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Abstract: The unicellular cyanobacterium Prochlorococcus is the most dominant resident of the
subtropical gyres, which are considered to be the largest biomes on earth. In this study, the spatial and
temporal variability in the global distribution of Prochlorococcus was estimated in the Atlantic Ocean
using an empirical model based on data from 13 Atlantic Meridional Transect cruises. Our model
uses satellite-derived sea surface temperature (SST), remote-sensing reflectance at 443 and 488 nm,
and the water temperature at a depth of 200 m from Argo data. The model divides the population
of Prochlorococcus into two groups: ProI, which dominates under high-light conditions associated
with the surface, and ProII, which favors low light found near the deep chlorophyll maximum. ProI
and ProII are then summed to provide vertical profiles of the concentration of Prochlorococcus cells.
This model predicts that Prochlorococcus cells contribute 32 Mt of carbon biomass (7.4 × 1026 cells)
to the Atlantic Ocean, concentrated mainly within the subtropical gyres (35%) and areas near the
Equatorial Convergence Zone (30%). When projected globally, 3.4× 1027 Prochlorococcus cells represent
171 Mt of carbon biomass, with 43% of this global biomass allocated to the upper ocean (0–45 m
depth). Annual cell standing stocks were relatively stable between the years 2003 and 2014, and the
contribution of the gyres varies seasonally as gyres expand and contract, tracking changes in light and
temperature, with lowest cell abundances during the boreal and austral winter (1.4 × 1013 cells m−2),
when surface cell concentrations were highest (9.8 × 104 cells mL−1), whereas the opposite scenario
was observed in spring–summer (2 × 1013 cells m−2). This model provides a three-dimensional view
of the abundance of Prochlorococcus cells, revealing that Prochlorococcus contributes significantly to total
phytoplankton biomass in the Atlantic Ocean, and can be applied using either in situ measurements
at the sea surface (r2 = 0.83) or remote-sensing observables (r2 = 0.58).
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1. Introduction

Until the early 1980s, the largest biomes on our planet, referred collectively as the subtropical
gyres [1–3], were considered to be oceanic deserts as they are characterised by low biological primary
productivity [4]. In the central subtropical gyres, extreme high-light conditions and low-nutrient
concentrations hamper phytoplankton growth at the sea surface and lead to very low intracellular
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pigment concentrations [5,6]. Yet, lying beneath this seemingly barren surface layer, a deep chlorophyll
maximum (DCM) is commonly observed at depths between 80 to 120 m [7,8]. This peak in pigment
concentration is the result of light penetrating sufficiently deep in the water column to reach depths
where nutrients are available from deep reservoirs [9]. Cells found at this depth attain net growth
by increasing their intracellular pigment concentration to thrive at low-light levels. The DCM is
considered a ubiquitous feature of stratified subtropical waters [5,8]. This allocation of pigment
biomass at depth makes these gyre biomes more similar to terrestrial savannahs than deserts. Like the
subtropical gyres, savannahs have most of their biomass buried below ground, protected from harsh
surface conditions [10]. Although the contribution of the DCM to the integrated chlorophyll biomass
in the subtropical gyres is significant, it is still low when compared with coastal marine environments
and shelf seas [8].

The use of shipboard flow cytometry revolutionised the study of small phytoplankton cells.
In 1988, Chisholm, Olson, and colleagues [11] first documented a ubiquitous picocyanobacterium that
was indistinguishable from other bacteria using traditional microscopy, but has since been discovered to
be the most abundant photosynthetic organism in the oceans—Prochlorococcus. The average abundance
of Prochlorococcus cells in subtropical and tropical waters [12–17] is roughly the same order of magnitude
of most phytoplankton blooms where a single species of alga typically reaches cell abundances of
104–105 cells mL−1 [18]. Despite its minute size and corresponding low intracellular carbon content
(~50 fg C cell−1) [19], this single genus is numerically dominant over vast swaths of the global ocean,
with global standing stocks in the order of 1027 cells [20,21] and makes an immense contribution to the
marine organic carbon pool.

Although the quantification of Prochlorococcus cells by flow cytometry has increased our
understanding of the contribution of this cyanobacterium to phytoplankton biomass in the subtropical
gyres, data coverage in these vast regions remains poor. Optical sensors mounted on earth-orbiting
satellites provide a synoptic view of environmental variables at global scales, including: sea-surface
temperature, reflectance of light at various wavebands (remote-sensing reflectance, Rrs), and the
photosynthetically-available radiation (visible light) incident on the sea surface [22]. However,
the signals observed by satellites are from the sea surface and thus are blind to changes in the
physical and biological properties of the ocean beneath the first few tens of metres [23]. To obtain a
three-dimensional view of the ocean environment, Argo floats and ocean gliders equipped with sensors
of temperature, salinity, and pressure (which determines depth) can be used to provide information on
the vertical structure of the water column [24].

The biogeography of Prochlorococcus has been shown to be strongly related to environmental
gradients of temperature and light, and inversely correlated to the presence of other phytoplankton
groups indicated by the chlorophyll concentration [15,21,25,26]. As Prochlorococcus is the dominant
phytoplankter in large areas of the world’s oceans, it is important to be able to predict how its
abundance might vary temporally and spatially in response to environmental and climate changes, and
to assess seasonal and long-term changes in their biogeochemical cycles, trophic interactions and energy
flow in oceanic food webs. To date, estimates of the global standing stock of Prochlorococcus [21] and its
distribution in the world’s oceans [20] do not take into account the vertical structure of cell abundance,
which is an important feature of their biogeography and tightly coupled with resource gradients
(e.g., light and nutrient concentrations) that govern their growth. Ignoring spatio-temporal changes
in vertical structure could not only lead to potential errors in their contribution to water-column
standing stocks but also hinder our ability to examine the impact of water-column stratification
on the vertical partitioning of Prochlorococcus populations. Here, we present an empirical model
that exploits two ocean-observing systems (Aqua-MODIS and Argo) to estimate the vertical and
horizontal distribution of Prochlorococcus in the Atlantic basin. This approach captures both seasonal
and interannual variations in the vertical distribution of Prochlorococcus cells, thus providing a powerful
tool to examine the large-scale dynamics of standing stocks and their contribution to the marine organic
carbon cycle.
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2. Materials and Methods

The Prochlorococcus abundance model estimates the distribution of cells from the surface to the
base of the photic zone using information on light penetration in the water column. The vertical
distribution of Prochlorococcus has a form similar to the typical profile of primary production, which is
determined by light availability and the photosynthetic response of phytoplankton to available light.
Recognizing that primary production may indeed have a role in determining the vertical distribution
of this genus in the ocean, we have used equations analogous to that of a photosynthesis-irradiance
curve [27] to describe the relationship between cell abundance and the percentage of surface irradiance
available at each depth z, henceforth referred to as the fractional PAR (fPAR(z)).

Although many subpopulations adapted to different light levels can coexist [25], the model
is based on the assumption that there are two distinct populations of Prochlorococcus with distinct
photophysiologies: ProI, which dominates under high-light conditions found near the sea surface, and
ProII, which has a preference for low-light conditions near the deep chlorophyll maximum (DCM).
Vertical profiles of ProI and ProII are estimated from fPAR(z). When these two populations are added,
the resulting vertical profile of total Prochlorococcus cells, Prototal(z), peaks above the depth of the
DCM (ZDCM).

The series of equations used to estimate the vertical distribution of Prochlorococcus cells relies on
information on four parameters that define the magnitude of the vertical profile of cell abundance:
Prochlorococcus abundance at the sea surface (Prosurf) and at the deep maximum (Promax), used to
calculate ProI and ProII, respectively; the attenuation coefficient for PAR (KdPAR), used to calculate fPAR
at each depth; and the depth of the deep chlorophyll maximum ZDCM, used in the calculation of Promax.
To estimate these four parameters, we explored their empirical relationships with environmental
predictors that can be obtained from ocean observables or estimated using geo-location and time of
the year.

2.1. Model Parameterization

Environmental variables that were related to KdPAR, ZDCM, and the growth of Prochlorococcus
cells (Prosurf and Promax) include: sea surface temperature (SST), remote-sensing reflectance at 443
(Rrs(443)) and 488 (Rrs(488)) nm, the photosynthetically-available radiation (PAR), the temperature
at 200 m estimated from the Argo array (T200), the solar zenith angle at noon (θs), and the day
length (DL). The selection of these variables took into consideration some factors known to determine
the distribution of this marine cyanobacterium. For example, Prochlorococcus is restricted to warm
waters [13,16,20]; therefore, a thermal threshold was used. Additionally, the difference between SST
and T200 is here used as a proxy for ocean stratification [28]. Remote-sensing reflectance of solar
radiation in the visible domain is inversely related to light absorption by phytoplankton pigments and
other light-absorbing substances, such that Rrs(443) and Rrs(488) are closely related to the concentration
of chlorophyll at the sea surface. Therefore, the correlation between Rrs(443) and ZDCM is relatively
strong, as ZDCM tends to be deeper when there is less chlorophyll at the sea surface [29].

The sea-surface reflectance at blue wavelengths typically increases as the pigment biomass of most
phytoplankton decreases (thus reducing light absorption). When the abundance of only Prochlorococcus
cells is plotted against Rrs(488) (sr−1), we see that Rrs decreases with an increase in cell abundance,
but after a certain threshold is reached, further decrease in Rrs is independent of the abundance of
Prochlorococcus, suggesting phytoplankton other than Prochlorococcus might be determining changes in
Rrs below this threshold (Figure S8b). The underwater light field is determined by KdPAR in the model,
which directly influences ZDCM and the vertical distribution of Prochlorococcus cells. Light availability
in the water column is also a function of the DL, which governs the daily integrated irradiance at the
sea surface, and θs, which dictates the path length of light per unit of vertical distance within the water
column (i.e., lower θs lead to lower light attenuation and a more vertical light path, with light reaching
deeper waters). In addition, there is the influence of atmospheric components like aerosols and cloud
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cover, which limit the incidence of PAR increasing the relative influence of inherent optical properties
on the diffusion of light in the water column (i.e., equatorial upwelling regions).

Multilinear relationships between each parameter (KdPAR, ZDCM, Prosurf, and Promax) and the
abovementioned environmental variables were examined in a dataset from 13 Atlantic Meridional
Transect (AMT) cruises (AMT 12–24) (Figure 1, Table S1) consisting of 704 vertical profiles (8722
observations) which covered a broad area of the Atlantic Ocean. For each cruise, vertical profiles
of temperature, chlorophyll fluorescence, and downwelling PAR (British Oceanographic Data
Centre—BODC) were measured alongside Prochlorococcus cell counts determined by flow cytometry.
Details of the flow-cytometric analysis, the calculation of in situ variables (KdPAR′ and ZDCM’, where
the prime denotes in situ data), and programming languages and packages used for all calculations
and data management are described in the Suppl. Material. Remote-sensing reflectance data were
acquired from matching 8-day composites satellite imagery (Aqua-MODIS) [22].
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Figure 1. Transects of the 13 AMT cruises (704 stations) used to create the empirical model to predict
the abundance of Prochlorococcus cells.

2.2. Prochlorococcus Abundance Predicted Using Ocean Observables

KdPAR, ZDCM, Prosurf, and Promax were estimated based on their empirical relationships with six
environmental variables: SST, Rrs(443), Rrs(488), T200, DL, and θs. SST, Rrs(443) and Rrs(488) were
acquired by the satellite Aqua-MODIS and provided by the NASA Ocean Color group [22]. Monthly
climatological data of T200 [24] was extracted from Argo vertical temperature profiles. Satellite and
Argo data products were regridded to a 4 × 4 km resolution, and every grid cell was used as input
data for the Prochlorococcus cell abundance model.

Based on a subset of AMT cruises (Table S2), henceforth called subdataset, a group of variables was
selected to predict each parameter using a backward stepwise multilinear regression [30]. The subdataset
was randomly resampled allowing repetition of random data to generate the same number of
observations as the original subdataset (Monte Carlo test with 2000 bootstrap permutations). In each
subdataset, the multilinear relationship between the response and the selected explanatory variables
was assessed and algorithm coefficients were computed [31]. The mean of each coefficient distribution
was used in our predictive algorithms. Other variables were initially included such as mixed-layer
depth, stratification index (SST - T200) [28], and the downwelling irradiance (PAR) at the sea surface.
These variables were excluded, both using the backward stepwise selection method and using the
Akaike Information Criteria (AIC) to select the equation with the best fit to the response variable.
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The work flow of all calculations, from satellite input variables, through to derived input variables,
and to the final product of Prochlorococcus cell abundance integrated in the water column is displayed
in Figure 2, with variables and their acronyms or symbols listed in Table 1.Remote Sens. 2018, 10, x FOR PEER REVIEW  5 of 20 
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Table 1. List of acronyms and symbols used in this manuscript (input variables used in the predictive
model of Prochlorococcus cell abundance).

Symbol Variable Units Source

SST Sea surface temperature ◦C a
Rrs(443) Remote-sensing reflectance at 443 nm sr−1 a
Rrs(488) Remote-sensing reflectance at 488 nm sr−1 a
T200 Temperature at the depth of 200 m ◦C b
DL Day length hours c
θs Solar zenith angle at noon degrees d

KdPAR Calculated attenuation coefficient for the
photo-synthetically available radiation m−1 f

KdPAR′ Measured attenuation coefficient for the
photo-synthetically available radiation m−1 e

DCM Deep chlorophyll maximum
DPM Deep Prochlorococcus maximum
ZDCM Calculated depth of the deep chlorophyll maximum metres f
ZDCM′ In situ depth of the deep chlorophyll maximum metres f
fPAR(z) Fractional PAR (proportion of surface PAR) at depth z % f
Prosurf Calculated Prochlorococcus cell abundance at the surface cells mL−1 f
Prosurf′ In situ Prochlorococcus cell abundance at the surface cells mL−1 f
Promax Prochlorococcus cell abundance at the DPM cells mL−1 f

ProI Calculated cell abundance of Prochlorococcus distributed
over depth near the surface cells mL−1 f

ProII Calculated cell abundance of Prochlorococcus distributed
over depth near the DPM cells mL−1 f

Prototal(z) Calculated total Prochlorococcus cell abundance
distributed over depth cells mL−1 f

Proint
Calculated cell abundance of Prochlorococcus integrated
in the surface 200 m of the water column cells m−2 f

a. Aqua-MODIS, Ocean Color, NASA (2014) [22]; b. Argo dataset (http://argo.jcommops.org); c. Forsythe et al.
(1995) [32]; d. Cooper (1969) [33]; e. Kirk (2011) [9]; f. This work.

KdPAR was estimated from satellite data using Equation (1):

KdPAR = 0.0776− 3.1673 Rrs(443) (1)

http://argo.jcommops.org
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derived from the correlation between in situ KdPAR (KdPAR’) and Rrs(443) (r2 = 0.75). Then, KdPAR was
used to calculate the fractional PAR at depth (fPAR(z)) [9]. More details on the calculations to estimate
KdPAR are described in the Suppl. Material.

The two subpopulations of Prochlorococcus, ProI and ProII, are expressed as a function of the
fractional PAR (fPAR) (Figure 3). ProI(fPAR) is estimated based on the assumptions that these cells can
be sustained at high concentrations if fPAR >= 1% (0.01) and that this subpopulation represents cells
adapted to high light, with an Ek = 2.5% (where Ek is the light saturation index).
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Figure 3. Vertical profiles of observed and estimated Prochlorococcus cell abundances (a) over depth
and (b) over the fractional PAR fPAR, with (c) corresponding profiles of temperature and chlorophyll
from CTD measurements at a site inside the North Atlantic Gyre (26◦ N, 50◦ W). For (a,b), in situ
observations are represented by red dots, predicted profiles of ProI by the orange dashed line, predicted
profiles of ProII by the blue dashed line, and predicted profiles of total Prochlorococcus abundance by
the solid black line. Data from AMT 24 (2014).

ProI(fPAR) was calculated using Equation (2):

ProI( f PAR) = Prosur f

[
1− exp

(
− f PAR(z)− 0.01

0.025

)]
(2)

with ProI(fPAR) = 0 if fPAR <= 0.01 (1%). Photoinhibition of cell accumulation (i.e., the negative slope
of the PE curve described in Platt et al. (1980) [27]) is not exhibited by this subpopulation, thus the
maximum cell concentration of ProI(fPAR) is equal to the concentration of Prochlorococcus cells at the
high light intensities found at the sea surface (Prosurf). Prosurf is calculated using Equations (3)–(5):

Prosur f = n0[a3 SST + b3 Rrs(488) + c3 DL + d3 T200 + e3(SST × Rrs(488))], (3)

n1 = 1−
(

17− SST
17− 13

)
, (4)

and

n2 = 1−
(

0.004− Rrs(488)
0.004− 0.001

)
(5)

where a3, b3, c3, d3, and e3 are empirical coefficients listed in Table 2, n0 = n1 if SST < 17 ◦C, n0 = n2
if Rrs(488) < 0.004 sr−1 and SST - T200 < 10 ◦C, and n0 = 1 otherwise. The model assumes that
Prochlorococcus is restricted to warm waters [13,34], thus cell abundance progressively decreases as
sea surface temperatures (SST) fall below 17 ◦C and become absent where SST is less than 13 ◦C
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(Equation (4)) (Figure S8a). The model also adopts the widely-held view that Prochlorococcus cells are
absent in productive waters with high surface chlorophyll concentrations (thus low remote-sensing
reflectance (Equation (5))), which is shown by the gradual decrease in cell abundance once Rrs(488)
is lower than 0.004 (Figure S8b). The day length (DL) was calculated according to Forsythe et al.
(1995) [32].

To estimate the abundance of ProII(fPAR), a photoinhibition component was included (Equation (6)):

ProI I( f PAR) = Promax

[
1− exp

(
− f PAR(z)

0.005

)]
exp
(
− f PAR(z)

0.1

)
. (6)

Table 2. Parameters and coefficients used in Equations (1) to (8) with their standard deviations (σ).

Output Input (s) Equation Parameter Parameter Value Parameter σ

KdPAR (1) intercept 0.776 × 10−1 0.020 × 10−1

Rrs(443) (1) slope −3.1673 × 100 0.195 × 100

ZDCM (8) intercept 1.241 × 101 0.786 × 101

Rrs(443) (8) slope1 1.021 × 104 0.066 × 104

θs (8) slope2 2.227 × 10−1 2.381 × 10−1

Prosurf SST (3)–(5) a3 3.254 × 104 0.030 × 104

Rrs(488) (3)–(5) b3 9.762 × 107 0.104 × 107

DL (3)–(5) c3 −2.080 × 104 0.043 × 104

T200 (3)–(5) d3 −2.117 × 104 0.029 × 104

SST, Rrs(488) (3)–(5) e3 −4.421 × 106 0.041 × 106

Promax (7) a7 −1.153 × 105 0.194 × 105

ZDCM (7) b7 1.837 × 103 0.014 × 103

Prosurf (7) c7 2.951 × 10−1 0.087 × 10−1

ProII(fPAR) cells are adapted to lower light intensities (Ek = 1%), reaching a subsurface maximum
cell concentration represented by Promax, which in turn was calculated using Equation (7):

Promax = a7 + b7 ZDCM + c7 Prosur f (7)

where ZDCM is the depth of the deep chlorophyll maximum, and a7, b7, and c7 are coefficients listed in
Table 2. The DCM depth, ZDCM, was determined using Equation (8):

ZDCM = 12.41 + 10210 Rrs(443)− 0.2227 θs (8)

where θs is the absolute solar zenith angle at noon (degrees). Equation (8) was derived from the
multilinear relationship between observed ZDCM (ZDCM’), Rrs(443) and the solar zenith angle at noon
(θs) in selected cruises (r2 = 0.73) (Figure 4).

The absolute solar zenith angle at noon θs was derived from the sun declination [33], as detailed
in the Suppl. Material.

After computing the depth z (in metres) associated with a particular fPAR [9], the total
Prochlorococcus cell abundance at any depth z (Prototal(z)) was determined as the sum of ProI(z) and
ProII(z) in Equation (9):

Proint(z) = ProI(z) + ProI I(z) (9)

and then integrated over the top 200 m of the water column (Proint) using Equation (10):

Proint =

z=200∫
z=0

Prototal(z)dz. (10)
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Mean coefficients in the model equations and their standard deviations (σ) are listed in Table 2.
Examples of Prochlorococcus cell abundance profiles (Prototal(z)) observed in situ and predicted by the
model within the North and South Atlantic Gyres and in the gyre periphery (areas outside the gyre
limits and also outside the ECZ, where SST < 25 ◦C but Prochlorococcus cells are still abundant) are
shown in Figure S7.
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Figure 4. (a) Comparison between observed versus predicted depth of the deep chlorophyll maximum
(ZDCM) across the Atlantic Ocean (locations displayed in Figure 1) using Equation (8) of the present work;
(b) Observed (AMT12-24, n = 693 observations) and predicted ZDCM (n = 449) in the Atlantic Ocean
(AMTs 12 to 24, locations displayed in Figure 1). For each CTD cast, observed ZDCM was determined as
the depth of the maximum chlorophyll concentration measured using the CTD fluorometer.

3. Results

3.1. Two-Component Model Validation

The derived parameters of the model (ZDCM, KdPAR, Prosurf, Promax) that describe the shape
of the abundance profile and the final products Prototal(z) and Proint were validated using 13 AMT
cruises, which cover a broad swath of the Atlantic basin, and data from BATS (Bermuda Atlantic
Time-Series Study).

Model estimates were compared with in situ observations using the approach proposed by
Brewin et al. (2015) [31], which includes four statistical metrics: root mean square error (Ψ); average
bias (δ); centre-pattern (or unbiased) root mean square error (∆); and the adjusted coefficient of
determination (r2). For this, we assumed variables present a normal frequency distribution in the
natural environment. Results of the statistical tests are summarised in Table 3.

When using in situ observations of the derived parameters as inputs for the model, particularly
Prosurf′ and ZDCM′ (in which case Equations (1), (3)–(5) and (10) are excluded), our model robustly
predicts the vertical distribution of Prochlorococcus cells in the water column (i.e., Prototal(z)1, r2 = 0.84,
Figure 5b) and, consequently, produces reasonable estimates of cell concentrations integrated in the
top 200 m of the water column (i.e., Proint

1, r2 = 0.85, Figure 6). However, when using remotely-sensed
environmental variables as inputs to estimate the derived parameters (full model from remote-sensing
data), the predictive skill of the model to Prototal(z) and Proint decreases to r2 = 0.58 and r2 = 0.48,
respectively (Table 3; Figures 5c and 7a,b ). This increase in error is primarily caused by the difficulty
in estimating Prosurf from satellite (r2 = 0.50 Figures 7c,d and S9b). The reduction in performance may
also be attributed to the nature of comparing observations at vastly different spatial and temporal
scales: in situ cell abundance counts were taken in a few millilitres of seawater at a determined
time point where environmental conditions can change in hours or days, whereas satellite data were
extracted from 8-day composites and pixels cover an area of 16 km2 and Argo data were extracted
from a climatology (monthly average over 6 years). Overall, the satellite-derived model is negatively
biased (δ = −0.572 × 1012 cells cm−2), and tends to underestimate cell concentrations at most depths
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(Figure 5c). However, the spatial variability of integrated cell abundance is still well represented
(Figure 7b).

Table 3. Response variables with their respective root mean square error (Ψ), bias (δ), centre-root
(unbiased) mean square error (∆), and determination coefficient (r2) when compared with in situ data
from 13 AMT cruises. Variable definitions are listed in Table 1.

Variable Equation Ψ δ ∆ r2

KdPAR (1) 5.136 × 10−3 −0.321 × 10−3 0.512 × 10−3 0.75
ZDCM (8) 2.084 × 101 −0.101 × 101 2.081 × 101 0.73

Promax
1 (7) 5.872 × 104 −0.054 × 104 5.872 × 104 0.44

Prototal(z)
1 (9) 3.775 × 104 −0.361 × 104 3.758 × 104 0.84

Proint
1 (10) 3.682 × 1012 −1.047 × 1012 3.529 × 1012 0.85

Promax
2 (7) 5.805 × 104 −0.349 × 104 5.794 × 104 0.40

Prototal(z)
2 (9) 4.038 × 104 −0.479 × 104 4.010 × 104 0.82

Proint
2 (10) 4.146 × 1012 −1.214 × 1012 3.964 × 1012 0.81

Prosurf
3 (3)–(5) 6.551 × 104 1.237 × 104 6.434 × 104 0.50

Promax
3 (7) 6.210 × 104 0.297 × 104 6.203 × 104 0.32

Prototal(z)
3 (9) 6.176 × 104 0.466 × 104 6.159 × 104 0.58

Proint
3 (10) 6.651 × 1012 −0.572 × 1012 6.651 × 1012 0.48

Prochlorococcus cell abundances calculated using: 1 in situ Prosurf (Prosurf’) and in situ ZDCM (ZDCM’); 2 in situ Prosurf’
and modelled ZDCM; 3 modelled Prosurf and modelled ZDCM.
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Figure 5. Vertical profiles of Prochlorococcus cell abundance over depth (Prototal(z)) across the Atlantic
Ocean (locations displayed in Figure 1): (a) observed in situ on AMTs 12–24 (Prototal(z)′); (b) predicted
using the partial model with observed inputs of Prosurf and ZDCM (Prototal(z)1 from Equations (1) to
(2) and (6) to (7)); and (c) predicted using the full model with remote-sensing inputs (Prototal(z)3 from
Equations (1)–(9).
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1) across the Atlantic Ocean (locations displayed in Figure 1) using
the partial model where in situ observations of ZDCM, KdPAR, and Prosurf are used as inputs (i.e.,
Equations (1), (3)–(5), and (8) are excluded); (b) Observed and predicted Proint
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Figure 7. (a) Comparison between observed and predicted Prochlorococcus cell abundance integrated
in the water column (Proint

3) across the Atlantic Ocean (locations displayed in Figure 1) using the
complete model (Equations (1)–(10) of the present work); (b) Observed and predicted Proint

3 across
the Atlantic Ocean (AMTs 12–24); (c) Comparison between observed and predicted Prochlorococcus cell
abundance at the sea surface (Prosurf) using Equations (3)–(5) of the present work; (d) Observed and
predicted Prosurf across the Atlantic Ocean (AMTs 12–24).
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3.2. Two-Component Model Output

In the present work, we opt for using a two-component model (ProI + ProII) that is able to
determine the maximum abundance of Prochlorococcus cells when it occurs at depth (Figure S7).
The relevance of this deep component ProII to determine the vertical distribution of Prochlorococcus
cells was tested by comparing two-component model output with a model that has only the component
ProI. Details of this comparison are described in the Suppl. Material.

According to estimates of the two-component model, the Atlantic basin hosts 7.4 × 1026

Prochlorococcus cells (32 Mt of carbon, assuming an intracellular carbon concentration of 50 fg C cell−1 [19]),
concentrated mainly in warm stratified waters. When combined, subtropical gyres hold the largest
cell concentrations (35%), followed by the area near the Equatorial Convergence Zone (ECZ) which
carries 30% of the Atlantic cell stock (Table 4, Figure 8). The total standing stock in the two Atlantic
subtropical gyres varies according to both their areal extent, which expands and contracts seasonally
(Figures 8 and 9a,b), and to their euphotic depth (Figure 9c,d), which governs the vertical distribution
of cells and the depth range over which they occur. Subtropical gyres were determined as areas where
the concentration of chlorophyll at the sea surface is lower than or equal to 0.075 mg m−3 [35](more
information in the Suppl. Material).

Table 4. Predicted Prochlorococcus standing stock in the oceans, integrated horizontally and vertically
at each area. Values were computed using Equations (1)–(10), with monthly climatology products used
as input variables [22], then averaged over the year. Proint

3, Prosurf
3 and Promax

3 were calculated at
specific geographic locations within each Atlantic gyre (coordinates in the table).

Standing
Stock (Cells)

Total Carbon *
(Megatonnes C)

Proint
3

(Cells m−2)
Prosurf

3

(Cells mL−1)
Promax

3

(Cells mL−1)

Global 3.4 × 1027 171
Atlantic Ocean 7.4 × 1026 37

Equatorial
Convergence Zone 2.2 × 1026 11

ECZ: 2 ◦S, 22 ◦W 1.7 × 1013 2.2 × 105 0.7 × 105

North Atlantic Gyre 1.0 × 1026 5.1
NAG: 26◦ N, 50◦ W 1.6 × 1013 0.7 × 105 1.3 × 105

South Atlantic Gyre 1.6 × 1026 8.2
SAG: 20◦ S, 20◦ W 2.2 × 1013 1.0 × 105 1.7 × 105

* using 50 fg C cell−1 to convert cell concentrations to carbon units [19].

To better visualise the seasonal dynamics of these two factors controlling the standing stock of
Prochlorococcus, we assessed both of these ocean properties for the North and South Atlantic Gyres,
hitherto referred to as the NAG and the SAG. In their respective summer months, both the northern
and southern gyres expand (Figure 9a,b) as the sea surface temperature (Figure 9e,f) and the intensity
of the incident irradiance (PAR) increase [7]. The increase in these two factors foster stratification of
the water column that both reduces the supply of nutrients from depth and increases the average
light intensity to which phytoplankton cells are exposed [9]. The high incident irradiance leads to a
reduction in the concentration of Prochlorococcus cells at surface (Prosurf) (Figure 9g,h), but since the light
penetrates deeper in the water column, the growth of Prochlorococcus cells close to the DCM (Promax)
is enhanced and higher concentrations are found at the DCM than at the sea surface (Figure 9i,j).
Thus, the vertical profiles of cell abundance vary over the annual cycle, with Promax reaching highest
concentrations from spring to autumn (Figures 8 and 9i,j), whereas Prosurf is highest during winter
(Figures 8 and 9g,h). The integrated cell abundance in the water column (Proint) is influenced by the
depth of the euphotic layer and Promax, showing seasonal variability that resembles that of Promax and
thus is inverse to Prosurf (Figure 9k,l). The resemblance between Proint and Promax was also observed in
their interannual variability in both gyres (Figure 10c,d,i,j).
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Figure 8. Estimated monthly distribution of the Prochlorococcus cells integrated in the top 200 m of
the water column (Proint) (cells m−2), with correspondent vertical profiles of estimated Prochlorococcus
cell abundance (cells l−1) at sites (white dots) in the North Atlantic Gyre (NAG) and South Atlantic
Gyre: ProI(z) is indicated by the orange dashed line, ProII(z) by the blue dashed line, and the total
Prochlorococcus abundance by the solid black line. Cell abundance was calculated based on the monthly
climatology of environmental variables [22].



Remote Sens. 2018, 10, 847 13 of 20
Remote Sens. 2018, 10, x FOR PEER REVIEW  13 of 20 

 

 

Figure 9. Monthly averages of (a) the areal extent of the North Atlantic Gyre (NAG) and (b) South 

Atlantic Gyre (SAG); (c) the euphotic depth zeu at the NAG and (d) the SAG; (e) sea surface 

temperature SST at the NAG and (f) the SAG; (g) the estimated Prochlorococcus cell abundance at the 

sea surface (Prosurf) at the NAG and (h) the SAG; (i) Prochlorococcus cell abundance at the deep 

maximum (Promax) at the NAG and (j) the SAG; and (k) Prochlorococcus cell abundance integrated in 

the water column (Proint) at the NAG and (l) the SAG. Subtropical Gyres were defined as regions 

where the surface chlorophyll concentrations were lower than 0.075 mg m−3. The euphotic depth was 

estimated using the calculated KdPAR using Equation (1), and SST measurements were taken from 

monthly satellite composites from January 2003 to December 2014 [22]. Prochlorococcus cell abundance 

was computed using monthly averaged input variables for the years 2003–2014 [22], at specific 

locations inside the Atlantic gyres: NAG: 26° N, 50° W; SAG: 20° S, 20° W. 

To better visualise the seasonal dynamics of these two factors controlling the standing stock of 

Prochlorococcus, we assessed both of these ocean properties for the North and South Atlantic Gyres, 

hitherto referred to as the NAG and the SAG. In their respective summer months, both the northern 

and southern gyres expand (Figure 9a,b) as the sea surface temperature (Figure 9e,f) and the intensity 

Figure 9. Monthly averages of (a) the areal extent of the North Atlantic Gyre (NAG) and (b) South
Atlantic Gyre (SAG); (c) the euphotic depth zeu at the NAG and (d) the SAG; (e) sea surface temperature
SST at the NAG and (f) the SAG; (g) the estimated Prochlorococcus cell abundance at the sea surface
(Prosurf) at the NAG and (h) the SAG; (i) Prochlorococcus cell abundance at the deep maximum (Promax)
at the NAG and (j) the SAG; and (k) Prochlorococcus cell abundance integrated in the water column
(Proint) at the NAG and (l) the SAG. Subtropical Gyres were defined as regions where the surface
chlorophyll concentrations were lower than 0.075 mg m−3. The euphotic depth was estimated using
the calculated KdPAR using Equation (1), and SST measurements were taken from monthly satellite
composites from January 2003 to December 2014 [22]. Prochlorococcus cell abundance was computed
using monthly averaged input variables for the years 2003–2014 [22], at specific locations inside the
Atlantic gyres: NAG: 26◦ N, 50◦ W; SAG: 20◦ S, 20◦ W.
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Figure 10. Time series of (a,g) the estimated Prochlorococcus cell abundance integrated in the water
column (Proint), (c,i) estimated Prochlorococcus cell abundance at the deep maximum (Promax), and (e,k)
estimated Prochlorococcus cell abundance at surface (Prosurf), at one location (26◦ N, 50◦ W) in the North
Atlantic Gyre (NAG) (a–f), and one location (20◦ S, 20◦ W) in the South Atlantic Gyre (SAG) (g–l).
Figures (b,d,f,h,j,l) show the time-series anomalies (black bars) and trends (red lines). Anomalies were
calculated by subtracting the monthly climatology (dashed red lines in figures (a,c,e,g,i,k)) from the
calculated values for each month (black lines in figures (a,c,e,g,i,k)).

In general, the standing stock of Prochlorococcus cells integrated over the gyre area is 1.7 times
higher in the South Atlantic Gyre (SAG) than in the North Atlantic Gyre (NAG) (Table 4), regardless of
the season (Figure 9k,l). No clear long-term temporal changes of Proint and Promax were observed in
either of the gyres (Figure 10a,b,g,h), although a mode shift (between positive and negative anomalies)
of approximately 3–5 years was observed in the NAG (Figure 10a,b). Prosurf decreased in the SAG
(Figure 10k,l), whereas in the NAG there was an increase in cell abundance from 2002 to 2011, followed
by a steep decrease from 2012 to 2014 (Figure 10e,f), which could be associated with the degradation of
MODIS Rrs signals that started in 2012.
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4. Discussion

The two-component model successfully reproduces the vertical distribution of the cell abundance
of Prochlorococcus across the Atlantic Basin, including the formation of a deep abundance maximum
a few metres above the DCM (see Figure 3). When provided with in situ measurements of surface
cell abundance (Prosurf), the model accurately predicts the vertical distribution of cells (r2 = 0.83, see
Table 3), regardless of the geographic location, showing that physical and biological processes that take
place in surface layers of the water column are tightly coupled to those that occur at depth. However,
when satellite data are used to determine Prosurf, model estimates of the integrated cell abundance in
the water column (Proint) are more precise in the Atlantic Ocean than in other ocean basins (see Table 3),
as the empirical relationships used in this algorithm were derived from data collected in the Atlantic.

Despite having roughly similar global estimates, the predicted global distribution patterns of
Prochlorococcus cells are markedly different from previous studies, with our model showing higher
surface cell concentrations in the area near the Equatorial Convergence Zone (ECZ) and on the
periphery of subtropical gyres, and lower surface cell abundance in the core of the gyres. This
distribution pattern is supported by in situ observations made in several transect cruises across the
Atlantic Ocean [13,16] (see Figure 7d). Conversely, surface distributions of Prochlorococcus presented
by Flombaum et al. (2013) [20] show higher cell concentrations not only in the ECZ, but also in the
western sector of the ocean basins (which includes the central portion of the subtropical gyres) due to
the strong relationship between Prochlorococcus cell abundance and water temperature, especially if
observations at depth are taken into account.

Similar to the present study, Flombaum et al. (2013) [20] used a series of empirical equations
that relate Prochlorococcus cell concentrations at the surface and at depth to the vertical structure in
temperature and daily PAR. Thus, their model assumes that the same environmental factors that
influence cell abundance at the surface also govern the variability in cell concentrations at depth. In the
present model, the surface distribution of cells is primarily influenced by environmental conditions
at the sea surface (except the variable T200 which is used as a proxy for stratification and hence
nutrient input from depth). To estimate cell abundance at depth, we include an additional parameter:
the maximum cell abundance at depth (Promax). The analysis of in situ data shows that the profile of
Prochlorococcus is directly influenced by Promax, which in turn is related to the water-leaving radiance at
443 nm (Rrs(443)). Thus, Promax is highest when Rrs(443) is highest (i.e., in optically clear waters, there
is less phytoplankton pigment at the surface, therefore less light absorption, leading to an increase
in water-leaving irradiance at blue wavelengths). Conversely, cell concentrations at the surface are
inversely related to Rrs(443) where sea surface temperatures are high (see coefficient e3 in Table 2),
which occurs in the interior of subtropical gyres. Partitioning our Prochlorococcus population into
two components (ProI near the surface and ProII at depth) allowed us to include the deep peak in
Prochlorococcus cell abundance that is routinely observed in subtropical waters [13,15,16,36] and which
contributes significantly to the vertically integrated cell abundance, especially in periods when surface
irradiance (PAR) is high or increasing over time (i.e., summer, spring). This deep abundance maximum
is neglected in the previous models, which may explain why global cell stock in Flombaum et al.
(2013) [20] is lower than that estimated in the present study. Additionally, instead of using PAR, our
model uses fPAR to determine the vertical distribution of cells. The reason for using a relative rather
than absolute value of irradiance is because the shape of phytoplankton pigment and the abundance
and productivity profiles in open ocean waters have been shown to follow changes in light attenuation
rather than fluctuations in instantaneous light [37,38]. This happens possibly because PAR varies over
a timescale of hours, whereas fPAR reflects a longer-term (days or weeks) change in the availability
of light at depth and how the microbial community (including phytoplanktonic pigmented cells)
responds to these variations over longer time periods.

As a consequence of the differences in approach between the present study and those of
Flombaum et al. (2013) [20], the seasonality and temporal variability of the global Prochlocococcus cell
stock are markedly different between the two models. Our results show that global and regional cell
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stocks of Prochlorococcus are relatively constant over time, not showing any discernible long-term trend
over the 12-year study period (2003–2014). This is in part due to the areal extent of the gyres being
relatively uniform from 2003 to 2014 (if seasonal oscillations are discarded), when estimated on the
basis of satellite observations of chlorophyll concentration at the sea surface [7]. This result is also
consistent with the view that the Prochlorococcus population consists of a “federation” of physiologically
diverse cells that exhibits dynamic stability [34].

Our model detected a positive–negative anomaly cycle of 3–5 years, similar to that observed
between 1991 and 2004 in the North Pacific Gyre near Hawaii (HOT time series) [15]. This cyclical
oscillation may be associated with changes at depth, such as variations in the volume and/or vertical
oscillations of subtropical mode waters (STMW). The STMW are voluminous subsurface (depths
between ~150 and ~400 to 600 m in the Atlantic gyres) water masses located in the subtropical gyres,
characterised by unique high temperature and salinity conditions that make this water mass vertically
homogeneous [39]. Therefore, in subtropical gyres, oscillations in the STMW directly influence nutrient
supply from depth to surface and, consequently, phytoplankton growth, including the growth of
Prochlorococcus.

Water-column stability also varies seasonally, resulting in marked seasonal changes in the
concentrations of Prochlorococcus cells. As ~57% of the global ocean’s area is located in the Southern
Hemisphere [40], of which the occupation of subtropical gyres is greater than in the Northern
Hemisphere (i.e., Figure 9a,b), the seasonal variability observed in the global Prochlorococcus cell
stock (see Figure S6a) is mostly influenced by a combination of environmental conditions in the
Southern Hemisphere, such as the areal extent of the Southern Subtropical Gyres (see Figure 9b),
underwater light conditions, and vertical structure of the water column. As solar radiation levels
increase during the summer, the gyres expand reaching the maximal extent, and the water column
becomes warmer and more stratified in the gyre’s interior. This leads to extreme high-light and
low-nutrient conditions that reduce the growth of phytoplankton at the surface [5]. High light levels at
the sea surface also result in a reduction in the intracellular concentration of photosynthetic pigments
as a consequence of phytoplankton photoacclimation [5], which is another factor leading to lower
surface concentrations of chlorophyll at the sea surface in the summer [41].

The increased surface irradiance and reduced phytoplankton pigment concentration at the surface
allow solar irradiance to penetrate deeper within the water column, and the lower intracellular
pigment concentrations induced by higher irradiance lead to a decrease in KdPAR and a consequent
increase in the limits of the euphotic zone (see Figure 9c,d). Therefore, the depth range over which
Prochlorococcus has enough light to achieve net growth extends deeper, resulting in higher integrated
cell abundances during the summer (see Figure 9k,l). In contrast, during the winter, lower surface
irradiances and increased mixing in the water column are accompanied by an increase in cellular
chlorophyll concentrations at the sea surface, leading to the contraction of the gyre’s extension [41,42].
Previous assessments of seasonal variations in Prochlorococcus populations based on in situ observations
show that, in the Atlantic subtropical gyres, standing stocks of Prochlorococcus are larger during
spring when compared with autumn [16]. Conversely, at the periphery of the North Atlantic gyre,
Prochlorococcus is most abundant during summer and autumn [14,43]. In the North Pacific Gyre (HOT
station), Rabouille et al. (2007) [15] and Malmstrom et al. (2010) [14] reported no significant seasonal
changes in the integrated abundance of Prochlorococcus in the euphotic layer, but a noticeable seasonal
shift in their vertical distribution was observed.

Differences between Prochlorococcus cell stocks in the NAG and the SAG may be a consequence of
physical processes that govern nutrient delivery in the gyres: the degree of water column stratification
and the proximity of the STMW to the bottom of the photic zone. In the SAG, the water column is
strongly stratified at the bottom of the mixed layer, and a shallow pycnocline is formed during spring
when surface waters start to warm. The deep thermocline occurs at 80–120 m and coincides with
the nutricline; above this depth horizon the water column is relatively homogeneous (see Figure S7i).
However, the amount of total kinetic energy input at the surface is low, leading to low mixing [44]
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within the surface ocean. The higher concentration of Prochlorococcus cells (Proint = 2.2 × 1013 cells m−2)
in the SAG when compared with the NAG may be a consequence of either a thinner underlying STMW
in the SAG or the unique vertical structure of density of this STMW [39] that may influence nutrient
input from depth to the euphotic layer. Conversely, the NAG has the thickest STMW in the global
ocean, and the temperature at 200 m is considerably warmer (see Figure S7f) than that found in the
SAG, the ECZ, or even the NAG periphery (see Figure S7c). The lower stratification combined with
higher temperatures at depths between 100 and 200 m indicates an even deeper thermocline and
nutricline, leading to a lower nutrient flux from depth and thereby resulting in the lower Prochlorococcus
cell stocks in the NAG (Proint = 1.6 × 1013 cells m−2).

Prochlorococcus numerically dominates vast expanses of the warm and strongly-stratified open
ocean [13,15,34,45,46]. The sensitivity of the Prochlorococcus population as a whole to changes in
physical forcing [12], such as decreased kinetic energy input to the water column, resulting in low
turbulent mixing [44] and long-period internal oscillations in subsurface water masses that can lead
to changes in nutrient supply from depth [39], makes this genus an ideal indicator of water-column
dynamics. The preferred habitat of Prochlorococcus, the ocean’s subtropical gyres, expands and contracts
according to seasonal changes in stratification, leading to significant spatiotemporal changes in the
standing stocks of Prochlorococcus cells. Additionally, variations in Prochlorococcus cell stocks are a
consequence of the collective physiological response of this genetically diverse assemblage of cells
to both abiotic (temperature, nutrients), and biotic factors (grazing pressure, viral infection, sinking),
the latter of which were not explored in the present work. Nevertheless, our model is able to recreate
the basin-scale patterns in the vertical distribution of Prochlorococcus cells, which is a crucial first step
to quantify the role of this globally important cyanobacterium in marine biogeochemical cycles.

5. Conclusions

Despite their minute size and cellular biomass [47], Prochlorococcus represents a significant
amount of global carbon biomass: 171 Mt C contained in ~3.4 × 1027 cells. Most of this biomass
is concentrated in areas near the Equatorial Convergence Zone and in the subtropical gyres. In the
Atlantic, no significant temporal change was observed over the period of 2003–2014, but marked
seasonal variations in cell abundance occur inside the subtropical gyres, where cell abundances
are highest in the spring and summer and lowest during the winter. Although the global estimate
presented here is similar to that calculated in a previous model [20], the spatial and temporal patterns
in the abundance of Prochlorococcus cells differ. Our results are in agreement with observations made
in the natural environment [13,15,16,36] and provide an unprecedented three-dimensional view of the
distribution of Prochlorococcus biomass in the Atlantic ocean using remote-sensing observations.

This depth-resolved empirical model helps advance our ability to examine temporal changes in
the biomass of Prochlorococcus over basin scales. Although the model captures the light dependence
of Prochlorococcus abundance, there is scope for further refinements. The parameterisation of the
model is based on a dataset that is geographically biased to the Atlantic basin, whereas data from the
Pacific and Indian Oceans (PANGAEA dataset after 2002) were used only for validation (see Suppl.
Material). A broader coverage of spatial in situ data can improve the equation used to estimate the
abundance of Prochlorococcus cells at the sea surface (Prosurf) by regionally tuning it for each ocean
basin. Improvement of estimates of Prosurf will increase the model’s ability to accurately predict of the
vertical distribution of Prochlorococcus cells in other ocean basins.
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