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Mechanisms controlling dissolved CO2 over-saturation in the Three 17 

Gorges Reservoir area 18 

Abstract: The loss of CO2 to the atmosphere from inland waters is an important part 19 

of the global carbon cycle. The Three Gorges Dam is the largest hydraulic project in 20 

the world and has consequently been widely studied. Here, we made spatially and 21 

temporally comprehensive measurements of partial pressure of CO2 (pCO2) 22 

variability along the Three Gorges Dam system. The pCO2 ranged from 619 to 2383 23 

μatm for the collected samples, and were supersaturated relative to atmospheric CO2. 24 

At the station near the upstream part of the reservoir, the pCO2 at high-flow was much 25 

lower than that at low-flow. In contrast, pCO2 at high-flow is much higher than that in 26 

the low-flow for the waters in front of the dam and after the dam. Rates of organic 27 

matter mineralization increased at high-flow, which produced increased pCO2 in the 28 

surface water of the reservoir area. Mineralization of organic carbon should be 29 

responsible for the 13C-depleted of riverine DIC. Organic carbon mineralization is 30 

sensitive to temperature variability, and temperature is expected to be an important 31 

driver of the dissolved CO2 over-saturation. The construction of Three Gorges 32 

Reservoir increased the water transit time and accelerated the organic carbon 33 

mineralization in Three Gorges Reservoir. The results suggest that carbon cycling 34 

changes markedly in large rivers that have been impounded. 35 

Keywords: pCO2, Three Gorges Reservoir, organic carbon mineralization, 13CDIC, 36 

temperature sensitivity  37 
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Introduction: Inland waters link terrestrial and oceanic ecosystems by transporting 38 

materials from land to ocean (Barth et al., 2003; Wang et al., 2014b) and also 39 

exchange material with the atmosphere (Kosten et al., 2010; Raymond et al., 2013). 40 

Although the fluvial carbon export by inland water only occupies a small portion 41 

(1015 g C year-1) of the global carbon cycle (Aucour et al., 1999; Meybeck, 1982), it 42 

plays an important role in regional carbon cycling (Wang et al., 2014b). However, in 43 

the last few decades, the natural fluvial processes in many rivers have been disturbed 44 

by anthropogenic activities (Guo et al., 2015; Humborg et al., 1997; Raymond et al., 45 

2008; Regnier, 2013), and the consequences of dam construction have been 46 

intensively studied (Bao et al., 2014; Barros et al., 2011; Humborg et al., 1997; Wang 47 

et al., 2014a; Wang et al., 2013; Wang et al., 2011). Impoundment converts a river into 48 

an “artificial lake”, and consequently modifies the ecological function and 49 

biogeochemical processes of the inland water. River regulation by dam construction 50 

has become an important environmental problem affecting greenhouse gas release 51 

from rivers although hydropower is regarded as a “green energy” (Chen et al., 2011; 52 

Humborg et al., 1997; Wang et al., 2011). Enhanced dam construction in rivers has 53 

greatly changed the transport of sediment, dissolved silica and terrestrial organic 54 

carbon (Bao et al., 2014;Humborg et al., 1997; Yang et al., 2015; Yang et al., 2007a; 55 

Yang et al., 2007b; Yu et al., 2011). The construction of dams would moderate the 56 

organic matter fluxes and compositions downstream, and the trapping of sediment 57 

within a reservoir would result in intensive respiration, thus increasing the proportion 58 

of aquatic carbon, as well as CO2 emission from inland waters (Bao et al., 2014).  59 
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The Three Gorges Dam is the largest hydropower dam in the world, and the 60 

ecological environment and biogeochemical processes in the Three Gorges Reservoir 61 

have been widely studied (e.g. Bao et al., 2014; Yang et al., 2007b; Zhang et al., 2014). 62 

Previous studies have estimated the changes in hydrology and sediment dynamics in 63 

the Three Gorges Reservoir (Dai and Liu, 2013; Deng et al., 2016; Li et al., 2016; Xu 64 

and Milliman, 2009; Yang et al., 2015), biogeochemistry (Bao et al., 2014; Mao et al., 65 

2017) and greenhouse gases emissions (Chen et al., 2011; Zhao et al., 2013). However, 66 

few studies have focused on the sources of the dissolved CO2 and the relative 67 

biogeochemical processes in inland waters. Artificial reservoirs are known to be 68 

potential CO2 contributors to the atmosphere (Raymond et al., 2013; Wang et al., 69 

2015). Dissolved CO2 over-saturation with respect to the atmosphere is the main 70 

driver of CO2 emissions. Multiple control mechanisms have been proposed for the 71 

CO2 over-saturation in inland waters. Maberly et al. (2013) found that catchment 72 

productivity controls CO2 emissions for lakes. Marcé et al. (2015) showed that 73 

carbonate weathering is a driver of CO2 over-saturation in lakes. Inorganic carbon 74 

loading was regarded as a primary driver of dissolved CO2 concentrations in lakes and 75 

reservoirs of the contiguous United States (McDonald et al., 2013). Ward et al. (2013) 76 

found that degradation of terrestrial macromolecules contributes significantly to CO2 77 

out-gassing from inland waters.  78 

In this study we investigated the temporal and spatial patterns of dissolved 79 

inorganic carbon (DIC), dissolved organic carbon (DOC), particulate organic carbon 80 

(POC), the partial pressure of CO2 (pCO2) and stable carbon isotope of DIC (13CDIC) 81 
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in surface water of the Three Gorges Reservoir area. The objectives of the study are to: 82 

(1) investigate the carbon dynamics in the Three Gorges Reservoir, (2) trace the main 83 

sources of the dissolved CO2 in the Three Gorges Reservoir, (3) analyze the 84 

controlling mechanisms of the dissolved CO2 over-saturation. 85 

 86 

Study site 87 

As the largest hydropower project in the world, the Three Gorges Reservoir 88 

(TGR, Fig. 1) is located between the upper and middle reaches of the Changjiang 89 

River, upstream of Yichang city in Hubei province (Deng et al., 2016; Zhao et al., 90 

2013). Three Gorges Reservoir is a narrow V-shaped valley-type reservoir with steep 91 

slopes of the river channel. Mountainous areas occupy up to 96% of the Three Gorges 92 

Reservoir area, with 4.3% plain area only in the river valley (Zhao et al., 2013). The 93 

Three Gorges Reservoir experiences a humid subtropical monsoon, with an annual 94 

mean temperature of 18� (Mao et al., 2017). The local annual rainfall is 95 

approximately 1250 mm and occurs mainly from May to September (Mao et al., 96 

2017).  97 

The Three Gorges Reservoir has been fully operational since the end of 2008 98 

(Zhao et al., 2013). The water level ranges from 145 m at high-flow to control floods 99 

and 175 m at low-flow to retain water, with corresponding storage capacities of 17.2 100 

and 39.3 km3, respectively (Yang 2014). High-flow is defined as from May to October 101 

and low-flow as from November to April of the subsequent year, based on water 102 

regulation at the Three Gorges Reservoir, according to the water level. 103 
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 104 

Methods 105 

Six sampling sites (QX, WZ, ZZ, TPX, HL and YC) were chosen in the Three 106 

Gorges Reservoir area (Fig. 1), of which four sampling sites (QX, TPX, HL and YC) 107 

were chosen for long-term observation. QX is located near the inflowing water of the 108 

reservoir, WZ, ZZ and TPX are located sequentially down-stream within the reservoir 109 

and HL and YC are located downstream of the water discharged from the Three 110 

Gorges Reservoir and Gezhou dams, respectively. We collected samples at QX, 111 

monthly, for two hydrological years, and added extra sampling occasions during 112 

high-flow. TPX, HL and YC were sampled, monthly, for a hydrological year, and 113 

additional samples were added during high-flow.  114 

Water temperature (T), pH and Electric Conductivity (EC) were measured 115 

directly at the time of sampling for the surface water using a portable EC/pH meter 116 

(WTW, pH 3210/Cond 3210 Germany). Water samples were collected in sealed high 117 

density polyethylene (HDPE) bottles and the alkalinity was measured by Gran 118 

titration with 0.02 M HCl within 24 hours of sampling. The concentration of DOC 119 

was analyzed using an OI Analytical Aurora 1030 TOC analyzer. Total suspended 120 

solids (TSS) were trapped on a glass-fibre filter paper (0.7μm, Whatman, GF/F) and 121 

then freeze dried and weighed. Particulate organic carbon (POC) was measured with 122 

an elemental analyzer (PE2400 (Ⅱ), Perkin Elmer) after acidification. The 13CDIC 123 

was determined by the method of Li et al., (2010), 20 ml aliquots of water were 124 

purified on a vacuum line with 2 ml 85% phosphoric acid and magnetic stir bars, with 125 
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a precision of 0.2 ‰. Daily water discharge and water level data were obtained online 126 

from the Ministry of Water Resources (http://www.hydroinfo.gov.cn/). The pCO2 was 127 

calculated based on mass balance relationships and the relative equilibrium constants. 128 

 129 

Results 130 

Hydrological characteristics 131 

Although the Changjiang River carries a tremendous volume of water, the Three 132 

Gorges Dam can moderate the downstream delivery of water. The water level ranged 133 

from 145 m to 175 m above the sea level in the study period (Fig. 1). The Changjiang 134 

river water is retained in the Three Gorges Reservoir in the low-flow season, and the 135 

water level is kept at a relatively high level to meet water navigation and hydropower 136 

requirements (Fig. 1). The water level is decreased to a low level from April to June, 137 

to provide capacity for flood control (Fig. 1). From September to October, the water 138 

level is increased to impound water, and a high level is maintained during the dry 139 

season (Fig. 1). At QX, in the upper reaches of the reservoir, discharge varied from 140 

4293 to 36484 m3s-1, with an average of 10242 m3s-1 from February 2015 to February 141 

2016. Because of the water regulation, discharge is less variable at HL and YC: from 142 

5050 to 31800 m-3s-1 and from 5620 to 32600 m-3s-1, respectively. However, the 143 

average discharge was not significantly different at the three hydrological stations, 144 

indicating that the contribution of other inflowing rivers is minor.  145 

 146 

Variations of carbon species and 13CDIC in the TGR 147 
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The range of temporal variations of water environment variables was much 148 

larger than that of spatial variation. Temperature varied seasonally from 11.2 to 28.9� 149 

and there was little variation between water temperature in the surface water of the 150 

reservoir (TPX) and the discharged water at HL. This is markedly different to other 151 

reservoirs (Wang et al., 2014b), which may be caused by the weak stratification in the 152 

Three Gorges Reservoir (Wu et al., 2012). The pH value varied from 7.75 to 8.31 for 153 

all the samples, with little spatial variation. Conductivity varied from 295 to 410 154 

μScm-1, with both the maximum and minimum values observed in QX. The more 155 

stable status of the other sites could be ascribed to the regulating effect of the Three 156 

Gorges Reservoir. DOC ranged from 0.86 to 2.05 mgL-1, again with lower spatial 157 

variation than temporal variation. Alkalinity ranged from 1.97 mequivL-1 to 2.60 158 

mequivL-1, and the alkalinity at QX was higher than at other stations. The pCO2 159 

ranged from 619 to 2383 μatm (Fig. 2a), and so all the samples are supersaturated 160 

relative to atmospheric CO2 and hence sources to the atmosphere. The pCO2 values of 161 

samples in WZ and ZZ are between that of QX and TPX in January, 2016. The pCO2 162 

values decreased from QX to YC in the low-flow season, and increased in the 163 

high-flow season (Fig. 2a). The pCO2 values were higher in the low-flow season 164 

(1150 ± 343μatm) than in the high-flow season (987 ± 309 μatm) at QX, but the pCO2 165 

values were lower in the low-flow season at the other sites (Fig. 2a). The pCO2 in the 166 

reservoir area is always lower than in the inflowing water and the out-flowing water 167 

in reservoirs of Southwest China. However, Similar pCO2 values between reservoir 168 

area and the out-flowing water were occurred for TGR (Fig. 2a). The 13CDIC varied 169 
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from -13.2‰ to -6.6‰ for all the samples, and the 13CDIC of QX was much heavier 170 

than at other stations, especially at high-flow (Fig. 2b).The 13CDIC values were lower 171 

in the high-flow season at all sites.  172 

 173 

Discussion: 174 

Response of pCO2 and 13CDIC to hydrological change 175 

Emissions of CO2 from the water to the atmosphere have been explored in 176 

relation to CO2 sources and processes (Whitfield et al., 2010) including soil CO2 177 

discharge, in situ degradation of organic carbon, CO2 degassing rates, carbonate 178 

weathering, inorganic carbon loading and photosynthesis (Johnson et al., 2008; 179 

Larsen et al., 2011; Li et al., 2010; Maberly et al., 2013; Marcé et al., 2015; 180 

McDonald et al., 2013). There is a negative correlation between pCO2 and discharge 181 

near the upper reaches of the reservoir at QX (Fig. 3a), indicating a dilution effect by 182 

overland flow at high-flow. pCO2 was lower in high-flow than in low-flow, but pCO2 183 

was variable in both seasons (Fig. 3a) indicating that hydrological variation is not the 184 

main controller of pCO2 at QX, and other effects are important. The negative 185 

correlation between pCO2 and discharge shows that pCO2 exhibits strong 186 

biogeochemical stationarity (relatively stable behavior in response to changing 187 

discharge). Soil CO2 discharge or degradation of organic matters may be responsible 188 

for this biogeochemical stationarity with high-discharge, which is similar to studies in 189 

Wujiang (Zhong et al., 2017). 190 

There was a large dynamic range of 13CDIC values at QX, with a minimum at the 191 
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high-flow and a maximum at the low-flow (Fig. 3b). The 13CDIC was negatively 192 

correlated to the discharge for QX (Fig. 3b). Negative 13CDIC values were related to 193 

higher discharge, which should not be ascribed to simple dilution. High 194 

concentrations of CO2 derived from terrestrially fixed carbon broken down in the soil 195 

can enter the water directly (Maberly et al., 2013). Large amounts of soil CO2 were 196 

discharged into the river during high discharge, producing more negative 13CDIC 197 

values in the water (Li et al., 2010; Zhong et al., 2017). Mineralization of 198 

macromolecules in the channel can also produce lighter 13CDIC values in the water 199 

(Ward et al., 2013). Soil CO2 recharge is likely to be the main driver of CO2 dynamics 200 

responding to hydrological variation in QX (Zhong et al., 2017). 201 

A negative relation between pCO2 and discharge occurred at QX (Fig. 3a), 202 

however, there were positive relationships between pCO2 and discharge at HL and YC 203 

(Fig. 4a), both of which are located downstream of the TGD. The positive relationship 204 

contrasts to the relationship at QX (Fig. 3a), with no dilution occurring in the 205 

high-flow season at HL and YC (Fig. 4a). Higher values of pCO2 were recorded with 206 

high discharge, which is contrary to QX, ascribing to multiple biogeochemical 207 

processes in the reservoir. Biogeochemical processes occurring in the Three Gorges 208 

Reservoir may be responsible for the pCO2over-saturation at TPX, HL and YC (Abil 209 

et al., 2013; Algesten et al., 2005; Brothers et al; 2012; McDonald et al., 2013; 210 

Weyhenmey et al.; 2015). Thus, 13CDIC values were significantly and negatively 211 

correlated to increasing discharge (Fig. 4b). 212 

 213 
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Relationships between pCO2 and organic carbon concentration 214 

Transformation between inorganic and organic forms of carbon will alter the 215 

pCO2 in inland waters. When terrestrial or autochthonous organic carbon is 216 

mineralized, CO2 is produced in the reservoir (Kosten et al., 2010), while 217 

phytoplankton productivity will remove CO2 from the water (Wang et al., 2015). 218 

Although there was no relation between pCO2 and discharge at QX, The pCO2 values 219 

at HL and YC were positively related to the DOC concentration (Fig. 5a and 5b), 220 

which is similar to the results of Larsen et al., (2011) and Sobek et al., (2005). CO2 221 

over-saturation at HL and YC may be derived from the degradation of DOC in 222 

high-flow. DOC is largely in the form of allochthonous C, and terrigenous C is an 223 

important form of total C in the inland waters (Hope et al., 1996; Striegl et al., 2001; 224 

Whitfield et al., 2010). In spite of the low contents, allochthonous DOC 225 

mineralization may be an important driver of CO2 over-saturation. Although there is 226 

no marked spatial variation of DOC in the Three Gorges Reservoir areas, allothogenic 227 

DOC inputs should counteract the effect of DOC degradation. Intense photosynthesis 228 

and submerged respiration would induce both high DOC and pCO2 concentrations in 229 

the high-flow season.  230 

Particulate organic carbon (POC) can be present at high concentration within the 231 

Three Gorges Reservoir system and is strongly related to the concentration of total 232 

suspended matter (TSM). TSM in surface waters of the Changjiang main stream 233 

ranged from 0.9 to 123.6 mgL-1. The relationship between POC% (POC/TSM×100%) 234 

and Total Suspended Matters (TSM) followed that found previously (Zhang et al., 235 
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2014) showing the power-law function: POC%=16.59×TSM(-0.57) for samples 236 

collected both upstream and downstream. The same pattern in both upstream and 237 

downstream sites indicated that the Three Gorges Reservoir did not have a major 238 

effect on the relationship between POC% and TSM (Fig. 6a).  239 

There was a significant positive correlation between pCO2 concentration and 240 

POC were found at HL and YC (Fig. 6b), indicating that POC mineralization may be 241 

a source of pCO2 over-saturation in the Three Gorges Reservoir. Large amounts of 242 

POC were present at high discharge in the high-flow season. At the same time, the 243 

POC mineralization increased in the high-flow season with high POC concentrations 244 

contributing to the pCO2 over-saturation. Dai and Liu (2013); Xu and Milliman 245 

(2009); Yang et al. (2014); Yang et al. (2007b) have found that the Three Gorges 246 

Reservoir traps the sediment noticeably. The contribution from sediment respiration to 247 

summer CO2 emission is significant for boreal and subarctic lakes (Algesten et al., 248 

2005). So it is difficult to qualify the contribution of POC decomposition for water 249 

pCO2 over-saturation. However, these results are consistent with other studies that 250 

show mineralization and degradation of organic carbon is a main diver of pCO2 251 

over-saturation (Algesten et al., 2005; Hope et al., 1996; Sobek et al., 2005; Ward et 252 

al., 2013; Weyhenmeyer et al., 2012; Whitfield et al., 2010). 253 

In recent years, isotope proxies application has become invaluable in studying 254 

the riverine carbon cycle (Tamooh et al., 2013).�13CDIC signatures have been used to 255 

trace DIC sources, transport and transformation in inland waters based on the distinct 256 

isotopic values of various carbon sources (Barth et al., 2003; Goodwin et al., 2016; Li 257 
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et al., 2010; Tamooh et al., 2013; Zhong et al., 2017). Riverine 13CDIC dynamics are 258 

primarily controlled by both chemical weathering in the catchment and 259 

biogeochemical processes in inland waters. In general, carbonate weathering and 260 

biological CO2 dissolution are two primary DIC sources, and photosynthesis, calcite 261 

precipitation and CO2 degassing are primary mechanisms of DIC transformation and 262 

loss. At QX, soil CO2 discharge and organic carbon decomposition should be 263 

responsible for the DIC temporal dynamics for the soil CO2 contribution from various 264 

tributaries (Zhong et al., 2017). Soil CO2 discharge was related to the reactive contact 265 

surface between water and soil. The soil CO2 discharge would play a minor role in 266 

DIC dynamics in the reservoir area, just because of the limited reactive surface of the 267 

soil. Both pCO2 and 13CDIC are negatively correlated with increasing discharge (Fig. 268 

2a and 2b). Although the soil CO2 discharged into the river, the dilution effect on 269 

pCO2 can conceal the soil CO2 discharge at QX. 270 

Significant negative relationships between 13CDIC and pCO2 were presented in 271 

HL and YC (Fig. 6). Relatively higher pCO2 concentrations with lighter 13CDIC 272 

values were occurred in high-flow. Although the stratification is not significant in the 273 

reservoir area, the average residence time of water is from 6 to 30 days (Zhao et al., 274 

2013). Thus, there is enough time for degradation of organic carbon. The 275 

over-saturation of pCO2 in the Three Gorges Reservoir would result in out-gassing of 276 

dissolved CO2 to the atmosphere. However, there are minor spatial variations for the 277 

water pCO2. Inorganic carbon loading and organic carbon decomposition may be the 278 

primary driver of pCO2 in the Three Gorges Reservoir. Inorganic carbon loading 279 
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would shift to 13C-enriched DIC values, but the 13CDIC values became more 280 

negative at TPX, HL and YC than that at QX. Therefore, inorganic carbon loading 281 

should not be regard as the primary driver of pCO2 in the Three Gorges Reservoir. In 282 

general, the upper Changjiang catchment has C3 plant coverage, suggesting that the 283 

organic carbon will be depleted in 13C in terms of water DIC for Three Gorges 284 

Reservoir. The water impoundment of the Three Gorges Reservoir would increase the 285 

riverine water transit time. Although the Three Gorges Reservoir releases flood water 286 

for the flood control in the high-flow season, the organic carbon increases with 287 

increased discharge, and mineralization and degradation of organic carbon likely 288 

contributes to elevated dissolved CO2 (Whitfield et al., 2010). The biological CO2 289 

dissolution would shift the 13CDIC to negative values. The relations of 13CDIC versus 290 

pCO2 are consistent with our hypothesis that organic carbon decomposition, depleted 291 

in 13C, is responsible for the water pCO2 over-saturation in the reservoir (Fig. 7). 292 

Therefore, the pCO2 over-saturation in the Three Gorges Reservoir can be mainly 293 

elucidated as that soil CO2 recharge for the inflowing water and mineralization and 294 

degradation of organic carbon in the reservoir area was the primary driver of CO2 295 

over-saturation.  296 

 297 

Sensitivity of Temperature for pCO2 in the TGR 298 

Mineralization and degradation of organic carbon and primary productivity is 299 

sensitive to temperature (Acuna et al., 2008; Maberly et al., 2013; Sobek et al., 2005), 300 

which would regulate the water pCO2. Negative relationship between pCO2 and T was 301 
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found in QX, but the explained variance in pCO2 by T was low (R2=0.135, Fig. 8a). 302 

Due to the turbid and fast-flow water for the QX, especially in high-flow, the pCO2 303 

dynamics cannot be elucidated by primary production. As discussed above, dilution 304 

effects of pCO2 and soil CO2 recharge with inflowing of tributaries should control the 305 

pCO2 dynamics. Therefore, temperature is not the primary driver of pCO2 306 

over-saturation at this site. The pCO2 concentration increased with increasing T for 307 

TPX, HL and YC (Fig. 8b, 8c and 8d), supporting the hypothesis that lower ratios of 308 

primary production than organic carbon mineralization was occurred in the reservoir. 309 

High temperature stimulated high organic carbon mineralization rates, thus increasing 310 

the water pCO2. Therefore, organic carbon degradation and mineralization should be 311 

responsible for the water pCO2over-saturation, and high temperature is the primary 312 

driver of organic carbon mineralization.  313 

pCO2 in the waters is the main driver of CO2 emission for inland waters. 314 

Mineralization of organic carbon is the main source for replenishing the dissolved 315 

CO2 lost to the atmosphere or taken up by phytoplankton. The pCO2 decreased along 316 

the main stream for the Three Gorges Reservoir area in the low-flow season (Fig. 2a), 317 

which should be ascribed to the aquatic CO2 emission and low organic carbon 318 

mineralization rates with low T. The pCO2 increased along the main stream for the 319 

Three Gorges Reservoir area in the high-flow season (Fig. 2a), indicating that the CO2 320 

produced by organic carbon mineralization is much higher than that lost as CO2 321 

emission to the atmosphere. Therefore, organic carbon mineralization is the primary 322 

driver of CO2 over-saturation with respect to the atmosphere for Three Gorges 323 



16 
 

Reservoir. 324 
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Figure. 1 The location of sampling sites in the Three Gorges Reservoir area. The 

sampling sites are at Qingxi (QX), Wanzhou (WZ), Zhongzhou (ZZ), Taipingxi (TPX), 

Huanglingmiao (HL) and Yichang (YC). The upper inset shows the location of the 

region within China and the lower inset shows discharge at QX, HL, YC, as well as 

water level at TPX for February, 2015 to February, 2016.  

 

 

Figure. 2. Changes in pCO2 and δ13C at four sites along the Three Gorges Reservoir 

system at low and high flow. a. Variation in pCO2; b. variation in 13CDIC. Average of 

all samples in each season is shown along with standard deviation. 

 

 



 
 

 

Figure 3. The relationship between pCO2 or 13CDIC and discharge at the upstream site 

on the Three Gorges reservoir Qingxi (QX). a. pCO2 versus discharge; b. 13CDIC 

versus discharge. 

 

 

 

Figure. 4. The relationship between pCO2 or 13CDIC and discharge at Huanglingmiao 

(HL) and Yichang (YC). a. pCO2 versus discharge; b. 13CDIC versus discharge. 

 



 

Figure. 5 Correlation between pCO2 and concentration of DOC at Huanglingmiao 

(HL) (a) and Yichang (YC) (b) Discharge (m3 s-1) is indicated by the density of the 

symbol. 

 

 

Figure. 6a. Relationships between POC and TSM or pCO2 in the main stem of the 

Changjiang River. a. Relationship between POC% and TSM at this study in 

comparison to data from Zhang et al. (2014); b. Relationship between pCO2 and POC 

at Huanglingmiao (HL) and Yichang (YC). Discharge (m3 s-1) is indicated by the 

density of the symbol. 

 

 

 

 

 



 

Figure. 7. Correlation between 13CDIC and pCO2 at a. Yichang (YC) and b.  

Huanglingmiao (HL). Discharge (m3 s-1) is indicated by the density of the symbol. 

 

 

Figure. 8. Scatter plot of pCO2 versus water temperature at: a. Qingxi (QX), b. 

Taipingxi (TPX), c. Huanglingmiao (HL) and d. Yichang (YC). 
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