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ABSTRACT 

   

Engineered nanoparticles entering the environment are subject to various transformations 

that in turn influence how particles are presented to, and taken up by organisms. To 

understand the effect of soil properties on the toxicity of nanosilver to C. elegans toxicity 

assays were performed in pore water extracts from natural soils with varying organic matter 

content and pH using 3-8 nm un-functionalised (Ag 3-8Unf), 52 nm PVP-coated silver 

nanoparticles (Ag 52PVP) and AgNO3 as ionic silver. Effects on nanoparticle agglomeration 

and stability were investigated using UV-vis spectroscopy and asymmetric flow field-flow 

fractionation (AF4). Ag+ showed greater overall toxicity than nanosilver with little difference 

between the nanoparticle types. Increasing soil organic matter content significantly 

decreased the toxicity of Ag 3-8Unf while it increased that of AgNO3. The toxicity of all silver 

treatments significantly decreased with increasing pore water pH. Dissolution of both 

nanoparticles in the pore water extracts was too low to have contributed to their observed 

toxic effects. UV-vis spectroscopy revealed low levels of agglomeration/aggregation 

independent of soil properties for Ag 3-8Unf, while higher organic matter as well as low pH 

appeared to stabilise Ag 52PVP. Overall both soil organic matter content and pH affected 

nanoparticle fate as well as toxicity to C. elegans, however, there appears to be no clear 

connection between the measured particle characteristics and their effect. This article is 

protected by copyright. All rights reserved 
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1. INTRODUCTION 

Engineered nanoparticle (ENP) emissions to the environment occur through direct input (e.g. 

as biocide, pesticides, fertilizers and remediation agents), accidentally from spills and 

unintentionally through e.g. soil amendment with waste. Once in the soil environment, the 

potential for exposure of a range of soil dwelling taxa exists. A number of studies with soil 

species have indicated the potential toxicity of ENP, ranging from effects on survival, to more 

subtle changes in traits such as behaviour and gene expression [1-3]. 

 

Soils can be heterogeneous for a range of key properties including organic matter (OM) 

content, pH, elemental concentrations and mineralogy. Variations in such properties have 

been widely shown to influence nanomaterial toxicity. For example, a comparison of exposure 

of the earthworm Eisenia fetida to Ag ENP in an artificial soil and sandy loam found greater 

accumulation and avoidance behaviour in the sandy loam: the soil with the lower pH and 

organic matter content [4, 5]. This finding was consistent with observation of pH dependent 

effects of ZnO-ENPs on the earthworm E. fetida (highest toxicity at lower pHs) [6] and soil 

microbial communities where greatest changes in the community composition were observed 

at lower pHs [7].  

 

The effects of soil properties on ENP toxicity can, in addition to their direct impact on 

organisms, result from their influence on nanomaterial fate and consequently bioavailability 

and exposure. These soil property effects can take a number of forms. For example, the 

attachment of dissolve organic matter (DOM) to ENPs can both stabilise or destabilise ENPs 

depending on the pristine surface charge, the type of DOM and presence of divalent cations 

[8]. Negatively charged DOM makes the ENP surface potential more negative, thus 

decreasing agglomeration of already negatively charged ENPs [9]. Adsorption of humic acid 

has also been found to disagglomerate small Ag ENP agglomerates [10]. When homo- and 
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heteroagglomerates/aggregates occur ENP mobility tends to decrease, yet the attachment of 

DOM itself can lead to increased transportation through electrosteric stabilisation [8]. 

 

In soils agglomeration/aggregation can also be pH-dependent; it increases when soil pH 

approaches the point of zero charge (PZC), while stable suspensions are usually found for 

zeta potentials >30 mV [2, 11]. Following this principle, the absence of pH effects on ENP size 

has in one study been linked to no or only small shifts in electrophoretic mobility of the tested 

citrate stabilised Ag ENPs [10]. Further, where particle dispersion is based on steric 

stabilisation, e.g. through a PVP coating, surface charge effects have also been shown to play 

no role in the aggregation of Ag ENPs [12]. The effects of the different soil properties are often 

confounded e.g. DOM can affect PZC, which can in turn affect agglomeration/aggregation 

state, thus establishing causation can be difficult. Additionally, the chemical nature of ENPs 

can change after entering into the environment. The most studied process is their dissolution, 

which can be influenced by pH, OM coating, deposition, agglomeration/aggregation and 

mineral transformation e.g. Ag0 to Ag2S [2, 13, 14].  

 

Understanding the processes involved in the environmental fate of ENPs is essential when 

interpreting the results of toxicity tests since dissolution and agglomeration/ aggregation can 

change ENP uptake and toxicity [15]. In this study the effect of soil properties on the fate and 

toxicity of two types of Ag ENPs and ionic silver to C. elegans was assessed in pore waters 

extracted from soils with variant properties. Two of the chosen soils differed in their OM 

content and another soil was adjusted to 3 different pH values (pH 4.8, 6.1, 7.2). This allowed 

for a thorough investigation of the effect of soil properties on both the fate of Ag ENPs in a 

relevant soil compartment in accordance with best practice for bioavailability assessment  [16].   
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2. MATERIALS AND METHODS 

2.1 Particles 

The Ag ENPs tested were a commercial 3 - 8 nm un-functionalised ENP (Ag 3-8Unf), that 

appears as individual particles and in clusters of 50-100 nm, and a 52 nm polyvinylpyrrolidone 

coated ENP (Ag 52PVP). These materials were taken from the same batches used by 

Tourinho et al. 2015 [17], Waalewijn-Kool et al. 2014 [18] and Starnes et al. 2015 [19] with 

initial material characterisation details contained therein.   

 

2.2 Soils  

Two soil parameters were selected to establish their effects of Ag ENP fate and toxicity: soil 

OM content and pore water pH. A low ionic strength artificial test medium (Simulated Soil Pore 

Water – SSPW, modified without fulvic acid addition) that has previously been used for 

nanotoxicity studies with C. elegans was also tested as a reference [20]. To assess the effects 

of OM content, two natural soils varying in this parameter were selected for testing: “lowOM”: 

LUFA 2.2, a well characterised standard soil  (LUFA Speyer, Germany) which has an OM 

content of 4.2% and “highOM”: a pasture soil collected in North Wales, UK (OS Grid Reference 

SJ224564), with 16.7% OM, previously used in the development of a BLM for terrestrial 

species [21]. For the experiments investigating pH effects of ENP behaviour and toxicity, a 

soil collected from an open acidic heath land in Wareham forest, Dorset, UK (OS Grid 

Reference SU108058) was used and its pH adjusted with CaCO3 (2, 4 and 8 g/kg) to give 

soils with the same properties that varied in pore water pH over three values: 4.76 ± 0.02, 6.05 

± 0.02 and 7.24 ± 0.04, following the approach of Heggelund et al. 2014 [6]. The measured 

levels were in good agreement with the target values and the published soil bulk pHs reported 

previously for the same method [6, 22]. All soils were homogenized, 2 mm sieved and air dried 

prior to use. The properties of the three soils are summarised in Table 1. 
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2.3 Pore water extractions  

Toxicity tests were conducted in pore waters extracted from the field soil described above. 

The extracts were obtained by wetting the soils with Milli-Q water to 50% of their respective 

water holding capacity (WHC) for 7 days to allow for pH equilibration and incubated before 

wetting to the full 100% of their WHC for an additional 24 h. After incubation, the wetted soils 

were centrifuged (Beckman Coulter, Avanti J-E, rotor JS.5.3) for 90 min at 4000 g in 50 mL 

centrifuge tubes. The pore water supernatant was collected, and exposed to UV radiation 

(254nm, 10000 µJ/cm2, 60 min). Extracted pore waters were treated this way since initial tests 

with non-UV radiated pore waters revealed decreased nematode survival and reproduction. 

Despite incomplete sterilisation this UV treatment was sufficient to ensure normal levels of 

reproduction. ENPs and AgNO3 were subsequently added to the pore waters and toxicity tests 

and exposure characterisation performed. Comparisons were drawn between lowOM and 

highOM for OM effects and between the three pH adjusted field soil pore waters for the 

influence of pH. 

 

2.4 Nematode toxicity assays 

Experiments were carried out using C. elegans wild type strain N2 obtained through the C. 

elegans Genetics Center (CGC), University of Minnesota, USA. Cultures were maintained on 

nematode growth medium plates seeded with Escherichia coli strain OP50 at 20°C in the dark 

[23]. Cultures were age synchronised twice weekly by transferring gravid adults onto fresh 

plates letting them lay eggs for 2 hours and subsequently removing the adults. 

 

The effect of the varied soil properties on the toxicity of the selected Ag 3-8Unf and Ag 52PVP 

for C. elegans was investigated in a 72 h adult reproductive toxicity test conducted in the pore 

water extracts. In the bioassay 72 h old, gravid adults were exposed to concentration ranges 

of AgNO3 and the two different Ag ENPs at 18°C in the dark for a total exposure period of 
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72 h. Nematodes were exposed in 6 well plates in 2 mL pore water, one individual per well, 

and the E. coli strain OP50 added at an optical density of 0.35 prior to exposure as food source 

[20]. Ag ENPs exposure concentrations ranged 2 to 32 mg Ag/L for OM ranges, and 1 to16 

mg Ag/L for pH ranges; and AgNO3 (as ionic control): 0.04 to 2.54 mg Ag/L for OM ranges, 

0.04 to 0.635 mg Ag/L for pH ranges. Exposures were fully randomised and six replicates 

used for each tested concentration for all exposures.  

 

Immediately at the end of the exposure period, adults and produced offspring in each well 

were stained by adding 2 mL of 0.5 g/l Bengal Red B (Sigma Aldrich, dissolved in water) to 

the pore waters and incubated at room temperature for 40 min. All nematodes were then killed 

by heating to 55°C for 1 h. This prevented further reproduction and immobilised the animals 

to allow more accurate enumeration. The presence of the adult was confirmed and the total 

number of offspring was recorded for each replicate, by placing the plates onto a grid and 

counting all eggs and juveniles under a Nikon SMZ800 dissection microscope. Randomly 

selected wells were re-counted to confirm accuracy. 

 

2.5 Characterisation of ENP fate in exposure media 

Characterisation was carried out in the pore waters in the presence of the natural soil bacterial 

community. 

 

a) Concentration validation and ENP dissolution measurement 

Immediately after preparation of the exposure media, 750 µl of each concentration (including 

controls) in 3 replicates, was acidified with 600 µL aqua regia (450 µL 36 % HCl + 150 µL 

69 % HNO3) and stored at 4°C in the dark until analysis for concentration validation. Silver 

content of the samples was determined by graphite furnace atomic absorbance spectroscopy 

(GF-AAS, Perkin Elmer 1100B). 
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Nanoparticle dissolution was measured at 5 mg Ag/L after 72 h in 4 replicates following a 

method by Diez et al 2015 [24]. At the end of the exposure period each sample was split and 

half ultrafiltered with 10 kDa ultrafiltration membranes (Amicon Ultra-15 Filters, Millipore) by 

centrifugation at 4000 g for 30 min; particulate silver >1 nm was retained in the filters. Prior to 

filtration membranes were soaked in 0.1 M Cu(SO4)2.5H2O to occupy binding sites and then 

washed to prevent any adsorption of silver to the filtration membranes thus decreasing the 

measured concentration. The concentration of dissolved silver was measured in the filtrate 

and total silver in the corresponding unfiltered sample volume after digestion. Prior to digestion 

porewater samples containing Ag ENP suspensions were bath sonicated over melting ice for 

15 minutes. Then, 1 ml sample aliquots were pipetted into PFA microwave vessels followed 

by the addition of 1 ml nitric acid (69%, Baker, Ultrex II reagent) and 3 ml of hydrochloric acid 

(38%, Baker Instra-analyzed reagent). The microwave vessels were capped and the acidified 

pore waters digested at 180 °C for 30 minutes using a CEM Mars Xpress microwave digestion 

system (CEM Corporation, Matthews, USA). Once the digestion procedure was complete the 

vessels were allowed to cool at room temperature and then the digests were made up to a 

final volume of 50 ml with 0.1 M hydrochloric acid. Total Ag concentrations were determined 

using Inductively Coupled Plasma Mass Spectrometry (ICPMS; Perkin Elmer Nexion 300D 

instrument). After a tenfold dilution with 1M hydrochloric acid ICPMS measurements were 

made against calibration standards in range 0-10 µg/l. 115In was used as internal standard to 

compensate for instrument drift and effects due to differing matrix between samples 

 

b) UV-vis spectroscopy tracking stability 

ENP agglomeration/aggregation dynamics (“clustering”) in the pore waters over the 72 h 

duration of the nematode toxicity tests were monitored using UV-vis spectroscopy (Shimadzu 

UV-2400 spectrophotometer) at regular intervals (0,  1, 3, 6, 24, 48, and 72 h). Measurement 

scans (350 – 750 nm) were performed at in 1 mL 5 mg Ag/L Ag ENP in standard 2 mL quartz 
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cuvettes. Prior to analysis the instrument was calibrated with pore water extracts without Ag 

ENPs.  

 

c) Asymmetrical flow field flow fractionation (AF4) 

Additionally, the size distribution of the ENPs in the different pore waters after 48 h, as 

intermediate time point, at 10 mg Ag/L was determined by AF4 analysis (Wyatt Technologies, 

Eclipse 3 AF4 with a UV-vis and ICP-MS detector (Agilent 1200 series and Agilent 7500cx)). 

The retention time of a particle is positively correlated with its hydrodynamic diameter. ENP 

size distributions were calculated from ICP-MS fractograms using ISIS Chromatogram 

Prediction and Simulation Software (version 1.2.0, Wyatt Technology). Concentrations for the 

AF4 analysis were validated by open vessel acid microwave digestion and ICP-MS analysis 

(Agilent 7500cx). A detailed description of the applied method, running conditions and results 

are reported in the Supplementary Information (SI) in Tables S1 and S2. 

 

2.6 Statistical analysis 

Results of the reproductive toxicity tests (total number of offspring per individual) were 

analysed for concentration-response relationships in Sigmaplot 12.0 (Systat Software Inc, 

USA) fitting a 3 parameter logistic regression and estimating upper asymptote, EC50 and slope 

parameters for each of pore water media separately. These coefficients were then compared 

across pore waters by z-test (z-scores and p-values reported in SI Tables S1 and S2) and 

differences between concentration-response curves established using the F-test [25] (F- and 

p-values reported in SI Table S3).  
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3. RESULTS 

3.1 Nematode toxicity assays 

a) Comparison of relative toxicity of Ag ions and Ag ENPs 

Overall nematode reproduction (total number of offspring) was unaffected by the type of soil 

pore water used (Fig 1). Across the toxicity tests ionic silver had a significantly higher toxicity 

than both tested Ag ENPs (p<0.01, Table S1, S2), with EC50 values (Table 2) being at least 

an order of magnitude lower for Ag ions compared to the two different Ag ENPs across all soil 

extracts. Overall, the two Ag ENPs showed similar toxicity; their EC50 values in each of the 

tested media were not significantly different with the exception of lowOM (z=3.91, p<0.01, 

Table S1). Such similarity indicates that the differences between the two tested nanomaterials 

did not strongly influence their resulting toxicity despite differing ENP fate (see Fig 2, 3, S1, 

section 3.2b,c) with the tested media mediating silver toxicity. 

 

b) Influence of dissolve organic matter content on toxicity 

AgNO3 reproductive toxicity responses were not significantly different in the in the pore waters 

of lowOM and highOM (F=1.64, p=0.18) producing identical EC50 values of 0.19 mg Ag/l (Table 

2). Whereas the toxicity of Ag 3-8Unf was significantly increased in the highOM compared to 

the lowOM soil as indicated by significant difference in the concentrations response curves 

(F=7.30, p<0.001) and lower EC50: lowOM 7.80 ± 0.82 mg Ag/L and highOM 3.48 ± 0.97 mg 

Ag/L (z=3.39, p<0.01). Exposure of C. elegans to Ag 52PVP in the pore waters with different 

OM contents also produced significantly different concentration response curves between the 

two OM pore waters (F=5.82, p=0.002), yet with similar EC50 values (lowOM: 4.47 ± 0.23 mg 

Ag/L, highOM: 4.07 ± 0.69 mg Ag/L). For both nanoparticles the lower slope for highOM soil 

indicated a more gradual onset of toxicity in the pore water extracts of this soil, with observable 

toxicity occurring at lower concentrations than in the lowOM soil (Fig 1). The steeper 

concentration response relationship for lowOM, on the other hand, indicated a much narrower 
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range of concentrations between no effect on nematode reproduction and full inhibition for 

exposures in this pore water. 

 

c) Influence of pH on toxicity 

Soil pore water pH had a significant effect on toxicity to C. elegans for all silver exposures. In 

all cases, toxicity was increased at lower pH (Tables S2, S3). In AgNO3 a 3 fold decrease in 

EC50 values from pH 7.2 and 6.1 to pH 4.8 was observed, and response curve shape was 

significantly different (F=33.18, p<0.001 and F=43.10, p<0.001 respectively). However, there 

was no difference in toxicity between the two higher soil pH extracts. For both ENPs EC50 

values were found to be over a magnitude lower at pH 4.8 compared to either of the two higher 

pH conditions (Table 2). 

 

3.2 Characterisation of ENP fate in exposure media 

a) Concentration validation and dissolution 

Total Ag concentrations were within 15% of nominal concentrations (AgNO3: 86%, Ag 3-8Unf: 

110%, Ag 52PVP: 85%) indicating the validity of the dispersion and dosing protocols used for 

media preparation. As there was no evidence of systematic deviation, all treatments are 

referred to as nominal concentrations for clarity. 

 

Ag ENPs dissolution of 5 mg Ag/l was below the detection limit (40 µg Ag/l) or no higher than 

the control measurements across all tested pore waters. Since the detection limit was 3 fold 

lower than concentrations of Ag ions found to cause overt toxicity in the AgNO3 studies, this 

data suggests that the particulate form of the silver exposure in the medium drove the 

observed toxicity in the ENP exposures under the tested conditions. However, a contribution 

of dissolved silver to effects occurring at concentrations greater than 5 mg Ag/l cannot be 

excluded.  
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b) UV-vis spectroscopy tracking stability 

Despite calibration with the respective pore waters interference from dissolved organic matter 

was found for wavelength below 350-400 nm which can be seen as random spikes in Fig 2 F, 

3 A and D. 

 

The Ag 3-8Unf showed a high stability in the two OM range field soil extracts (Fig 2 B, C). This 

indicated an overall stabilisation, with only slight clustering/sedimentation occurring in the 

highOM extract after 72 h and minimal aggregation indicated in the lowOM soil media. For the 

Ag 52PVP, the decrease in the peak maxima over time together with a broadening of the 

peaks and shift of the absorbance maximum to higher wavelengths suggested a settling of the 

ENPs caused by the clustering of the particles in both pore waters. However, in the highOM 

extract these characteristics were slightly less pronounced indicating that agglomeration and 

sedimentation was slowed compared to the lowOM (Fig 2 E, F). The settling process could 

have been enhanced at a higher concentration of ENPs or decrease at lower concentrations 

due to a change in the ENP:OM ratios. 

 

In the different soil pH extracts, the Ag 3-8Unf the showed only minor change in peak height 

over 72 h as compared to the differing behaviour found between the different soil OM extracts 

(Fig 3 A-C). For the pH treatments, the greatest reduction in peak height was observed for pH 

6.1 and pH 7.2 of ca. 20%, while at pH 4.8 ENPs peak characteristics remained stable over 

the 72 h period. Ag 52PVP measurements indicated that sedimentation was positively related 

to extract pH (Fig 3 D-F). Thus, in pore water extracts from the pH 4.8 soil, Ag 52PVP stayed 

stable in suspension over 72 h, while at pH 6.1 the peak height decreased to about half after 

this time and at pH 7.2 the majority of ENPs had settled out from suspension. 
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c) Asymmetrical flow field flow fractionation (AF4) 

AF4 analysis of the Ag 3-8Unf ENPs in Milli-Q water indicated the presence of differently sized 

agglomerates in the stock dispersions, as mentioned in the methods, which here were 

determined to be 20-30 nm and 90-110 nm in diameter at retention times of tr  ̴20 min and  ̴35 

min, respectively. Size measurements were based on retention time and calibrated against 

the Ag 52PVP ENPs stocks in Milli-Q water previously determined as 80 nm using this 

technique.  

 

Ag 3-8Unf ENPs in the two OM range pore waters showed similar fractograms to the stock 

particle distribution, and the slight decrease and broadening of the first peak indicated a 

potential disagglomeration of the smaller agglomerates (Fig S1a). Ag 52PVP exposure in the 

lowOM medium resulted in an increased ENP hydrodynamic diameter (estimated from the 

increased retention time) compared to the primary stock ENPs. In highOM pore waters the 

retention time of the peak maximum was unchanged, yet much broader. This meant while the 

size of the primary particles remained the same a greater range of particles with a 

smaller/larger hydrodynamic diameter were additionally detected potentially caused by the 

loss of the PVP coating and the adsorption of organic molecules, respectively (Fig S1b).  

 

In the pH range pore waters, for Ag 3-8Unf the primary peak in all media matched that of the 

larger aggregates in the stocks (90-110 nm, approximately at tr 35 min). Fractograms in both 

pH 4.8 and pH 6.1 pore waters showed a suppression of the peak of the smaller stock 

agglomerates. While this was also the case for pH 7.2, here another peak at an earlier 

retention time formed, which may have been the 3-8 nm primary particles (Fig S1c). AF4 

analysis of Ag 52PVP in pore waters with different pHs found a broadening of the primary 

particle size peak and a shift of the peak maximum retention time (tr 34 min) in all media 

compared to the ENP stock. However, the estimated hydrodynamic diameter increased for pH 
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4.8, decreased for pH 6.1 and increased only slightly for pH 7.2 from the stock ENP size, thus 

not revealing any clear pattern in the agglomeration/aggregation dynamics (Fig S1d).  

 

The recoveries of the AF4 separations for Ag 3-8Unf were around 90% and for Ag 52PVP only 

around 64%, indicating some loss during measurements potentially due to ENPs adhering to 

the tubing or channel.  

 

4. DISCUSSION 

The ecotoxicological assessment of ENPs has to date largely been carried out under artificial 

settings (high concentrations, synthetic media), with effects under more realistic 

environmental conditions only recently receiving attention. Published studies conducted to 

date have suggested that soil properties can influence ENP behaviour and effect in soils [4, 6, 

26, 27]. However, systematic studies of the influences of soils and soil pore waters with varying 

properties such pH and OM contents on the fate and toxicity of ENPs with different starting 

characteristics are needed to support the development of robust models that can be used to 

describe the fate and toxicity of ENPs in natural systems.  

 

Effect of dissolved organic matter on toxicity 

OM has often been found to have protective effects in aquatic toxicity test systems with Ag 

and other metal ions [28-30], as well as for ENP toxicity in C. elegans in standard laboratory 

test media [31, 32]. The mechanism of protection is largely attributed to the complexation of 

free metal with the dissolved OM, thereby reducing free ion concentrations able to interact 

with organism surfaces [33, 34]. Conversely, dissolution of sulfidised Ag ENPs in C. elegans 

test media was found to be increased in the presence of Pony lake fulvic acid, yet induced 

mortality of C. elegans was still entirely rescued [35]. This suggests additional protective 

mechanisms such as particle surface passivation or the reduction of oxidative stress by acting 

as scavenger for free radicals [34]. However, in this study the increased organic matter content 
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in highOM pore waters did not have a protective effect on Ag 3-8Unf toxicity to C. elegans 

compared to lowOM but rather promoted the inhibition of reproduction. This is consistent with 

findings that the type of organic matter and its elemental composition, rather than simply the 

total content, is a key factor in nanoparticle fate and dissolution [31, 35, 36]. For example, the 

complexation of Ag with OM is linked to its sulphur content since Ag has a strong affinity to 

thiol ligands [37]. The dissolution kinetics of ZnO ENPs also have been related to aromatic 

carbon content of the tested humic and fulvic acid [36]. Analysis of the fate of the Ag 3-8Unf 

indicated a general stabilising effect of organic matter on ENPs, as reported previously [9], 

showing neither the characteristic broadening of the UV-vis absorbance peak and formation 

of a secondary peak at larger wavelengths associated with ENP agglomeration/aggregation 

[38, 39]. The comparison of the lowOM and highOM soils both in the UV-vis and AF4 analysis 

found little difference between the pore waters indicating this stabilisation was already 

saturated at the lower OM content. This suggested a rapid attachment of the OM molecules 

to the surface of these particles, and once fully covered increasing OM concentration did not 

change the agglomeration/aggregation dynamics over time. Further, the bacteria and 

biomolecules present in the pore waters could have interacted with the ENPs thus influencing 

their fate [40]. The altered Ag 3-8Unf toxicity to C. elegans despite only small changes in its 

stability, suggests a mechanism of toxicity is not solely dependent on 

agglomeration/aggregation state. As ENP dissolution in the medium was not measurable it 

can also be excluded as the main driver of the effects. Additionally, AgNO3 toxicity showed no 

differences between the lowOM and highOM extracts. Possibly, ENP toxicity was influenced 

indirectly by ENP interactions with the soil bacteria and sequestered biomolecules that differed 

between the two soils. Greater ENP attachment to bacteria in the highOM extracts could have 

increased their uptake by the bacterivorous nematode. The pore water pH was also 

considered when interpreting the toxicity results. LowOM soil had a pH of 5.9 and highOM of 

5.5. Although the pH values for the soils were similar the actual increase in [H+] in the medium 

is considerable and falls within the tested pH range that significantly increased Ag ENP toxicity 
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(i.e. pH 4.8 to 6.1), which could have been linked to the decrease in Ag 3-8Unf EC50 from low 

to high OM.  

 

Unlike Ag 3-8Unf soil OM content did not influence the reproductive toxicity of Ag 52PVP to 

C. elegans when comparing EC50 values. However, the concentration response relationships 

were found to be OM dependent. LowOM exposure caused a significantly steeper 

concentration response relationship with effects occurring more rapidly once a threshold 

concentration has been exceeded than in highOM extracts. Ag 52PVP was found to be less 

stable in the OM soil pore waters than Ag 3-8Unf. In the lowOM extracts the absorbance 

maximum shifted towards larger wavelengths indicating an increase in agglomerate/aggregate 

size. In the highOM pore water the kinetics were less pronounced, i.e. precipitation was slowed 

down compared to lowOM, yet not completely absent. Thus indicating that the critical threshold 

amount of OM to completely stabilise the ENPs in suspension may not have been reached, or 

the type of OM present in solution did not fully stabilise this type of Ag ENP [39, 41]. This is 

supported by the AF4 results where lowOM exposed ENPs were found to be larger than the 

pristine ENPs while in highOM pore waters average sizes matched the pristine ENPs. For Ag 

52PVP particle stability over time was linked to its toxicity. The difference in the concentration 

response relationship between the particles may have been correlated to the greater presence 

of individual particles in suspension in highOM pore water over time. Such dispersed ENPs 

could have been taken up more readily than the aggregates/agglomerates present in the 

lowOM extracts at earlier time points. 

 

Together findings for both ENPs suggest that the stabilising effect of organic matter may 

depend on particle size and surface coating, e.g. a more rapid attachment of the organic 

molecules to the uncoated surface of the smaller particles than for the larger PVP-coated Ag 

ENPs.  
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Influence of pH on toxicity 

Reproductive toxicity of the ionic and both particulate Ag forms was significantly increased at 

pH 4.8 compared to pH 6.1 and 7.2. For both ENPs EC50 values differed by approximately ca. 

10 fold across the pH range. Increased toxicity of ENPs with decreasing pH has previously 

been reported [10, 26]. The increased toxicity at the lowest pH was not associated with ENP 

dissolution, as had been found others [37] excluding free Ag+ in the medium as driver of the 

increased toxicity. Varying soil pore water pH had only little effect on Ag 3-8Unf stability, thus 

the aggregation state also did not appear to influence its toxicity. However, at the low pH ENP 

competition with H+ for binding sites could have resulted in a greater amount of bioavailable 

ENPs in the pore water resulting in greater uptake and toxicity. For Ag 52PVP UV-vis analysis 

revealed increased ENP agglomeration/aggregation with increasing pH. This observed 

increase in agglomeration/aggregation of Ag 52PVP may have been a by-product of the way 

the pH of the soil was adjusted, i.e. the addition of CaCO3 to achieve the higher pHs increased 

the amount of Ca2+ in the pore water which has been shown to increase aggregation [42]. This 

phenomenon is attributed to the non-specific binding of the attached, negatively charged OM 

molecules that leads to a bridging effect between adjacent molecules by Ca2+ and 

destabilisation of the suspension [8]. Thus, the decrease in toxicity at the higher pHs again 

may have been linked to a decreased uptake of the larger clusters (potentially being too large 

to pass the nematode pharynx) compared to the individual, dispersed ENPs at the lowest pH. 

 

The development of site specific risk assessments for trace metals has benefited from the 

development of deterministic and mechanistic models that are able to incorporate the effects 

of major soil properties on metal speciation and exposure [43]. Within such models for soil, 

pH and OM content (although with soil clay content and cation exchange capacity), are 

common driving variable of differential toxicity between variant soils [44]. Rising releases of 

nanoparticles to the environment is increasing the need for better understanding of how soil 

properties affect ENP behaviour and toxicity as a step toward are more mechanistically valid 
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approach to site specific hazard assessment. Given their key role in determining metal 

speciation and exposure, the effects of pH and soil OM, are important parameters to consider 

with respect to their influence on metal nanoparticle fate and toxicity. 

 

5. CONCLUSION 

The findings in this study suggest that both OM content and pH did affect the stability of 52 nm 

PVP-coated ENPs whereas for Ag 3-8Unf only OM, and not pH, influenced stability. Further, 

the data indicated that toxicity of Ag ENPs is a function of concentration as well as the pH and 

OM content of the test medium. The observed effects could not be attributed to dissolved ion 

concentrations since these were too low to be detected, let alone cause the observed toxicity 

in the presented study. Instead it would seem that effects were related to the particulate nature 

of the silver exposures. The extent of this effect was related to the degree of agglomeration 

observed, through a threshold effects of OM (i.e. similar effects above a certain level of OM 

present in the media) but a fully dependent effect for pH (i.e. increased stability and toxicity at 

lower pH). The observed patterns of ENP effects were different from those for Ag ions 

indicating that new fate and hazard modelling approaches are needed for ENPs. In fact, 

exposure of the earthworm Eisenia fetida to ionic and nanoparticulate silver has shown ionic 

silver to be more toxic in short term toxicity tests, whereas Ag ENPs were found to be more 

toxic after ENPs were aged in soil prior to exposure [24]. Further, soil properties resulted in 

nuanced different effects between the two ENPs. Such differences indicate that between the 

Ag 3-8Unf and Ag 52PVP ENPs, their varying properties subtly influenced on the nature of the 

relationships between media pH and OM and thus fate and toxicity. For a comprehensive 

assessment of media effects the nematode Ag tissue concentrations after exposure in a 

greater number of different pore waters is needed to relate ENP fate to bioavailability and 

uptake, thus furthering development of mechanistic models that describe the relationships 

between ENP characteristics, soil pore water chemistry and ultimately toxicity.   
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Legends to Figures 

 

Figure 1: Reproductive toxicity of different concentrations of AgNO3, Ag 3-8Unf and Ag 52PVP 

expressed as total number of offspring produced (n=6, averages ± SE) and fitted 3 parameter 

log logistic regression curves in pore waters from soils with A-C) different OM (▲ lowOM,  

highOM) and D-F) pHs ( pH 4.8,  pH 6.1, ▲ pH 7.2). x-axis: log2 exposure concentrations 

[mg Ag/l]. 

 

Figure 2: UV- vis spectra of pristine A) Ag 3-8Unf and D) Ag 52PVP stock in MilliQ-water, and 

time series of B-C) Ag 3-8Unf and E-F) Ag 52PVP exposed to B, E) pore water from low 

organic matter soil, C, F) pore water from high organic matter soil at t = 0, 1, 3, 6, 24, 48, and 

72 h, normalised to the absorbance maximum at t = 0h. 

 

Figure 3: UV-vis time series spectra of A-C) Ag 3-8Unf and D-F) Ag 52PVP in pore waters 

from a soil adjusted to A, D) pH 4.8, B, E) pH 6.1 and C, F) pH 7.2 at t = 0, 1, 3, 6, 24, 48, and 

72 h, normalised to the absorbance maximum at t = 0h. 
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Figure 1 
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Figure 2 
 Ag 3-8Unf Ag 52PVP 

N
o

rm
al

iz
ed

 a
b

so
rb

an
ce

 

A) mQ water 

 

D) mQ water  

 

B) Low OM 

 

E) Low OM 

 

C) High OM 

 

F) High OM 

 

 Wavelength [nm] 

 

  

0

0.2

0.4

0.6

0.8

1

1.2

350 450 550 650 750
0

0.2

0.4

0.6

0.8

1

1.2

350 450 550 650 750

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

350 450 550 650 750

0h
1h
3h
6h
24h
48h
72h

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

350 450 550 650 750

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

350 450 550 650 750 -0.2

0

0.2

0.4

0.6

0.8

1

1.2

350 450 550 650 750



 
 

  
 A

cc
ep

te
d

 

 

 

 

 

 

 

 

 

  

 
 
 

  P
re

pr
in

t

This article is protected by copyright. All rights reserved 

28 
 

Figure 3 
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Table 1: Soil properties: Classification, origin, soil texture, 100% water holding capacity (WHC) in mL per 100 g soil (dry weight), soil pH measured 

in 0.01 M CaCl2 and pore water (PW) pH, organic matter content (OM), and cation exchange capacity (CEC). Data for soils from: LUFA 2.2: 

http://www.lufa-speyer.de/images/stories/StandardSoil.pdf, North Wales: Waalewijn-Kool et al 2013 [22], Dorset: Heggelund et al 2014 [6]. 

  Soil  Origin Classification Sand % Silt % Clay % 100% WHC 

[mL] 

Soil 

pHCaCl2 

PW 

pHH2O 

OM % CEC 

[mval/100g] 

LUFA 2.2 

(lowOM) 

Standard soil Loamy sand 78.9 13.8 7.3 41.8 5.1 5.9 4.18 9.7 

North Wales 

(highOM) 

Pasture Peat loam 57.7 29.7 12.6 96.0 5.0 5.5 16.70 11.8 

Dorset 

(pH range) 

Acidic Heath Sandy  91.7 4.7 3.5 49.2 3.1 4.2 8.00 5.4 
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Table 2: Regression parameters of 3 parameter log logistic regression of reproductive toxicity 

data of AgNO3 and Ag ENPs in different pore waters with reproductive EC50 concentrations 

[mg Ag/L], and regression slope averages ± SE and R2 values. 

  AgNO3 Ag 3-8Unf Ag 52PVP 

lowOM EC50 0.19 ± 0.03 7.80 ± 0.82 4.47 ± 0.23 

LUFA Slope 4.37 ± 1.68 3.51 ± 1.33 5.56 ± 2.01 

 R2 0.7418 0.8651 0.955 

highOM EC50 0.19 ± 0.02 3.48 ± 0.97 4.07 ± 0.69 

North  Slope 3.19 ± 0.46 1.08 ± 0.29 1.61 ± 0.34 

Wales R2 0.9137 0.7341 0.8621 

pH4.8 EC50 0.11 ± 0.01 0.86 ± 0.08 0.87 ± 0.09 

Dorset Slope 2.94 ± 0.34 1.66 ± 0.24 1.65 ± 0.26 

 R2 0.9632 0.9597 0.9515 

pH6.1 EC50 0.36 ± 0.05 12.82 ± 3.21 10.57 ± 1.05 

Dorset Slope 5.86 ± 3.90 1.05 ± 0.35 2.80 ± 0.71 

 R2 0.7528 0.5454 0.7295 

pH7.2 EC50 0.37 ± 0.11 9.06 ± 1.28 10.67 ± 1.59 

Dorset Slope 1.09 ± 0.26 1.25 ± 0.25 1.08 ± 0.21 

 R2 0.7128 0.7838 0.7876 
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