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Abstract 

The aim of this study was to test the hypothesis that soil Pb is associated with 

criminality in selected urban environments within the UK.  The study used geological 

and geochemical information and soil Pb data from Derby, Leicester and Nottingham, 

collected as part of a geochemical survey of urban soils.  Crime and other associated 

socio-economic data were provided by a national survey on deprivation in the UK. The 

data were modelled using crime deprivation as the dependant variable and Pb, Sn and 

Ce in soil as well as three socio-economic factors associated with personal 

deprivation, population density and environmental deprivation as predictor variables. 

Both the generalised linear and the random forest modelling strategies showed that 

the socio-economic predictor variables and spatial associations were important in 

predicting crime deprivation. Pb and the two other soil chemistry parameters (Sn and 

Ce) were not important predictors of crime deprivation in Leicester and Nottingham.  

Pb and its interactions with spatial and socio-economic factors were, however, shown 

to have a significant effect on crime deprivation in Derby. The random forest model for 

Derby showed that there was an antagonistic interaction effect between Pb in soil and 

personal deprivation.  The random forest model was used to produce “dose-response” 
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curves of the effect of Pb in soil on crime deprivation under different spatial and socio-

economic conditions.  
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1. Introduction 

Lead (Pb) is toxic to humans with one of its main detrimental effects being 

neurological, behavioural and development impairment in children (ATSDR 2007).  

There is an increasing body of evidence that suggests that if children are exposed to 

Pb at a young age then the impairment of their neurological development can lead to 

a propensity for them to commit crime as young adults (i.e. about 20 years later) 

(Bellinger, 2008; Marcus et al., 2010; Mielke and Zahran, 2012; Nevin, 2007; Taylor 

et al., 2016; Wright et al., 2008).  Some of these studies suggest that that the 

exposure comes from lead in air particulates (Mielke and Zahran, 2012; Taylor et al., 

2016).  Other studies (Laidlaw and Taylor, 2011; Young et al., 1992; Zahran et al., 

2010) show that exposure to Pb, as measured by blood Pb, is also controlled by the 

Pb content of local soil.  The aim of this study is to test the hypothesis that soil Pb is 

associated with criminality in selected urban environments within the UK.  The study 

used soil Pb data collected as part of a geochemical survey of urban soils and crime 

and other associated socio-economic data provided by a national survey on 

deprivation in the UK. 

2. Methodology  

Three cities in the Midlands of the UK have been chosen as test locations, these are 

Derby, Leicester and Nottingham (Figure 1).  Whilst all three cities are relatively close 

they have different industrial histories and natural geochemical background 
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signatures. The details of the industrial histories, geochemistry of soils and the geology 

of these three cities has been previously published (Scheib and Nice, 2008) but to 

summarise these in brief:  

 

Figure 1 Location of Derby, Leicester and Nottingham within the UK 

Derby 

Derby city in the East Midlands lies on the banks of the River Derwent and southern 

Derbyshire. In the census of 2001 the population was recorded at just under 

222,000. Derby and Derbyshire played a pivotal role in Britain’s industrial revolution. 

In 1771, Derby was the site of the first water powered silk mill in Britain, positioned 

on the banks of the River Derwent. Beginning of the 19th century saw Derby 

emerging as an engineering centre manufacturing machine tools. In 1840, Midland 

Railway set up its works and headquarters in Derby. It continued to be a significant 

railway centre, hosting both British Rail workshops and research facilities. Although 
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much less important than in years gone by, train manufacture continues in Derby 

and Derby Midland Station retains an important strategic role in the rail network. 

Derby’s two biggest employers are Rolls-Royce plc (which has been established in 

the city since 1907) and the Toyota Motor Corporation (in operation since 1992), 

although this lies to the southwest of the sampling area. Rolls Royce originally 

manufactured cars until 1946, when motor production was transferred to Crewe. 

Today, Rolls Royce Derby concentrates on aeronautical and marine engineering. 

Figure 2 shows the superficial geology of Derby and the soil sampling sites. Apart 

from a small region in the north, the entire sampling area is underlain by the Triassic 

Mercia Mudstone Group. Its deposition reflects a complex mixture of mainly 

continental environments in which thick sequences of red-brown or rarely green-grey 

mudstone of aeolian and lacustrine origin accumulated, punctuated by fluvial 

episodes that deposited beds of grey-green dolomitic silt and sandstone, commonly 

referred to as “skerries”.  

 

Figure 2  Superficial geology map of Derby (1:50 000 British Geological Survey©) 
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A major Quaternary feature of the urban area of Derby is the floodplain alluvium of 

the River Derwent and its tributaries. 

Leicester 

Leicester is the most populated city in the East Midlands. It lies in the River Soar valley 

at the eastern edge of the National Forest. In 2004 the population of the city was 

approximately 285 000 with a further 330 500 living in the surrounding urban areas. A 

rapid industrialisation began with the construction of the Grand Union Canal in the 

1790s, linking Leicester to London and Birmingham. From then Leicester developed 

from a traditional market town into an industrial centre during the nineteenth century. 

By 1832 railways had arrived and, with the opening of the Leicester and Swannington 

line, they provided a supply of coal to the town from nearby collieries. This led to the 

establishment of industrial complexes particularly along the riverside, which included 

engineering works and factories manufacturing boots, hosiery and knitwear. Following 

the First World War, industrial estates were established, to separate industry from the 

residential areas that were also being developed and expanded to house the growing 

population. Major industries in Leicester today include food processing, hosiery, 

footwear, knitwear, engineering, electronics, printing and plastics. 

Figure 3 shows the superficial geology and soil sampling locations showing that the 

sampling area of Leicester is almost completely covered by superficial deposits. 

Alluvial and river terrace deposits dominate the areas along the Rivers Sence and 

Soar and till underlies much of the urban area, with sporadic small outcrops of 

glaciofluvial deposits. Made ground is likely to be extensive across the urban area but 

is not well mapped. 
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Figure 3 Superficial geology map of Leicester (1:50 000 British Geological Survey©) 

 

Nottingham 

Nottingham is the county town of Nottinghamshire in the East Midlands. It lies on the 

River Leen, but is more commonly associated with the River Trent, of which the River 

Leen is a tributary. The 2001 census recorded a population of 270 300 in Nottingham 

itself, with an additional 613 000 living in the surrounding area of Greater Nottingham. 

Nottingham is most famous for its lace-making industry and other famous industries 

within the city are Boots, which was founded in 1849 and is now based in the Beeston 

area. The tobacco company John Player & Sons was based in Nottingham for nearly 

150 years but closed in 2016. Until recently, bicycle manufacturing was a major 

industry, with Nottingham being the birthplace of Raleigh Cycles in 1886. The factory 

has since been demolished to make way for the expansion of the University of 
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Nottingham campus. Of the three cities Nottingham’s industrial history has been 

associated with lighter industries compared to Derby and Leicester. 

Nottingham owes its location to its geology, where the topographically resistant 

Triassic sandstone has survived as a bluff of high and dry ground that overlooks a 

shallow crossing point of the River Trent. The solid geology of Nottingham features a 

diverse stratigraphical succession consisting of Carboniferous, Upper Permian, 

Triassic and Jurassic rocks. The succeeding Mercia Mudstone Group of predominantly 

red mudstone with sporadic beds of siltstone and sandstone underlies most of 

Nottingham. The northeast of Nottingham is underlain predominantly by mudstone 

which is underlain in turn by sandstone and siltstone. The southern half of Nottingham 

is dominated by a sequence of mudstones, sandstones and siltstones.  

 

Figure 4 Superficial geology map of Nottingham (1:50 000 British Geological 
Survey©) 
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The major superficial deposits in the Nottingham sampling area (Figure 4) occur along 

the valleys of the River Trent and Erewash and their tributaries, and comprise alluvial 

sand and gravel deposits. 

2.1 Soil data  

The soils from the three cities were collected as part of the BGS Geochemical Baseline 

Survey of the urban Environment (G-BASE) (267 samples for Derby, 275 for Leicester 

and 284 for Nottingham). Topsoil samples were collected at a depth of ca. 5-20 cm 

from open ground on a 500 m grid at a density of approximately 4 samples per km2. 

At each site, composite samples, based on 5 sub-samples taken at the centre and four 

corners of a 5 m square were collected from the topsoil (5-20 cm depth). Forty-eight 

chemical elements were determined in the <2 mm size fraction of the topsoils using 

X-ray fluorescence spectrometry (XRFS), together with loss on ignition (LOI at 450 °C) 

and pH. Sample preparation, analytical methods, and quality control procedures have 

been previously described (Allen et al., 2011; Johnson, 2011). 

2.2 Crime and socio economic related data  

The English Indices of Deprivation (EID) (Smith et al., 2015) is a freely available data 

set containing a combination of socio-economic data covering all of England 

summarised into areas known as Lower Super Output Areas (LSOA). These are 

geographic areas for the collection and publication of small area statistics. They have 

an average of roughly 1,500 residents and 650 households. Measures of proximity (to 

give a reasonably compact shape) and social homogeneity (to encourage areas of 

similar social background) are also included.  There are 151 LSOAs covering Derby, 

192 covering Leicester and 182 covering Nottingham. For each LSOA the EID 

provides the following data on deprivation indices related to Income, Employment, 



9 
 

Health, Education, Crime, Housing and Living environment.  A detailed description of 

the way in which these deprivation indices are constructed has been previously 

described (Smith et al., 2015) but in brief: 

The Income Deprivation Domain measures the proportion of the population in an area 

experiencing deprivation relating to low income. The definition of low income used 

includes both those people that are out-of-work, and those that are in work but who 

have low earnings (and who satisfy the respective means tests). 

The Employment Deprivation Domain measures the proportion of the working-age 

population in an area involuntarily excluded from the labour market. This includes 

people who would like to work but are unable to do so because of unemployment, 

sickness or disability, or caring responsibilities. 

The Health Deprivation and Disability Domain measures the risk of premature death 

and the impairment of quality of life through poor physical or mental health. The 

domain measures morbidity, disability and premature mortality but not aspects of 

behaviour or environment that may be predictive of future health deprivation. 

The Education, Skills and Training Domain measures the lack of attainment and skills 

in the local population. The indicators fall into two sub-domains: one relating to children 

and young people and one relating to adult skills. 

The Crime Domain measures the risk of personal and material victimisation at local 

level. It uses: the rate of violence per 1,000 at-risk population; the rate of burglary per 

1,000 at-risk properties; the rate of theft per 1,000 at-risk population; and the rate of 

criminal damage per 1,000 at-risk population. 
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The Barriers to Housing and Services Domain measures the physical and financial 

accessibility of housing and local services. The indicators fall into two subdomains: 

‘geographical barriers’, which relate to the physical proximity of local services, and 

‘wider barriers’ which includes issues relating to access to housing such as 

affordability. 

The Living Environment Deprivation Domain measures the quality of the local 

environment. The indicators fall into two sub-domains. The ‘indoors’ living environment 

measures the quality of housing; while the ‘outdoors’ living environment contains 

measures of air quality and road traffic accidents. 

2.3 Comparison of cities 

Figure 5 show a comparison between the Pb in soil samples from the three cities as a 

box and whisker plot and as an overlaid probability density plot.   

 

Figure 5 Comparisons of Pb concentration in soil between the three cities. A-Boxplot, 

B-probability density plot 
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Derby clearly has a higher median Pb values with an increased proportion of samples 

above 500 mg/kg. Figure 6 shows the spatial distribution of Pb concentrations in the 

soil samples for the three cities.  

 

Figure 6 Pb concentrations at each sampling point for each city. A Derby; B 
Leicester; C Nottingham 

Comparing the Pb data distributions (Figure 5) and the spatial distributions (Figure 6) 

with the superficial geology maps of the three cities (Figure 2, Figure 3, Figure 4) 
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provides some insight into the controlling factors Pb in the soils.  For both Nottingham 

and Leicester  the highest concentrations of Pb are found towards centre of the cities 

(more on the east side for Nottingham) and do not show any clear spatial relationship 

to the underlying geology, suggesting that the Pb is derived from diffuse anthropogenic 

sources.  For Derby, however, there is a clear pattern in the Pb distribution forming a 

broad arc starting from the north of the city down to the city centre and then carrying 

on through to the east of the town (Figure 6 A).  This coincides with the alluvium and 

sand and gravel deposits in the flood plain of the river Derwent.  The River Derwent 

flows through the Peak District to the North of Derby where there are high 

concentrations of Pb in the rocks soils arising from Pb mineralisation in the 

carboniferous limestones (Ander et al., 2013; Rawlins et al., 2012). This suggests one 

of the main sources of Pb in the Soils of Derby come from river transported of Pb rich 

material from the Peak District. 

The soil data were joined to the socio-economic data by attributing soils within a 

given LSOA to the EID data associated with that LSOA.  Figure 7 compares the 

crime deprivation for the three cities showing that Leicester and Derby are broadly 

similar with Derby having a lower median value. Figure 8 shows box and whisker 

plots of Pb in the three cities split into increasing crime deprivation categories 

(reading left to right and top to bottom).  
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Figure 7 Comparison of crime deprivation between cities 

 

Figure 8 Box and whisker plot of Pb in soil partitioned into crime deprivation 

categories by city 



14 
 

For the two lowest crime categories the Pb boxplots are similar for all three cities. As 

the crime deprivation increases in the last three categories, however, the Leicester 

and Nottingham Pb distributions remain similar and low but Derby shows increased 

Pb.  This suggests that there is a link between higher Pb concentration in soil and 

higher crime deprivation in Derby.   

 

Figure 9 Crime deprivation summarised by LSOA in the 3 cities 
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Figure 9 shows the spatial distribution of crime deprivation in the three cities. For Derby 

and Nottingham the highest crime deprivation tends to be in the centre of the city 

whereas Leicester has a clear east west split with higher crime deprivation on the west 

side. There does not appear to be any clear visual association between the Pb spatial 

distribution (Figure 6) and the crime deprivation. 

2.4 Data Pre-processing  

As the model involves combining geochemical, socio-economic and demographic data 

sources, all data were transformed to approximate normal distributions using the Yeo-

Johnson algorithm (Yeo and Johnson, 2000) followed by mean centering and scaling 

the data. This was preferred over the BoxCox method since some of the deprivation 

indices have negative values.   

 

Figure 10 Correlation between socio-economic factors in Derby, Leicester and 

Nottingham 
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All data transformations were carried out using the “caret” package in the R 

programming language (Kuhn, 2016). 

The EID different domains of deprivation provide a broad spectrum picture of socio-

economic descriptors which could also have an effect on the crime deprivation and 

therefore act as suitable confounder covariates for soil Pb. An examination of the 

correlations between these covariates (Figure 10) shows that that income, 

employment, education and health are highly correlated (Pearson correlations> 0.78).  

 

Figure 11 Deprivation loadings on the 3 principal components used to model the 

2015 Deprivation indices for Derby, Leicester and Nottingham. 

For modelling purposes and to help in the final model interpretation it is better not to 

have highly correlated predictor variables which can cause unstable model outcomes 
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and make interpretation of the underlying causation less clear. To achieve this, the 

deprivation indices data was subjected to principal component analysis followed by 

varimax rotation, allowing the 6 deprivation indices and population density to be 

reduced to three orthogonal principal components (PCs).  The loadings of the 7 

variables are shown in Figure 11. PC1 has high loadings on Income, Employment, 

Health, Education and Health; all factors associated with personal circumstances, and 

has been named “Personal Deprivation” (PD). PC2 has its highest loading on 

Population Density and to a lesser extent Living Environment and therefore takes on 

the name of “Population Density” (Pop.Dens). PC3 has its highest loading on Housing 

and to a lesser extent Living Environment and Health which are more related the 

environment and takes on the name of “Environment deprivation” (ED). 

2.5 Data modelling 

The aim was to see if Pb in soil could be shown to be the cause of some aspects of 

crime deprivation in the three cities. The modelling, however, needs to take into 

account other factors that are likely to be important causal factors associated with 

crime (Wikström et al., 2012) to ensure that the effect of Pb alone can be isolated and 

that Pb in soil is not acting as a proxy for other underlying variables. The modelling 

therefore used the CD as the dependant variable and Pb as a predictor variable 

alongside 5 other potential confounder variables. These consisted of the three socio-

economic derived factors from the EID data, PD, Pop.dens and ED alongside two 

other soil chemistry variables. The two additional soil chemistry parameters were; Sn 

which is known to be a an indicator of anthropogenic inputs in urban environments 

because its natural concentrations are usually low (<5mg/kg) and Sn has a low 

geochemical mobility (common sources of Sn are old paint, glazed pottery, electrical 

solder and tinplate/old tin cans)(Albanese and Breward, 2011); and Ce which provides 
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a measure of natural background (Aide and Aide, 2012) it has been shown that Ce in 

urban environments in the UK has no systematic variation from estimated upper 

crustal concentrations (Flight and Scheib, 2011).  

Maps of the spatial distribution Ce and Sn in the individual soil samples in the three 

cities are shown in the SI (Figures S1 and S2). 

Keeping in mind the quotation from Box and co-authors "Essentially, all models are 

wrong, but some are useful." (Box and Draper 1987), two independent modelling 

approaches were used to provide a more robust overview of the potential relationship 

between Pb in soil and crime. The two approaches were mixed effect modelling and 

machine learning.  

2.5.1 Generalised least squares modelling 

The relationship between crime deprivation and potential predictor variables Ce, Pb , 

Sn and the three socio-economic derived factors PD, ED and Pop.D were explored 

using generalised least squares (GLS) modelling using the “nlme” package in the R 

programming language and its associated “gls” command (Pinheiro et al., 2016).  The 

procedure for model selection follows that given in (Zuur et al., 2009) and takes the 

form of the following steps: 

i) Check to see if there is spatial autocorrelation in the model and if so select the 

best autocorrelation fit using the Akaike Information criterion (Akaike, 1974) as 

the selection criterion. 

ii) Use the likelihood ratio test to check to see if interaction effects between Pb 

and the socio-economic factors are significant. 
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iii) Check the final model for violation of model assumptions (normal distribution 

and homogeneity of residuals with no spatial autocorrelation; collinearity as 

measured by the variance inflation factor (VIF) (Vuong, 1989) is <2), the fraction 

of variance in the crime deprivation accounted for by the model and the relative 

importance of the predictor variables.   

The outputs relating to the model selection process in steps i)-iii) are given in the 

Supplementary Information (SI). 

2.5.1.1 Derby 

Table S1 in the SI shows that inclusion of spatial correlation produces lower AIC values 

and that the exponential spatial correlation fit (Pinheiro et al., 2016) has the lowest 

AIC. The variogram fit to the raw data is shown in Figure S4 in the SI.  The likelihood 

ratio test as implemented by the “anova” function in the R programming language (R 

Core Team, 2016) shows that an inclusion of a first order interaction between Pb and 

the three socio-economic factors as predictor variables gives a significant 

improvement in the model fit (p=0.0079).  The GLS, with the inclusion of Pb interaction 

effects, shows minimal collinearity of predictors (VIF values for all predictors < 1.6) 

and that there is no spatial correlation in the standardised residuals (Figure S5 in the 

SI).  In addition, the residuals are homoscedastic with an approximate normal 

distribution (Figure S6 in the SI). The table of coefficients for the optimised GLS model 

for Derby (Table S2 in the SI) shows that PD is the only direct effect predictor 

significant at p<0.05, but the interactions of Pb with PD and with Pop.d are both 

significant. The model explains 53% (p-value 0.05) of the variance in the crime 

deprivation data for Derby.  

2.5.1.2 Leicester 
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Table S3 in the SI shows that inclusion of spatial correlation produces lower AIC values 

and that the spherical spatial correlation fit (Pinheiro et al., 2016) has the lowest AIC. 

The variogram fit to the raw data is shown in Figure S7 in the SI.  The likelihood ratio 

test shows that an inclusion of a first order interaction between Pb and the three socio-

economic factors as predictor variables is not a significant improvement in the model 

fit (p= 0.302).  The GLS, without the inclusion of Pb interaction effects, shows 

collinearity between Pb and Sn (Pearson correlation coefficient of 0.83). Removal of 

Sn from the model gives VIF values for the remaining predictors all <1.15.  This model 

gives no spatial correlation in the standardised residuals (Figure S8 in the SI).  In 

addition, the residuals are homoscedastic with an approximate normal distribution 

(Figure S9 in the SI). The table of coefficients for the optimised GLS model for 

Leicester (Table S4 in the SI) shows that the three socio-economic variables are all 

significant but the soil parameters (Ce and Pb) are not. The model explains 12% of 

the variance in the crime deprivation data for Derby.  

2.5.1.3 Nottingham 

Table S5 in the SI shows that inclusion of spatial correlation produces lower AIC values 

and that the rational quadratics spatial correlation fit (Pinheiro et al., 2016) has the 

lowest AIC. The variogram fit to the raw data is shown in Figure S10 in the SI.  The 

likelihood ratio test shows that an inclusion of a first order interaction between Pb and 

the three socio-economic factors as predictor variables is not a significant 

improvement in the model fit (p=0.114).  The GLS, without the inclusion of Pb 

interaction effects, shows collinearity between Pb and Sn (Pearson correlation 

coefficient of 0.73). Removal of Sn from the model gives VIF values for the remaining 

predictors all < 1.16.  This model gives no spatial correlation in the standardised 

residuals (Figure S11 in the SI).  In addition, the residuals are homoscedastic with an 
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approximate normal distribution (Figure S12 in the SI). The table of coefficients for the 

optimised GLS model for Nottingham (Table S6 in the SI) shows that the three socio-

economic variables are all significant but the soil parameters (Ce and Pb) are not. The 

model explains 38% of the variance in the crime deprivation data for Nottingham. 

2.5.1.4 GLS modelling outcomes 

The GLS modelling of crime deprivation in the three cities has shown that, 

unsurprisingly, there is spatial dependence between the sampling locations and that 

the socio-economic predictor variables are important predictor variables. The soil 

variables (Ce, Pb and Sn in soil) are, however, not significant predictors of crime 

deprivation in Leicester and Nottingham but that the interaction of Pb with socio-

economic predictor variables in Derby seems to have a significant effect on the crime 

deprivation. Whilst the optimised GLS models do not show any clear patterns in their 

residual plots (Figures S6, S9 and S12 in the SI) which suggest that there is non-

linearity in the models that is not being accounted for, the variance explained by each 

model is ca.50 % or less. This may be because an important confounder covariate is 

not being included or that there are interactions between covariates which have not 

yet been explored. Finding out the best combination of interaction effects and the best 

statistical model to apply can be a time consuming and difficult even with the relatively 

few predictor variables in this model.  One approach which automatically takes into 

account interactions and non-linearity is the machine learning methodology “random 

forest” (Breiman, 2001b).       

2.5.2 Random Forest Modelling 

Random forests (RF) are an ensemble learning method for classification, regression 

and other tasks, which operate by constructing a multitude of decision trees at training 
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time and outputting the mean prediction (regression) of the individual trees. To reduce 

the variance and bias between the decision trees the idea of “bagging” was introduced 

(Breiman, 2001a) in which many large trees are fitted to bootstrap-resampled versions 

of the training data and, additionally, at each decision node of each tree a random 

sample the original prediction parameters are used to make the next decision. The 

“randomForest” package within the R programming language (Liaw and Wiene, 2002) 

was used to set up a models with Ce, Pb and Sn in soil, the three socio-economic 

variables and the easting and northing as predictor variables and crime deprivation as 

the dependant variable for each of the three cities. 

The first stage in producing the RF models is to optimise the number of variables 

randomly sampled as candidates at each decision node. Using 10 fold cross validation 

the optimum value was found to be 4 for Derby, 6 for Leicester and 8 for Nottingham. 

1000 trees were found to produce a stable output for each model.  The RF models for 

the three cities give a much better fit to the data than the GLS models explaining 98%, 

97% and 96% of the variance in the crime deprivation data for Derby, Leicester and 

Nottingham respectively.  

 

 

2.5.2.1 Feature selection 

The next stage is to check whether each of the predictor variables included in the 

model have a significant effect on the CD dependant variable. The “Boruta” package 

in the R programming language (Kursa and Witold, 2010) provides a method for 

ranking the relative importance of each of the predictor variables and whether they are 



23 
 

statistically significant. The method works by firstly, adding randomness to the data 

set by creating shuffled copies of all predictor variables (which are called shadow 

features). Then, it trains the RF model on the extended data set and applies a feature 

importance measure (the mean decrease in accuracy when a variable is excluded) to 

evaluate the importance of each feature where higher means are more important. After 

each iteration, it checks whether a real variable has a higher importance than the best 

of its shadow features (i.e. whether the feature has a higher Z score than the maximum 

Z score of its shadow features) and removes features which are deemed highly 

unimportant. Finally, the algorithm stops either when all features gets confirmed or 

rejected or it reaches a specified limit of RF runs.  The outputs from the Boruta 

algorithm for each of the RF models are shown in Figure 12 for Derby and Figures 

S13 and S14 in the SI for Leicester and Nottingham.  For Leicester and Nottingham, 

the three soil parameters have the lowest importance with Ce being considered not 

significant for the Leicester model.  Whilst the Boruta algorithm suggest that both Pb 

and Sn are significant predictors their median importance lies below the upper whisker 

of the “shadowMax” importance suggesting their effect influence on the model is 

marginal.  This is in line with the GLS models findings.  
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Figure 12 Feature selection output from the Boruta algorithm for Derby. Green 

represents significant features, red features are not significant and blue features 

represent the shadow features  

The Derby model (Figure 12), however, shows the Pb mean importance to be above 

the shadowMax upper whisker backing up the findings for the GLS model that Pb in 

soil has a significant effect on crime deprivation in Derby.  

2.5.2.2 Sensitivity Check 

Examining the sensitivity of an RF model to a particular predictor variable, in this case 

Pb, is not straight forward as it depends not only on the value of predictor variable but 

also on the values set for the other co-variates.  One approach (Goldstein et al., 2015) 

and its associated R programming language package “ICEbox” suggests plotting a 

family of partial dependence plots in which the values of the covariate conditions for 

each case used in the training the model are used and the Pb is varied over the range 

of values used in the training data.  This produces a set of partial curves which 



25 
 

represent the behaviour of Pb under all the covariate conditions in the training set and 

gives an overview of the different ways in which Pb can affect the crime deprivation in 

Derby.  Given the RF model and the original training data the ICEbox package within 

R calculates each partial curve for Pb and uses k-means clustering to group together 

partial curves with a similar shape.  In this instance 3 groupings were found to give 

suitable clusters.  Figure 13 shows the median partial curves for each of the identified 

cluster centred on the same starting location to show the relative absolute effect.  

Eleven percent of the partial curves (cluster 3) have a sigmoidal median partial curve 

showing an increase in transformed CD of 0.45 units between -1 to 1 transformed Pb 

in soil concentration units. The partial curves associated with cluster 2 (46% of the 

data) has a similar sigmoidal shape to cluster 1 with a lower increase in transformed 

CD of ca.2 units.  

 

Figure 13 Median partial curves of the identified clusters for the effect of Pb in soil on 

crime deprivation in Derby showing the proportion of the curves associated with each 

cluster  
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Cluster 1 has a much flatter response than clusters 2 and 3 with a maximum of ca.0.5 

transformed CD units occurring at higher values of transformed Pb in soil 

concentration units than clusters 2 and 3 (i.e. 1-2 units). 

 

Figure 14 Individual partial Pb profiles associated with each cluster 

Figure 14 shows the individual partial Pb profiles for Derby (without centering) 

associated with each of the clusters and shows that there is a general trend of 

decreasing CD in the order cluster1>cluster2>cluster3.  

Figure 15 shows the median values of the socio-economic predictor variables and 

Pb in the three clusters.  The personal deprivation (PD) predictor variable shows the 

greatest contrast between the three clusters with decreasing values in the order 

cluster 1>cluster 2>cluster3.  The RF model shows that the greatest effect of Pb on 

CD occurs at lower PD (see cluster 3 in Figure 13and Figure 14) and as PD 

increases (cluster2 to cluster1) the effect of Pb in soil on CD decreases until in 

cluster 1 the effect is much reduced and only occurs at higher Pb concentrations. 

This clearly shows an antagonistic interaction effect between Pb in soil and PD. In 

addition to the interaction between Pb and PD, the shape of the partial profiles 
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provides some insight into the mechanism whereby Pb interacts with the human 

subject to cause higher crime rates. In Figure 13 the median curves for clusters 2 

and 3 have a similar shape where, initially, an increase in Pb has no effect on CD 

until it reaches a trigger point concentration (ca.-0.5 transformed Pb units) where an 

increase in Pb causes a relatively sharp rise in CD until it reaches a plateau (ca. 1.7 

transformed Pb units) where increasing Pb concentrations has little or no effect on 

CD.  This sigmoidal shape is very much in agreement with biological studies in which 

the effect of increasing Pb concentrations on measured blood parameters shows a 

similar sigmoidal shape (Zielhuis, 1975).  This provides some supporting evidence to 

our original hypotheses that it is the effect of Pb on human development that 

eventually leads to increased crime.   

2.5.2.3 RF model uncertainty 

In order to test whether the effect of Pb in soil on CD, as indicated in Figure 13 and 

Figure 14, are larger than the uncertainties in the RF modelling process the uncertainty 

needs to be quantified.  Since the RF modelling process randomly resamples the data 

set every time it is run then running the model a number of times produces a simple 

bootstrap uncertainty estimate on the model output. Figure 16 shows median example 

profiles from each of the three clusters along with 95th percentile uncertainty limits 

calculated by running the model 500 times for each of the 3 sets of conditions. The 

upper confidence limit for the lowest Pb concentration for each example is marked as 

a horizontal line and, in all three instances, the predicted CD at high Pb, taking into 

account the confidence interval, exceeds the initial CD values.  This clearly shows that 

the effect of Pb on CD in Derby is larger than the model uncertainty and helps to 

confirm the findings of the Boruta analysis (Figure 12) that Pb is an important predictor 
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variable for crime deprivation.      

 

 

Figure 15 Median values associated with selected variables associated with each 

cluster for Derby. Error bars represent the standard error. CD is crime deprivation, 

PD is personal deprivation, Pop.dens is population density, and ED is environmental 

deprivation. 
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Figure 16 Example Pb partial profiles from each of the three clusters for Derby. The 

dotted horizontal line is the upper confidence limit at the lowest Pb concentration   

2.5.2.4 Relative Effect of Pb on Crime deprivation in Derby 

Whilst Figure 16 shows that increasing Pb concentrations in soil gives a significant 

increase in crime deprivation, the absolute size of the effect compared to the variation 

in crime deprivation as measured over all of Derby provides a measure of the overall 

importance of Pb in soil in controlling crime deprivation.  

Figure 17 summarises, in a boxplot broken down by cluster, the difference between 

the maximum and minimum values of each of the partial Pb profiles, shown in Figure 

14, ratioed to the interquartile range of the crime deprivation scores for the whole of 

Derby.   
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Figure 17 Ratio of the effect of increasing Pb in soil concentration to the interquartile 

range of the overall crime deprivation data for Derby 

The more commonly found Pb partial profiles associated with clusters 1 and 2 have 

ratios ranging from about ca.0.02 to 0.28 whereas cluster 3 partial plots, which are 

less prevalent and occur at low PD (Figure 15, cluster 3), ranges from ca.0.3 to 0.4. 

Whilst the biggest effects are observed in areas of lower PD the effect of Pb on CD in 

all three cluster groupings is far from being negligible in the context of the range of CD 

values found over the whole of Derby.  

2.5.2.5 Interpretation of results 

Bringing together all the evidence from the different data sources (geological, 

geochemical, socio-economic and statistical data modelling) we can provide a holistic 

overview the relationship between CD in the three cities and the soil Pb 

concentrations. 

From the geology we can see the spatial distribution of Pb in Derby follows the river 

flood plain sediment carried down from the Peak District. Studies have shown elevated 
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Pb concentrations in the stream sediments of the Derwent catchment (Kossoff et al., 

2016) arising from the naturally elevated Pb in the soils and mine spoil from Pb mining. 

Pb in Leicester and Nottingham, however, show no clear association with geology 

more association with central regions of cities i.e. associated with anthropogenic 

sources. This provides initial evidence as to why the Pb content of the soils in Derby 

is higher than in Leicester and Nottingham (Figure 5) and also that the Pb in in the soil 

in Derby is likely to be in a different physico-chemical form than that in the other two 

cities.  If we now consider the geochemistry of the soils and look at the highest 

spearman correlations of Pb with other elements in the three cities (Figure 18) we can 

gain further insight into the source of Pb.  We find that in Leicester and Nottingham Pb 

is most highly correlated with Cu, Sb, Sn and Zn; all elements which are associated 

with anthropogenic inputs (Albanese and Breward, 2011). For Derby, however, Pb is 

most highly associated with Zn, Cd, Mo, Ba and Sr. A study of the superficial deposits 

in Peak District (Burek and Cubitt, 1979) establishes a link between Ca, Ba, Sr and 

Mo as representing typical chemical relationships developed in carbonate rocks in 

Derbyshire which supports our findings from the geological evidence.   
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Figure 18 Comparison of the highest Spearman correlation coefficients (>0.5) of Pb 

with other elements in the soils of Derby, Leicester and Nottingham 

The statistical modelling clearly shows that Pb has a significant effect on CD in Derby 

but not in Leicester or Nottingham.  The effect on CD in Derby is of similar magnitude 

to the overall variability of CD in Derby and the shape of the response curve is in 

agreement with Pb dose response curves for biological studies of the effect of Pb on 

biochemical and haematological parameters in blood (Zielhuis, 1975)  The RF model 

outputs can be used to provide some guidance on the concentrations of Pb in soil in 

Derby that start to have an effect on the human population. The average Pb partial 

profile curves for the three different clusters (Figure 13) can be considered as dose 

response curves. These have been re-plotted in Figure 19 with the Pb values 

converted back to the original concentration in the soil. For clusters 1 and 2 the lowest 
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observable effect level (LOEL) is ca.100-150 mg/kg Pb. For cluster 3 which is 

associated with higher PD the LOEL is much higher at ca.300-500mg/kg.     

Given the RF model outputs for CD in Derby, explanations for the reasons why Pb in 

soil in Leicester and Nottingham was not found to be an important predictor of CD can 

postulated. Firstly, Pb in soil in Derby was found to be higher than in Leicester and 

Nottingham (Figure 5) so there are less soil samples above the LOEL of 150mg/kg for 

Leicester and Nottingham (150 mg/kg is 69th percentile in Leicester,61st percentile in 

Nottingham and 47th percentile in Derby).  

 

Figure 19 Mean dose response curves for the three response clusters for Derby 

Both Leicester and Nottingham have higher CD (Figure 7) and PD (not shown) and 

the RF model for Derby shows that higher PD reduces the effect of Pb as a predictor 

variable (compare cluster 1 with cluster 3 in Figure 19).  
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In addition to this, the geological and geochemical evidence clearly shows that Pb in 

Derby comes from a different source than Leicester or Nottingham and is therefore 

likely to be in a different physico-chemical form in the soils and therefore its mobility 

and bioavailability will be different (Appleton et al., 2013). . If the hypotheses that Pb 

is causing detrimental effects to neurological development in children there must be a 

pathway for the Pb in the soil to enter the human body. Risk assessment studies 

clearly show that direct ingestion of soil and inhalation of soils dusts (Swartjes, 2011) 

are important routes for metal uptake into the human body from soils. This provides 

the final link in testing the hypotheses that Pb in soil has an effect on crime rate which, 

given the evidence found in this study, is shown to be true under certain conditions. 

The major controlling features are the concentration and form of Pb in the soil and the 

level of socio economic deprivation in the city under study.   

3 Conclusion 

Geological and geochemical evidence on the soil sampling sites and the composition 

of the soils under study provides important information to help understand the link 

between soil geochemistry and socio-economic factors of the human population. Both 

the GLS and the RF statistical models showed that the socio-economic predictor 

variables (particularly PD) and spatial associations were important in predicting crime 

deprivation. Pb and the two other soil chemistry parameters (Sn and Ce) were not 

important predictors of crime deprivation in Leicester and Nottingham.  Pb and its 

interactions with spatial and socio-economic factors were, however, shown to have a 

significant effect on crime deprivation in Derby. 

Interrogation of the RF model for Derby showed that there was an antagonistic 

interaction effect between Pb in soil and PD.  Where there is low personal deprivation, 
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Pb in soil has an effect that can be up half of the interquartile range of crime deprivation 

variation found over all of Derby (Figure 17). The effect of Pb on CD reduces and the 

effect of PD on CD takes over as the controlling factor at high PD values. The RF 

model can be used to produce “dose-response” curves of the effect of Pb in soil on 

crime deprivation under different spatial and socio-economic conditions.  

These findings may have implications going forward for risk assessment 

methodologies which assume that the dose response curves for contaminants are 

constant and independent of spatial and socio-economic factors which this study 

suggests is not always the case. 
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