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A B S T R A C T

An empirical (geo)statistical modelling scheme is developed to address the challenges of modelling the severity
and distribution of groundwater droughts given their spatially and temporally heterogeneous nature and given
typically highly irregular groundwater level observations in space and time. The scheme is tested using GWL
measurements from 948 observation boreholes across the Chalk aquifer (UK) to estimate monthly groundwater
drought status from 1960 to 2013. For each borehole, monthly GWLs are simulated using empirical mixed
models where the fixed effects are based on applying an impulse response function to the local monthly pre-
cipitation. Modelled GWLs are standardised using the Standardised Groundwater Index (SGI) and the monthly
SGI values interpolated across the aquifer to produce spatially distributed monthly maps of SGI drought status
for 54 years for the Chalk. The mixed models include fewer parameters than comparable lumped parameter
groundwater models while explaining a similar proportion (more than 65%) of GWL variation. In addition, the
empirical modelling approach enables confidence bounds on the predicted GWLs and SGI values to be estimated
without the need for prior information about catchment or aquifer parameters. The results of the modelling
scheme are illustrated for three major episodes of multi-annual drought (1975–1976; 1988–1992; 2011–2012).
They agree with previous documented analyses of the groundwater droughts while providing for the first time a
systematic, spatially coherent characterisation of the events. The scheme is amenable to use in near real time to
provide short term forecasts of groundwater drought status if suitable forecasts of the driving meteorology are
available.

1. Introduction

Groundwater drought is a type of hydrological drought defined as a
period of below-normal groundwater level or reduced spring discharge
(Tallaksen and Van Lanen 2004; Mishra and Singh, 2010; Van Loon,
2015). It is a natural hazard that can have a wide range of often pro-
found social, economic and environmental impacts (Shahid and
Hazarika 2010; Hughes et al., 2012; van Dijk et al, 2013; Medellin-
Azuara et al., 2015) including: reductions in deployable output from
boreholes potentially leading to costly restrictions to public supply;
reduced abstractions for agriculture and industry; and, reduction in
groundwater discharge to groundwater-supported rivers and wetlands
which can cause ecological stress and lead to loss of amenity value
(Lange et al., 2017). Consequently, there is a need to assess the severity
and distribution of groundwater droughts to improve groundwater
drought warnings; to contribute to improved water resource decision
making during episodes of drought; and, to improve longer-term
drought and water resources management plans (Van Lanen et al.,
2016). However, assessment of the severity and distribution of

groundwater droughts is challenging due to a combination of issues
primarily related to the availability and nature of groundwater level
(GWL) data (Bachmair et al., 2016; Van Loon et al., 2017), and because
groundwater droughts are commonly spatially and temporally hetero-
geneous in character (Peters et al., 2006; Mendicino et al., 2008;
Tallaksen et al., 2009; Bloomfield et al., 2015).

Although there is increasing use of telemetry, GWLs are still often
measured at relatively low frequencies, on the order of days to months
or seasons, depending on the purpose of the groundwater monitoring
(Li et al., 2015). In addition, GWL data are often temporally irregular
and may contain artefacts. As a result, the availability of suitable GWL
data at timescales relevant to the systematic assessment of droughts is
often limited (Van Loon et al., 2017). Hydrological droughts propagate
from a spatially and temporally heterogeneous meteorological signal
(precipitation deficit), through soils (soil moisture deficit), and, via
reduced recharge, lead to reduced groundwater levels (Peters et al.,
2003). The spatio-temporal characteristics of the drought signal
changes as it passes through the terrestrial water cycle so that
groundwater droughts are typically lagged and attenuated compared
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with meteorological droughts (Van Loon, 2015). There are many
catchment and aquifer-related factors that influence these changes in
drought signal and that can affect the eventual spatio-temporal ex-
pression of groundwater droughts including: the nature of land cover
and the thickness and hydraulic characteristics of the soil and un-
saturated zone that influence recharge; the hydraulic properties of the
saturated zone; and, the location and hydraulic characteristics of major
groundwater discharge areas (Tallaksen et al., 2009; Bloomfield et al.,
2015).

This paper describes the first modelling method to take account of
both the irregular and uncertain nature of groundwater level data and
the spatial and temporally varying nature of droughts as they propagate
through the terrestrial water cycle to estimate the monthly status of
groundwater droughts including confidence bands on those estimates.
The novel modelling scheme is tested with a large GWL data set from
the Cretaceous Chalk limestone, the main aquifer in the United
Kingdom. The results of the modelling are illustrated with the analysis
of three major episodes of multi-annual drought across the Chalk
(1995–1996; 1988–1992 and 2011–2012) and it is shown that they
provide a high level of detail with regard to spatio-temparal variability
of individual episodes of groundwater drought across the study area.
Finally, the underlying causes of heterogeneity in the modelled GWLs
and droughts are discussed, as are the wider applications of the mod-
elling scheme for groundwater drought and groundwater resource as-
sessments.

2. Modelling context

A range of methods have previously been used to model ground-
water drought status, including: simple graphical representations of
groundwater levels, for example of ranked historic records; the use of
proxies of groundwater drought status, primarily to address issues re-
lated to the lack of suitable GWL data; process-based, distributed
groundwater models; and, more recently, the use of multiple site spe-
cific, empirical and lumped parameter models.

Estimating groundwater drought status across a region can be as
simple as relating recent observations of GWLs to historic data for a
given site, for example by rank or percentile (Marsh et al., 2013;
Natural Environment Research Council, 2017; USGS, 2017). However,
such approaches rarely reveal sufficient detail of heterogeneity within
episodes of groundwater drought to help with management responses
(Van Loon et al., 2017). Bachmair et al. (2016) note in a recent survey
of drought monitoring that there is ‘a lack of widespread monitoring of
… groundwater drought’ and that ‘the scarcity of water status ob-
servations, especially for groundwater, reflects the common focus on
drought seen through the lens of rainfall and soil moisture that can be
easily (remotely) monitored and/or modelled’. In this context, attempts
have been made to overcome the common limitations of GWL data for
drought status assessments by modelling GWL data with other more
spatially extensive and/or higher frequency and/or more temporally
regular hydrometric data, such as remotely sensed data, including, for
example, data from the Gravity Recovery and Climate Experiment
(GRACE) (Tapley et al., 2004). The modelled GWL data can then be
used as proxies for groundwater drought status and hence used to ob-
tain more detailed spatio-temporal descriptions of episodes of ground-
water drought. However, remotely sensed data products can have low
spatial resolution (e.g. 400 km grid squares for GRACE) and the use of
remotely sensed data can be particularly sensitive to model para-
meterisation, such as depth to water table and depth to bedrock, and
hence to spatial variations in often uncertain catchment properties (e.g.
Li and Rodell, 2015).

Another approach to assess and analyse groundwater droughts is to
use measures of precipitation deficits, such as the Standardised
Precipitation Index (SPI) (McKee et al., 1993) or the Standardized
Precipitation Evapotranspiration Index (SPEI) (Vicente-Serrano et al.,
2010), as a proxy for groundwater drought and using linear models to

relate precipitation and GWLs (Khan et al., 2008; Bloomfield and
Marchant, 2013; Bloomfield et al., 2015; Kumar et al., 2016; Van Loon
et al., 2017). However, the correlation between SPI or SPEI and SGI is
typically highly variable. One source of uncertainty in such simple
correlations is because the effect of precipitation on GWLs varies over
time, due, for example, to non-linear changes in soil moisture and de-
gree of saturation in the unsaturated zone, or due to changes in satu-
rated groundwater flow and discharge as a function of GWL. Conse-
quently, a simple linear model relating precipitation and GWLs may not
be appropriate. Impulse response functions (IRFs) (Von Asmuth et al.,
2002; von Asmuth and Bierkens, 2005) can be used to describe the
increase in GWL that will result from a single unit of precipitation as a
function of time since the precipitation occurred. IRFs not only account
for non-linear relationships between precipitation and GWLs, but also
when estimated on a site-by-site basis will take account of spatial var-
iations in such relationships, regardless of the specific non-linear re-
charge or discharge processes in operation in a catchment. IRFs have
previously been used to describe relationships between effective pre-
cipitation and GWLs (Calver, 1997; Von Asmuth et al., 2002; von
Asmuth and Bierkens, 2005); karst hydrographs and precipitation (Long
and Derickson, 1999); stream-aquifer interactions (Hantush, 2005);
and, spatial variation in recharge (Bakker et al., 2007).

Process-based, distributed groundwater models are used to under-
take groundwater resource assessments at the catchment scale. They are
designed to represent spatial variations in catchment and aquifer
characteristics, and can be used to model groundwater extremes (Upton
and Jackson, 2011). However, they require extensive data for calibra-
tion and can be difficult and costly to update frequently, so are of
limited use in the assessment of the status of groundwater drought. Site
specific, lumped parameter models are more flexible and typically ea-
sier to update and are increasingly being developed to provide a range
of groundwater hydrological services, including GWL status assess-
ments. For example, AquiMod, a lumped parameter model (Mackay
et al., 2014; Jackson et al., 2016; Marchant et al., 2016) driven by
rainfall data, is used to produce 1–3month outlooks for GWL for the UK
(Hydrological Outlooks, 2017; Prudhomme et al., 2017). Recently,
Marchant et al. (2016) incorporated AquiMod as a fixed effect into a
mixed model for simulation of GWLs and used it to quantify un-
certainties in GWL simulations (GWL reconstructions) using formal
likelihood methods. The mixed model approach enabled outliers and
anomalies in the GWL data to be identified, periods of missing data to
be infilled and for hydrographs to be reconstructed on regular dates
within a formal uncertainty framework. However, even relatively
simple lumped parameter models require a number of parameters, in
the case of AquiMod – thirteen (Mackay et al., 2014), to either be fitted
to the data or determined from other sources.

Building on the mixed model approach of Marchant et al. (2016),
this paper reports on a simple approach to model groundwater drought
status that both accounts for issues related to the availability and nature
of GWL data and that takes account of catchment and aquifer hetero-
geneity and the heterogeneous propagation of droughts. An IRF, similar
to that of Von Asmuth et al. (2002), is used as the fixed effect within the
mixed model instead of a lumped parameter model, such as AquiMod.
This results in a more parsimonious model with fewer parameters that
need to be fitted (compared with AquiMod) while still accounting for
the potentially spatially varying non-linear relationship between pre-
cipitation and GWL. The approach not only enables the issues of data
quality to be addressed (for example, to screen out poor data or sites,
infill missing data, and to model levels and drought status on a regular
time step) but also enables uncertainty in the modelled levels to be
quantified. The model does not require parameterisation using in-
formation on site characteristics and hence there are no a priori as-
sumptions necessary about spatial variation in catchment or hydro-
geological characteristics.
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3. Study area and data

3.1. The study area

Fig. 1 shows the location of major features of the study area, the
extent of the Chalk aquifer in England and overlying Clay-with-Flints
and Crag deposits (Allen et al., 1997) and the location of observation
boreholes used in the spatio-temporal analysis of groundwater drought
status. The Chalk extends from the Yorkshire coast in the north-east of
England, southwards to East Anglia, along the Chilterns and Berkshire
Downs and throughout the London Basin, to the North and South
Downs on the margins of the Weald, and westward on the margins of
and beneath the Hampshire (Wessex) Basin. Although mapped as a
single geological unit, the Chalk exhibits regional variations in strati-
graphy and geological structure and intrinsic hydrogeological char-
acteristics (such as porosity, permeability, transmissivity, storage and
hydraulic diffusivity) over a range of scales (Downing et al., 2005; Allen
et al., 1997).

The Chalk aquifer is a dual porosity, dual permeability limestone
aquifer, where groundwater storage and flow are primarily dependent
on the nature of the fracture system which may locally be sub-karstic
(Bloomfield, 1996; Allen et al., 1997; MacDonald and Allen, 2001;
Downing et al., 2005; Maurice et al., 2006). Groundwater levels in the
Chalk respond to local hydro-climatology, they are sensitive to episodes
of drought and depend on a combination of catchment characteristics,
such as unsaturated zone thickness, and intrinsic hydraulic properties of
the aquifer, such as hydraulic diffusivity (Bloomfield and Marchant,
2013). A characteristic feature of the Chalk aquifer, as noted by
Bloomfield et al. (2015) and Rudd et al. (2017), is that, compared with
other aquifers in the UK, such as the Permo-Triassic Sandstones and
Jurassic Limestone aquifers, it is relatively susceptible to droughts, ty-
pically experiencing more severe and prolonged responses to droughts
than other major aquifers in the UK.

As a first-order approximation, the broad meteorological drought
history of the study area can be considered to be spatially homo-
geneous. This claim is consistent with the previously documented
spatial coherence of major hydrological droughts in the UK (see “region
4” of Hannaford et al., 2011). For example, during the period
1960–2013 a number of episodes of major multi-annual drought af-
fected the Chalk aquifer across the UK, notably: 1975–1976;
1988–1992; 1995–1997; 2004–2006; and 2010–2012 (Marsh et al.,
2007; Kendon et al., 2013; Bloomfield and Marchant, 2013; Bloomfield
et al., 2015). However, within the study area, spatio-temporal varia-
tions in the nature of groundwater droughts may be expected due to
both spatial variation in the driving meteorology and the effects of
heterogeneity in catchment and aquifer characteristics variably mod-
ifying the meteorological signals as they pass through to the ground-
water system (Van Loon, 2015).

3.2. Data

The borehole locations and GWL observations were downloaded
from the Environment Agency’s GWL monitoring network database
(Environment Agency, 2014). The database included more than 4500
sites. The sites are monitoring or observation boreholes and wells that
are typically open throughout their length in the Chalk and are not
pumped or used for groundwater abstraction. The termination depths
and construction details for individual boreholes and wells were not
available to this study and no screening of the data had been conducted
prior to downloading of the data. However although the observation
boreholes represent a wide range of hydrogeological settings, including:
unconfined and confined Chalk; sites close to or more distant to re-
charge and discharge areas; and, observation boreholes that may be
variably affected by groundwater withdrawals from neighbouring ab-
straction boreholes or the effects of long-term changes in water resource
management, the majority of sites reflect groundwater level variations

Fig. 1. Location and primary features of the Chalk Aquifer in the UK (left). Sites of the 948 boreholes used in this study with boreholes ‘A’ and ‘B’ highlighted (right).
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in the unconfined Chalk aquifer. There was also great variation in the
temporal frequency of GWL observations. Some borehole records in-
clude periods of sampling every 15min whereas others included fewer
than 10 observations in total. The GWL data was subsampled so that
there was no more than one observation per borehole per month. The
resultant distribution of monthly observations is shown in Fig. 2. Fewer
than 10% of the borehole records included an observation for more
than half of the months between 1960 and 2013. Note also that there
are some time periods, such as during the UK foot and mouth crisis in
2001, where very few observations are made because workers were
restricted from visiting the boreholes (Fig. 2).

The precipitation data are taken from the CEH-GEAR dataset
(Tanguy et al., 2015). This dataset consists of a 1 km2 gridded estimate
of monthly rainfall derived from the Met Office national database of
observed precipitation. CEH-GEAR uses a natural neighbour inter-
polation methodology, including a normalisation step based on average
annual rainfall, to generate the daily and monthly estimates. The total
monthly precipitation from 1960 to 2013 has been extracted for each
CEH-GEAR 1 km2 grid square that contains a groundwater level ob-
servation borehole.

4. Methods

4.1. Overview of modelling workflow

The modelling workflow separately addresses the temporal (Fig. 3)
and spatial (Fig. 4) variation of GWLs to produce spatiotemporal pre-
dictions of groundwater drought status. This approach contrasts with
the use of space-time models (e.g. De Cesare et al., 2001; Li et al., 2016)
to simultaneously account for both the spatial and temporal correlation
amongst a set of observations of an environmental variable. Space-time
models can be used to estimate a variable of interest at a particular
location and time using data that was not observed at either the same
time or the same location. However, they require the assumptions that
the degree of spatial and temporal correlation exhibited by the data is
constant across the study region and for all times. This assumption is
inappropriate for GWL variation the Chalk where markedly different

patterns of temporal correlation are apparent at different boreholes.
The temporal portion (Fig. 3) of the workflow treats each borehole

separately and uses the available GWL and precipitation data to pro-
duce 1000 simulations of the SGI on a monthly time step. The SGI si-
mulations from each borehole are then combined in the spatial portion
of the workflow (Fig. 4) which leads to (i) the identification of spatial
clusters of boreholes which exhibit similar patterns of SGI variation and
(ii) space-time predictions of the unimpacted drought status across the
Chalk for a monthly time-step between 1960 and 2013.

4.2. Temporal modelling of groundwater levels

Temporal models of the GWLs are required in each borehole so that
the GWLs might be predicted in months when they were not observed
and to quantify the uncertainty of these predictions. Marchant et al.
(2016) demonstrated that this could be achieved for long and irregu-
larly sampled GWL records by coupling mechanistic models of GWLs,
such as AquiMod (MacKay et al., 2014), with a statistical or empirical
model of the residuals. They represented the observed GWLs for month
m, z m( ), by a mixed model:

= +z m f m r m( ) ( ) ( ), (1)

where f m( ) was the estimated GWL according to AquiMod and r m( )
was the model residual. The time series of residuals was assumed to be
realized from a second order stationary random function with zero
mean that was characterised by a marginal distribution function and a
temporal correlation function. In the mixed model context the f m( ) are
referred to as the fixed effects and the r m( ) as the random effects
(Dobson, 1990).

However, for the majority of the boreholes in the Chalk there are
insufficient observations to estimate the large number (at least 13) of
AquiMod parameters. Instead, the approach based on IRFs proposed by
von Asmuth et al. (2002) is used to relate the GWLs to the observed
rainfall.

Von Asmuth et al. (2002) suggested that GWL response to rainfall
could be modelled using a convolution between an IRF and the ob-
served time series of effective rainfall i.e.:

Fig. 2. Months for which GWL data is available for each borehole (left) and proportion of boreholes with specified number of monthly observations (right).
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∫= + −f m β α τ p m τ dτ( ) ( ) ( ) ,
m

e0 0 (2)

where α τ( ) is the impulse response function, p m( )e the effective rainfall
in month m and β0 is the GWL that occurs in the absence of any rainfall.
The effective rainfall is the rainfall minus the water that is lost to
evapotranspiration. Their IRF was based on a Pearson type III dis-
tribution:

=
−−

α τ A
a τ aτ

s
( )

exp( )
Γ( )

,
s s 1

(3)

where A a, and s are parameters and sΓ( ) is the gamma function of
order s. If the effective rainfall is recorded every month then the in-
tegral in (2) may be discretized such that:

∑= + −
=

f m β α τ p m τ( ) ( ) ( ).
τ

m

e0
0 (4)

In the UK, natural seasonal patterns of GWL variability are primarily
the result of the seasonal variation in evapotranspiration. So here,

effective rainfall is replaced by the rainfall p m( ) and sinusoids of per-
iods of 6 and 12months are added to the fixed effects to represent the
seasonal variation caused by evapotranspiration. The summation in Eq.
(4) is also restricted to the previous =n 60m months. Hence, if

= ⋯m m mm [ , , , ]n1 2
Tis the vector of months for which GWLs were re-

corded then the fixed effects can be written:

= βf m X( ) , (5)

where X is the × +n n5 m matrix:

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⋯ − +

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋯ − +

⎤

⎦

⎥
⎥
⎥
⎥
⎥

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

p m p m n

p m p m n

1 sin cos sin cos ( ) ( 1)

1 sin cos sin cos ( ) ( 1)

πm πm πm πm
m

πmn πmn πmn πmn
n n m

2 1
12

2 1
12

2 1
6

2 1
6 1 1

2
12

2
12

2
6

2
6

(6)

and = ⋯ +β β β[ , , ]n0 4
T

m is a vector of fixed effects parameters. The
β β β, ,1 2 3and β4 are the parameters for the sinusoid terms, and the re-
maining =+β α i( )i4 . It is assumed that the random effects are realized

Fig. 3. Flow diagram of the temporal modelling of GWLs and SGIs for each borehole.
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from a second order stationary multivariate Gaussian random function
where the correlation is represented by a nested nugget and Matérn
function (Marchant and Lark, 2007):

= ⎧
⎨⎩

+ =
>

C h
c c h
c G h h

( )
if 0

( ) for 0
,0 1

1 (7)

where

= ⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠−G h

ν
ν h

a
K ν h

a
( ) 1

2 Γ( )
2 2 .ν

ν

ν1 (8)

Here, Γ is the Gamma function and Kν is a modified Bessel function of
the second kind of order ν. The random effects model parameters are c0
the nugget, c1 the partial sill, a the distance parameter and ν the
smoothness parameter.

Thus, the mixed model has a total of 12 parameters. Eight of these
parameters are related to the fixed effects (five fewer than the minimum
required by AquiMod) and the remaining four are related to the random
effects. The parameters values for each borehole are estimated by
maximum likelihood (Marchant et al., 2016). The likelihood is a
mathematical formula for the probability that a particular set of ob-
servations would have resulted from a specified statistical model. The
maximum likelihood estimator uses a numerical optimization routine to
find the parameter values which lead to the largest likelihood value for
the observed data.

In some of the Chalk boreholes there was a negligible correlation
between the fixed effects related to the rainfall IRF and the observed
GWLs. This might have been because the variation of GWLs was pri-
marily controlled by anthropogenic processes, such as abstraction, or
because there were too few observations to reliably estimate the
parameters of the IRF. In these circumstances the estimates of the IRF
parameters are likely to be uncertain and the mixed model could be
overfitted. This would mean that the model predictions on dates when
the GWL was not observed are unreliable. To check for this occurrence a

simpler model of GWLs for each borehole is estimated where the fixed
effects consisted of only a constant and the two sinusoids. The two
models are compared by means of the Akaike Information Criterion
(AIC; Akaike, 1973):

= −k LAIC 2 2 , (9)

where k is the number of model parameters and L is the logarithm of
the maximised likelihood. The model that has the lowest AIC is se-
lected. Thus, the AIC is a criterion by which it is tested whether the
additional three parameters of the IRF lead to a substantial improve-
ment of the fit of the model.

Once the best fitting mixed model has been estimated it is used
along with the observed GWLs to predict GWLs on dates when they
were not observed within the best linear unbiased predictor (Marchant
et al., 2016) which is commonly referred to in the geostatistics litera-
ture as the universal kriging predictor (Webster and Oliver, 2007). This
predictor yields a prediction, ̂zi, of the expected GWL on each date ti
and a covariance matrix for these predictions. The entries on the main
diagonal of this covariance matrix are the prediction variances, σi

2,
which reflect the uncertainty of each individual prediction whereas the
off-diagonal elements describe the relationship between the errors on
different dates.

The prediction variances can be used to validate the estimated
mixed model via the standardised squared prediction error (SSPE):

̂= −θ z z
σ

( ) ,i
i i

i

2

2

where ̂zi is the GWL predicted by the model for month i, σi
2 is the

corresponding prediction variance and zi is the observed GWL for
month i. Observation zi must be excluded from the predictor when
calculating ̂zi. A leave-one-out cross validation is employed, where each
observation is omitted in turn and the remainder are used to predict the
GWL on the corresponding date and to calculate the SSPE. If the errors

Fig. 4. Flow diagram of the spatial analysis of the modelled SGI from all of the boreholes.
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are normally distributed, then the SSPE should be realized from a
standardised chi-squared distribution and the expected value of the
mean of the SSPEs is equal to 1. The SSPE provides a means by which to
identify the small number of typographical errors that are contained in
the dataset. If a θi value is greater than a threshold set at 50 then this
indicates that zi is an outlier which might have undue influence on the
model estimation procedure. In this case the outlier is removed from the
dataset and the mixed model is re-estimated. A large threshold value for
the outliers has intentionally been chosen (the expected number of false
positives across the whole dataset according to the fitted model is fewer
than 10−6) to ensure that the removed observations are errors in data
recording rather that examples of extreme GWLs.

Once the model has been estimated it is used in combination with
the available data to produce uncertain simulations of the GWLs on a
monthly time-step. The Cholesky simulation approach (Deutsch and
Journel, 1998) is applied to the predicted covariance matrix, C, to
produce 1000 realizations of the errors in the predicted GWLs. The
predictions are added to these simulations and the resultant time-series
are de-seasonalized and normalised each of the resultant time to pro-
duce 1000 simulations for the borehole. De-seasonalization and nor-
malisation is performed by applying the Standardised Groundwater
Index (Bloomfield and Marchant, 2013), a non-parametric estimation
that uses a normal-scores transform (Webster and Oliver, 2007) of
groundwater level data for each calendar month. The nonparametric
normalisation assigns a value to observations groundwater levels for a
given month. The normal scores transform is undertaken by applying
the inverse normal cumulative distribution function to n equally spaced
pi values ranging from 1/(2n) to 1–1/(2n). The values that result are the
SGI values for the given month. These are then re-ordered such that the
largest SGI value is assigned to the i for which pi is largest, the second
largest SGI value is assigned to the i for which pi is second largest, and
so on. The normalisation is undertaken for each of the 12 calendar
months separately and the resulting normalised monthly indices then
merged to form a continuous SGI time series.

This modelling procedure was applied to the 948 boreholes with the
most GWL observations. The remaining boreholes generally had too few
observations to identify the parameters of the IRF.

4.3. Cluster analysis of the SGI series

Groups of similarly behaving SGI time series are formed by per-
forming a cluster analysis. Webster and Oliver (1990) discuss various
clustering algorithms which lead to either hierarchical or non-hier-
archical groups of individuals. Here, following Bloomfield et al. (2015),
the flexible k-means clustering method is used to form a specified
number of non-hierarchical groups. The k-means approach also requires
that a distance function is specified which is used to assess the differ-
ence between different SGI time series. In this case, the Euclidean dis-
tance between the time series is used. A numerical optimisation routine
is used to select the partitioning of the boreholes which minimizes the
difference between each SGI time series and the centroid of the time
series for the cluster in which it is contained. This procedure is repeated
for two to nine groups and then expert interpretation is used to decide
which number of groups is most suitable to reflect our understanding of
the hydrogeological system.

The expert interpretation is guided by the following aims of the
clustering: to identify, and so exclude from further analysis, sites that
are systematically influenced by anthropogenic effects or that are out-
liers where the SGI time series do not correlate with the driving cli-
matology; and that the remaining clusters are spatially-coherent and
represent regional variations in groundwater droughts in the Chalk. The
approach adopted is to identify the smallest number of clusters that
reasonably satisfies the aims of the clustering. Note that these aims or
rules are specific to the current study; however, for any given study area
the target number of classes and hence the rules used can be adapted to
reflect the regional hydrogeology and in particular any knowledge of

heterogeneity in the aquifer systems under investigation.

4.4. Spatial interpolation of the SGI time series

Geostatistical methods (Webster and Oliver, 2007) are used to
spatially interpolate simulated SGI values on each date. A spatial cor-
relation function is estimated for the SGI values by the method of
moments (Webster and Oliver, 2007). This approach calculates the
semi-variance (i.e. half the squared difference) between pairs of ob-
servations and then estimates a model of how the semi-variance varies
with the distance separating the boreholes at which the observations
were made. In common with the temporal analyses the nested nugget
and Matérn model (Eqs. (7) and (8)) is used. This ensures that the re-
sultant correlation matrices are positive definite and that the prediction
variances that result are not negative. When calculating the semi-var-
iances comparisons are restricted to pairs of SGI values from the same
date and from boreholes where the GWL was recorded on that date.
This ensures that the temporal variation and the estimation variance of
the SGI do not unduly influence our estimated semi-variances.

Having estimated the spatial correlation function, SGI values are
spatially interpolated on the first day of each month, and the un-
certainty of these predictions estimated by kriging (Webster and Oliver,
2007). The kriging predictor is applied 1000 times, taking a different
simulated SGI value from each borehole each time. The SGI prediction
at each unobserved site is equal to the mean prediction for these 1000
iterations. The variance of the 1000 predictions is calculated at each
site and added to the spatial kriging variance to yield the total pre-
diction variance. Thus this prediction variance accounts for both spatial
and temporal uncertainty, although this approach does assume that the
random effects from each borehole for a particular month are in-
dependent. Any location that is more than 75 km from a borehole is
omitted from the region where predictions are calculated since the
correlation between the GWLs at such a site and the observed GWLs will
be small and hence the predictions unreliable.

5. Results

5.1. Temporal modelling of SGI values

The results of the temporal modelling procedure are illustrated for
two boreholes denoted ‘A’ and ‘B’ in Fig. 1 (right). Borehole ‘A’ is an
observation borehole from the interfluve area of the eastern Chilterns
and has a monthly SGI hydrograph that shows annual and multi-annual
responses to the driving meteorology and no clear annual minima,
whereas borehole ‘B’ is an observation borehole from the northern part
of the Hampshire Basin with a monthly SGI hydrograph that is domi-
nated by an annual signal and a consistent annual minima, typically just
below 80m above sea level (masl), associated with a local groundwater
base level. Fig. 5 shows the estimated IRFs for these two boreholes. The
borehole ‘A’ IRF takes almost two years to reach its peak and pre-
cipitation is still having some influence on the GWLs 40months after it
has occurred. In contrast, the IRF for borehole ‘B’ reaches its peak after
five months and it is negligibly small after 20months. Thus, the mod-
elled (and observed) GWLs from borehole ‘A’ vary relatively smoothly
(Fig. 6 upper panel) whereas the GWLs from borehole ‘B’ (Fig. 6 lower
panel) have a much flashier pattern of variation.

The 95% confidence limits in the predicted GWLs (Fig. 6) are de-
termined from the values that are simulated from the estimated mixed
model. The confidence limits for borehole ‘A’ are generally narrow al-
though they widen during periods such as 1998 where few GWL ob-
servations are available. Similarly, the predictions of GWLs for borehole
‘B’ are rather uncertain in the early 1960s since this time precedes the
observation of GWLs at this borehole. The SGI and 95% confidence
limits of the SGI for each borehole are shown in Fig. 7. Again, these are
based on the simulated GWLs and for borehole ‘A’ they are relatively
narrow except at times when the GWLs were not observed. The
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confidence limits for the flashier SGI time series from borehole ‘B’ are
much wider, particularly at times when the observed data were sparse.

When applying the temporal analysis workflow (Fig. 3) across all of
the boreholes it was necessary to remove 28 outlying GWL observations
which were inconsistent with the initial estimated model. Once these
outliers had been removed and the models re-fitted the resultant mean
SSPEs for each borehole were generally close to 1. For 93% of the
boreholes (Table 1), the mean of the SSPE was between 0.9 and 1.1
indicating that the average observed squared errors upon cross-vali-
dation were on within 10% of the predicted squared errors. Of the best
fitting models for each of the 948 boreholes analysed, 77% included an
IRF and hence a significant relationship with precipitation (Table 1).
Overall the best fitting models for all the sites explained an average of
52% of the variation in GWLs and on average more than half of this was
explained by the IRF component.

5.2. Cluster analysis of SGI time series

Modelled GWLs from the 948 boreholes were used as the basis for
the cluster analysis and the spatial distribution of sites for between two
and nine clusters are shown in Fig. 8. Following the rules set for cluster
selection, the results are shown in Figs. 8f and Fig. 9 and seven clusters
have been identified. The centroids (i.e. averages) for the SGI time
series for these seven clusters are shown in Fig. 10. The seven clusters
include:

• two clusters of modelled hydrographs that show long-term trends
and a poor explanation of observed variation in GWLs (Fig. 10 and
Table 1) are interpreted as reflecting long-term anthropogenic in-
fluence on SGI time series, namely:
o Cluster 7 (CL7) shows an upward trend from 1960 to 2013
(Fig. 10), where only 41% of the best fitting models include the
IRF (Table 1) and only 21% of the GWL variation is explained by
the model. Sites in this cluster are not spatially coherent and are
interpreted as being affected by a range of anthropogenic influ-
ences, including, for example, previously documented post-in-
dustrial groundwater rebound in the confined Chalk beneath the
central London (Lucas and Robinson, 1995) (Fig. 9c)

o Cluster 3 (CL3) shows a downward trend (Fig. 10), where only
29% of the best fitting models include the IRF (Table 1) and only
12% of the GWL variation is explained by the model. Sites in this
cluster, like those in CL7, are widely dispersed and are interpreted
as being due to long-term or historic over abstraction from the
Chalk, for example as previously documented in Lincolnshire
(Whitehead and Lawrence, 2006) and Cambridgeshire (Petts et al,
1999; Acreman et al., 2000) (Fig. 9c).

• One cluster, Cluster 4 (CL4), of modelled hydrographs shows no
trend and a very poor explanation of observed variation in GWLs
(Table 1 and Fig. 9c). This cluster is interpreted as corresponding to
sites where there is insufficient evidence (observations) to model the
GWL variation.

• The remaining four clusters, Clusters 1, 2, 5 and 6 (CL1, CL2, CL5

Fig. 5. Estimated impulse response functions for (left) Borehole ‘A’ and (right) Borehole ‘B’.

Fig. 6. Observed groundwater levels (red dots) and 95% confidence interval for predictions of groundwater levels (grey shaded area) for Borehole ‘A’ (upper) and
Borehole ‘B’ (lower). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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and CL6 respectively) occupy broadly spatially coherent regions,
with CL1 coinciding with the Berkshire and North Wessex Downs,
CL2 with Yorkshire, Lincolnshire, and north Norfolk, CL5 the South
Downs and Wessex, and CL6 coincides with the Chilterns, North
Downs and Suffolk. A high proportion of the models in each of these
clusters include IRF models, and a high proportion of the variance of
GWLs is explained by the models (Table 1).

Sites in clusters CL7, CL3 and CL4 are not analysed further since
they are considered to be either anthropogenically impacted (CL7 and
CL3) or the modelled GWLs are inferred to be unrelated to precipitation
(CL4). The remaining four clusters, CL1, CL2, CL5 and CL6 are taken to
represent the broadly unimpacted responses of groundwater levels in
the unconfined or partially confined aquifer to the driving meteorology
as modified by catchment and aquifer characteristics and are the focus
of subsequent analysis.

The average (and standardised to a sum of one) IRFs for each of the
four unimpacted clusters are shown in Fig. 11. The IRF for CL1 and CL2
are very similar, reaching a peak after about 7months and becoming
negligibly small after 40months. Thus the SGI centroids for these two
clusters (Fig. 10) have a similar degree of smoothness. The IRF for CL5
immediately reaches its peak and decreases to be negligibly small soon
after 20months. This behaviour is reflected by a much flashier SGI
centroid in Fig. 10. Conversely, the IRF from CL6 remains positive be-
yond 50months, corresponding to a very smooth SGI centroid. For the
four unimpacted clusters, the vast majority of best fitting models

include the IRF (Table 1) and the models for CL1, CL2 and CL5 on
average explain more than 65% of GWL variation. This level of per-
formance is comparable with that achieved using AquiMod lumped
parameter model (Jackson et al., 2016). On average only 45% of the
variation in the GWLs is explained for CL6 boreholes, but this is con-
sistent with the findings of Marchant et al. (2016) that predictive per-
formance is relatively poor for smoothly varying GWLs. The mean
SSPEs are generally close to one for all of the clusters (Table 1) although
the proportion of sites where the mean SSPE is outside the range
0.9–1.1 is relatively large for the three impacted clusters and the more
smoothly varying CL6.

To understand what may be influencing the composition of the
clusters including their temporal and spatial features, it is helpful to
consider both the precipitation time series associated with each SGI
cluster and the spatial distribution of key catchment and hydro-
geological factors.

Fig. 12 shows the mean normalised and standardised precipitation
in the preceding 12months, SPI12 (Bloomfield and Marchant, 2013), for
clusters CL1, CL2, CL5 and CL6. Fig. 12 is consistent with the as-
sumption that the broad drought history of the study area is spatially
homogeneous. Time series of SPI12 for each of the four clusters closely
parallel the SPI12 for the region as a whole, and all four show the
previously documented major episodes of drought 1975–1976;
1988–1992; 1995–1997; 2004–2006; and 2010–2012 (Marsh et al.,
1994; Marsh et al., 2007; Kendon et al., 2013; Bloomfield and
Marchant, 2013; Bloomfield et al., 2015) (although it is noted that two
additional episodes of SPI12 drought, taken here as SPI12 < −1, of a
similar magnitude to previously recorded episodes of drought are also
indicated for 1962–1966 and 1972–1973). There are, however, minor
deviations in the SPI12 time series between individual clusters and the
region as a whole. For example, the 1975–1976 SPI12 drought was more
acute in CL1, centred on the southern Chalk, rather than in CL2, i.e.
over the Chalk of the north east; the 1988–1992 event appears to have
been both more acute and continuous in CL2 than in CL1 and CL5
where it was slightly less severe and consisted of three individual
phases; and, the onset of the 2011–2012 drought appears to be slightly
earlier in CL1 than the other three clusters (Fig. 12). Even though
episodes of groundwater drought, taken here as SGI < −1, are more
attenuated than the equivalent drought in the driving meteorology
(compare Fig. 10 with Fig. 12, and as would be expected from Van
Loon, 2015), the subtle differences in the driving meteorology are

Fig. 7. Predicted 95% confidence intervals for SGI at Borehole ‘A’ (upper’) and Borehole ‘B’ (lower).

Table 1
Number of boreholes in each cluster n( ); proportion of best fitting models in-
cluding IRF (IRF model); proportion of variance of GWLs explained by model
(Rtot

2 ); proportion of variance of GWLs explained by IRF (RIRF
2 ) and proportion of

boreholes where the mean SSPE is between 0.9 and 1.1 ( < −<θ0.9 1.1.)

Cluster n IRF model Rtot
2 RIRF

2
< <

−
θ0.9 1.1

CL1 186 0.90 0.68 0.42 0.97
CL2 177 0.96 0.65 0.44 0.96
CL3 62 0.29 0.12 0.05 0.88
CL4 107 0.23 0.21 0.05 0.87
CL5 205 0.98 0.67 0.47 0.97
CL6 152 0.80 0.45 0.36 0.87
CL7 59 0.41 0.21 0.19 0.90
All 948 0.77 0.52 0.34 0.93
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propagated through to and are reflected in similar differences in the SGI
time series. For example, the SGI centroids for CL1 and CL2 are highly
correlated (Fig. 10), but some differences are evident. The 1976
groundwater drought appears to be more severe for CL1, while the
groundwater drought in the early 1990s is continuous for CL2 whereas
in CL1 there is a small break, and the 2010–2012 groundwater drought
commences slightly earlier in CL1. Based on the above, it appears that
small changes in the driving meteorology within the study area, be-
tween CL2 in the north east of the study area and CL1 and CL5 in the
south of the Chalk, have had some influence on the composition of the
clusters.

The SGI centroids (Fig. 10) represent an integrated system response
to the driving meteorology. However, there are features of the four
clusters and their expression of groundwater droughts that appear to be

influenced by regional variation in unsaturated zone and recharge
process and by some saturated zone and catchment characteristics.

Sites in CL6 may be influenced by features of the regional hydro-
geology that act to modify recharge and hence affect the form of the SGI
hydrographs. CL6 is associated with East Anglia, the Chilterns and the
North Downs and is characterised by the smoothest of the SGI centroids
(Fig. 10). Across large parts of East Anglia the Chalk is covered by the
Crag, a series of younger gravels, sands and silts, and by glacial deposits
(Jones et al., 2000). Weathering deposits, in the form of Clay-with-
Flints, are also present extensively over the Chalk of the Chilterns and
North Downs (Goudie, 1993; Bloomfield et al., 2009). The hydraulic
relationship between these overlying deposits and the Chalk is locally
complex. For example, the Crag may be in hydraulic continuity with the
underlying Chalk or may be separated from the Chalk by a relatively

Fig. 8. Results of cluster analyses for two (a) to nine (h) clusters.

Fig. 9. Results of cluster analysis dividing the boreholes into seven clusters according to their SGI time series (a) all seven clusters, (b) the clusters where the SGI
closely follows the precipitation time series (c) the clusters most impacted by abstraction.
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low permeability clay (Jones et al., 2000). Where it is in hydraulic
continuity it adds significantly to the storage of the aquifer, where the
basal clay is present the Chalk may locally be confined. Over the
Chilterns and the North Downs, the clay-with-flints deposits, another
relatively low permeability clay, is typically found on high ground
across the main recharge area associated with CL6. Here the clay-with-
flints limits recharge, but also leads to focused recharge at the margins
of the deposit (Allen et al., 1997; MacDonald et al., 1998). Although
locally complex in their hydrogeological effects, at a regional scale
these deposits that overly the Chalk may either add significant storage
to the Chalk aquifer or limit or delay recharge. In both instances these
processes will contribute to the relatively smooth nature of the SGI
centroid of CL6 (Fig. 10).

Bloomfield and Marchant (2013) have previously shown that the
range of temporal autocorrelation in the SGI from a borehole scales
with the hydraulic diffusivity of the aquifer, consequently, it could be
expected that the spatially coherent SGI clusters (Fig. 9b) should reflect
any spatial heterogeneity in transmissivity (T) and storativity (S) of the
Chalk at a regional scale. MacDonald and Allen (2001) analysed the
aquifer properties of the Chalk based on 2100 pumping tests in four

regions: southern; the Thames Basin (including the North Downs); East
Anglia; and Yorkshire and Lincolnshire, but the results were incon-
clusive. They found that the distribution of T and S was broadly similar
for all four regions, and that within a given region transmissivity and
storage co-efficients could vary by over five orders of magnitude.
However, they also noted that the dataset was ‘highly biased: most
pumping tests have been undertaken in valley areas where the yield of
the Chalk is highest’, and it is unclear how this may have influenced the
results of the analysis of the T and S data. The inference from these
observations is that there appears to be no strong or reliable evidence
for a relationship between T and S and the spatial distribution of the
clusters. Notwithstanding this, relationships between the location of the
observation borehole, catchment boundaries and local groundwater
level base levels and hence unsaturated zone thickness will influence
the form of the SGI time series (Peters et al., 2006; Bloomfield and
Marchant, 2013). Compared with the other three clusters, catchments
in Wessex and the South Downs associated with CL5 are typically re-
latively small and the Chalk is relatively highly faulted and fractured
compared with other regions (Jones and Robins, 1999). These ob-
servations are consistent with the relatively flashy nature of the CL5 SGI

Fig. 10. The SGI centroids for each of the seven clusters shown in Fig. 9a.
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centroid compared with CL1, CL2 and CL6 (Fig. 9).
In summary, it is not trivial to disentangle the various contributing

factors to the form of the four SGI clusters. However, there is evidence

that small changes in the driving meteorology between the north east of
the study area and the south of the study area may have influenced the
formation of clusters CL1, CL2 and CL5; that overlying deposits and

Fig. 11. The mean IRF for each of the four naturalised clusters shown in Fig. 9b.

Fig. 12. Time series of normalised and standardised mean precipitation in the preceding 12months for the four naturalised clusters shown in Fig. 9b. Shading regions
correspond to SPI < −1.
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their effect on unsaturated zone storage and recharge may have influ-
enced the formation of CL6; and, CL5 is consistent with known spatial
variations in catchment and rock mass characteristics.

5.3. Spatial interpolation of SGI values

The estimated spatial variogram function for the SGI predictions for
all data in clusters CL1, CL2, CL5 and CL6 is shown in Fig. 13. The
spatial variation is relatively smooth with little difference between SGI
values a few km apart, and there is some degree of spatial correlation
beyond 100 km. This is consistent with the spatial-coherency of the
clusters, typically of the order of 100–200 km (Fig. 9b). Using the
spatial variogram function, SGI values have been spatially interpolated
for each month from January 1960 to March 2013.

Spatial interpolations of the SGI are shown for three major episodes
of drought in Fig. 14 (1975–1975 event), Fig. 15 (1988–1992 event),
and Fig. 16 (2011–2012 event) and reflect the observed differences
between the SGI centroids for clusters CL1, CL2, CL5 and CL6 (Fig. 10).
In Figs. 14–16 the distribution of negative values of SGI in the Chalk
have been mapped where SGI < −0.5 is denoted as pre-drought,<
−1 as groundwater drought,<−1.5 as a severe groundwater drought
and< −2 as an extreme groundwater drought. Comparison of
Figs. 14–16 shows the unique spatio-temporal nature of each episode of
groundwater drought. For example, Fig. 14 shows that the 1975–1976
drought, although national in extent, at its peak in the summer of 1976
was most extreme in southern England (Hampshire and the Berkshire
Downs), consistent with previous observations of Rodda and Marsh
(2011). The 2011–2012 groundwater drought, Fig. 16, was also na-
tional in extent, however it was less pronounced than the 1975–1976
event, had a slightly more easterly footprint, and at its height, in late
winter/spring 2012, was most extreme in north Norfolk and parts of the
Chilterns and Berkshire, consistent with the observations of Marsh et al.
(2013). Both the 1975–1976 and 2011–2012 episodes were effectively
two-winter groundwater droughts where in any given region the
drought status grew continuously over the entire period to a maximum
and then declined as the drought broke (Marsh et al., 2013). However,
in contrast to both these episodes, the 1988–1992 event was a longer,
multi-annual event and is characterised by waves of increasing and
decreasing groundwater drought status throughout the longer period.
For example, Fig. 15 shows Yorkshire and parts of Hampshire passing
into and back out of drought/severe drought status before finally
reaching peak drought status in spring/summer 1992. Compared with
both the 1975–1976 and 2011–2012 droughts, at its peak the
1988–1992 groundwater drought was more extensive across the whole
of the English Chalk. However, both before and after peak drought

status (see March 1992, Fig. 15) the episode generally had a more north
easterly focus than the other two episodes of drought (Marsh et al.,
1994).

6. Discussion

The empirical approach adopted here successfully meets the chal-
lenges of assessing the severity and distribution of groundwater
droughts while explicitly addressing issues associated with the avail-
ability and nature of GWL data and also accounting for and quantifying
the spatio-temporal heterogeneity of episodes of drought. The empirical
approach uses available GWL data for a region, in this case for the Chalk
of the UK, and requires no additional information other than pre-
cipitation data. It does not need any process-based assumptions to be
made and the models do not require parameterisation using informa-
tion about site characteristics. As a consequence it is not necessary to
have additional information about the spatial variation in catchment or
hydrogeological characteristics over the modelled region. This means
that the approach is applicable for use in monitoring and assessing
groundwater drought status wherever there are suitable available GWL
observations and precipitation data. The approach is more parsimo-
nious with respect to the number of parameters that need to be cali-
brated than AquiMod, a process-based lumped model, while at the same
time the performance of the empirical model has been shown to be
comparable with that achieved using AquiMod (Jackson et al., 2016).

The modelling scheme (Figs. 3 and 4) takes GWL time series data,
however irregular or noisy, and through sub-sampling and modelling
transforms these into regular, monthly modelled GWL time series that
can be correlated with precipitation data to estimate SGI and hence
groundwater drought status. In this scheme, as with previous studies
(Khan et al., 2008; Bloomfield and Marchant, 2013; Bloomfield et al.,
2015; Kumar et al., 2016; Van Loon et al., 2017), precipitation is used
as a proxy for groundwater drought status. However, the mixed model
differs from and is an improvement on those previous studies that use
proxies in two main ways. By using an IRF (Calver, 1997; Von Asmuth
et al., 2002) the empirical approach accounts for non-linearities in the
relationship between precipitation and groundwater levels. In addition,
the method explicitly quantifies the uncertainty in both the modelled
site and spatial groundwater drought status (Fig. 7). Fig. 17 shows
spatial variation of the SGI prediction variance (i.e. uncertainty) across
the Chalk for November 1962 and November 2012. The average pre-
diction variances across the Chalk are 0.17 in November 1962 and 0.14
in November 2012. This difference reflects the greater number of
groundwater observations in 2012. Spatially, the uncertainty increases
with distance from the nearest borehole.

Van Lanen et al (2016), Laaha et al (2017), and Van loon et al
(2017) have each provided assessments of and commentaries on the last
major European drought in 2015. Van Loon et al. (2017) note that there
is a need ‘to promote more long-term groundwater measurement and
international sharing of groundwater level data’. We re-emphasise this
need. Data driven models of drought status, such as the one described
here, require relatively long-term time series data across wide geo-
graphical areas to adequately represent variations in spatio-temporal
status of groundwater droughts. Laaha et al. (2017) point out that a
particular failing of hydrological assessments during the European
drought of 2015 was the inability to obtain and analyse data in near
real-time. In that context, any models of hydrological status that are
calibrated on precipitation data (which is available in near real-time)
and that can be used in a ‘nowcasting’ mode or for short-term forecasts
of drought status (for example out to one or two months) would be
highly valuable. Although outside the scope of the present study, the
empirical model described here is amenable to be used in such a
manner. The precision of these forecasts in a particular region will
greatly depend upon the degree of temporal autocorrelation amongst
the observed GWLs in nearby boreholes.

Van Lanen et al. (2016) noted that during droughts, such as that inFig. 13. Spatial variogram for observed SGI values.
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Europe in 2015, groundwater resources are stressed not just due to
precipitation deficits, but also due to over-abstraction and that typically
‘no separation is made between impacts due to the drought itself as
compared to abstractions due to increased groundwater exploitation’.
This observation has been further developed by Van Loon et al. (2016)
in their analysis of drought in the Anthropocene. Although not the focus

of the current study, the modelling approach adopted here lends itself
well to identification of the impacts of abstraction on groundwater
droughts. Because the modelling does not rely on process-based as-
sumptions of the hydrogeology at each site, it is easy to identify the
degree to which variation in groundwater levels can be explained by
variations in precipitation alone – where it is not possible for the model

Fig. 14. Variation of groundwater drought status across the Chalk between August 1975 and February 1977. Note that the study area has been reduced to only
include locations within 75 km of a borehole that is a member of CL1, CL2, CL5 or CL6.

Fig. 15. Variation of groundwater drought status across the Chalk between September 1988 and March 1994. Note that the study area has been reduced to only
include locations within 75 km of a borehole that is a member of CL1, CL2, CL5 or CL6.
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to explain groundwater levels adequately, it is reasonable to postulate
that in many cases the effects of abstraction may be significant at that
site. For example, in the present study, sites in clusters CL3 and CL7
have been inferred to be affected by long-term changes in groundwater
management, with cluster CL3 interpreted as showing evidence of long-
term abstraction. Extracting episodes of drought from hydrographs
from CL3 where historic over abstraction has previously been

documented (e.g. Whitehead and Lawrence, 2006) and systematically
analysing these in the context of equivalent hydrographs from cluster
CL2 (hydrographs from the same region but that show no influence of
long-term abstraction, Figs. 9 and 10) should provide new insights into
the effects of long-term abstraction on the onset, magnitude and
duration groundwater drought.

Fig. 16. Variation of groundwater drought status across the Chalk between October 2010 and January 2013. Note that the study area has been reduced to only
include locations within 75 km of a borehole that is a member of CL1, CL2, CL5 or CL6.

Fig. 17. Prediction variance for predicted SGI in November 1962 (left) and November 2012 (right).
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