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ABSTRACT 

Design flood estimates are often required for small, heavily-urbanized catchments, which 

respond quickly to storm events. However, hydrological models are most frequently 

calibrated using daily or hourly data on larger, more rural catchments, which respond on 

much longer timescales. Here, we calibrate a lumped, conceptual rainfall-runoff model 

(ReFH2) in three small (2-6 km
2
), heavily-urbanized catchments in Swindon, UK, assessing 

the benefits of using high-resolution temporal and spatial data. Modelling shows that heavy 

urbanization does not by itself invalidate the applicability of a lumped, conceptual model. 

However, we find great dissimilarities between runoff behaviour in different heavily-

urbanized catchments, with some types behaving similarly to rural catchments. In other cases, 

response and contributing catchment area can depend more on underground topology than 

catchment topography. Calibrated runoff response is insensitive to the temporal resolution of 

the calibration events in all study catchments. Future research should aim to differentiate 

between different types of heavily-urbanized catchment, potentially through landscape 

metrics to measure the connectivity and isolation of different land surface types.  
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INTRODUCTION 

Catchment urbanization reduces infiltration capacity, reduces surface roughness, increases 

overland flow and reduces the distance that runoff must travel to reach a watercourse 

(Redfern et al. 2016), resulting in increased runoff volume (Leopold 1968; Valtanen et al. 

2013), increased peak flow (Hall 1977; Braud et al. 2013), flashier response and reduced 

response time to rainfall (Anderson 1970; Laenen 1983; Granato 2012). Extreme rainfall 

events are therefore more likely to result in both pluvial and fluvial flooding (Konrad 2014).  

In the absence of long-term flow data, design flood estimation underpins the engineer’s 

ability to estimate the flood peaks, hydrographs and extents required for a multitude of 

engineering, planning and insurance purposes, including the design of urban drainage 

systems and flood defences. Estimation methods fall into two broad classes: statistical (e.g. 

Kjeldsen et al. 2008; Shu & Ouarda 2008; Guse et al. 2010) and process-based (e.g. Kjeldsen 

2007; Buytaert & Beven 2011), including approaches that are a combination of both (e.g. 

Eagleson 1972; Franchini et al. 2005; Iacobellis et al. 2011). Statistical analysis can be 

considered the “standard approach” to flood frequency estimation (Klemeš 1993). However, 

process-based, event-based rainfall-runoff modelling, estimating an output runoff hydrograph 

from an input rainfall hyetograph and assumptions about antecedent catchment wetness, can 

be preferable in several situations. Firstly, rainfall-runoff modelling utilizes rain gauge data 

records, which are typically longer and spatially denser than records from flow monitoring 

stations, so it is preferable whenever estimates are required for very long return period events 

(Faulkner & Barber 2009; Blöschl et al. 2013). Secondly, rainfall-runoff methods allow the 

effects of changing land use or climate to be investigated by varying model parameters or 

inputs (Faulkner & Barber 2009), making them particularly useful for comparison of pre- and 

post-development runoff (e.g. Miller et al. 2014). Thirdly, and perhaps most importantly for 

small urban catchments, rainfall-runoff models can be used to provide flow-time input 

boundaries to hydrodynamic models for flood risk mapping (e.g. Environment Agency 2013) 

and for the design of flood alleviation (e.g. Royal Haskoning 2010) and other schemes (e.g. 

Ghimire & Jones 2014). 

While design flood estimation is a mature topic, there is limited literature on the particular 

challenges posed by small, heavily-urbanized catchments, and specifically on the use of high-

resolution temporal data to overcome modelling challenges related to rapid flood response to 

rainfall, as most models applied at a national scale are calibrated using daily or hourly data 
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obtained from national monitoring networks biased towards more rural catchments (e.g. 

Quintana Seguí et al. 2009, France; Markstrom et al. 2015, USA; McMillan et al. 2016, New 

Zealand). In the UK, both rapid urban growth, driving expansion and intensification of urban 

areas, and climate change, predicted to result in larger one-hour peak rainfalls (Kendon et al. 

2014), have been identified as drivers of future urban flood risk (Evans 2004; Evans et al. 

2008). This combination of factors requires consideration of the suitability and accuracy of 

design storm models when applied in small urban areas, which will likely be highly affected 

by changes to peak rainfall intensity.  

The purpose of this study is to assess the performance of a lumped rainfall-runoff design-

flood model in small, heavily-urbanized catchments, and assess the potential benefits of using 

high-resolution data in calibration. For this, we use ReFH2 (Kjeldsen et al. 2013; Wallingford 

HydroSolutions 2015) and flow data from three case study catchments. ReFH2 is a lumped, 

conceptual rainfall-runoff model used widely for design flood estimation in the UK (SEPA 

2015; Wallingford HydroSolutions 2015), including in small urban catchments (e.g. Intertek 

Energy & Water Consultancy Services 2015, RSK Land & Development Engineering Ltd. 

2016), and is integrated with commerical tools to provide design flow-time input boundaries 

to detailed hyrdrodynamic models, corresponding to upstream catchment response to design 

rainfalls of specified return periods. . The results of this study are used to outline and refine 

recommendations for best practice and to identify next steps for ongoing development of 

design flood estimation to cope with future urban expansion. 

STUDY CATCHMENTS 

Three small, heavily-urbanized catchments (Table 1), all located within the River Ray 

catchment to the north of Swindon town centre, UK (Figure 1), were used as study 

catchments. Swindon has relatively dry and sunny summers for the UK, with approximately 

50-60 mm mean monthly rainfall and 150-210 mean monthly sunshine-hours during April-

September 1981-2010 (Met Office 2014). Over the same period, mean monthly October-

March rainfalls and sunshine-hours were approximately 50-80 mm and 60-115 hours 

respectively.  

In all three catchments, drainage paths are heavily altered from their natural states. The FEH 

Web Service (CEH 2015) delineates catchments using natural drainage pathways based on a 

50-metre digital elevation model (DEM). This estimates area well for the Rodbourne 
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catchment, but is unable to delineate the natural Haydon Wick Brook catchment into its 

artificially-drained northern section, HWN, and its surface-channel-drained southern section, 

HWS. Catchment area and drainage path slope can therefore be calculated from a 

combination of DEM, topographic (TOP) and storm drainage mapping (SD). Applying urban 

drainage and topographic mapping after Miller & Grebby (2014) reduces the total area of 

Haydon Wick Brook relative to that derived from the 50-metre DEM. However, the area of 

Rodbourne increases significantly when using 10-metre DEM data and merging catchment 

boundaries to delimit natural drainage boundaries (Table 1). Mean drainage path slope is only 

slightly affected by mapping method and ranges from 14.0 m/km (Rodbourne) to 40.6 m/km 

(Haydon Wick North). 

Soil types vary between the three catchments: Haydon Wick South and Haydon Wick North 

overlie slowly-permeable, seasonally-wet loamy and clayey soil, while Rodbourne overlies 

both this and freely-draining, shallow, lime-rich soil in approximately equal measure 

(Cranfield University 2017). However, Haydon Wick has the highest BFIHOST (baseflow 

index estimated from soil data), reflecting the 1-km resolution of the soil maps underlying the 

FEH Web Service and the outline of the Haydon Wick catchment advancing into squares of 

more permeable soil to the east. 

Urban cover fractions for the study catchments were calculated as a weighted total of urban 

and suburban land cover class extents derived from recent Land Cover Mapping (LCM) using 

remote sensing imagery (Rowland et al., 2017). The methodology used for deriving 

URBEXT2000 (Bayliss et al. 2006) was used to derive URBEXT2015, defined here as an 

equivalent index of catchment urban extent for the year 2015. While URBEXT has clearly 

increased in both Haydon Wick and Rodbourne over the period 2000-2015, the different 

methods for estimating storm drainage area (topographic and 10-metre DEM) do not estimate 

significantly different URBEXT2015 values. 

It should be noted that the surface water drainage network shown on Figure 1 does not detail 

connections to individual buildings or some large industrial/commercial areas; this is most 

clear for the highly urbanized areas in the upper reaches of Rodbourne. Further information 

on these catchments can be found in Miller & Hess (2017), where they are catchments S3, S4 

and S5. 

This article is protected by copyright. All rights reserved.
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Haydon Wick Brook and the Rodbourne stream were identified as sources of fluvial flooding 

during the July 2007 floods. In response to these floods, Haydon Wick Brook was subject to a 

flood risk assessment (Royal Haskoning 2010) and subsequent alleviation scheme, completed 

in 2013. Flood peaks and volumes were estimated using both the improved FEH statistical 

method (Kjeldsen et al. 2008) and the FSR/FEH rainfall-runoff method (Houghton-Carr 

1999). ReFH2 did not exist at that time and the original version of ReFH (Kjeldsen 2007) 

was not used as it is not recommended for use in urban catchments. The alleviation scheme 

consists of sheet piling, installed along 2 kilometres of the brook, together with new 

embankments and bridge replacement. It is intended to protect against the 1-in-100 year flood 

with a 20% climate change allowance. For comparison with this study, the hydraulic model 

used in the assessment and design of the Haydon Wick Brook flood alleviation scheme was 

calibrated against rainfall and stream depth data both recorded within the catchment at 2-

minute resolution, but only over a period corresponding to a single summer event (3
rd

 June 

2008). 

EVENT SELECTION 

Catchment flows were recorded at 5-minute resolution using ultrasonic Doppler shift 

instruments (Unidata Starflow 6526H), with velocity and depth accuracy of ±2% and ±0.25% 

respectively, mounted to the bed of suitable hydraulic structures, according to ISO (2010), in 

accessible culverted channel locations. Monitoring was conducted from April or May 2011 to 

October 2015. Depth and velocity data were quality controlled and processed according to the 

method outlined by Blake & Packman (2008), using measured cross-sections to derive flow. 

Ratings developed from spot-gauging of depth and flow, using a SonTek FlowTracker, were 

used to calibrate depth and velocity observations across the channel cross-section, and 

increase accuracy. Rainfall at 15-minute resolution was made available from an Environment 

Agency tipping bucket rain gauge at Swindon sewage treatment works, with a tip resolution 

of 0.2 mm, located no more than 5 kilometres from the furthest point in any study catchment. 

The study rain gauge record was discretized into single events for the common period of flow 

records from May 2011 to October 2015. Events are defined as periods in which 2 or more 

mm of rainfall are observed, bookended by antecedent and post-event dry periods. The post-

event dry period is defined as a 12-hour period having zero rain during the first 6 hours and 

no more than 2 mm of rain in the subsequent 6 hours. The antecedent dry period is defined as 
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a 12-hour period having no rain in the two hours before the start of a rainfall event and no 

more than 2 mm of rainfall across the whole 12-hour period.  

After defining 321 events in total, 38 were selected for model calibration. These were events 

for which 

 the rainfall hyetograph was single-peaked, 

 the corresponding runoff hydrographs were all single-peaked, 

 rainfall-generated runoff was zero at the start of the event, and 

 runoff returned to baseflow conditions before the start of the next event. 

Table 2 summarizes the 38 selected rainfall events, showing that all are relatively frequent. 

This is not unexpected, due to the short length of the monitoring period and stringent 

selection criteria that rejected 88% of recorded events. 

The seasonality of the 38 calibration events, shown in Figure 2, indicates that they are spread 

reasonably evenly throughout the summer and first half of winter, with a majority occurring 

during May-October, and a mean occurrence in mid-September. The comparative lack of 

calibration events in the second half of winter reflects the tendency for rainfall during this 

time to be frontal, rather than convective, consisting of long duration, low-intensity rainfall, 

rather than the higher-intensity, shorter duration, clear and discrete rainfall events that would 

be ideal for model calibration. Table 3 summarizes the mean values of calibration event 

rainfall-runoff metrics for each site, revealing that ROD and HWS have similar rainfall-

runoff responses. However, Figure 2 shows that flow profiles in HWS are considerably 

smoother than in ROD, potentially as a result of the lower urbanization fraction or the 

influence of the large, contiguous green area. The rainfall runoff response in Haydon Wick 

North (HWN) is clearly different, with much higher peak flows and shorter response times 

across all time-based metrics, however the percentage runoff is similar to ROD and HWS. 

This may indicate that not all the runoff from pervious areas in the upper HWN catchment is 

received by the drainage network. 
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REFH2 MODEL OVERVIEW 

ReFH2 (Kjeldsen et al. 2013; Wallingford HydroSolutions 2015) is an event-based, lumped, 

conceptual, time-series rainfall-runoff model, whose parameters can either be fitted to at-site 

calibration events or, for ungauged catchments, estimated through regression relationships 

with catchment properties. It consists of three model components: loss model, routing model 

(unit hydrograph) and baseflow model (Figure 3). ReFH2 is of particular importance in the 

UK, as it is the latest version of the ReFH method (Kjeldsen 2007), which is widely used for 

design flood estimation in the UK. It addresses some criticisms of the original ReFH model 

(Faulkner & Barber 2009) through: i) explicit separation of urban and rural fractions within 

the model structure, ii) a far larger data set of calibration catchments, including more 

permeable catchments and iii) an updated design rainfall model (Stewart et al. 2014). Recent 

research into estimation of the median annual flood in small catchments (Faulkner et al. 

2012a; Faulkner et al. 2012b) has found that older and simpler methods designed specifically 

for small catchments, such as IH124 (Marshall & Bayliss 1994), tend to give larger and more 

biased errors than modern methods descended from the Flood Estimation Handbook (FEH: 

IH 1999). It is noted that ReFH2 had not yet been developed at the time of that research, 

although ReFH was a tested FEH method. 

DISCUSSION: MODEL CALIBRATION 

IN GAUGED CATCHMENTS 

Calibration was undertaken at both a 15-minute resolution and at an aggregated 1-hour 

resolution, to allow comparison between the higher-resolution calibration and one performed 

at the same temporal resolution used in developing the ReFH2 model. The baseflow model is 

a linear reservoir controlled by BL, a recession constant, and BR, the ratio of baseflow 

recharge to runoff. In this study, BL and BR were calibrated simultaneously using the ReFH2 

Calibration Utility (Wallingford HydroSolutions 2016a). Zero baseflow was assumed in 

HWN, as the monitoring equipment recorded only insignificant and zero dry-weather flows. 

Cini, the initial soil moisture content, was estimated from a daily rainfall record at the study 

rain gauge using the ReFH2 Calibration Utility. 

Each catchment’s urban fraction was set equal to the URBEXT2015 value reported in Table 1 

for topographic mapping and, based on the results of earlier topographic mapping of these 

same catchments (Miller & Grebby 2014), the whole urban fraction delineated in this way 
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was considered nominally impervious (IF = 1). This is considered reasonable, as the 10-metre 

resolution of the mapping limits the amount of aggregation of different land types occurring 

in each pixel, ensuring, for example, that gardens are not absorbed into urban areas. In this 

interpretation, the impervious area’s fixed runoff fraction (IRF) represents any loss of rainfall 

landing on the impervious area, whether these losses occur in the “impervious” area (e.g. 

through surface cracks) or not (e.g. because of infiltration in a rural zone located between the 

impervious area and watercourse). Hence, IRF acts to relate effective to total impervious 

area, and depends strongly on the spatial configuration of urban areas within the catchment. 

Maximum soil moisture capacity (Cmax) and IRF are both strong controls on percentage 

runoff, and therefore flood peak magnitude, so many very different combinations of both can 

result in the same peak flow. Furthermore, rural unit hydrograph time-to-peak, Tp, is sensitive 

to IRF because higher IRF values reduce losses and increase the proportion of total rainfall 

routed via the urban unit hydrograph (whose time-to-peak is expressed as a fraction of Tp). 

Hence, rather than joint calibration of Cmax, Tp and IRF, Cmax and Tp were optimized jointly to 

minimize the mean error in peak flow magnitude and timing across all 38 calibration events, 

for fixed values of IRF. The Tp-ratio of the urban unit hydrograph to the rural unit 

hydrograph was left at its default value of 0.5, due to the lack of information on how to relate 

it to catchment characteristics, beyond preliminary reporting by Kjeldsen et al. (2013) and 

Wallingford HydroSolutions (2015). However, as this controls the peakedness of urban 

runoff, it is clear that different combinations of Tp and Tp-ratio can achieve similar runoff 

profiles. For all catchments and events, BF0, the initial baseflow rate, was derived directly 

from gauged data as the flow rate at the start of the rainfall event. 

IN UNGAUGED CATCHMENTS 

In the absence of monitored flow data, regressions on FEH catchment descriptors are used to 

estimate parameter values and initial conditions for ReFH2. The forms of these equations, 

showing the specific catchment descriptors used, without regression constants, and graphical 

appendices showing how parameter values vary with individual catchment descriptors, are 

reported in the ReFH2 technical guidance (Wallingford HydroSolutions 2015). Catchment-

descriptor parameterization for this study was obtained via the FEH Web Service, using 

catchments that best represented the location, shape and area of the study catchments. Design 

storm duration is calculated from catchment-descriptor time-to-peak and catchment-average 
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mean annual rainfall. With return period, design storm depth is also obtained via the FEH 

Web Service. 

COMPARISON OF CALIBRATED AND CATCHMENT-DESCRIPTOR 

PARAMATERIZATION 

Table 4 presents calibrated and catchment-descriptor parameter values. Values of Tp and Cmax 

correspond to IRF = 0.2 in ROD, 0.4 in HWS and 0.8 in HWN; Figure 4 shows the variation 

in calibrated Tp and Cmax for different values of IRF. 

In ROD and HWS, Cmax tends towards infinity as a greater proportion of the upstream 

impervious urban area becomes effective at the catchment monitoring point. The minimum 

percentage runoff that must occur in ReFH2 is equal to the percentage of the catchment that 

is urban impervious, multiplied by IRF. As the percentage runoff and flood peak magnitudes 

are fixed for the calibration events, Cmax must increase with increasing IRF, to offset 

increased runoff from the impervious fraction with increased losses in the rural fraction. This 

can lead to unrealistically high values of Cmax when URBEXT2015 × IRF approaches the 

runoff percentages of calibration events (at approximately 0.4 in ROD and 0.7 in HWS). 

ROD includes areas with combined surface and waste water drainage (Miller et al. 2014), 

which divert part of each storm event to a sewage treatment works, which in this case 

discharges downstream of the monitoring point. This diversion reduces the contribution of 

the urban area at the monitoring point, leading to similarity between catchment-descriptor 

and calibrated Cmax only for low IRF. In HWN, calibrated values of Cmax are lower than 

catchment-descriptor values for almost all IRF. As piped drainage dominates and is directed 

towards the monitoring point, it is reasonable to assume that most of the impervious area is 

contributing (although some impervious surface runoff may infiltrate in adjacent greenspace). 

The low values of calibrated Cmax here limit the losses that can occur. Additionally, zero-

values for BR in HWN result from non-existent baseflow, while low Tp values highlight the 

impact of storm drainage. Increased urbanization redirects more net rainfall to the urban unit 

hydrograph, which has a shorter time-to-peak, but is intended to represent a faster transfer of 

runoff over urban surfaces to rivers, rather than pipe flow. The calibrated Tp and Cmax values 

in HWS are relatively insensitive to IRF over a wide range (from ~0.2 to ~0.5), despite the 

catchment being heavily urbanized, which suggests a smaller discrepancy between this 

catchment’s dominant runoff processes and ReFH2’s model structure. 
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Using catchment descriptors, Cmax is highest in HWN, whereas it would be expected to be 

highest in ROD, where limestone is present. This is due to the imprecise delineations of the 

catchments using the 50-metre DEM (Table 1) and the low spatial resolution of the baseflow 

index catchment descriptor, which assumes even mixing of all soil types within each 1-km 

square. This highlights a potential benefit of consulting soil maps directly for small-

catchment studies. 

DISCUSSION: EVENT MODELLING  

VALIDATION DATA 

Sufficient flow data exist within each catchment to make reasonable gauged estimates of the 

median annual flood, QMED. Two common procedures for estimating QMED from these 

data are available, involving either consideration of annual maxima (AMAX) or peaks-over-

threshold (POT) data (Langbein 1949; Bezak et al. 2014). QMED is estimated as the median 

value of an AMAX series or the weighted average of two consecutively-ranked flood peaks 

in a POT series, where the weighting and choice of flood peaks depends upon the record 

length and dispersion (temporal clustering) of the peaks (Robson & Reed 1999). As POT 

series contain more data, QMED estimates made using POT data benefit from smaller 

sampling error. 

Sufficient catchment information also exists to allow use of the improved FEH statistical 

method (Kjeldsen et al. 2008) at each site. This is the most commonly-used regression-based 

flood estimation model in the UK and is fully independent of ReFH2. As no at-site gauged 

flows are used, QMED estimates from the improved FEH statistical method suffer from a 

larger factorial standard error than those from gauged data. The estimates can, however, 

provide an independent comparison with ReFH2. 

Estimates of QMED are presented in Table 5, using AMAX data, POT data (with UK-

average dispersion assumed), and the improved FEH statistical method with urban adjustment 

(Wallingford HydroSolutions 2016b) and donor transfer. QMED estimates from POT data 

use the entire record at each station, not just the events selected for model calibration. A 

gauged daily mean flow record for the Ray at Water Eaton, for the period October 1974-

September 2016, was transformed according to Chen et al. (2017) to give an estimated daily 

instantaneous peak flow record. This was used to adjust the gauged QMED estimates towards 

estimated long-term averages, resulting in a 22.6% reduction to all values. The 95% 
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confidence intervals (bracketed values in Table 5) have upper bounds at 2.3 (AMAX), 2.0 

(POT) or 3.4 (improved FEH statistical) times the lower bound. Table 5 shows good 

agreement between different estimation methods in ROD and HWS, however the improved 

FEH statistical estimate of QMED in HWN is vastly below the data-based estimates. This is 

because the monitored AMAX and POT values implicitly incorporate the dominance of the 

storm drain system. Although the improved FEH statistical method was calibrated to non-

rural catchments, these were typically hundreds of square kilometres in area, with a mix of 

flow regimes, and rarely with such high urban fractions. 

EVENT MODELLING 

The ReFH2-modelled response of each study catchment to the design-duration 2-year storm 

is illustrated in Figure 5, with three different sets of estimated parameters, derived from: i) 

gauged data at 15-minute resolution; ii) gauged data aggregated to hourly resolution; and iii) 

FEH catchment descriptors (Bayliss 1999). Table 6 presents values for initial conditions Cini 

and BF0, both of which differ between (i), (ii) and (iii) as they depend on Cmax. For (i) and 

(ii), Tp and Cmax values as reported in Table 4 are used with the corresponding values of IRF. 

As-rural or “greenfield” response, using identical parameterization to (iii) but with 

URBEXT2015 reduced to zero, is also shown in Figure 5. Considering the catchments as rural 

affects calculation of BF0 but not Cini. Horizontal lines on each plot show QMED estimated 

using gauged-at-site POT data and the improved FEH statistical method, while corresponding 

shaded areas show 95% confidence intervals of those estimates. 

In ROD and HWS, the use of 15-minute calibration data results in almost the same time-

series runoff hydrograph as the use of hourly calibration data. This may not be surprising as 

the dominant flood processes seem to happen at a rate that can be represented adequately by 

hourly sampling, shown by calibrated Tp values around 3-4 hours. The main implication of 

this is that hourly-sampled rainfall and runoff data are generally adequate for model 

calibration, even for heavily-urbanized catchments of only a few square kilometres. However, 

even in catchment HWN, in which sub-hourly processes are apparent, the timing and 

magnitude of the modelled peak (3.70 m
3
/s @ 54 minutes vs. 3.30 m

3
/s @ 66 minutes) imply 

that enough information is contained within the hourly-sampled data for model calibration. 

This study therefore provides some evidence that catchments governed by sub-hourly 

processes can be represented by models calibrated using hourly data in the event that higher 

temporal resolution data are not available. 
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Figure 5 shows large differences between the QMED estimates made by ReFH2 before and 

after calibration in each catchment. Specifically, calibration causes a reduction in estimated 

peak flow rate in catchments ROD and HWS, but an increase in peak flow rate in HWN. It 

was stated earlier that the catchment outlet of HWN is located in a storm sewer system, 

which is the catchment’s primary drainage mechanism. This could explain why calibration 

reduces Tp so substantially and shows that greater density of piped drainage systems within a 

catchment increases the connectivity of impervious areas, increasing the fraction of effective 

to total impervious area. This increases the peakedness of the urban direct runoff hydrograph 

and increases the utility of temporally high-resolution data. Peak magnitude can be controlled 

by adjusting either Tp, Cmax or IRF, as demonstrated in Figure 4. However, changes in Cmax 

only affect rainfall routed via rural or permeable urban fraction of a catchment, the extent of 

which is increased or decreased via IRF. The effective imperviousness of HWN also explains 

why calibration reduces Cmax so significantly: as the piped system allows negligible 

infiltration, ReFH2 is calibrated to model the (very limited) observed losses. Greater losses 

would be expected in summer in a natural catchment with the same climate – effectively, the 

piped system simulates winter, impeded-drainage soil conditions year-round and can result in 

the combination of an intense summer storm with “winter”-type runoff behaviour. 

While storm sewers may experience dry-weather flows, the source of these flows is intrusion 

from outside the pipes. Hence, risk is low for new systems, increasing with age (Thorndahl et 

al. 2016). The relatively low age of the system in HWN, which is also the primary drainage 

mechanism, could explain why no dry-weather flows are observed. Non-zero values are 

estimated for the catchment-descriptor baseflow parameters in HWN, as the model structure 

assumes a permanent watercourse. The considerable distance between calibrated and 

catchment-descriptor baseflow parameters in HWN results from a mismatch between 

ReFH2’s model structure, conceptualized around baseflow and runoff routing, and the 

dominant storm drainage processes. 

In contrast to HWN, model calibration in HWS reduces modelled peak flow, such that it is 

only slightly higher than the catchment-descriptor “greenfield” runoff peak. However, these 

calibrated peak flow rates are only just below the upper confidence bound of QMED 

estimated from POT analysis. Calibration also delays modelled peak flow to the extent that 

the peak after calibration occurs at around the same time as the catchment-descriptor 

“greenfield” runoff peak. That HWS, a heavily-urbanized catchment, behaves as an 
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apparently rural one, could be explained by the presence and location of a large contiguous 

green area, formed of the Seven Fields Nature Reserve, a public garden and a cemetery, 

occupying 15-20% of the total catchment area and bordering the main watercourse into which 

the catchment drains on both sides along most of its length. Hence, almost all surface runoff 

in HWS must flow over the green area, which is almost certainly far rougher than typical 

urban surfaces, resulting in a longer time-to-peak than expected for a catchment with such 

high URBEXT values. ReFH2’s lumped structure does not discriminate between different 

spatial arrangements of urban areas. However, if runoff in one catchment, originating in an 

urban area, must flow over an adjacent rural area, then the effective contributing urban area is 

lower than for a catchment in which runoff from an urban area can enter a watercourse 

directly. Kjeldsen et al. (2013) found a potential positive link between Tp-ratio and the FEH 

descriptor URBCONC, which quantifies how many urban grid squares are adjacent to other 

urban grid squares. However, these results were based on 7 catchments with a typical 

URBEXT2000 of 0.15 and could not be safely generalized. The advantage of high-resolution 

spatial data in medium-density suburban catchments is to allow more accurate quantification 

of the sizes and locations of green areas, and hence of the effective urban area. 

In ROD, calibration of ReFH2 reduces the flood time-to-peak but also reduces the peak 

magnitude, resulting in a noticeable reduction of total flood volume after calibration. As in 

HWS and HWN, the calibrated flood peak magnitude is closer to the POT estimate of QMED 

than the uncalibrated flood peak magnitude. Compared to HWS and HWN, a relatively low 

IRF of 0.2 was chosen to model this catchment in ReFH2, despite urbanization being 

extremely high, even in comparison to the other two study catchments. Because of the fixed 

runoff fraction from impervious urban areas, each rainfall timestep has an enforced minimum 

percentage runoff before runoff from the rural and permeable urban areas is added. In ROD, 

for IRF ≥ 0.18, at least 10.6% of event rainfall becomes runoff, more than the mean 

percentage runoff of the calibration events in ROD (Table 3). Considering that IRF represents 

the ratio of effective to total impervious area, its low value is likely to result primarily from 

some bypassing of the monitoring point, which also justifies the reduction in flood volume 

brought by calibration. While some flow is known to bypass the monitoring point, diverting 

to a sewage treatment works, the unavailability of information on detailed drainage 

connections in the upper reaches of the catchment further complicates the accurate definition 

of contributing area. Other factors contributing to the low IRF could include “hard” retention 

or detention features (e.g. permeable paving), poor condition of urban surfaces (e.g. cracks), 
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fragmentation of impervious areas (particularly within suburban areas), and long overland 

flow paths (e.g. from the north-east corner of the catchment to a watercourse), It is also 

important to consider that different land-use datasets class urban/suburban cover differently 

(Branger et al. 2013) and interaction between artificial surfaces and drainage can result in 

effective impervious area varying (Han & Burian 2009). 

In all three catchments, the statistical equation estimate of QMED is closer to the catchment-

descriptor ReFH2 peak flow than is the gauged estimate of QMED. In this case, the closeness 

of the two catchment descriptor-based estimates is due to their fundamental assumptions 

about the catchment being modelled. Both were developed using large data sets comprised 

primarily of larger catchments in which natural hydrological processes dominate and 

localized unusual features can occupy only a small fraction of the total area. Furthermore, 

both rely upon the ability to define an effective contributing area. This highlights the 

importance of selecting the correct model structure: similarity between different model 

outputs can give increased confidence, but only if both model structures are appropriate. For 

extremely modified catchments, like HWN, no hydrological model is strictly suitable, and the 

similarity between the statistical equation and uncalibrated ReFH 2 estimates is irrelevant to 

their accuracy. Instead, a more detailed hydraulic model, considering individual (not lumped) 

network elements is necessary. However, distributed hydraulic model structures have their 

own uncertainties, in topology (e.g. presence of undocumented connections), 

parameterization (e.g. unknown pipe roughness) and structural assumptions (e.g. provision 

for leakage). This also highlights the importance of defining contributing area correctly for 

models that require it – it can be observed, for example, that the storm drainage area of ROD 

varies from 5.5-6.0 km
2
 depending on the mapping method used (Table 1). Braud et al. 

(2013) identified accurate determination of catchment area as particularly important in peri-

urban areas, with mixed urban-rural land use and storm drainage and sewer systems. 

Drainage area can be difficult to estimate accurately at small spatial scales, and depends on 

the resolution of the DEM used. Additionally, natural catchment area can be artificially 

altered via storm drainage networks (Miller et al.  2014), and contributing catchment area can 

physically alter and relative rural/urban contributions vary under antecedent conditions 

(Jankowfsky et al. 2014). ReFH2’s loss model, based on an evolving relationship between 

rainfall and available soil moisture capacity, can model variable contributing area. 
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CONCLUSIONS 

In this study, we conducted an applied test of ReFH2’s performance in three small, heavily-

urbanized catchments; further explored the procedure of how to represent urban areas within 

the model; and assessed the benefits of using high-resolution data for model calibration. 

Through this assessment, we aimed to identify advantages and shortcomings to the use of 

lumped, simplified model structures in catchments where detailed hydraulic modelling is 

commonly perceived as necessary. 

For two of three study catchments, the magnitude of the modelled 2-year flood peak after 

calibration falls inside the confidence interval given by analysis of POT data, indicating that 

ReFH2 can make good estimates in certain types of small, heavily-urbanized catchment, 

given sufficient calibration data. The overestimation observed in one catchment could be 

attributable to a mismatch between the above-ground and below-ground catchment 

boundaries. Although this was accounted for somewhat by storm drain mapping and 

assuming a low fraction of contributing impervious area, the unavailability of information on 

detailed drainage connections in the upper reaches, in the context of the remaining 

overestimation, highlights that the contributing catchment area can in some cases depend 

more on underground topology, and that an in-depth topographic study to more accurately 

define which areas contribute to drainage inlets located within a topographic catchment may 

not always result in a better-defined contributing catchment area. This can be further 

complicated by drainage networks that discharge to more than one natural catchment, as the 

proportions of runoff transported across natural catchment boundaries, in both directions, will 

be time-varying. 

Calibration always resulted in large changes to the flow hydrographs and, in all three cases, 

brought the modelled peak flow closer to that expected from analysis of gauged POT data. 

Use of 15-minute calibration data did not result in noticeably different runoff responses than 

use of 1-hour calibration data. Calibration accelerated runoff response in one catchment, 

dominated by piped drainage, but attenuated it in the other two, which were both drained by a 

mix of sewers, overland flow and watercourses. Small, heavily-urbanized catchments were 

under-represented during development of ReFH2’s equations for parameterization in 

ungauged catchments. This study shows evidence that uncalibrated ReFH2 model runs 

potentially exaggerate the effect of urban areas on runoff response in small, heavily-

urbanized catchments. 
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The large differences between impervious runoff fractions chosen to model each of these 

catchments (from 0.2 to 0.8), as well as the calibrated runoff responses and QMED estimates 

from gauged POT data, clearly demonstrate a great range of runoff behaviours in small, 

heavily-urbanized catchments. Indeed, both gauged POT analysis and calibrated model runs 

show that it is possible for a heavily-urbanized catchment to behave similarly to a rural one. 

In the specific case studied here, this is likely due to the presence of a green area bordering 

the catchment’s watercourse along most of its length, which runoff from urban areas must 

pass over before entering the watercourse. Spatial arrangement of land types is generally not 

considered within lumped models. However, it is possible to do so in ReFH2 by reducing the 

IRF, effectively counting runoff that originates on impermeable surfaces, but is obliged to 

pass over permeable surfaces, as only partially “impermeable”. 

The high variability in runoff behaviour from different urban catchments highlights the 

advantages of detailed, high-resolution spatial data, and also potential areas for further 

research concerning rainfall-runoff model parameterization in small urban catchments. In 

particular, a mechanism for lumped models to differentiate between different spatial 

distributions of the same land types is required. In order to generalize this mechanism to 

ungauged catchments, relationships should be developed between IRF and measures of 

spatial distribution, such as landscape metrics or the FEH descriptors URBLOC and 

URBCONC. 
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Figure 1 – Locations, land uses, watercourses and drainage networks of study 

catchments, with locations of flow and rainfall monitoring sites. 
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Figure 2 – Calibration event hydrographs and seasonality. Mean seasonality of all 

events indicated by “X”. 
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Figure 3 – ReFH2 model structure (parameters in brackets). 
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Figure 4 – Relationship between calibrated rural unit hydrograph time-to-peak (Tp), 

maximum soil moisture capacity (Cmax) and runoff fraction of impervious area (IRF) for 

study catchments. 
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Figure 5 – Modelled catchment response to 2-year storm of design duration, using 

ReFH2 with parameters and initial conditions calibrated to 15-minute data (blue line), 

hourly data (gold line), uncalibrated (purple line) and uncalibrated greenfield (black 

line). Horizontal lines show estimates of QMED, shaded areas show 95% confidence 

intervals of these estimates. Gauged estimate from POT data shown in green, improved 

FEH statistical method estimate shown in grey. 
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Table 1 – Key characteristics of study catchments (ND – natural drainage, SD – storm 

drainage, DEM – digital elevation model, TOP – topographic) 

Catchment 

name (ID) 

ND area 

(50 m DEM) 

URBEXT2000 

DPSBAR 

BFIHOST 

SD area 

(10 m DEM) 

URBEXT2015 

DPSBAR 

 

SD area 

(TOP) 

URBEXT2015  

DPSBAR 

 

Flow data 

availability 

Catchment description 

Haydon 

Wick North 

(HWN) 

- 

- 

- 

- 

2.18 km2 

0.46 

40.6 m/km 

2.12 km2 

0.45 

42.0 m/km 

April 2011 – 

October 

2015 

Highly urbanized, post-2000, peri-urban 

mixed housing and commercial development. 

Piped storm drainage system leading out of 

catchment. Mainly drains directly-connected 

impervious surfaces with negligible rural 

component. 

Haydon 

Wick South 

(HWS) 

6.29 km2 

0.31 

33.7 m/km 

0.425 

3.09 km2 

0.42 

33.7 m/km 

3.07 km2 

0.42 

27.3 m/km 

April 2011 – 

October 

2015 

1950s – 2010s housing with large, contiguous 

are of grassland occupying 15-20% of 

catchment. Piped storm drainage feeding to 

small watercourse (Haydon Wick Brook) in 

catchment. Drains mix of suburban surfaces 

and greenspace. 

Rodbourne 

(ROD) 

5.64 km2 

0.48 

14.9 m/km 

0.306 

5.98 km2 

0.60 

14.0 m/km 

5.51 km2 

0.59 

14.9 m/km 

May 2011 – 

October 

2015 

Highly urbanized areas of commercial and 

industrial development with mixed housing. 

Piped storm drainage feeding to small 

watercourse (Rodbourne stream) in 

catchment. Drains mix of urban, suburban 

and isolated greenspaces. 

URBEXT2000 – FEH catchment descriptor measuring weighted proportions of urban, 

suburban and inland bare ground, based on CEH Land Cover Map 2000, URBEXT2015 – 

equivalent descriptor based on CEH Land Cover Map 2015, DPSBAR – mean drainage path 

slope, BFIHOST – baseflow index estimated from soil type  
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Table 2 – Rainfall statistics for 38 ReFH2 calibration events. 

Statistic Rainfall depth 

(mm) 

Rainfall duration 

(hours) 

Return period 

(years) 

Peak intensity 

(mm/hour) 

Minimum 5.11 2.25 <2 2.16 

Mean 9.86 10.15 <2 6.05 

Maximum 21.54 77.25 <2 19.60 
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Table 3 – Mean runoff statistics for 38 ReFH2 calibration events. Centroids calculated 

according to e.g. Dingman (1994) 

Catchment Percentage 

runoff 

Normalized 

peak runoff 

(m
3
/s/km

2
) 

Half-

peak 

width 

(hours) 

Time-to-

peak 

(hours) 

Peak-to-

peak 

delay 

(hours) 

Time-to-

centroid 

(hours) 

Centroid-

to-

centroid 

delay 

(hours) 

ROD 10.34 0.131 5.30 5.61 2.25 8.31 4.49 

HWS 8.28 0.144 4.24 6.10 2.73 8.71 4.89 

HWN 9.51 0.705 0.82 3.94 0.58 4.49 0.67 
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Table 4 – ReFH2 model parameter values 

Parameter Data Catchment 

ROD HWS HWN 

BL (hours) 15-minute 49.10 52.38 - 

 1-hour 54.12 53.31 - 

 Catchment-descriptor 30.57 31.83 36.53 

BR (-) 15-minute 0.80 1.08 0 

 1-hour 0.86 1.03 0 

 Catchment-descriptor 0.71 0.87 1.23 

Tp (hours) 15-minute 2.94 3.80 0.63 

 1-hour 2.90 3.61 0.80 

 Catchment-descriptor 4.73 3.27 2.54 

Cmax (mm) 15-minute 135 169 91 

 1-hour 113 171 78 

 Catchment-descriptor 249 291 408 
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Table 5 – Gauged and statistical estimates of the median annual flood peak (m

3
/s) at 

each study site. Bracketed values indicate 95% confidence intervals.  

 ROD HWS HWN 

QMED (AMAX) 1.71 

(1.13-2.58) 

1.01 

(0.67-1.53) 

2.69 

(1.78-4.06) 

QMED (POT) 1.51 

(1.07-2.12) 

1.02 

(0.72-1.44) 

2.80 

(1.98-3.94) 

QMED (statistical) 2.78 

(1.50-5.14) 

1.30 

(0.70-2.40) 

0.97 

(0.52-1.79) 
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Table 6 – ReFH2 initial conditions for design event modelling 

Initial 

condition 

Data Catchment 

ROD HWS HWN 

Cini (mm) 15-minute 67.98 62.77 17.63 

 1-hour 56.90 63.52 15.11 

 Catchment-descriptor 125.6 108.2 79.13 

 Catchment-descriptor 

(greenfield) 

152.6 137.8 110.6 

BF0 (m
3
/s) 15-minute 0.086 0.042 0.000 

 1-hour 0.064 0.043 0.000 

 Catchment-descriptor 0.193 0.090 0.042 

 Catchment-descriptor 

(greenfield) 

0.320 0.150 0.068 
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