was used to characterise plant richness. Habitat cover 127 

percentage estimates recorded in the CS2000 surveys were based on the UK Broad Habitats 128 

classification (Jackson, 2000). As this study was specifically focused on identifying the 129 

importance of aspects of heterogeneity other than ‘areas of habitat type’, rather than on 130 

understanding the detailed ecology of either individual British bird species or groups of 131 

them, ‘areas of habitat types’ were not explicitly included as predictors. Instead, a Shannon’s 132 

habitat-cover diversity index (Magurran, 2013) for each square was used, as this was simpler 133 

to interpret as a component of overall EH at the national scale. The Boundary and Linear 134 

Features Broad Habitat was used as an EH variable by itself; in CS, it is recorded as areas 135 

composed of linear landscape components which are greater than 20m in width, such as 136 

grass strips, motorway, road and railway verges, wide field boundaries, etc. 137 

Structural landscape features included attributes recorded on an area, linear or point basis. 138 

Area features included; scattered trees and scrub (at densities well below those that would 139 

constitute woodland) recorded on top of the habitat which was recorded as the main cover 140 

(e.g. Neutral Grassland Broad Habitat), wide tree and scrub belts recorded as an area in their 141 

own right, and clumps of trees and patches of scrub in areas above the MMU but not 142 

constituting the main habitat (as per scattered trees and scrub). Linear features included 143 
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rivers, streams, ditches, hedges, fences, walls and lines of trees. Point features included 144 

variables such as individual trees or small patches of trees or scrubs (below MMU). Table 145 

S.1 shows the variables used as EH predictors of bird diversity.  146 

 147 

2.2 Bird richness 148 

Bird species richness data were collected in 335 CS2000 squares between April and June of 149 

2000 (Wilson and Fuller, 2001) and are used as the response variable. Bird counts were 150 

recorded along four line transects, measuring up to 4 km within each square, on each of two 151 

separate visits during the early and late breeding season; the standard surveying 152 

methodology of the BTO/JNCC/RSPB Breeding Bird Survey (BBS, Harris et al., 2017) was 153 

followed. The greater spatial intensity of survey should provide a more comprehensive 154 

assessment of square-level bird abundance and species presence than the standard BBS 155 

method. Bird richness for all squares was calculated by counting all the different species 156 

recorded along any of the four transects (Table S.2). 157 

 158 

2.3 Random forests models and variable selection 159 

EH component variables can be highly correlated and may interact producing complex, non-160 

linear effects on bird diversity. The Random Forests (RF) regression (Breiman, 2001) does 161 
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not assume linear responses and is often used for its ability to handle complex interactions 162 

between variables (Breiman, 2001; Prasad et al., 2006). In recent years, RF tools have 163 

assisted scientists in solving feature selection problems (Genuer et al., 2010), through 164 

feature importance analysis (Nicodemus et al., 2010) and studying the shape of the predictor 165 

effects on the response variables (Palczewska et al., 2014). Here, we use RFs to determine 166 

which components of EH, in combination, best predict species richness. 167 

A RF regression model with 1000 trees was used to establish the response of bird species 168 

richness, derived from the 335 CS bird surveys, to 25 EH predictors (Table S1). This RF 169 

model was used to rank the explanatory power (importance) of each predictor. The mean 170 

decrease in accuracy (MDA) and the Gini index (Breiman, 2001) were used to assess EH-171 

variable importance. The MDA index uses the left-out data samples not used for training the 172 

RF model (out-of-bag data) to cross-validate the response predictions, by comparing the 173 

accuracies of the final model with a model in which a given variable has been randomly 174 

permuted. The Gini index uses the impurity measurements (how effectively a tree splits the 175 

data) after a tree-node split for a given variable. Measuring the total Gini impurity decrease 176 

across all of the trees in the forest gives a reliable variable importance measure. 177 

 Subsequent analyses were based on RF models using the six EH-variables identified as 178 

being most important (Table 1). Although co-linearity cannot be completely removed and it 179 

might influence the assessment of the variables’ response analysis, feature selection reduces 180 

complexity and correlation between predictors and simplifies interpretation. Robust and 181 
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objective selection of high ranking predictors can be challenging. Although the MDA and 182 

Gini indices can be useful in the ranking and comparison of predictor importance, there is no 183 

standard method of selecting variables for RF models. Several methods have been suggested 184 

based on decreased model accuracy after discarding an arbitrary number of variables (Díaz-185 

Uriarte and De Andres, 2006; Genuer et al., 2010). In order to avoid the use of arbitrary 186 

accuracy thresholds, we excluded lower importance variables progressively, with reference 187 

to the accuracy decrease curve after removing all of the variables one by one (Ishwaran et 188 

al., 2010). The randomForest package (Liaw and Wiener, 2002) in R (R Development Core 189 

Team, 2013) was used to build and to analyse the RF models. 190 

2.4 Response of bird richness to EH variability 191 

The six highest ranked EH variables (Table 1) were analysed. First, scatterplots of bird 192 

richness for each square were plotted against the EH variables, a linear regression model 193 

was created and the Pearson correlation coefficient calculated. Density graphs of bird 194 

richness and each predictor were plotted to get an overview of the data distribution shapes. 195 

Correlations between the predictors were estimated to identify possible highly correlated 196 

predictors. 197 

Second, to account for possible non-linear relationships between bird richness and 198 

explanatory variables, as well as complex multivariable interactions, RF analysis tools were 199 
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used. A new RF model was created using EH variables selected for importance. Then, a 200 

feature contribution (FC) analysis was performed (Palczewska et al., 2014). The FC is 201 

calculated by recording the increments of the predicted response after each tree node split by 202 

a given variable. The FC is the sum of all the increments for each observation for each 203 

variable, divided by the number of trees. Plotting the FC against the value of each variable is 204 

an effective means of separating and visualising the effect of a studied variable in isolation 205 

on variations in the response variable predictions. The non-linearity of the FC plots was 206 

tested by fitting the FC of each variable with a k-nearest neighbors (knn) regression model 207 

and comparing its explanatory power to that of a linear regression. The forestFloor package 208 

(Welling et al., 2016) in R was used to calculate the FC and to fit the knn models. 209 

2.5 Predictive models 210 

National scale predictive models of bird richness were created. The top ranked EH variables 211 

were up-scaled for all of GB, using satellite-derived land-cover data from the UK Land 212 

Cover Map of 2000 (LCM2000, Fuller et. al., 2002) and the ITE Land Classification (Bunce 213 

et al., 1991). Broad Habitat (Jackson, 2000) percentages for each square were calculated 214 

from LCM2000. These variables (land cover and land class) were then used to train RF 215 

models to predict the most important EH component variables for each GB 1km square. 216 

Modelled EH variables for each 1km square were then used to feed the RF model built with 217 

the key variables (see previous section) to obtain a predictive map of bird richness for GB. 218 
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To test a scenario of how changes to key EH variables may impact on bird richness, 219 

predictive bird richness models were created representing potential losses in GB ash tree 220 

coverage from ash dieback, as would be seen in the top ranked EH variables (N.B. further 221 

impacts would be likely to result from the loss of ash in woodland, which were not 222 

considered here). Data derived from CS2000, which estimate the percentages of ash trees in 223 

the different linear and point features at national scales and for each ITE Land class 224 

(Maskell et al., 2013), were used to alter the values of our bird richness predictors. These 225 

predictors were then used to model (and map) bird richness changes under different ash loss 226 

scenarios. The amount of ash trees present in linear and point features varied, ranging from 227 

constituting between 1 and 26% of lines of trees (mean ± sd: 3·9 ± 4·2%), from 17 to 100% 228 

of hedges (36·1 ± 20·58%) and from 0 to 41% of individual trees (14·3 ± 10·8%). These 229 

three variables were modified using hypothetical values of ash tree percentage decrease 230 

across GB, creating 11 scenarios: from 100% of ash (current state) to 0% of ash, with steady 231 

decreases of 10%. For each ash tree percentage scenario, a modelled bird richness map was 232 

created. Finally, the effects of potential ash tree losses were studied by detecting the 1-km 233 

squares with severe bird richness decreases for each scenario.  234 

 235 
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3. Results 236 

3.1 Model accuracies and variable selection 237 

The RF model including the 25 EH variables explained over 71% of the variance in bird 238 

richness, showing a strong association between bird richness and EH components. Very 239 

similar variance-explained results were obtained with a RF internal cross validation and with 240 

a 7-fold cross validation (this also applied to subsequent models). According to both 241 

variable importance indices, lines of trees were the most important EH component 242 

explaining bird richness. Plant richness, habitat diversity and boundary habitat at the square 243 

level were also ranked in the top six EH variables, together with two other structural 244 

variables: hedges (linear) and individual trees (point) (Fig. 1a and 1b). Table 1 summarises 245 

the model’s top ranked EH variables. Figure 2 shows that accuracy of the models (the 246 

variance in bird richness that they explain) did not improve with the addition of extra 247 

explanatory variables after the six top-ranked ones. As the top six most important variables 248 

are the same for both indices according to Fig. 1a and 1b, those were the EH variables 249 

selected to create a new RF model. The RF model that included the six top ranked variables 250 

explained 71% of the variance in bird richness. This model was used to analyse the 251 

responses of bird richness to EH. 252 

 253 
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3.2 Response of bird richness to EH variability 254 

Plots of bird richness against the six analysed EH variables showed diverse relationships 255 

(Fig. S.1). The Pearson correlation coefficient between bird richness and each EH variable, 256 

in all cases, was higher than 0·45. The EH variables were correlated with one another to 257 

various degrees, from near zero (hedges and habitat diversity) to 0·63 (hedges and lines of 258 

trees). 259 

The FC analysis showed different response shapes for different EH variables (Fig. 3). 260 

These results support the idea that EH-richness relationships can be strongly dependent on 261 

the measured EH component. The response of bird richness to the two linear features (lines 262 

of trees and hedges) and to boundary habitat, showed saturating patterns, with a sharp 263 

increase above a certain threshold value for the predictors. The effect of a line of trees on 264 

increased bird richness was negative for values of zero to 100-120 m. Values for lines of 265 

trees bigger than these values had a positive effect on bird richness, and this effect increased 266 

asymptotically, saturating for a values of around 700 m. A similar pattern was observed for 267 

hedges: values from 0 to 30 m had a negative effect on bird richness, while this effect was 268 

increasingly positive from 30 m, stabilizing for values bigger than 1,200 m. The effect of the 269 

boundary habitat also stabilised for values bigger than 15,000 m2, and indeed values of 270 

under 10,000 m were associated with negative effects on bird richness. For boundary habitat, 271 

however, the positive effects on bird richness were weaker than for lines of trees or hedges. 272 
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The effect of individual trees on bird richness also followed an asymptotic pattern of 273 

increase, but increased smoothly until saturating for values of 70-80 trees per km2. Values of 274 

under 20-25 trees per km2 had a negative association with bird richness. Plant richness below 275 

90-100 species across the whole 1km square was also associated with a negative effect on 276 

bird species richness. At values of over 90-100 species, the effect became positive, but the 277 

intensity of the effect started to decrease slightly after 150 species. The response of bird 278 

richness to habitat diversity was the only one to follow a linear pattern (Table 2), as 279 

expected from previous studies. A Shannon habitat diversity index value of higher than 1·7 280 

positively affected bird richness, and the intensity of the effect increased linearly for higher 281 

values. 282 

For the response of bird richness to habitat diversity, the R2 of the linear model was very 283 

similar to the R2 of the knn fitted model, the latter being an over fitted model relying on a 284 

large number of parameters. The response of bird richness to individual trees also produced 285 

a relatively high R2 value for the linear model; however, the fitted knn model better 286 

explained the FC distribution. One of the most interesting results of the study was that the 287 

responses to the rest of the EH variables were clearly non-linear, with R2 values of below 288 

0·38; these responses were however relatively well explained by the knn models.  289 
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 290 

3.3 Predictive models 291 

RF models predicted the values for each of the six top-ranked EH variables, based on the 292 

LCM2000 land-cover percentages and ITE Land classes in CS2000 squares. The accuracies 293 

for these models varied from 81·6% (habitat diversity) to 21·6% (boundary habitat). The 294 

accuracies for hedges, lines of trees, plant richness and individual trees models were, 295 

respectively, 61·3, 44·0, 43·0 and 38·0%. The EH variables were then up-scaled to the 296 

whole of GB, based on land class and land cover. In turn, these were used to create 297 

predictive models of bird richness for different scenarios of ash tree abundance (from 100 to 298 

0% of current abundance) in these features. At current levels of ash abundance, maps of the 299 

modelled variables showed important differences in bird richness (Fig. 4a), with all of the 300 

predicted values varying between seven and 43 species in total and with 55% of richness 301 

variance explained (estimated using a 7-fold cross validation). Areas of lower bird richness 302 

were found in northern regions, as well as upland areas in Wales and Northern England. 303 

Higher richness was found in the lowlands. A total loss of ash trees from these features was 304 

associated with a loss of one or more species for 21% of all GB squares and a loss of three 305 

or more species for 3% of squares (especially in regions situated at Eastern Scotland and in 306 

lowlands of Central England, Fig. 4b). As expected, the most affected regions were 307 
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associated with land classes that contain significant amounts of ash trees as components of 308 

lines of trees or hedges (such as arable-dominated lowland).  309 

Rather than a steady decline in bird richness with decreasing proportions of ash trees, an 310 

abrupt decrease in bird richness occurred for a presence of between 10 and 0% of ash trees 311 

(Fig.5).  This abrupt change was especially noticeable for squares with already relatively 312 

low species numbers which had large decreases in bird richness (Fig. 5c and 5d).  313 

 314 

4. Discussion 315 

4.1 EH effects on British bird richness 316 

Our analysis of 335 1-km squares across GB indicated that components of EH have strong 317 

positive effects on bird richness, and that the strength of the effect is dependent on the 318 

measurement in question. This positive EH-richness relationship on a 1-km scale may be 319 

attributed to an increased number of bird niches. Our results reflect the predominance of 320 

positive EH-diversity relationships found in studies in different regions of the world and 321 

with different taxa (Stein et al., 2014). Data rich in spatial detail, such as those collected by 322 

the CS2000, are likely to provide increased potential for the detection of high EH variability 323 

and related EH-diversity relationships (Van Rensburg et al., 2002).  324 
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Biotic factors related to the structural properties of the landscape were the best predictors 325 

of bird richness in GB. Two linear features and one point feature related to habitat structure 326 

(i.e. lines of trees, hedges and individual trees) were identified as key components of EH in 327 

our models. This supports the hypothesis that bird diversity is strongly regulated by the 328 

structural diversity of the vegetation (Kissling et al., 2008; Ferger et al., 2014). Our study 329 

indicates that hedges and individual trees are acting as keystone structures (Tews et al., 330 

2004) in the promotion of bird diversity in British ecosystems. Measurements of vegetation 331 

and habitat diversity were also important predictors of British bird richness, and may be 332 

associated with an increase in the diversity of nesting sites and food resources via plant or 333 

animal prey species richness. 334 

 335 

4.2 EH‐diversity non‐linear relationships 336 

Previous studies have discussed the shape of EH-diversity relationships (Kadmon and 337 

Allouche, 2007; Seiferling et al., 2014; Marini et al., 2008, 2011). Here we note that, with 338 

the exception of habitat diversity, the responses of bird species richness to EH components 339 

were all non-linear, most of them showing saturating relationships.  Had we used traditional 340 

linear modelling techniques instead of RF this would have been overlooked. Some EH 341 

components showed moderate correlations with each other, but the analysis of responses, 342 

based on feature contribution (FC) techniques, helped to isolate the effect of each variable. 343 
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This modelling approach revealed acute parabolic shapes for the EH components which 344 

were linear landscape features. A sharp increase in the effect on bird richness was detected 345 

for low values of each linear feature (Fig. 3) indicating that even low amounts of these 346 

components of heterogeneity can promote and preserve richness. However, it should be 347 

noted that the response of bird abundance to the value of a linear feature might be very 348 

different for each species (Thompson et al., 2016); with potential negative effects on some 349 

species. This negative effect on some species may explain the stabilisation of the diversity 350 

response at higher values of these variables. Similar effects, to those for linear features, were 351 

also found for individual trees with predicted richness increasing to a maximum and then 352 

stabilising at intermediate numbers of trees. This supports previous studies showing that the 353 

presence of trees can regulate the abundance of some species (Tews et al., 2004). A positive 354 

linear relationship of bird species richness and habitat diversity has been found for a large 355 

number of other studies (Būhning-Gaese, 1997; Hortal et al., 2009). However, due to the 356 

scale of the study, processes such as stochastic extinctions might not determine diversity 357 

gradients for very high EH (Chocron et al., 2015), and therefore the decreasing section of a 358 

possible unimodal relationship would not be detected. In this case, the increase of niches 359 

may be the main consequence of habitat diversity and partitioning, and therefore only a 360 

linear increase in diversity would be observed. 361 

 362 

4.3 Ash trees loss scenarios 363 
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Models, based on land classes and remotely sensed land-cover data, were used to upscale the 364 

six key EH variables to a national scale and to create bird richness maps of GB. These types 365 

of medium-high resolution, national-scale diversity maps are useful tools for assessing 366 

important geographical differences, including detecting hot and cold spots for biodiversity 367 

(Pressey, 2004). In order to predict the impact of ash tree loss on bird richness, the EH 368 

predictors were altered to mimic ash loss scenarios over the next decades. Our predictive 369 

maps showed very few changes in bird richness on a national scale for simulated ash 370 

decreases of less than 90% in the EH components considered. However, significant losses 371 

were predicted locally for the hypothetical extinction of ash trees. This result reflects the 372 

non-linear effects of the linear and point EH variables on bird richness. In some regions, for 373 

a certain level of ash tree decrease, the model predicts a step change in the EH-richness 374 

relationship resulting in acute decreases in bird richness. The risk of reaching very low bird 375 

species richness might increase for ash tree decreases above 90%. Bird richness levels 376 

stayed stable in most regions, primarily because these areas contain very low amounts of 377 

linear features and individual trees. However, it should be noted that reductions of ash in 378 

woodland, may also have significant impacts on bird numbers for these areas. 379 

 380 

4.4 Applications for biodiversity prediction and conservation 381 

We provide an example of how the detection of non-linear relationships between EH 382 

components and bird richness could help to identify tipping points for biodiversity loss. The 383 
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identification of non-linear relationships could be especially useful for scenarios that affect 384 

the structural diversity of landscapes, such as the loss of ash trees in GB, because 385 

components of EH that contribute to structural diversity are key to explaining bird diversity 386 

at landscape scales. There are, however, several important limitations to this analysis, 387 

including the fact that no account was taken of ash in woodland, that the potential 388 

replacement of ash with other species providing similar structural functions was not 389 

considered, and that ash trees may play roles within food webs (Mitchell et al., 2014). 390 

Prioritising conservation efforts through maintaining appropriate measures of EH can be 391 

an effective tool for supporting biodiversity (Londono-Murcia et al., 2010). Our results, 392 

showing that diversity responses can vary for different EH components, could help to direct 393 

efforts to maintain EH at a landscape level. For example, protecting minimal 394 

extents/numbers of linear and point features might be enough to support current levels of 395 

bird diversity. However, in upland areas where such features are not currently present, 396 

increasing the length of linear features may be unlikely to increase diversity, as species 397 

living in the uplands tend to have different ecological requirements to those living in lower 398 

areas. Furthermore, previous studies have suggested that linear features are crucial for 399 

promoting species diversity in the lowlands, while the quality of ecosystems may be more 400 

important in the uplands (Petit et al., 2004). Optimal EH levels might therefore also be 401 

dependent on the level of human footprint (Seiferling et al., 2014), with the maintenance of 402 

EH for conservation purposes in Britain being strongly dependent on the anthropogenic 403 
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modification of the region under consideration. In contrast to results for increasing structural 404 

components of EH, our results indicate that increasing habitat diversity might steadily 405 

enhance bird diversity without arriving at any plateau within the current range of 406 

heterogeneity. 407 

An important element of the discussion on biodiversity conservation is the scale at which 408 

diversity is measured. Our study uses nationally representative but highly resolved 409 

information from a sample of 1-km squares to model relationships between EH components 410 

and bird diversity at a national scale. Our results show that the presence/extent of EH 411 

components is linked to overall measures of bird richness at 1km scales. However, whilst it 412 

is important to preserve biodiversity at regional, national and global levels (Convention on 413 

Biological Diversity, 2014), attempts to increase bird diversity by indiscriminately 414 

increasing components of EH across Britain could be detrimental to national scale diversity, 415 

as discussed above.  416 

In summary, our analysis of British breeding birds indicates that the shapes of 417 

relationships between EH components and bird richness were unique to each component and 418 

generally non-linear. Separately studying the effects of each component, and using 419 

methodological approaches that consider non-linear effects on diversity may help 420 

conservationists to prioritise their management interventions, as well as help them to create 421 

and interpret diversity projections in future environmental scenarios. 422 
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 571 

Table 1. Top ranked environmental heterogeneity variables by the 

random forests variable importance analysis. These variables 

were selected to study the bird richness responses to the 

variability of EH components.  

 

 

 

  

EH Type EH Component EH Variable Name 

Vegetation Plant species richness PlantRischness 

Land cover Land cover Shannon diversity HabitatDiv 

 Boundary habitat Boundary 

Structure Lines of trees LineTreeLinear 

 Individual trees IndTreePoint 

 Hedges Hedge 
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Table 2. R2 values for the feature 

contribution plots (Fig. 3), estimated 

from the fitted k-nearest neighbor (knn) 

regression and linear models. The knn 

cross validation mean square errors were 

used to calculate an R2. 

 

  572 

EH Variable R2 

 knn linear 

LineTreeLinear 0·93 0·37 

Hedge 0·95 0·36 

IndTreePoint 0·86 0·60 

HabitatDiv 0·78 0·76 

Boundary 0·87 0·37 

PlantRichness 0·60 0·23 
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 573 

 574 

a) Mean decrease index    b) Gini  575 

 576 

Fig. 1. Importance of the top ten ranked variables measured with two indices: mean decrease 577 

in accuracy (a) and Gini (b). 578 

  579 
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 580 

 581 

Fig. 2. Variance explained (%) for the models including different number of predictors (by 582 

ranking). 583 

  584 
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 585 

 586 

Fig. 3. Feature contributions plot. The y axis represents the change of predicted bird richness 587 

for a given variable value, measured with the cross-validated feature contribution. The x axis 588 

represents the value of the studied variable. The fitted line is based on k-nearest neighbor 589 

(knn) estimations. 590 

  591 
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 592 

 593 

Fig. 4. Predictive bird diversity maps. a) Predicted bird richness at 1-km scale for current 594 

amounts of ash trees; b) 1-km squares (in red) with a decrease on bird diversity of at least 3 595 

species, for an ash trees reduction of 100%. 596 

 597 
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 598 

Fig. 5. Tukey boxplots for predicted bird richness at 1-km2 squares for different ash trees 599 

percentages. Each boxplot was created with a subset of squares presenting different total 600 

number of species decrease for the 11 scenarios of ash tree loss: a) 1 species (n = 49,888), b) 601 

3 species (n = 8,435), c) 5 species (n= 2,570), and d) 7 species (n = 697).  602 
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