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Modelling the age-depth and temperature profiles of deep ice cores 

from the Antarctic Peninsula and the Weddell Sea region 

Ashleigh Massam 

 

Abstract 

 

Three deep ice cores, obtained from Fletcher Promontory, Berkner Island, and James Ross 

Island across the Antarctic Peninsula (AP) and Weddell Sea region, preserve a climate record 

that can yield important information on the region.  However, before this information can be 

interpreted, an accurate age-depth profile is required.  This study seeks to develop optimal 

age-depth profiles for the three deep ice cores.  The first branch of work is a modelling 

synthesis of the different physical relationships that reconstruct past surface temperature, 

accumulation, and the subsequent compaction of accumulation to annual layer thickness 

(thinning) at an ice-core site.  From these relationships, one can estimate an age-depth profile 

for an ice core.  The second half of the study includes the results of chemical analysis on the 

three deep ice cores.  The results of these analyses yield observational data that has been 

used to assess the accuracy and reliability of the modelling results presented in this part of 

the study.  The OptAcc age-depth model has been developed through this study; it uses an 

inverse approach to anchor reconstructed profiles of accumulation, thinning, and annual layer 

thickness profiles to observational data preserved in the ice core.  This has been done for the 

deep ice cores from the AP and Weddell Sea region.   

 

Interpretation of the results from this study provides information on the climate history of the 

region.  In particular, the OptAcc model suggests that the coastal proximity of each ice core 

site leads to high inter-annual variability in accumulation that cannot be reconstructed using 

standard mathematical relationships.  Additionally, an accurate surface temperature, 

accumulation and age-depth reconstruction for each ice-core site over the Holocene period 

suggests that an increase in the mean annual surface temperature of 1-3 K is sufficient to lead 

to significant deglaciation of the AP and Weddell Sea region. 
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Chapter 1: Introduction 

1.1 Rationale 

In Polar Regions, ice sheets preserve a record of annual snowfall.  When the snow falls on 

the ice sheet, the previous years of snowfall are compacted into ice due to the increasing 

load above.  In Antarctica and Greenland, where the mean annual surface temperature 

remains below freezing and not all of the annual snow  ablates away, the ice sheets preserve 

an uninterrupted history of snow deposition.   

By drilling vertically downwards into the ice sheet, one can retrieve an ice core which 

provides a record of the past snowfall that can then be used to interpret the past climate 

conditions.  An ice core can be used to interpret the past climatic conditions in two ways: (i) 

by measuring gases that are trapped within the ice matrix; and (ii) by interpreting the ice 

chemistry as a proxy for past climate.   

Unreactive gases trapped in the ice matrix of an ice core yield records of past atmospheric 

conditions, and these are representative of the global atmosphere due to rapid rates of 

atmospheric mixing. The atmospheric conditions of at least the last eight glacial periods are 

preserved in deep Antarctic ice cores (Loulergue et al., 2008; Luthi et al., 2008), with records 

of greenhouse gases detailing the relationship of atmospheric composition to the orbital 

variations that define the glacial cycles of the planet (Hays et al., 1976; Imbrie and Imbrie, 

1980).   

The second method for interpreting the climate history preserved in an ice core analyses the 

chemical composition of annual snowfall and using the measurements to indirectly inform 

us of past climatic conditions on local and regional scales.  The stable water isotopes that 

make up precipitation can be used to reconstruct a surface temperature and accumulation 

history (Dansgaard, 1953; 1964).  In addition to the stable isotope profile, the seasonal flux 

of ion concentrations in the ice further provide a temporal view over the ice sheet and the 

region in which it is found, providing information on factors such as the sea ice evolution, 

wind sources, and humidity sources (Sommer et al., 2000; Curran et al., 2003; Abram et al., 

2013).   

In order to understand the records preserved in an ice core, it is necessary to construct a 

robust age-depth profile.  For palaeoclimate reconstructions that are based on marine or 

terrestrial cores, absolute or radiometric dating methods can be directly employed on 
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organic materials found within these cores to obtain precise, site-specific age 

determinations.  These methods are vital to palaeoclimate reconstructions, and can be used 

to constrain an age-depth profile by interpolation along the core (Blaauw, 2010; Bronk 

Ramsey, 1995).  The lack of organic material present in glaciated regions of Antarctica 

creates a more complex situation for ice cores.  For ice cores, an accurate ice-core 

chronology relies on a combination of methods to estimate the in situ annual layer thickness 

(the snowfall layer that has been compacted due to subsequent years of snowfall).  At most 

sites, the uppermost layers can be dated by annual layer counting, but eventually a depth is 

reached where these become too thin to robustly count. After this depth, chemical analysis 

can be used to delineate the annual layers as many chemical species are deposited on an 

annual cycle in the snow. For ice cores obtained from regions of high mean annual 

accumulation, chemical analysis at the standard laboratory analytical resolution of ~10 mm, 

is sufficient to identify and count annual layer thicknesses throughout the ice core.  This 

technique is used to reconstruct the age-depth profile of deep ice cores from Greenland and 

West Antarctica (Rasmussen et al., 2006; Sigl et al., 2016).   

If one can assume that an Antarctic ice core preserves an uninterrupted, record of snowfall, 

one can also assume that the age of an ice particle at a particular depth is equal to the 

number of annual layers above it.  It is also reasonable to assume that an ice-core record 

obtained from a site with a high mean annual accumulation will not extend as far back in 

time as an ice core of the same length from a site of lower mean annual accumulation, due 

to the greater in situ annual layer thickness in the ice core from a high annual accumulation 

site.  For ice cores with an in situ annual layer thickness that is too thin to be determined 

from visual methods, annual layer thickness can be estimated using a combination of 

chemical analysis and modelling techniques. 

In order to model an age-depth profile, an accumulation history must be reconstructed 

assuming a relationship between the stable water isotope profile preserved in the ice core 

and the rate of snowfall.  This can be combined with a depth-varying expression (a ‘thinning 

function’) that reflects the amount by which annual layers along the ice core have been 

compacted since deposition, to give an estimate of current layer thickness along the length 

of the ice core.  Accumulation and thinning functions can be reconstructed using a number 

of relationships.  The modelled annual layer thickness and age-depth estimates can be 

constrained using observational data, preserved or measured in the ice core, by optimising 

one or more parameters in an inverse approach.  Throughout the history of ice-core drilling 
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and analysis, several approaches have been used to estimate an age-depth profile for ice 

cores from Greenland and Antarctica (Dansgaard and Johnsen, 1969; Schwander et al., 2001; 

Parrenin et al., 2001; 2004; 2007a; 2007b).  These modelled ice-core chronologies range 

from simplistic steady-state models to complicated ice-flow models.  This leads to a lack of 

consensus across ice-core chronologies and the subsequent palaeoclimate analysis.  One 

response to the differences between chronologies has been to develop age-depth model 

templates which can be applied to multiple cores within one iterative model in order to 

‘tune’ chronologies and infer a temporal view of global atmospheric processes (Lemieux-

Dudon et al., 2010; Bazin et al., 2012; Parrenin et al., 2015).   

The ice-core records synchronised using the most recent modelling techniques include the 

accumulation records spanning multiple glacial cycles from the East Antarctic ice sheet 

(EAIS), and the annual-layer counted accumulation records from the Greenland ice sheet 

(GrIS) (Lemieux-Dudon et al., 2010; Bazin et al., 2012; Parrenin et al., 2015).  Across these 

sites, longer records with low mean annual accumulation (< 40 mm yr-1) have an effective 

resolution that does not preserve accumulation variability on a timeframe shorter than 

several thousand years.  For Antarctica, the amount of snowfall across the ice sheet depends 

on the proximity to the coast and the sources of moisture, with higher annual rates of 

accumulation at coastal sites compared to the mean annual accumulation rates inland 

(Fudge et al., 2016; Schlosser et al., 2017; Steiger et al., 2017).  As a result, the highest mean 

annual snowfall is found across the West Antarctic ice sheet (WAIS) and the Antarctic 

Peninsula (AP), where the mean annual accumulation is an order of magnitude greater than 

across the EAIS (Palerme et al., 2014).  The higher mean annual accumulation across the 

WAIS results in an annual layer thickness record that covers a shorter timeframe over 

comparable ice core depths retrieved from the EAIS (Buizert et al., 2015; Sigl et al., 2016).  

As a result, the effective resolution of the accumulation record is much higher than EAIS ice 

core records, and hence the model strategy of synchronising ice-core records using common 

relationships is not always reliable due to the high natural variability in the accumulation 

and annual layer thickness records at individual WAIS and AP locations.  To address this 

issue, alternative modelling approaches should be considered in order to accurately 

reconstruct the natural variability in a high-resolution ice-core record that impacts greatly 

upon the final age-depth profile. 

 

 



Chapter 1 

 

 4 

1.2 Aim of the project 

This study aims to explore and characterise the variety of options that can be chosen when 

reconstructing the accumulation, thinning, and hence annual layer thickness and age-depth 

profiles of an ice core.  It seeks to highlight the variation in results by comparing possible 

combinations, before presenting the optimal dating strategy for three coastal ice cores 

originating from the AP and Weddell Sea region of Antarctica, and to make palaeoclimatic 

interpretations from them.  The underlying rationale is that in order to improve our 

knowledge of palaeoclimate records, we must first understand the reliability of the 

methodological approach used in the construction of the age-depth profile.   

1.2.1 Objectives 

To achieve this aim, five objectives have been identified. These are designed to determine 

the optimal dating strategy for three ice cores retrieved from the AP and the Weddell Sea 

region. Specifically, the cores have been retrieved from James Ross Island (JRI), Fletcher 

Promontory (FP), and Berkner Island (BI). These cores have already been analysed for many 

proxies but in light of recent new data the identification of the optimal dating approach 

requires new analysis.   

i) Draw together and develop mathematical relationships that reconstruct 

accumulation and thinning in order to model the age scale for each ice core; 

ii) Make new laboratory measurements of annual layer thickness for the BI and FP 

ice cores to test the accumulation reconstructions derived under objective (i); 

iii) Use the results of the previous two objectives to develop the best combined 

dating model and establish a dating strategy for the AP and Weddell Sea ice 

cores; 

iv) Model the borehole thermometry profile to reconstruct an independent surface 

temperature history for the AP; 

v) Use newly dated ice cores to assess regional patterns of climate and ice sheet 

change in comparison to other regions of Antarctica. 
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1.3 Study Area 

The three deep ice cores used in this study were drilled in the AP and Weddell Sea region, a 

region currently experiencing rapid regional warming leading to ice mass loss (Vaughan et 

al., 2003; Steig et al., 2009).  The ice cores were drilled to bedrock in order to reconstruct the 

longest possible climate history of the region.  These ice cores are: the JRI ice core, drilled to 

364 m depth on the north-eastern tip of the AP, the 654 m-deep ice core drilled on FP, which 

is located in the southwestern Weddell Sea embayment, and the 947 m-deep ice core from 

BI, which is located east of Fletcher Promontory on a large ice rise in the eastern Weddell 

Sea embayment, embedded in the Ronne and the Filchner ice shelves (fig 1.01).   

The AP is one of the most rapidly warming regions on Earth, with historical observations 

from Esperanza Station suggesting that average temperatures are currently increasing by as 

much as 3.5 K (100 yr)-1 (Mulvaney et al., 2014).  Recently, mass loss has been particularly 

significant as a result of a series of ice shelf collapses (with consequent unbuttressing and 

acceleration of grounded ice), and the retreat of tidewater glaciers (Vaughan et al. 2003; 

Cook et al., 2005; 2016; Kunz et al., 2012).  The impact of changes in glacier flow, particularly 

along narrow channels occupied by outlet glaciers along the AP, is thought to have a 

significant effect on the mass balance and the stability of the ice sheet.  Mass loss, 

interpreted by remote sensing techniques such as radar interferometry, increased by 140% 

over 1996-2006 (Rignot et al., 2008; Shepherd et al., 2012).   

Ice-shelf instability across the AP is a significant issue for understanding the ice-shelf stability 

across Antarctica, and the potential contribution of the Antarctic Ice Sheet (AIS) to future 

sea level rise.  Potential instability at the Larsen C ice shelf, following the collapse of Larsen A 

and Larsen B in 1995 and 2002, respectively, threatens the removal of up to 12% of the 

Larsen C shelf area in a single calving event (Jansen et al., 2015).  However, the growth and 

retreat of the ice shelves on the AP have not been determined only by the glacial-interglacial 

transitions, but instead they have continued to evolve throughout the Holocene (Domack et 

al., 2005; Pudsey et al., 2006).  Assessment of a high-resolution ice core record from this 

region will help us understand the threshold limits on climate that have previously resulted 

in the retreat or disappearance of ice shelves in this region, with a view to interpreting and 

predicting future changes in response to the current rapid regional warming.  An ice core 

from JRI provides an uninterrupted view of the Holocene period in a region where the ice 

shelf history can be used in forecasting the future stability of the AP ice shelves (Domack et 

al., 2005; Pudsey et al., 2006). 
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Figure 1.01: Map of the AP and Weddell Sea region showing the locations of the three ice cores drilled 

at Fletcher Promontory, Berkner Island, and James Ross Island.  Also included in the map are the 

locations of short ice cores mentioned in this chapter.  Dark grey areas indicate grounded ice, with 

pale grey surfaces extending from the grounding lines to the calving front of the ice shelves.  The 

surrounding white area in map is open ocean. 
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In addition, records of past climate can provide insight into future sea level rise, when we 

combine marine, terrestrial and ice core records (McConnell et al., 2000; Dutton and 

Lambeck, 2012).  During the last interglacial (LIG) global mean sea level (GMSL) was 6-9 m 

higher than the present-day level (Dutton et al., 2015).  The contribution of the GrIS to this 

highstand is estimated to have been ~3 m (Dutton et al., 2015); the remainder of the sea 

level contribution would have come from thermal expansion of water masses and the 

Antarctic ice sheets.  Of particular importance, the WAIS holds up to 5 m of GMSL, of which 

3.3 m is located in areas of marine-grounded ice  (Bamber et al., 2009).  During the LIG, the 

North Greenland Eemian Ice Drilling (NEEM) ice core record in Greenland suggests that local 

mean annual surface temperature was up to 8 K warmer than the present-day interglacial 

(Landais et al., 2016).  Globally, the mean annual surface temperature was 1-2 K warmer 

than pre-industrial climate conditions (McKay et al., 2011; Capron et al., 2014; Hoffman et 

al., 2017).  Therefore it is hypothesized that warmer global mean surface temperatures 

contributed to ice mass loss, and thus the greater GMSL than present-day.  However, the 

small GMSL contribution from non-Antarctic sources implies that a significant ice mass loss 

from Antarctica is required to agree with palaeoclimate data (Holloway et al., 2016).   

Fletcher Promontory is located on a small ice dome that might be expected to disappear, or 

at least dramatically thin, in the event of WAIS collapse (Mulvaney et al., 2014) and so 

understanding the history of this site can provide insight into past WAIS stability.   Berkner 

Island is a major ice rise separating the Filchner and Ronne Ice Shelves in the Weddell Sea 

embayment.  Ice from Berkner Island flows into both ice shelves but at its northern end it 

also flows directly into the Weddell Sea, with ocean water able to flow in the sub-ice shelf 

cavity around the whole of the island (Mulvaney et al., 2007).  Ice cores drilled at these 

locations, extending into the LIG, would provide direct information on the stability of the 

WAIS.  Chemical analysis of the ice cores would yield proxy information allowing us to test 

whether the sites were surrounded by open ocean or sea ice, indicating the collapse/retreat, 

or the remaining presence, of the WAIS.  

Future predictions of climate change estimated by global circulation models suggest that 

warming surface air temperatures could lead to an increase in precipitation over the 

Antarctic continent (Krinner et al., 2007; Bracegirdle et al., 2008; Palerme et al., 2016).  

Evidence to support these projections is found in shallow ice cores taken from the WAIS and 

the East Antarctic region of Dronning Maud Land.  WAIS sites of Gomez, Ferrigno, and Bryan 

Coast record an increase in annual snowfall over the last century (Thomas et al., 2015).  
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Concurrently, an increase in surface mass balance (SMB – i.e. precipitation minus meltwater 

runoff, sublimation, and evaporation) is preserved in a record extending over the last 250 

years in Dronning Maud Land, EAIS (Philippe et al., 2016).  These ice core sites respond to 

the atmospheric transport of moisture from the oceans, which can make the accumulation 

rate at the site more responsive to local changes.  This is true for WAIS and AP sites, due to 

their proximity to the coast, but it is not the case for EAIS ice core sites as they are often 

drilled in the interior of the ice sheet and hence far away from the coast.  

The rapid regional warming across the AP and Weddell Sea region is contributing to ice mass 

loss on the ice shelves, with an increase in SMB across the interior of the AP region (Steig et 

al., 2009; Thomas et al., 2008; Cook et al., 2016).  The potential effects of the increase in 

mean surface temperatures on the AP and Weddell Sea region, as well as the WAIS, can be 

better forecasted by answering key questions using the information preserved in ice cores.  

Principally, (i) What is the climate warming threshold for ice shelf stability on the AP? (ii) Did 

the WAIS collapse or significantly retreat during the LIG? Finally, (iii) Do the ice core records 

show evidence of increasing accumulation due to warming across the region?    

1.4 Thesis Outline and Summary 

The following section details the work that is found in chapters 2-9 of this study.  Some 

results have been published in a peer-reviewed scientific journal during the course of the 

study, or have been the result of international collaboration.  Where there has been 

collaborative work, I have explicitly identified my contribution to that work in the chapter.   

1.4.1 Chapters 2 and 3 

Chapter 2 is a comprehensive review of ice core science from the initial scientific 

experiments to the present-day state-of-the-art techniques.  In particular, the chapter 

focuses on the development of ice core records and the relevant age-depth reconstructions.  

Within this literature review, the initial mathematical relationships used to reconstruct 

temperature, annual snowfall, compaction of annual layers and ultimately the age-depth 

profile are introduced.  Chapter 3 then goes on to outline the novel methods used in the 

chemical analysis and numerical modelling of ice cores in this thesis.  

1.4.2 Chapter 4 

Results of this study are presented from Chapter 4 onwards; Chapter 4 is a synthesis of all 

modelling combinations used in reconstructing temperature, accumulation, compaction of 
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annual layers, and age-depth profiles for the Fletcher Promontory ice core record.  The 

reconstructions use stable water isotope data obtained externally to this study, and pRES 

measurements provided by Jonathan Kingslake.  The reconstructions use techniques 

previously employed in existing age-depth profiles (Chapter 2) as well as the novel 

techniques (Chapter 3) developed during this study.  Reconstructions using the same 

methods for the Berkner Island and James Ross Island ice core records are presented in 

Appendix 1.  The decision to present only FP modelling results was due to the additional 

modelling approaches developed using data only available for the FP ice core.  BI and JRI 

results were presented in Appendix 1 as the application of the modelling approaches to each 

ice core resulted in the same differences between model results due to the model 

development. 

1.4.3 Chapter 5 

Chapter 5 outlines the results of the novel application of ultra-violet laser ablation 

inductively-coupled plasma mass spectrometry (hereafter LA ICP-MS) on frozen samples 

from Berkner Island.  The chapter is constituted by the manuscript that has been peer-

reviewed and published in Antarctic Science.  The article is the product of international 

collaboration with colleagues from the Climate Change Institute (CCI), University of Maine, 

and was funded by an Antarctic Science bursary in 2014.  The author contributions are as 

follows: Ashleigh Massam prepared all samples of ice for analysis; furthered the 

development of the discrete sampling technique and contributed to discrete sampling work 

at BAS; assisted the LA ICP-MS analysis at the University of Maine; designed and wrote the 

annual layer thickness model; and wrote the manuscript.  Geoff Lee contributed to the 

discrete sampling work at BAS; Sharon Sneed conducted the analysis of the ice samples 

using LA ICP-MS at University of Maine assisted by me; Rebecca Tuckwell assisted in the ion 

chromatography (IC) analysis of discrete samples assisted by me; Robert Mulvaney assisted 

in the design of the analysis, model and manuscript; Paul A. Mayewski developed the 

concept and approach of the LA ICP-MS system at the CCI; facilitated collaboration between 

BAS and CCI; Pippa Whitehouse assisted in the design of the analysis, model and manuscript.  

Some additional work that was not published is also presented at the end of this chapter, 

supplementary to the manuscript.  The supplementary results provide information on the 

age-depth model, observational data and parameters that were used to model the ice core.  

Additionally, statistical assessment of the annual layer thickness data and the modelling 

approaches (introduced in Chapter 4 and Appendix 1) are included.   



Chapter 1 

 

 10 

 

1.4.4 Chapters 6 and 7 

Chapter 6 presents the optimised profiles of accumulation, thinning, and hence annual layer 

thickness and age-depth, reconstructed for the ice cores retrieved from Fletcher Promontory 

and Berkner Island.  The Berkner Island ice core record is constrained using known-age 

horizons and the annual layer thickness measurements described in Chapter 5.  The FP 

record is constrained using known-age horizons and annual layer thickness measurements 

presented in Chapter 6.  The annual layer thicknesses measured as part of this study are 

supplemented by additional stable water isotope data retrieved through a project separate 

to this study by Amy Pike. 

Chapter 7 makes use of new high resolution chemistry data from JRI, measured by 

collaborators at the Desert Research Institute (DRI), Nevada, US, which allows layer counting 

of the JRI core to a greater depth than hitherto, and synchronisation to the well dated US 

WAIS core via volcanic horizons, and peaks in heavy metals.  The JRI ice core was re-analysed 

at the DRI at a high resolution so that annual layers are resolved to 300 metres below the 

surface.  The re-analysis of the ice core and the annual layer counting to 300 m was 

completed by colleagues, Monica Arienzo and Joe McConnell at DRI and Nerilie Abram at the 

Australian National University (ANU).  The remainder (i.e. deeper than 300 m)  of the JRI age-

depth profile is constructed using the methods described in Chapter 6. 

1.4.5 Chapter 8 

One objective of the study is to use borehole temperature profiles to provide an 

independent reconstruction of surface temperature.  Borehole temperature measurements 

are provided by Rob Mulvaney and obtained prior to this study.  Chapter 8 presents the 

results of this avenue of research, and was completed with the additional supervision of 

Carlos Martin at BAS.  

1.4.6 Chapter 9 

Chapter 9 summarises and discusses the results of this study with a view to addressing the 

objectives listed in section 1.2.1.  Particularly, the results of the study are used to interpret 

information on the modelling techniques developed and applied to the FP, BI, and JRI ice 

cores.  Additionally, it discusses how the ice core and borehole temperature reconstructions 

presented in this study provide a context for the regional climate history of the AP and 
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Weddell Sea region.  Finally, the outcomes of this research study are summarised alongside 

suggestions for future work. 

Through nine chapters, this study will seek to address the five objectives introduced in 

section 1.2.1 in order to explore the variations in the relationships used to reconstruct ice-

core profiles.  In doing this, the optimal dating strategies for the three ice cores from the AP 

and Weddell Sea region will be presented. 
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Chapter 2: A review of Polar Ice Core Research 

2.1 Introduction 

A key branch of palaeoclimate research involves the interpretation of data available in ice 

cores.  The continuous records preserved in a polar ice sheet provide a record that can span 

multiple glacial cycles.  Since the initial analysis of polar ice over 80 years ago (Sorge, 1935), 

there has been substantial development of drilling techniques, analysis and interpretation of 

the records preserved within the polar ice sheets.  This chapter reviews polar ice core 

research and evaluates the latest analytical and modelling techniques for ice core 

interpretation. 

2.2 Developments in Ice Core Research 

The first attempts to understand the interior of an ice sheet employed shallow pits and cores 

in the Polar Regions (Sorge, 1935; Langway, 2008) but these yielded low quality ice, limiting 

the chemical analysis that could be carried out.  It took until the 1950s to make further 

progress, with ice-core drill seasons in Greenland and Antarctica throughout the decade; 

between 1949 and 1952 a Norwegian-British-Swedish expedition drilled a 100 m ice core in 

Queen Maud Land, Antarctica (Swithinbank, 1957; Schytt, 1958).  Further drilling was 

completed at Taku Glacier, Alaska, and two boreholes > 125 m long were drilled at Camp VI 

and Station Central, Greenland (Miller, 1954; Heuberger, 1954).  

Throughout the 1960s and 1970s, five main nations focussed on the development of ice core 

drilling: Denmark, Switzerland, the US, the USSR, and France (Jouzel, 2013).  The first deep 

ice core drilling was carried out by the US Army Cold Regions Research and Engineering 

Laboratory (CRREL) at Camp Century on the Greenland ice sheet (GrIS) (fig. 2.01), reaching 

the bed of the ice sheet at 1388 m in 1966 (Hansen and Langway, 1966; Dansgaard, 1969).  

The CRREL drill was then transferred to Antarctica, and in 1968 a 2160 m core to bedrock 

was recovered at Byrd Station in West Antarctica (Ueda and Garfield, 1969).  Drilling in the 

north continued with the Greenland Ice Sheet Project (GISP - an international collaboration 

between the US, Denmark and Switzerland), which drilled several intermediate depth cores, 

and a 2038m core to the bedrock at Dye 3 in 1981 (Dansgaard, 1982).  Chemical analysis of 

the composition of these deep ice cores revealed key climatic variations covering the last 

glacial period and the glacial-Holocene transition, and provided insight into the relationships 

between climate and oceanic processes (Oeschger, 1985).  In 1988, a short ice core was 
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retrieved from Renland in East Greenland (fig. 2.01).  Despite reaching bedrock at a depth of 

324.35 m, the ice core record spans a full glacial cycle from the Holocene into the Eemian 

interglacial (LIG – the last interglacial) (Hansson, 1994).  The success of deep ice core drilling 

on the GrIS led to the development of international collaboration between the US and 

European ice core teams and as a result, two new deep ice cores were drilled.  A European-

led project, the GReenland Ice core Project (GRIP), reached bedrock at 3028.8 m in 1992 

with the support of the European Science Foundation (ESF) comprising of Belgium, Denmark, 

France, Germany, Iceland, Italy, Switzerland and the UK, while an American-led project, 

GISP2, reached bedrock at 3054 m a year later in 1993.  Both ice cores reached the bed of 

the ice sheet, and yielded an ice core record of the LIG.  However, disturbances to the flow 

of ice at an age greater than 110 ka BP limit the ice-core profiles of the LIG.  The relatively 

high accumulation rate and surface temperature (compared to central Antarctica), the great 

depth of the ice and the geothermal heat flux combined to cause melting at the bed of the 

ice sheet which removed older ice.  The failure to recover ice older than the last interglacial 

period (the Eemian) prompted further drilling of deep ice cores between 1999 and 2003 at 

North GRIP (NGRIP), 200 km north of the GRIP drill site, and during 2007-2011 at the North 

Greenland Eemian (NEEM) site.  As a result, the oldest-dated Greenland ice core from NEEM 

now extends back to 128.5 ka BP (NEEM, 2013). 
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Figure 2.01: Map of ice core sites across Greenland mentioned in the text. 

Development of deep ice core drilling in Antarctica came as a result of the success of the 

northern hemispheric attempts.  The low accumulation rates across central Antarctica allow 

ice core records to extend further back in time than those from Greenland, producing 

climate profiles spanning multiple glacial cycles.  The first ice core to recover several glacial-
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interglacial cycles was drilled over a twelve-year period at the Vostok site by the Leningrad 

Mining Institute (fig. 2.02). This ice core ultimately reached 3623 m - spanning 420 kyr - after 

several attempts where drills were lost, and it ended close to sub-glacial Lake Vostok (Petit 

et al., 1999).  The success at Vostok was eventually credited as an international 

collaboration, with support given by the US and France.  

European collaboration continued following on from the success of GRIP and NGRIP, forming 

the European Project for Ice Coring in Antarctica (EPICA), consisting of GRIP members in 

addition to teams from the Netherlands, Norway and Sweden (Jouzel, 2013).  Two sites of 

very low accumulation were chosen for deep drilling, producing the EPICA Dome C (EDC) and 

EPICA Dronning Maud Land (EDML) ice cores.  Drilling finished in warm ice close to the bed 

at Dome C in 2005, at a depth of 3260 m, providing climate records spanning eight previous 

glacial cycles estimated to cover the last 800,000 years (Schwander et al., 2001; EPICA, 2004; 

Jouzel et al., 2007; Parrenin et al., 2007a).  The second EPICA team successfully drilled the 

EDML ice core during a field season in 2005-2006, stopping short of the bedrock due to the 

ingress of sub-glacial water into the borehole at 2760 m.  Current age-depth profiles 

estimate the climate record to span 150 ka BP (Ruth et al., 2007).  Since these large-scale 

international collaborations, other efforts in deep ice coring have yielded climate records 

spanning more than 330 kyr at Dome Fuji (Japan) (Watanabe et al., 2003), and a 68 kyr 

record from the 3404 m-deep West Antarctic Ice Sheet (WAIS) Divide ice core (USA) (Buizert 

et al., 2015), as well as the joint British-French ice cores used within this research project at 

James Ross Island (JRI), Fletcher Promontory (FP), and Berkner Island (BI) (Mulvaney et al., 

2002; Mulvaney et al., 2007; Mulvaney et al., 2012; Mulvaney et al., 2014).  
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Figure 2.02: Map of ice core sites across Antarctica mentioned in the text. 

 

2.3 Records of Climate 

Characteristics of the climate and atmosphere above an ice sheet are recorded by the 

snowfall deposited on the surface.  There is information available in the trace-element 

chemistry deposited on the snow surface, the gas bubbles occluded within the ice matrix, 

and the stable water isotopes that make up precipitation.  High-resolution analysis of these 

chemical and gas records provides a clear and thorough reconstruction of past climate.  The 

records reflect climatic changes on local, regional, and hemispheric scales.  The following 

section will outline the main records made available to palaeoclimate research from ice 

cores, and the key processes and events that can be reconstructed by ice- and gas-phase 

proxies. 
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2.3.1 Stable Water Isotopes 

2.3.1.1 Stable Water Isotopes and Precipitation 

First recognised by Dansgaard (1964), the potential of ice core records to record climate is 

dependent on the continuous accumulation of snowfall.  Water masses, such as the oceans, 

have a nearly uniform isotopic composition of stable water isotopes, HDO, H2
18O, and H2

16O.  

Equilibrium fractionation, the closed-circuit evaporation and condensation cycle of water, 

follows a well-observed path in which heavier isotopic components evaporate less rapidly, 

and condense more readily from atmospheric water vapour, thus providing a proxy to 

reconstruct the natural cycles of precipitation in a continuous record (Paterson, 1981).  The 

deviation, δ, of the relative concentrations of stable water isotopes deposited at a site, RS, 

are measured in parts per thousand (‰) relative to RSMOW, the “standard mean ocean water” 

concentration, using the following relationship: 

 
𝛿 =

103(𝑅𝑆 −  𝑅𝑆𝑀𝑂𝑊)

𝑅𝑆𝑀𝑂𝑊
 

(2.01) 

The principle of ice core interpretation rests on the assumption that there is a linear 

relationship between the isotopic composition of precipitation, δ, and surface temperature, 

Ts.  A trend between stable water isotopes and temperature was first observed on a global 

scale as part of a study commenced by the International Atomic Energy Agency and the 

World Meteorological Organisation (IAEA-WMO) (Dansgaard, 1953; 1964). A linear slope 

defining the relationship between isotopic composition values, δ18O (the deviation of the 

ratio of 18O and 16O in precipitation relative to the ration in mean ocean water), and Ts, at a 

gradient of 0.67‰/K for Greenland sites and 0.76‰/K in Antarctica, was recognised to be 

the product of fractionation processes as water vapour travels from its source to the final 

precipitation site (Johnsen et al., 1989). 

2.3.1.2 Deuterium Excess 

The δ18O/TS slope does not always hold because irreversible fractionation processes, which 

happen outside of the closed-circuit cycle, can alter the distribution of water isotopes 

(Jouzel & Merlivat, 1984).  In contrast to δ18O, the ratio of stable hydrogen isotopes (δD) 

remains largely unchanged by external phenomena and provides a more accurate 

representation of how precipitation varies with time.  Following the principle that oceans, 

the major source of atmospheric water vapour, have nearly uniform isotopic composition, it 

can be assumed that δ18O and δD follow the meteoric water line (MWL) (Craig, 1961; 
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Merlivat & Jouzel, 1979; Paterson, 1961; Petit et al., 1991); a linear relationship between 

δ18O and δD that holds on a global scale.  Deviations from this relationship, referred to as 

the deuterium excess, d, can be used to determine variations in vapour source conditions of 

precipitation: 

 d = δD – 8·δ18O 

 

(2.02) 

Deuterium excess reflects external phenomena that affect the kinetic fractionation of δ18O, 

including wind effects and humidity (Jouzel et al., 1982; Masson-Delmotte et al., 2008).  

Humidity is related to the original source of vapour moisture in the air mass.  As wind speed 

and humidity in the vapour source region can modify kinetic fractionation, the deuterium 

excess can be used as a proxy for the local wind and humidity conditions, as well as surface 

temperature in the source region (Jouzel et al., 1982; Masson-Delmotte et al., 2008). 

2.3.2 Chemical records in ice cores 

The deposition of chemical species on the ice sheet surface leads to a preserved record of 

local and regional source abundance and transport processes in the ice-phase of an ice 

core.  The broad-ranging chemical profiles are found at sites in close proximity to the coast 

provide a clear record of sea-ice chemical proxies as well as atmospheric species.  Common 

chemical components measured in ice include the cations sodium (Na+), magnesium (Mg2+), 

calcium (Ca2+), ammonium (NH4
+) and potassium (K+) and the anions chloride (Cl-), sulphate 

(SO4
2-), methansulphonate (MSA-), nitrate (NO3

-), and fluoride (F-), together with compounds 

such as hydrogen peroxide (H2O2) and a wide range of ultra-trace elements including heavy 

metals, rare earth elements and black carbon.  Chemical species are deposited continuously 

throughout a year either in precipitation or by dry deposition on the ice surface, but with 

variations in deposition inter-annually and seasonally. Analysis of these variations therefore 

reveals climate information depending on the source and pathway of the trace chemistry.  

For example, annual changes in sea-ice extent result in fluctuations in the deposition of 

chemical species present in sea-salt brine, such as sodium and chloride, in addition to the 

atmospheric oxidation product of dimethylsulphide (DMS), MSA (Sommer et al., 2000; 

Rothlisberger et al., 2003; Abram et al., 2013).  The annual advance and subsequent retreat 

of sea ice around the Antarctic continent leads to an increased deposition of chemical 

species originating from the oceans, peaking during the season of minimum sea ice extent 

(austral summer) (Curran et al., 2003).  Atmospheric production of nitrate species, NOX, and 

sulphate, along with other atmosphere-borne species linked to insoluble dust, magnesium, 
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and calcium, are closely linked to sub-annual to multi-annual climate variability (Steffensen, 

1997; Wagenbach et al., 1998; Rothlisberger et al., 2000a).  In addition to the source 

production and transport information preserved in the seasonal deposition of these trace-

chemical aerosols, the seasonal fluctuations provide a signal that can be counted annually as 

a method of dating the ice cores (fig. 2.03) (Fuhrer et al., 1999; Rothlisberger et al., 2000a; 

Curran et al., 2003).  High-resolution analysis can be used to identify annual layers in an ice 

core and thus interpret annual accumulation (Sommer et al., 2000).  An example of a 

chemical compound measured in the ice cores with a strong seasonal cycle is hydrogen 

peroxide, which provides one of the clearest signal for measuring and counting annual layers 

in the upper layers of an ice core. The origin of the seasonal cycle is the photolytic 

production of the hydrogen peroxide molecule which relies on the presence of sunlight, and 

is not locally produced in the total darkness during polar winter (Neftel et al., 1995).  

However, the signal tends to damp away with depth in the core as hydrogen peroxide is 

destroyed, probably by catalytic reactions in the ice.  Table 2.01 and Fig 2.03a give other 

examples of trace-chemical species measured in an ice core, their source of production, and 

the timing of the annual peak in production and deposition. Included in figure 2.03(a) is a 

physical measurement of electrical conductivity (ECM – Electrical Conductivity 

Measurement) which also shows a clear seasonal cycle, and is related to the bulk acidity of 

the ice, which largely corresponds to the acidic sulphate, nitrate and methane sulphonate 

components, which are all predominantly deposited in the summer.  Fig. 2.03b supplements 

fig. 2.03a, demonstrating sub-annual records in the B32 ice core, a shallow ice core drilled 

close to the deep EDML core (Sommer et al., 2000).  The figure shows the additional trace 

species, NH4, Ca2+, Na+, that are deposited inter-annually, and non-sea-salt conductivity, 

which can be used to identify four volcanic horizons over the period 1255-1293 AD. 
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Figure 2.03(a): Seasonal variation in the chemistry of ice over a 48-month cycle at WAIS Divide ice core 

site: pink: electrical conductivity measurements (ECM); black: black carbon (BC); red: non-sea-salt 

Sulphur (nss-S); blue: Sodium (Na).  The signal shown in a bold line presents the mean cycle during the 

Antarctic Cold Reversal (ACR), whilst the thin line is the mean Holocene signal.  Figure taken from Sigl 

et al., 2015. 

 

Figure 2.03(b): Example of annual layer counting using three aerosol components in parts per billion 

(ppb) (Sodium, Calcium, and Ammonium), and non-sea-salt conductivity measurement in the B32 ice 

core, Antarctica, across a 3 m section covering 1255 - 1293 AD (Sommer et al., 2000). 
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Table 2.01: A list of trace chemical species, the source of each species before deposition in the ice 

sheet, and the approximate timing of the annual peak in concentration.  Mg and Ca records occur bi-

annually dependent on the component measured (dust or salt). 

Chemical Species Source Timing of peak production 

Na Sea salt aerosols Winter 

Ca Insoluble dust and sea salt Summer (dust), winter (salt) 

Mg Dust and sea salt Summer (dust), winter (salt) 

MSA- Oxidation of biogenic DMS Summer 

Cl- Sea salt aerosols Winter 

NO3
- Atmospheric production Summer 

SO4
2- Sea salt aerosols and biogenic 

DMS 

Summer 

H2O2 Photolytic production in 

atmosphere 

Summer 

 

2.3.3 Gas-phase ice-core records 

In addition to the chemicals that make up the composition of ice, gas bubbles that are 

occluded within the ice matrix yield further proxies for climate reconstruction.  Principally, 

carbon dioxide, CO2, methane, CH4, and nitrous oxide, N2O, are closely linked with 

temperature records (Barnola et al., 1987), and hence can be used to interpret the past 

climate history over the long glacial-interglacial time periods preserved in deep ice cores 

(Luthi et al., 2008).  Atmospheric gas concentrations are globally mixed, and the 

concentrations preserved in the ice core are a direct measurement of past gas 

concentrations.  As a result, ice core records can be used as a tool to extend back the record 

of directly-measured gas concentrations prior to 1956, when atmospheric measurements of 

CO2 became routine, demonstrating that CO2 concentrations have increased by 40% since 

1800 AD (fig. 2.04). 
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Figure 2.04: 1000-2016 AD record of atmospheric CO2 concentrations from ice core records and 

Mauna Loa Observatory.  Data has been obtained from www.pangaea.de (Ahn, 2003; Siegenthaler et 

al., 2005; Etheridge, 2016; Tans, 2016). 

In order to interpret the gas-phase records alongside ice-phase records, it is necessary to 

understand the processes that occur in the upper 80-100 m of an ice core.  The weight of 

subsequent years of snowfall increases the vertical strain within the ice sheet, and leads to 

the compaction of the snowpack at the surface, which in turn leads to an increased density 

with depth.  This process of increasing density, hereafter referred to as densification, 

continues until the snowpack is compacted and has the density of ice of ~0.917 Mg m-3.  

Until the snowpack densifies significantly, gas bubbles are free to move throughout the 

snowpack.  The gas bubbles follow the physical laws of gravitational fractionation, where the 

heavier gases move downwards before being trapped within an ice matrix.  The densification 

processes are explained in more detail in section 2.6.  However, it is important to 

understand here that as the upper 80-100 m (the firn) is undergoing a snow-to-ice transition, 

present-day gas concentrations are trapped in ice of an older age, at a greater depth in the 

ice core.  The age offset between the gas bubbles and the surrounding ice matrix, hereafter 

referred to as the age, must be reconstructed to accurately interpret both the gas- and ice-

phase records. 
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2.3.4 Millennial-scale variability 

One of the main motivations for deep ice core drilling in the Antarctic is the chance to 

recover long-term climate records from the deep ice sheets.  Low annual accumulation over 

the Antarctic Ice Sheet (AIS), coupled with the large ice sheet thickness, preserves the 

longest temporal records in the ice.  The current longest record spans eight glacial cycles at 

EDC (EPICA, 2004).  Comparison of climate and atmospheric conditions interpreted from 

long Antarctic ice-core records demonstrates the interplay between different climate 

relationships on a local, regional, and global scale.  Local climate can be interpreted from the 

chemical ions deposited in the ice sheet from the nearby surroundings, as outlined in section 

2.3.2.  Regional and global climate can be interpreted through the comparison of multiple 

ice-core records.  Fig. 2.05 compiles surface temperature reconstructions, measured stable 

water isotope profiles, and methane concentrations for four Antarctic ice cores.  The ice 

cores have been obtained from sites across the Antarctic continent (fig. 2.02).  Fig. 2.05 

presents two distinct types of millennial-scale climate variability: (i) Marine Isotope Stages 

(MIS) occur on a cycle of 10s of thousands of years, and are highlighted in grey and white 

bands in fig. 2.05(a-c) (odd-numbered numbered MIS events are labelled); (ii) Antarctic 

Isotope Maxima (AIM) events occur on a shorter millennial-scale variability (AIM 1, 8, 12, 14, 

17, 18, 19, 21 are delineated in figure 2.05(d)). 
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Figure 2.05: (a) Surface temperature reconstructions for the EDC and Vostok ice cores on a common 

timescale; (b) Stable water isotope profile for EDC and Vostok ice cores on a common timescale; (c) 

Methane profiles for the EDC, EDML, and Byrd ice cores on a common timescale.  Odd-numbered 

Marine Isotope Stages (interglacials) are highlighted in grey and labelled in plot (a).  Panels (d) and (e) 

are zoom-in plots of the stable water isotope profiles of EDC and Vostok (the pink highlighted section 

of plot (b), and the grey highlighted panel in plot (d), respectively.  MIS 5e is highlighted as a grey 

band and labelled. Antarctic Isotope Maxima events are delineated by black dashed lines and labelled 

in plot (e). 
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Marine Isotope Stages (MIS) are globally synchronous events identified in the isotopic 

signatures of terrestrial and marine cores.  The events alternate between warm and cold 

periods, interpreted as interglacial and glacial periods, and have been identified throughout 

the 5.3 million-year (Myr) record presented by Lisecki and Raymo (2005).  Across the most 

recent 850 kyr, MIS events occur on a glacial-interglacial cycle of ~100 kyr, in line with the 

periodicity of Earth’s eccentricity based on the Milankovitch cycles (Imbrie and Imbrie, 1980; 

Imbrie et al., 1992).  During an MIS event of the last 800 kyr, glacial periods typically last 70-

90 kyr with end-member interglacial periods lasting 10-30 kyr.  During the interglacial period 

(an odd-numbered MIS event), variations in surface temperature and atmospheric carbon 

concentrations occur synchronously as shown by increases in surface temperature, increases 

in stable water isotope concentrations, and increases in atmospheric carbon concentrations 

in ice-core records (fig. 2.05).  MIS events are identified in records spatially distributed 

across Earth, and occur synchronously.  Fig. 2.06 is taken from Wolff et al. (2010) and 

presents the millennial-scale variability in the NGRIP ice core from present-day, the last 

glacial period and extending into the LIG at 123 ka BP.  Marine Isotope Stages (MIS) are 

indicated on the figure, with Greenland Interstadials (GI) numbered.   

In addition to the globally-synchronous millennial-scale variability, a series of shorter 

millennial-scale climate events are evident in Antarctic ice core records.  Ice core isotopic 

records indicate a cycle of warm interstadial periods throughout the last glacial period, and 

cyclical greenhouse gas records appear to be tied to the temperature trends of previous 

glacial and interglacial periods (fig. 2.05 and 2.06).  25 Greenland Interstadials (GI) (also 

referred to as Dansgaard-Oeschger (DO) events) punctuate the last glacial period as warming 

events and labelled in fig. 2.06.  These climate events occur on a ~1500 year periodicity and 

are characterized by 10-30 years of rapid warming followed by a slower period of cooling to 

original glacial conditions.  Evidence of DO events is found in ice and marine cores in the 

northern hemisphere.  The DO climate event leaves a signature of surface temperature 

warming in an ice-core stable water-isotope record. Alternatively, DO events are identified 

in marine-sediment cores by ice-rafted debris (IRD) released from the Laurentide Ice Sheet 

(LIS) as a result of the warming event.  In the southern hemisphere, the climate is in 

antiphase with the northern hemispheric interstadials; the bipolar see-saw is a delay in the 

southern hemispheric response to climate forcing originating from the northern hemisphere 

(Severinghaus, 2009).  The AIM events are in response to northern hemispheric DO events, 

and are identified in an out-of-phase chronology to the DO events as they are the effect of a 
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slowed-down transport of heat from the ocean circulation that has been affected by the 

initial pulse of freshwater from the LIS.   

Fig. 2.05(d-e) are two plots of increasing resolution of stable water isotope profiles of 

Antarctic ice cores over the most recent 150 kyr; AIM events are delineated for comparison 

between ice core records.  The signature of the AIM events is synchronous across the 

Antarctic continent.  Isochronous events across the Antarctic continent are useful age 

horizons to synchronize ice-core age-depth profiles.   

 

 

Figure 2.06: The figure is taken from Wolff et al. (2010) presents the Dansgaard-Oeschger events in 

the NGRIP ice core, Greenland.  Top: From the present back to 123,000 years ago; bottom: Marine 

Isotope Stage (MIS) 2-4. The oxygen-isotope data (NGRIP Members, 2004) has been smoothed to 100-

year average, and is presented here on the GICC05 age scale back to 60 ka BP (Svensson et al., 2008), 

and before that on the ss09sea modelled age scale (Johnsen et al., 2001) shifted (by –705 years) to 
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match GICC05 at 60 ka.  The numbers denote the standard notation for Greenland Interstadials (GI), 

with dots marking each intermediate numbered event in the top plot.  

 

The signatures are easily-identified in high-resolution stable water isotope profiles and can 

be corroborated with additional proxies including gas measurements.  Therefore, AIM 

events are often used in ice-core age-depth profiles based on the observed timing of the 

events in published chronologies. 

The long-term millennial-scale variability preserved in continuous records means that one 

can take a broad view of climate processes and the links between atmosphere, ocean and 

the climate.  These records are important for understanding climate processes, and 

predicting future responses to climate variability.  In order to understand the full record 

preserved within the ice core, on both a sub-annual and millennial scale, it is necessary to 

obtain the most accurate and high-resolution ice-core record. 

2.4 Analysis of Ice-Core Records  

In order to understand the seasonal records in shallow cores, and the highly compressed 

records preserved in deep ice cores, analysis must be carried out at the highest resolution 

available.  Sub-annual resolution in deep Antarctic ice cores is particularly rare due to the 

low mean accumulation rates across the continent and the thinning of ice layers at depth; 

thus it is usually not possible to obtain a seasonal view along the full depth of an ice core. 

Improvements to the analytical resolution have been achieved by two approaches, namely 

high-resolution discrete sampling over short sections, and continuous trace-element analysis 

over the full core.  Measuring discretely-cut samples of ice is a useful technique, though it is 

often associated with ice loss by the cutting process.  The future development of this 

technique is limited by the resolution of the cutting method, the potential for ice loss during 

cutting, and the development of suitable analytical instruments.  The highest resolution 

achieved thus far by this method, developed at the British Antarctic Survey, addressed the 

issue of ice loss from discretely-cut samples by employing a microtome device to shave the 

ice sample at a finite resolution and collect the sample directly off the device.  The method 

was employed on NGRIP ice to analyse the characteristics of the DO 8 event at ~38 ka BP at 

2 mm depth resolution (Thomas, 2009).  A full geochemical profile outlined the dominant 

and passive mechanisms for the transition into DO 8 at a sub-annual resolution.  The 
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method, though effective for high-resolution analysis on deep ice, is labour-intensive and 

hence it is difficult to analyse more than small sections of an ice core. 

Alternatively, methods using a continuous and direct method of trace-element analysis are 

less labour-intensive.  Continuous melting of an ice section coupled with the in situ analysis 

of trace chemical species by spectrometric techniques has achieved a spatial resolution of 

~10 mm (Sigg et al., 1994; Rothlisberger et al., 2000b).  This type of analysis, hereafter 

referred to as continuous flow analysis (CFA), also has a major advantage in that it limits the 

risks of contamination; the melt system only measures the inner part of a core to remove 

the risk of contamination from sample handling.  Another benefit of the continuous flow 

system is its ability to provide a high-resolution, continuous profile of multiple chemical 

species on a common depth scale.  This allows – where possible – annual layer counting, and 

hence the determination of the age-depth relationship of a section or the full length of an 

ice core, as has been achieved for the deep ice cores from Greenland (Rasmussen et al., 

2006; Vinther et al., 2006; Svensson et al., 2008), and sections of the James Ross Island, 

WAIS Divide, EDML and Dome Fuji ice cores (Mulvaney et al., 2012; Svensson et al., 2015; 

Sigl et al., 2015). 

The limitations of CFA lie in the resolution necessary to achieve sub-annual profiles beyond 

the upper sections of ice cores.  In order for it to be possible to retrieve a sub-annual profile 

by CFA beyond the upper depths, as has been achieved for the WAIS Divide ice core and 

Dome Fuji, mean annual accumulation at the time of deposition must be sufficient that the 

thickness of an annual layer at depth is greater than the standard CFA resolution of ~10 

mm.  Where sub-annual resolution is possible in high mean annual accumulation sites, 

seasonal profiles provide insight into the sub-annual mechanisms of a climate event.  

For some time, ultra-violet laser-ablation inductively-coupled plasma mass spectrometry 

(hereafter referred to as LA ICP-MS) has been applied to geological samples in order to 

improve the spatial resolution of trace-element analysis in geochemical analyses 

(Arrowsmith 1987; Bea, 1996).  More recently, this technique of ultra-high resolution direct 

trace-element analysis has been independently developed in ice-core laboratories.  A 

prototype Excimer LA ICP-MS analysis of frozen ice cores has yielded sub-annual signals of 

multiple trace elements with minimal damage (Reinhardt et al., 2001; Müller et al., 

2011).  Recent implementation of this technique has obtained an ultra-high resolution view 

of the onset of the current interglacial period, circa 11.6 ka BP, at a depth of 1677.5 m, 

retrieved from the GISP2 ice core archive (Mayewski, 2014).  Correlation of LA ICP-MS 
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results on Greenland and alpine ice with other records confirms the repeatability of the 

method for lower resolution records (Müller et al., 2011; Mayewski et al., 2014; Sneed et al., 

2015; Della Lunga et al., 2016).  Sneed et al. (2015) introduced the LA ICP-MS apparatus and 

calibration technique at the WM Keck Laser Ice Facility at the University of Maine and 

confirmed the reliability of the novel method by comparing ultra-high resolution LA ICP-MS 

results to the lower-resolution CFA profiles of the Colle Gnifetti alpine ice core (fig. 2.06). 

 

 

Figure 2.07: Colle Gnifetti ice core data; top: LA ICP-MS Ca full resolution record; bottom: the 

smoothed resolution LA ICP-MS Ca record and the CFA data for the same section of ice.  Records show 

good agreement between the results from the two analytical techniques and confirm the reliability of 

LA ICP-MS (taken from Sneed 2015). 

 

The major advantages of LA ICP-MS lie in the rapid analysis time and the non-destructive 

method of using an ultra-violet Excimer laser, which means the repeatability of analysis is 

easily afforded.  Ultra-high resolution is achieved by individual line scans for each element, 

whilst the limited sample handling necessary before analysis limits the risk of 

contamination.  LA ICP-MS has the potential to become a standard technique in the 

geochemical analysis of short sections of deep ice cores and greatly advance the 

interpretation of past climatic variability as well as improve ice core chronologies in the 

Antarctic region.  However, the method has only recently been applied to Antarctic ice, and 

it produced variable seasonal profiles and annual layer thickness estimates that glaciological 

models failed to reconstruct (Haines et al., 2016).   
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For Antarctica, seasonal resolution ice-core analysis is often more difficult than in northern 

hemispheric ice cores.  Low annual accumulation over the Antarctic ice sheets, and 

compaction and strain in the thick ice column, leads to small annual layer thicknesses in 

deep ice cores that are beyond the current resolution of standard laboratory methods.   LA 

ICP-MS has not yet been applied to ice originating from earlier than the Last Glacial 

Maximum (LGM), or ice with predicted layer thicknesses smaller than 3 mm yr-1.  Further 

assessment of LA ICP-MS on deep Antarctic ice is therefore a useful step for the 

development of techniques used in the analysis of Antarctic deep ice core profiles.   

2.5 Chronology of Ice-Core Records  

Crucial to the analysis of ice core records is the construction of a precise 

chronology.  Without accurate age-depth estimates along an ice core, it is difficult to 

interpret the records of past climate that are preserved in the ice, and the relationships 

between global processes that arise as a result of climatic variation.  If the ice core drill site is 

in a location with limited material available for radiogenic dating, the most common practice 

in forming an accurate age-depth profile is to use a combination of four methods: (a) layer 

counting; (b) glaciological modelling; (c) identification of known-age reference markers, and 

(d) orbital tuning and comparison to insolation changes (Parrenin et al., 2001). 

Fig. 2.08 is a flow chart that demonstrates how to construct an age-depth profile using 

atmospheric and ice-sheet reconstructions, and where the use of chemical profiles and 

observational data preserved within an ice core can constrain and improve an age-depth 

estimate.  The chemical records preserved within ice sheets provide a continuous climate 

history that can be annual-layer counted when analysed at a sufficient resolution.  For most 

Antarctic ice cores, sub-annual records do not continue deep into the ice sheet due to a low 

mean annual precipitation rate across the continent and the fact that standard analytical 

techniques only reach a maximum resolution of ~10 mm.  Where annual layer counting is no 

longer viable, a combination of the remaining three methods (b-d) must be implemented to 

estimate the age of ice.  Typically, chemical profiles that can be interpreted from the 

chemical information preserved in the ice core are used as inputs to glaciological models in 

order to reconstruct the local atmospheric conditions and ice-sheet processes that control 

the reconstructions of the ice-core profile, such as past surface temperature, accumulation 

and ice flow.   
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Established methods for reconstructing temperature, accumulation and vertical thinning in 

an ice core are described below.  Present-day mean values of parameters are noted by a 

superscript theta, .  In order to estimate the age-depth profile of an ice core for which the 

sub-annual record is beyond the resolution of current laboratory methods and precludes 

simple layer counting, reconstructions of past surface temperature, accumulation and 

vertical thinning history at the drill site, derived from the stable water isotope record, are 

combined to determine the vertical profile of annual layer thickness (Parrenin et al., 2007; 

Lemieux-Dudon et al., 2010; Bazin et al., 2012).  Ultimately, the age of ice at a given depth is 

the sum of annual layers above it; this assumed relationship between annual layer thickness 

and age forms the basis of research throughout the thesis and will be described below. 

 

Figure 2.08: A flow chart outlining the construction of an age-depth profile and where each 

reconstruction or chemical measurement is incorporated. 
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The following section will present the mathematical relationships that have previously been 

used to reconstruct the past surface temperature, accumulation, thinning, annual layer 

thickness, and hence age-depth for an ice-core record.  Following this, the section will 

introduce an alternative technique that can be used to reconstruct surface temperature 

using the temperature measurements retrieved from an ice core borehole, before 

introducing the inverse approaches that can be used to optimise initial profiles of 

accumulation and thinning. 

2.5.1 Temperature 

The MWL reflects the linear relationship between stable water isotopes (Dansgaard, 1964).  

Under the assumption that the concentration of stable water isotopes is principally 

controlled by temperature, the following approximation can be applied to isotopic datasets 

in order to determine an average surface temperature history, although it will be dependent 

on the sampling resolution of the ice core analysis. 

 
TS = TS

θ +  [ΔδD ∙ (
1

−6.34
)] 

(2.03) 

 

The change in surface temperature, TS, from present-day surface temperature, TS
, with 

depth can be deduced by analysing the deviation between present-day and measured 

isotopic concentrations along an ice core.  For example, ∆δD, the temporal difference in the 

deuterium/hydrogen ratio between present-day and the measured value, is multiplied by 

the isotope/temperature gradient of 1/-6.34 K ‰-1 to estimate a depth-dependent anomaly 

in surface temperature.  This gradient has been determined by linear regression of a 

database of values of δD and surface temperature from sites across Antarctica (Masson-

Delmotte et al., 2008).   

TI, the temperature at the inversion layer in the atmosphere, can be estimated from the 

reconstructed surface temperature history using eq. 2.04 (Connolley, 1996).  The 

temperature at the inversion layer is important because one method of reconstructing past 

accumulation depends on this value (see section 2.5.2.2). 

 TI = 0.63 ∙ TS + 99.0 (2.04) 
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2.5.2 Accumulation  

The relationship between stable water isotope concentrations and surface temperature links 

the preserved ice core record with atmospheric processes including precipitation.  Under the 

assumption that accumulation is controlled thermodynamically by the ability of warmer air 

to deliver moisture, palaeoaccumulation can be estimated by three main methods based on 

an exponential relationship with ΔδD.  As surface temperatures increase, the rate of 

precipitation over an ice sheet increases, and it similarly decreases with a corresponding 

drop in surface temperature.  Using the stable water isotope profile to reconstruct a surface 

temperature history, past accumulation of snow at a site can be estimated using the 

following four relationships. 

2.5.2.1 Arrhenius 

Kapsner et al. (1995) outlined the following method for palaeoaccumulation reconstruction, 

based on the thermodynamic control of accumulation by atmospheric circulation. They 

assumed an Arrhenius dependence where reaction rates (precipitation) are reliant on 

absolute temperature.  In this case, the temperature profile is a reconstructed surface 

temperature history with respect to vertical depth of an ice core, TS(z). 

 
A(z) ∝ exp

−
Q

RTS(z) 
(2.05) 

 

Accumulation, A, is proportional to the exponential of the inverse of surface temperature, 

where Q is the activation energy for the reaction (estimated to be around 60kJ mol-1), and R 

represents the gas molar constant (8.314 J mol-1 K-1). 

 

2.5.2.2 Clausius-Clapeyron 

A second method assumes that snow deposition is proportional to the derivative of the 

mean saturation vapour pressure at the inversion layer with respect to the temperature at 

the inversion layer in the atmosphere, TI (K) (Parrenin et al., 2001; 2004; Schwander et al., 

2001).  Inversion temperature is determined through an empirical relationship (eq. 2.04) 

(Connolley, 1996) before accumulation is calculated using the following relationships: 

 
A(x, TI) = Aθ ∙

f(TI)

f(TI
θ)

 
(2.06) 
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This accounts for distance from the ice divide, x, and calculates accumulation as a function of 

TI, f(TI), calculated as: 

 
f(TI) =  

d

dT
[
𝑃𝑆(T)

TI
] 

(2.07) 

 

Ps(T), the saturation vapour pressure function of temperature, is calculated using an 

exponential relationship where AS = 3.64149 · 1012 Pa, and BS = 6148.3 K (two constants 

taken from Smithsonian tables that correspond to a best fit to the empirical curve of PS over 

ice in the temperature range -60 to +20°C). 

 
PS(T) = AS ∙ exp−

BS
T  

(2.08) 

 

2.5.2.3 Simple Exponential 

The third method to be explored is based on a simple relationship that assumes an 

exponential dependence on the difference between the present-day deuterium value and 

the ice core deuterium profile, scaled by the modern accumulation rate (Ritz et al., 2001): 

 A(z) = Aθ ∙ exp[βΔδD] (2.09) 

 

The relationship includes β, a parameter which represents the glacial-interglacial amplitude 

of accumulation changes.  The parameter is calculated as part of an inverse model in existing 

chronologies, but can be calculated theoretically using the meteoric water line gradient for 

TS/δD, 1/−6.34 K‰-1, and the TS/TI relationship, 0.63 (Connolley, 1996; Parrenin et al., 

2007a). 

2.5.2.4 Global Circulation Model 

A fourth technique used to estimate mean accumulation rates uses a global circulation 

model (GCM).  A GCM is a climate model that estimates the circulation of the atmosphere 

and/or ocean on a planetary scale.  A GCM can consider coupled atmosphere-ocean 

interactions (AOGCM) and can be used to estimate the evolution of sea ice and ice sheets.  

These models are typically used for local, regional and large-scale weather and climate 
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forecasting (IPCC, 2013).  However, assuming that the relationships that control the 

circulation in the atmosphere and ocean are unchanged with time, a GCM can be 

constrained by observational data from ice cores in order to reconstruct the past climate on 

a millennial to million-year timescale (Pollard and DeConto, 2009; Sime et al., 2013; 

Holloway et al., 2016).   

 

2.5.3 Thinning functions 

An accumulation history can be used to estimate the mean rate of annual snowfall over a 

site; the total number of years recorded in an ice core profile is assumed to be the sum of 

annual layers preserved, however, these layers have been thinned due to the force exerted 

by subsequent snow deposition.  Thus, the mean annual layer thickness that can be directly 

measured in the ice core record is a profile of the past accumulation that has decreased with 

depth due to increasing strain from subsequent years of annual snowfall (fig. 2.09).  To 

estimate the impact of thinning on mean annual layer thickness, a thinning function, η(z), 

also sometimes referred to as the shape function, must be derived and applied to an 

accumulation history.  At a given depth, the thinning function is defined to be the ratio of 

the original layer thickness at the time of deposition, λ(t), and the present-day layer 

thickness at depth z, λ(z).   

Three empirical approaches to defining a thinning function – the ratio between the present-

day and original annual layer thickness – are described below.  A fourth approach makes use 

of a vertical velocity profile obtained by phase-sensitive radio-echo sounding, pRES.  A 

thinning function is always calculated in ice equivalent depth units; this is the depth of an ice 

particle once the highly porous firn snow in the upper depths of a core has been converted 

into an ice-only volume (Herron and Langway, 1980).   
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Figure 2.09: Schematic cross-section of an ice sheet showing how annual layer thickness decreases 

vertically at the ice divide, and the co-ordinates used in the thinning functions outlined below, where 

depth from the bedrock is defined as ẑ, whilst depth below the surface is defined as z. 

 

2.5.3.1 Nye Model 

The first model is based on the simplistic Nye estimation for vertical velocity (Nye, 1963).  It 

assumes steady-state conditions for the original annual layer thickness at the time of 

deposition (accumulation), the annual layer thickness at depth z, and total ice sheet 

thickness, H, and it assumes that the ice sheet is frozen at bedrock.  The relationship 

assumes a uniform vertical plastic strain at any given time, along any given vertical line in the 

ice.  Thus, the model calculates a thinning ratio to be the annual layer thickness at depth 

from the bed, λ(ẑ), divided by original annual layer thickness, λ, known as fractional depth: 

 λ(ẑ)

λ𝜃
=  

z

H
 

(2.10) 

2.5.3.2 Dansgaard-Johnsen two-step thinning function 

The uniform plastic deformation modelled using the Nye relationship assumes only vertical 

velocity, w, and does not take into account any horizontal flow of ice.  This becomes relevant 

to thinning models when analysing ice cores that have been extracted downstream from an 

ice divide.  To account for horizontal advection of an ice particle, Dansgaard and Johnsen 

(1969) suggested two shape functions to estimate a strain ratio.  The choice of which 
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method is used depends on whether the depth of an ice particle is greater than or less than 

a basal shear depth, h. 

Dansgaard and Johnsen presented an age-depth model derived from the integral of the 

inverse of the vertical velocity of an ice particle, w, which incorporated a steady-state 

accumulation value to calculate annual layer thickness.  The shape function of this model is 

(where ẑ = 0 at bedrock): 

 
η(ẑ) =  

2ẑ − h

2H − h
             H ≥ ẑ ≥ h; 

(2.11) 

 
η(ẑ) =  

ẑ2

h(2H − h)
       h ≥ ẑ ≥ 0 

(2.12) 

 

2.5.3.3 One-Dimensional Ice Flow Model 

Vertical strain within an ice core is affected by ice-sheet processes dependent on drill 

location.  Shape functions are often implemented under the assumption of steady-state 

conditions within an ice-sheet.  This can be detrimental to the accurate modelling of the ice-

sheet dynamics that are constantly varying due to external forcing (climate) 

variability.  Ideally, ice cores will be extracted at the summit of an ice sheet (also referred to 

as the ice dome) from a location where there is no basal melting (temperature at bedrock, TB 

< pressure melting point).  However, there is no guarantee that this location has always 

been the ice dome, or that total ice sheet thickness, H, and temperature at bedrock, TB, have 

remained constant through time.   

The one-dimensional shape function, outlined below, is calculated in terms of ζ, a non-

dimensional vertical coordinate defined as ζ = ẑ /H.  The model employs the Shallow Ice 

Approximation (SIA) and Glen’s flow law to estimate the vertical velocity of an ice particle, 

w, as (Glen, 1958; Lliboutry, 1979; Parrenin et al., 2007a): 

 
w(ẑ ) =  − [m + (Aθ −  

∂H

∂t
− m ) η(ζ)] 

(2.13) 

This vertical velocity profile accounts for a basal melt rate, m, as well as temporal variations 

in ice sheet thickness – these parameters are estimated using three-dimensional ice-sheet 

models.  The presence of a basal shear layer is not considered when calculating this shape 
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function.  Instead, the formulation of the shape function, η(ζ), is continuous along an ice-

core profile: 

 η(ζ) = s ∙ ζ + (1 − s) ∙ ηD(ζ); (2.14) 

 

In the absence of temporal variations, it can be assumed that η(ζ) is a one-dimensional 

thinning function, where s is the sliding ratio, and ηD (ζ) is the vertical profile of deformation 

determined by Parrenin and Hindmarsh (2007): 

 
ηD(ζ) = 1 − 

p + 2

p + 1
 (1 − ζ) +  

1

p + 1
(1 − ζ)p+2; 

(2.15) 

The p-parameter is an approximated rheological index used to calculate ηD (ζ); it can be 

calculated from Lliboutry’s approximation (Lliboutry, 1979), following Glen’s flow law, by 

approximating the vertical temperature profile at the base of the ice sheet by a linear trend.  

The profile of vertical velocity is more non-linear for smaller values of p; despite this, the 

parameter remains constant through time assuming that ice-flow conditions remain the 

same (Parrenin et al., 2007a): 

 p = n − 1 + kG0H; (2.16) 

 

Eq. 2.16 calculates the p-parameter; n is the Glen’s Law exponent and it is assumed that n = 

3, G0 is an estimated vertical temperature gradient, and k is approximated assuming an 

Arrhenius dependence on the temperature at bedrock, TB, for which Q = 60 kJmol-1. 

 
k =  

Q

RTB
2 

(2.17) 

Approximated values for the p-parameter are similar to the assumed value of Glen’s index, n 

= 3.  However, for several sites including EPICA Dome C, the rheological index is much higher 

(for EDC, 𝑝 ≅ 9).  There are several arguments that do not support the approximation for p 

(eq. 2.16).  Firstly, the precise value for the activation energy required for eq. 2.17 remains 

uncertain, since an increase in the required energy is observable with higher temperatures 

at the bedrock.  Secondly, the SIA is not applicable at the dome of an ice sheet, since 

isochrone layers will be perturbed beneath the ice divide due to the lack of horizontal ice 

flow stiffening the oldest ice frozen at the bedrock; these features are also known as 

Raymond stacks (Raymond, 1983; Parrenin et al., 2007a).  Finally, the adopted value of 
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Glen’s flow law exponent is used widely in ice-sheet models, whilst values derived from 

field-based radar data suggest a range of values at the ice dome of 1-5 (Gillet-Chaulet et al., 

2011).  As an alternative to the empirically-calculated parameter, the vertical deformation 

parameter, p, can be calculated within an inverse probability model, outlined later in this 

chapter.   

2.5.3.4 Phase-Sensitive Radio Echo Sounder (pRES) 

A fourth technique that can be used to estimate a thinning function makes use of pRES 

measurements, collected over several seasons.  These measurements provide an estimate of 

vertical velocity within an ice sheet, and thus could be used directly to infer the present-day 

conditions of an ice sheet including total strain, ice sheet thickness, rheology and basal melt 

rates (Corr et al., 2002; Gillet-Chaulet et al., 2011; Kingslake et al., 2014). 

Solving the age equation (eq. 2.18, for which age, age(t), is assumed to be a function of both 

time, t, and depth, z) dynamically allows us to interpret the pRES observational data, w, as 

vertical velocity through time, and it thus provides an estimate of age with relation to depth.  

However, the pRES observational data only provide an estimate of present-day vertical 

velocities, and the method assumes a steady state for both vertical velocity and 

accumulation, which may not hold in reality. 

 ∂age(t)

∂t
+ w ∙

∂age(t)

∂z
= 1 

(2.18) 

Alternatively, a thinning function could be derived from the in situ vertical velocity 

measurements by adapting eq. 2.19, originally presented in Cuffey and Paterson (2010), into 

an iterative model.  An iterative model would seek to optimise the accumulation profile, 

which has previously been assumed to be steady with time.  As such, an iterative model 

would solve for a variable accumulation history, A(t), by inverting an annual layer thickness, 

λ(t), reconstruction that has been optimised using the derivative of in situ vertical velocity, 

w, with respect to depth, z:  

 
λ(t) =  A(t) exp ∫

∂w

∂z

0

−age

dt 
̇

 
(2.19) 

2.5.4 Age-Depth Profile 

As previously mentioned, the present-day annual layer thickness record is estimated in order 

to reconstruct the age-depth profile of the ice core.  The age of an ice particle at depth z is 
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assumed to be the integral from the surface to depth z, of the inverse of modelled annual 

layer thickness, λ(z): 

 λ(z) = A(z) ∙ η(z) (2.20) 

 
age(z) =  ∫

dz′

λ(z′)

z

0

 
 

(2.21) 

where annual layer thickness is estimated to be the product of the accumulation history and 

the thinning function.  

2.5.5 Borehole Temperature Profiles 

Reconstruction of surface temperature history can be achieved by interpreting temperature 

measurements taken directly from the ice-core borehole.  Borehole thermometry, the 

practice of measuring present-day temperatures along the depth of a borehole, can be used 

to infer recent surface temperature history and the geothermal heat transfer conducted 

through the subsurface of an ice sheet (Dahl-Jensen, 1986; Dahl-Jensen, 1998; Barrett, 

2009).  A one-dimensional version of the heat equation (eq. 2.22), in which properties only 

vary with depth, is given in eq. 2.23.  In these equations, T is temperature, tf is the length of 

the time period in question, C is the specific heat capacity of ice, ρ is the density profile of 

the ice, k is a profile of thermal conductivity, u is the ice velocity, and εσ is a viscous heating 

term (ε is the strain rate tensor, and σ is the stress rate tensor) (Zagorodnov et al., 2012): 

 
ρC

∂T

∂t
=  ∇ ∙ k∇T + ρCu ∙ ∇T + εσ 

(2.22) 

 
ρ(z)C(z)

∂T(z, t)

∂t
=  

∂

∂z
[k(z)

∂T(z, t)

∂z
] − ρ(z)C(z)w(z)

∂T(z, t)

∂z
 

(2.23) 

 

In eq. 2.23, depth is given by z, where z = 0 at the surface, and temperature is calculated 

from the surface to the bedrock, 0 < z < H, where H is the total ice sheet thickness.  Similarly 

for time, t = 0 at the present day and the surface temperature is calculated with respect to 

the reference time, tf as 0 < t < tf.  At the surface, T(0,t) = U0 + µ(t), where U0 is the present-

day mean surface temperature and µ is a parameter that accounts for the geothermal heat 

flux.  The vertical velocity of the ice is calculated as 𝑤(𝑧) = 𝐴(𝑧) ∙ 𝜂(𝑧)  (where A is 

accumulation and η is a thinning function) (Cuffey and Paterson, 2010; Salamatin, 2000; 

Zagorodov et al., 2012).  Using an iterative approach, eq. 2.23 can be solved using eq. 2.24, 

which accounts for the deviation between present and past values of surface temperature, 
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accumulation rate, and geothermal heat flux.  Other variables including k, C, and ρ are 

calculated using eq. 2.25-2.27, and the density of ice is calculated as 𝜌𝑖 = (916.8 −

0.14027𝑇).  Eq. 2.27 includes two constants which are 𝑐0 ≈ 0.58 and 𝛾(𝑧) ≈ 0.021. 

 
 

∂

∂z
[k(z)

∂U(z)

∂z
] − ρ(z)C(z)w(z)

∂U(z)

∂z
=  0 

(2.24) 

  k(z) = 9.828 𝑒𝑥𝑝−0.0057(273.15+𝑇(𝑧)) 

𝐶(𝑧) = 2098 + 7.122𝑇(𝑧) 

𝜌(𝑧) =  𝜌𝑖(1 − 𝑐0𝑒𝑥𝑝−𝛾(𝑧)) 

(2.25) 

(2.26) 

(2.27) 

 

Depending on the location of the borehole and the timeframe that the study spans, 

horizontal ice flow and temporal changes to ice sheet thickness should be considered.  The 

resolution of the temperature profiles will be decadal, centennial or millennial, dependent 

on site-specific accumulation rates (Salamatin, 2000).  Application of borehole temperature 

reconstructions in frozen contexts must consider vertical heat advection, basal melting, and 

the thinning of annual layers due to compaction (Lachenbruch & Marshall, 1986; Salamatin, 

2000).  Ultimately, diffusion of the temperature with depth decreases the resolution 

available for temperature reconstructions.  To address this issue, an inverse model with a 

priori δ18O and CH4 information is often employed to constrain rapid climatic fluctuations 

within smoothed temperature profiles (Schwander et al., 1997; Dahl-Jensen et al., 1998; 

Salamatin, 2000).   

2.5.6 Inverse Probabilistic Approach  

As outlined at the start of the section, there are four main principles to the construction of 

an ice-core age-depth profile.  Where annual layer counting is not possible, a combination of 

glaciological modelling must be employed, constrained using known-age horizons from 

reference markers preserved in the ice core.  The age-depth profile estimated by eq. 2.21 

can be constrained using an inverse technique that seeks to limit the deviation between 

known-age horizons and the modelled age at specific depths. 

Reference ages commonly identified along the core are volcanic tephra markers or isotopic 

signatures that indicate well-dated and globally-synchronous events such as solar activity, 

Milankovitch cycles, and isotopic signatures linked with climatic events.  Dependent on the 

age of the ice core, structured Beryllium-10 (10Be) peaks indicating the Laschamp and 

Brunhes-Matuyama geomagnetic events at 40.4 ka BP ± 2.0 ka and 775 ka BP ± 10 ka BP, 
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respectively, provide reliable age constraints because independently-dated stratigraphic 

markers associated with these events are agreed to be globally synchronous (Bassinot et al., 

1994; Guillou et al., 2004).  For this research project, AIM events have been used as age 

horizons in constraining the ice-core age-depth profiles for three deep ice cores from the AP 

and Weddell Sea region.  As outlined in section 2.3.4, AIM events are assumed synchronous 

across the Antarctic continent and are easily identifiable and replicated in ice-core records.  

The precise age of each AIM event and the prescribed uncertainty is taken from the 

AICC2012 EPICA Dome C chronology (Bazin et al., 2012).  This is the most current 

synchronised chronology available for Antarctic ice cores. 

In a hypothetical situation, model output can be optimised by using an inverse approach to 

constrain the results using observational, a priori, information.  Translated mathematically, 

an inverse method will calculate the poorly-known parameters while the model is iterated, 

with the aim of getting the output to fit a set of observational parameters on the model 

space.  The inverse method tries to infer information from i) the estimated values of 

observational datapoints, or a priori information, ρD, ii) the estimated values extracted from 

the model, ρM, and iii) the relationship between ρD and ρM given by the model (Parrenin et 

al., 2001).  In the specific case of an ice-core age-depth model, the age-depth profile is 

calculated iteratively – changing the value of one or more free parameters with each 

iteration – in order to reconstruct a profile that agrees with age horizons.    

An important step within the inverse approach is the assessment of the difference between 

the probability distributions, ρ, of the observed data, d, hereafter referred to as ρD(d), and 

modelled estimates, m, hereafter referred to as ρM(m).  In the inverse method, this 

difference is calculated using a root mean square error (RMSE) approach (eq. 2.28); E(m) is 

calculated using the RMSE relationship, and quantifies the differences between the model 

output, ρM(m), with respect to the observational parameters, ρD(d); low values suggest a 

good-fit of model parameters.  Specific to the construction of age-depth profiles, the aim of 

the inverse approach is to examine the difference between an empirically-calculated age-

depth model and an a posteriori age-depth profile.  Any differences between the two 

profiles may reflect (i) simplifications adopted within the modelling process, or (ii) 

inadequacies in the distribution of the age constraints.   

 

E(m) = √ 
∑ (𝜌𝐷(𝑑)𝑖 − 𝜌𝑀(𝑚)𝑖)2n

i=1

𝑛
 

(2.28) 
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For an ice-core age-depth model, a Monte Carlo Markov Chain (MCMC) sampling technique 

has previously been used to systematically explore the model parameter space (Parrenin et 

al., 2007a; 2007b).  Referring to fig. 2.08, such a search is achieved here by iterating the 

model, setting new 'initial conditions' within set boundaries, and assessing the difference 

between observed and modelled age-depth estimates at depths corresponding to 

observational data horizons.  This approach produces optimised values for the 'initial 

conditions' and more accurate profiles of thinning and/or accumulation, and hence age-

depth. 

2.5.7 Perturbation Theory 

For some elements of ice core analysis, perturbing a profile as part of the inverse approach 

is necessary to find the optimal information (section 3.6.1).  Perturbation theory can be used 

to find an approximate solution to a problem, by starting from the exact solution of a related 

problem.  It was first used in the 19th century as a means to calculate astronomical 

relationships in the motion of planets in the solar system (Poincaré, 1892).  For this study, 

perturbation theory is applied in order to reconstruct the optimal accumulation profile.  This 

is completed in order to account for the potential uncertainty on the empirical accumulation 

reconstructions.   

Within perturbation theory, a problem is broken down into solvable parts, and a small term, 

ε, is added to the exact solution of each of these parts.  This leads to the following 

expressions, or perturbation series, given in terms of a formal power series.  The term A0 is 

the exactly-solved solution to a problem, with further terms describing the deviation in the 

solution as a result of the perturbation term.  An represents the higher-order terms which 

may be found iteratively; the perturbation series relationship can be approximated by 

truncating eq. 2.29 (eq. 2.30). 

 A =  A0 +  ε1A1 + ε2A2 +  … + εnAn (2.29) 

 𝐴 ≈  𝐴0 + 𝜀𝐴1 (2.30) 

 

2.6 Firn Compaction in the upper depths of an ice core  

In order to compare model estimates with the observational data in the ice-phase of the 

core, the ice core density is assumed to be the equivalent of ice, ρi = 0.917 Mg m-3.  This 

means that the profile of increasing density from snow to ice in the upper layers of the ice 

core must be accounted for.  However, in order to interpret the gas-phase record in the ice 
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core, the changes in the density of ice with respect to depth must be fully understood.  First 

introduced in section 2.3.3, the process of densification in the firn layer of the ice core, and 

the techniques that can be applied to interpret the gas-phase record, are outlined in this 

section in more detail.  

2.6.1 Densification of an ice core 

The density profile, ρ, of the highly porous firn snow reflects the fact that the density of 

snow deposited at the surface of an ice sheet increases as subsequent annual snowfall is 

deposited on top of it, eventually reaching the density of ice.  This snow in the firn layer goes 

through a well-observed three-stage densification process:  

0 ≤ ρ ≤ 0.55 Mg m-3 – The initial phase of compaction where gas particles are free to move 

throughout porous firn snow; 

0.55 ≤ ρ ≤ 0.83 Mg m-3 – Compaction of firn snow has reached “critical density” at 0.55 Mg 

m-3 (Blunier and Schwander, 2000), with packing and grain settling the dominant 

mechanisms of the second stage.  Density increases more slowly than in the first stage, with 

air passages closing off to form individual bubbles at a “close-off” density of 0.83 Mg m-3; 

0.83 ≤ ρ ≤ 0.917 Mg m-3 – “Close-off” density has been reached and gas particles are no 

longer free to move within the ice matrix. Density continues to increase by further 

compression of the gas bubbles until the density of pure ice is reached. 

The change in density is defined by Herron and Langway (1980) for these three stages, 

where C is a constant for each stage: 

 
C =

d ln(ρ/(ρi −ρ)

dz
 

(2.31) 

The measured density profile of an ice core contains imperfections.  These imperfections 

could be chips, breaks, or particulates in the ice core.  Hence, a least squares approach is 

applied to eq. 2.31 for the three stages of densification to estimate the slope of density with 

depth.  In doing this, two pieces of information are obtained: (i) the close-off depth at which 

the gas bubbles are occluded in the ice matrix; and (ii) an idealised density profile that can 

be used to convert snow depth to a depth scale that assumes an ice-only volume. 
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2.6.2 Gas-phase age-depth profiles 

In addition to the estimation of an ice-phase age-depth profile, a second age-depth profile is 

obtained from the gas-phase of an ice core.  The gas-phase age-depth profile has the 

advantage that these records (particularly methane) can be synchronised between 

Greenland and Antarctica because of the rapid mixing of gases in the atmosphere.  In any 

core, there is a fixed offset (age) between the age of gas and ice at a particular depth 

(depth for the depth-difference between gas and ice of the same age).  This offset exists 

because the age of the gas in an ice core is younger than the ice that encloses it, as air 

circulates in firn above the close-off depth, trapping the younger air.   

Within the firn column, throughout the first two stages of the densification process, 

gravitational fractionation in the firn column will lead to heavy isotopes of a gas 

concentrating at the bottom of the fractionation column before the snowpack densifies to 

the “close-off” density at 0.83 Mg m-3.  Air bubbles will be occluded at a “lock-in depth” (LID) 

once the surrounding snow reaches the third stage of the densification process.  The Δage is 

dependent on the accumulation rate and temperature, i.e. Δage and the height of the firn 

column should be assumed inversely proportional to the accumulation rate.  Alternatively, 

Δdepth – the depth difference between the gas and ice phases of the same age – is 

independent of the modelled age-depth profile and accumulation profile as there is a limited 

effect of the accumulation rate on both LID and the shape function (Parrenin et al., 2012). 

In order to accurately estimate the LID, Δage, and Δdepth, it is important to accurately 

reconstruct the past structure of the firn column.  Firn densification models estimate the 

gas-phase age-depth profile of an ice core by assuming homogenous snow material in 

isothermal conditions, where the density profile of a firn column is assumed to be 

dependent on the accumulation rate, surface temperature and surface density (Herron and 

Langway, 1980; Pimienta et al., 1987; Barnola et al., 1991).  For changing climatic conditions, 

a dynamical model can be interpreted from the Herron and Langway (H-L) and Pimienta-

Barnola (P-B) models (Buizert et al., 2015).   

Alternatively, firnification models estimate gravitational settling of the heavier unreactive 

gases in the firn column during the densification process to estimate the lock-in depth (LID) 

and Δage (Barnola et al., 1991; Schwander et al., 1997; Arnaud et al., 2000; Goujon et al., 

2003; Landais et al., 2006; Capron et al., 2013).  Due to gravitational fractionation – the 

gravitational settling of heavier isotopes of unreactive gases, for example 15N/ 14N or 
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40Ar/36Ar, at the deeper end of the firn column – air at the base of the firn layer is enriched 

with heavier isotopes by an amount that is proportional to the diffusive column height 

(DCH).  Gravitational fractionation, δgrav, follows the barometric equation, for which Δm is 

the mass difference between the heavy and light isotopes of the measured gas (kg mol-1), g 

is gravitational acceleration (m s-2), z = DCH (m), R is the gas molar constant of 8.314 J K-1 

mol-1, and T is the firn temperature (K) (Capron et al., 2013). 

 
δgrav = [exp (

Δmgz

RT
) − 1] 

(2.32) 

 

Arnaud et al. (2000) adapted this relationship in order to develop a sophisticated firnification 

model, which considers two densification stages: pure sliding of snow grains where density ρ 

< 0.55 Mg m-3; and pure deformation of grains where density ρ > 0.55 Mg m-3.  Advancing 

from this work, Goujon et al. (2003) adapted the Arnaud model into a firn-densification-

heat-transfer model, accounting for temporal variations in temperature and thermal 

fractionation. 

Finally, the Δage can be calculated from a depth profile, where LID is estimated along the ice 

core from Δdepth estimations from an ice flow model coupled with a firn densification 

model (Parrenin et al., 2012).  The advantages of this method are twofold: (i) firstly its 

aforementioned weak dependence on the accumulation history, and (ii) the information this 

method can yield about the past flow of ice at the drilling site. 

In addition to understanding firn processes to reconstruct the gas-phase age-depth profile, 

accurate reconstruction of firn compaction and densification is an important step in 

determining the age of the ice-phase of an ice core since a corrected density profile is 

required for conversion to water-equivalent depth.  As explained in section 2.5.3, all thinning 

functions are assumed to relate to the compaction of ice, with no open spaces for gas 

transfer in the upper sections of the ice core.  Furthermore, expanding on the principles of 

the densification process, a dynamical model can be used to reconstruct the Δage and 

Δdepth profiles along the ice core by accounting for climatic changes that impact on the 

DCH. 

2.7 Development of established ice-core chronologies  

Published chronologies for established deep Antarctic ice cores have been constructed using 

the relationships for accumulation (eq. 2.05 – 2.09) and thinning (eq. 2.10 – 2.19) described 
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above, often invoking an inverse approach to solve for the optimal profiles (Schwander et 

al., 2001; Parrenin et al., 2004; Parrenin et al., 2007a; 2007b; Bazin et al., 2012; Parrenin et 

al., 2015).  In the following section the approaches used to develop an ice-core chronology 

are outlined using the example of the development of the age-depth profile for the EPICA 

Dome C ice core.   

2.7.1 EPICA Dome C 

In the original age-depth profile, accumulation and ice-flow were reconstructed using the 

Clausius-Clapeyron relationship and a one-dimensional ice flow model (eq. 2.05 – 2.08 and 

eq. 2.13 – 2.17), constrained using an MCMC algorithm by the process of ‘random walk’, 

optimising the ice-core reconstructions of accumulation and thinning by constraining the 

profiles to observational data.  The observational data was interpreted from volcanic and 

geomagnetic age horizons.  This approach achieved an extended climatic record to 800ka BP 

(Schwander et al., 2001; EPICA members, 2004; Jouzel et al., 2007; Parrenin et al., 2007a).  

Later, Parrenin et al. (2007b) utilised the method of multi-parameter age constraints to 

refine the existing EDC chronology and construct “EDC3”; incorporating volcanic markers, 

gas markers, the Laschamp and Brunhes-Matuyama geomagnetic events, and 14C and 10Be 

trends marking solar activity.  This updated chronology reconstructed an accumulation 

history using the simple exponential relationship (eq. 2.09).  The approach used to 

reconstruct the EDC3 chronology was also used to construct the EPICA Dronning Maud Land 

“EDML1” chronology (Ruth et al., 2007), spanning 150 ka BP. EDC3 and EDML1 were 

constructed using the same combination of inverse glaciological modelling and known-age 

markers. EDML1 is synchronised from present-day to 52 ka BP using common known-age 

markers such as volcanic ties, and presented on a common timescale to EDC3 (Severi et al., 

2007).   

Most recently, Bazin et al. (2012) synchronised the age-depth profiles for EDC, EDML, Talos 

Dome, and Vostok, as well as the NGRIP record in Greenland, to produce the AICC2012 

chronology (Lemieux-Dudon et al., 2010; Bazin et al., 2012; Veres et al., 2012).  This 

chronology, modelled using the “Datice” tool, is capable of synchronising ice-core profiles on 

a common timescale (Lemieux-Dudon et al., 2010), using globally-synchronous known-age 

markers including CH4 concentrations as greenhouse gas signatures, stable water isotope 

signatures, volcanic stratigraphy, and geomagnetic 10Be structures.   
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Improvements to the “Datice” method are found in the “IceChrono” package – a freely-

available model, written in Python, which is capable of estimating the age-depth profile for 

multiple ice-core datasets simultaneously using a non-linear least squares probabilistic 

approach (Parrenin et al., 2015).  The “IceChrono” model is capable of calculating the 

optimal age-depth profile with limited data and constraints, but it can also take in a priori 

information on accumulation, thinning, firnification, density, layer thickness measurements 

and known-age horizons.  The model approach is unchanged between “IceChrono” and 

“Datice”, only the length of the model scripts and efficiency of the code are different.    

2.7.2 Other deep ice cores 

Parallel to the development of EPICA ice core chronologies, other deep ice core chronologies 

have used similar methods to those outlined in this chapter.  Prior to the AICC2012 

synchronisation, the Vostok ice core was presented with an estimated climate time series 

extending to 150 ka BP (Lorius et al., 1985).  Just over a decade later, Petit et al. (1999) 

modelled the initial age-depth profile for the whole Vostok ice core, estimating an age-depth 

profile spanning 420 ka BP in 3310 m of ice.  Later, this age-depth profile was further 

constrained by orbitally-tuned markers and later compared to the climatic variances of the 

EDC core (Lorius et al., 1985; Parrenin et al., 2001; 2004; EPICA members, 2004).  Similarly, 

the Dome Fuji ice core drilling programme obtained an ice-core record spanning 400 ka BP; 

the age-depth profile was constrained using orbitally-forced precessional cycles – identified 

through the sensitivity of δ18O values to Milankovitch cycles (Watanabe et al., 2003).  The 

Dome Fuji chronology has been refined using a Bayesian approach that is similar to the 

method used for the EDC3 chronology (Parrenin et al., 2007; Kawamura et al., 2012; Nakano 

et al., 2016).  In addition to a larger dataset of Uranium-Thorium (U-Th) dated speleothem 

records of insolation as age horizons, O2/N2 records of orbital activity have been used to 

constrain an age-depth profile, which extends 720 ka BP (3035 m) (Dome Fuji Project 

Members, 2017).   

Finally, the 3404 m-deep WAIS Divide ice core has been dated to 68 ka BP using a 

combination of annual layer counting and ice flow modelling (Buizert et al., 2015; Sigl et al., 

2016).  The high mean annual accumulation at the site, coupled with low thinning rates and 

high basal melt rates, has preserved an annual layer thickness along the ice core within the 

resolution of standard laboratory techniques, permitting annual layer counting to 2850 m at 

an age of ~31 ka BP.  CFA measurements of trace-element aerosols including Na+, non-sea-

salt sulphur (nss-S), and black carbon (BC), revealed a seasonal profile extending to 2850 m, 
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with a minimum annual layer thickness reaching 30 mm at 2850 m (Sigl et al., 2016).  Beyond 

this depth, the remainder of the ice-core profile has been modelled using an inverse 

approach, for which accumulation is assumed to follow a Clausius-Clapeyron relationship 

with stable water isotopes at the site (eq. 2.05 – 2.08), and a thinning function has been 

estimated using the Dansgaard-Johnsen relationship (eq. 2.11 – 2.12).  Free parameters 

estimated within the inverse approach include a basal stretching parameter and the ice-

sheet thickness.  Using this approach, the base of the WAIS Divide ice core is dated to ~68 ka 

BP (Buizert et al., 2015). 

The development of ice-core chronologies has seen an increase in complexity, from the 

earlier models using steady-state assumptions to the most recent reconstructions for the 

deep ice cores that synchronise multiple ice core records (Dansgaard et al., 1969; Parrenin et 

al., 2015).  The most accurate age-depth reconstructions incorporate an inverse approach 

and observational data on known-age horizons and annual layer thickness measurements 

along the core.  As with all palaeoclimate analysis, an accurate chronology is important for 

the interpretation of the preserved climate record.  Deep ice cores from coastal sites, such 

as the three ice core sites used in this thesis, pose a particular problem for the current 

leading ice-core age-depth model, “IceChrono”.  The main assumptions used in the model to 

reconstruct past atmospheric and ice-sheet processes, such as steady mean annual 

accumulation during interglacial periods and the relationship between stable water isotopes, 

temperature and accumulation, are not as reliable at coastal sites during interglacial periods 

due to the high inter-annual climate variability, for which the source of water vapour and 

precipitation patterns can vary (Sime et al., 2009a; Fudge et al., 2016).  As a consequence of 

the complexity of near-coastal ice core climate history, this thesis seeks to individually 

model the age-depth relationship for each ice core. 

2.8 Summary 

The progress of ice-core research over the last six decades has realised the potential of ice 

cores as a proxy for past climate and continuous records of climate spanning 800,000 years 

have been developed.  This accomplishment has led to the development of sophisticated ice 

flow modelling approaches, in addition to the chemical analysis of preserved constituents of 

an ice core.  However, the complexity of coastal climate processes during interglacial periods 

limits the effectiveness of age-depth models such as “IceChrono” when attempting to 

interpret ice cores from the AP and the Weddell Sea Embayment.  There is wide agreement 

that the most robust age-depth relationships can be inferred from high-resolution, sub-
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annual profiles that can be annual layer counted.  Improvements to ice-core analysis 

through the development of techniques that can achieve ultra-high resolution provide an 

alternative to age-depth modelling by increasing the depth to which annual layers can be 

counted.  Measurements of annual layer thickness at depths previously unattainable by 

standard laboratory resolution extend the depth to which annual layer thickness profiles can 

be obtained for mid-depth ice cores in regions of high mean annual accumulation.  These 

profiles provide a better control on ice flow modelling as well as age-depth modelling.  

Through the validation of these relationships, and subsequent tests of glaciological 

reconstructions, all of the existing and novel options to construct the optimal age-depth 

profile for the three ice cores can be assessed.  
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Chapter 3: Methodology 

3.1 Introduction 

This chapter outlines the methodologies used to address the research hypotheses identified 

in the thesis aims (Chapter 1).  Section 3.2 describes the work carried out in the field to 

extract the ice cores studied in this thesis, and make borehole temperature measurements. 

The chemical profiles of these ice cores were obtained by a series of laboratory methods 

that are outlined in section 3.3 of this chapter.  Further analysis of some sections of the ice 

cores required ultra-high resolution trace-element analysis; sampling and laboratory 

methods are outlined in sections 3.4 and 3.5.  Established statistical techniques employed in 

reconstructing glaciological profiles are outlined in the review of literature in Chapter 2 

(section 2.5; eq. 2.03 – 2.19), but novel techniques in modelling and statistical analysis are 

described in section 3.6. 

3.2 Site Details 

3.2.1 Sampling Locations and Drilling Process 

The focus of this study is on the Antarctic Peninsula (AP) and the Weddell Sea sector of 

Antarctica, where three deep ice cores have been drilled to bedrock (Mulvaney et al., 2007; 

2014).  Subsequent measurement of the stable water isotopes along the ice core provide a 

proxy for the temperature history of each site (section 2.5.5).  The boreholes produced in 

drilling the ice cores remain open for some time, allowing access for further physical 

measurements.  Precise measurements of the borehole temperature to the full depth ice 

sheet depth can be used to reconstruct an independent temperature proxy that can be 

compared with the empirically-calculated temperature profile used in the age-depth 

reconstructions (section 2.5.4), and may be used to calculate the geothermal heat flux from 

the earth’s mantle (Chapter 8). 

The locations of the three deep ice core drill sites, James Ross Island (JRI), Berkner Island (BI) 

and Fletcher Promontory (FP) are shown on fig. 3.01.  In addition to the deep ice core sites, 

the locations of three short boreholes that are used in Chapter 8 are included in fig. 3.01.  

The precise site co-ordinates, as well as present-day ice-sheet conditions for mean surface 

temperature, snow accumulation, ice-sheet thickness, and distance from the ice divide are 

recorded for the three deep ice cores in table 3.01.  The three deep ice cores were drilled 

over several Antarctic field seasons between 2003 and 2012 using a typical 
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electromechanical ice core drilling system based on previous European Project for Ice Coring 

in Antarctic (EPICA) drilling systems working in a fluid-filled borehole.   

 

Table 3.01: Information pertaining to site specifications at each ice core drill site. 

 FP BI JRI 

Latitude 77°54.1’S 79°32.9’S 64°12.1’S 

Longitude 82°36.3’W 45°40.7’W 57°41.1’W 

Altitude of present ice surface (metres above sea 

level (masl)) 

873 890 1542 

Ice sheet thickness (m) 654 947 364 

Distance from the ice divide (m) 575 0 1000 

10 m-deep temperature (K) 

10 m-deep temperature (oC) 

246.0 

-27.1 

248.2 

-24.9 

258.7 

-14.4 

Measured Basal temperature (K) 

Measured Basal temperature (oC) 

255.0 

-18.1 

261.5 

-11.6 

264.5 

-8.6 

Mean Annual Accumulation (m yr-1) 0.38 0.18 0.63 
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Figure 3.01: Map showing the site locations of deep ice cores and short boreholes in the Antarctic 

Peninsula and Weddell Sea region.  Pale grey areas indicate grounded ice, with dark grey surfaces 

extending from the grounding lines to the calving front of the ice shelves. 
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Essentially, a winch and tower at the surface controls a cable carrying power to a drill sonde 

in the borehole that comprises a motor/gear section.  A 190 V permanent magnet DC motor, 

producing 600 W at 2000 rpm through a gear reducing the rotation to 80 rpm, drives the 

rotation of a hollow shaft connected to a core barrel and drill head with cutters that cut an 

annulus in the ice, while an ‘anti-torque’ section at the upper end of the sonde prevents the 

drill spinning in the hole.  The borehole is filled with a fluid Exxon/Mobil ‘Exxsol’, which has a 

density of 0.79 Mg m-3 at 288 K, to prevent natural ice flow narrowing the borehole during 

the drilling and to help transport ice chips. Chips from the cutting head are pumped away by 

a double-piston pump into the hollow shaft where they are caught by a sieve and the fluid 

returned to the borehole while the core itself passes into the core barrel.  The drill captures 

about 2 m of ice core on each drilling run, then the drill is returned to the surface to recover 

the ice core, and clear the chips.  The drill system and the field projects are described by 

Mulvaney et al. (2007, 2014). 

3.2.2 Borehole Temperature Measurements 

Following the retrieval of the ice core, the borehole temperature profile for each ice core is 

measured.  For the three ice core sites in this study, the process differs depending on the 

site location and logistics of the drilling.  All borehole temperature measurements were 

obtained prior to this study.  At JRI, the temperature measurement was made over two days, 

three days after the drilling of the core ended, in the fluid-filled borehole.  Three calibrated 

glass bead thermistors in thin walled sealed probes were mounted on the lower end of the 

drill cable in a multi-wire arrangement that allowed the measurement of the cable 

resistance and the resistance across the cable plus each thermistor.  Thermistors were each 

calibrated at BAS (in Cambridge) using a triple point cell reference and in a circulating bath 

of cooled salt water measured against a platinum resistance thermometer (independently 

calibrated by the National Physical Laboratory).  At each depth, the thermistors were 

allowed to settle for around 20 minutes before measurements were carried out on each 

thermistor and cable resistance using a low current resistance meter, with the results 

compared to a standard resistance.  Multiple measurements were taken at each depth, until 

the drift of temperature had been reduced to less than 1 mK per minute.  Measurements in 

the field were made on a transit down the borehole, and on the return of the probe to the 

surface, with a depth resolution of 20 m, and the mean of the three temperature 

measurements at each depth was reported.  
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At FP, a similar scheme was used, with three calibrated (as above) thermistors arranged in a 

four-wire configuration on the drill cable, a low current resistance meter to measure the 

resistance across each thermistor, and the cable resistance, with all measurements 

referenced against an in situ standard resistor.  At this site, the temperature at each level 

was logged automatically every second for at least 20 minutes, and the graph of the settling 

was used to determine when the thermistor drift had settled.  Measurements were 

commenced four days after drilling ceased, after the borehole fluid had been removed. The 

transit of the probe to the base of the borehole and back to the surface took three days. A 

depth resolution of 2 m was achieved between the surface and 120 m depth, with a lower 

resolution of 5 m - 15 m to the greatest-measured depth. 

At BI, the measurements were made one year after drilling was completed, in a fluid-filled 

borehole.  Measurements were made every 2 m on a transit down the borehole only, with 

the thermistors allowed to settle for before the readings were taken. This measurement is 

considered to be the most precise of the three deep boreholes since any small transient 

change in the ice sheet temperature due to the drilling process will have equilibrated 

between drilling and measurement. 

3.3 Initial ice-phase chemical profiles 

This section, and the subsequent sections, outlined the analytical work that is completed on 

the three ice cores.  Table 3.02 sets out the different types of chemical analysis that have 

been available to the three ice cores, and outlines the work completed on each.   

Table 3.02: Table outlining the application of different methods of chemical analysis to the three ice 

cores.  Where stated ‘Already available’, the data was obtained prior to or separate to this project. 

 FP BI JRI 

Stable Water Isotopes Already available Already available Already available 

Continuous Flow 
Analysis (CFA) 

N/A Already available Already available 

LA ICP-MS N/A Yes N/A 

Discrete Sampling Yes Yes N/A 

 

In particular, this section outlines the chemical analysis that was completed independently 

of this study, but for which the results are used.  An ice core is analysed by several 
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techniques to build up a full chemical profile.  The core is processed by band saw in a cold 

room so that half of the ice core is preserved for future analysis in two archive quarters, and 

the rest is used in the initial post-drilling analysis (fig. 3.02).  Two main analytical techniques 

were used to build up the initial ice-phase chemical profile used in this thesis: continuous 

flow analysis (CFA), and the analysis of stable water isotopes.  Subsequently, very high-

resolution analysis of short sections was carried out using laser ablation mass spectrometry 

(section 3.4) and very high resolution discrete sampling (section 3.5). 

3.3.1 Continuous Flow Analysis (CFA) 

The JRI ice core has been analysed by a continuous flow analysis technique on two 

occasions: initially at BAS, and for a second time at the Desert Research Institute (DRI), 

Nevada, USA.   

The BAS system generates a flow of liquid by continuously melting a section of the ice core 

on a heated melt-head in a cold room held at 248 K (-25 oC), and passing that liquid through 

to a warm lab where pumps and manifolds distribute the liquid amongst several 

instruments.  The BAS CFA system has recently been updated to measure stable water 

isotope profiles: a cavity ring-down laser spectrometer measures the stable water isotopes, 

in addition to the existing system of a rapid ion chromatograph (IC) that measures a range of 

anions, and ultra-violet (UV)/Visible and fluorescence spectrometers that measure simple 

compounds and a low resolution inductively coupled plasma mass spectrometer measures a 

few light elements.  However, the method to obtain the stable water isotope profiles used in 

this study for JRI is outlined in the next paragraph, and the profiles of FP and BI have been 

measured discretely using the methods outlined in the next section.  

The DRI Ultra Trace Chemistry Laboratory continuous measurements at high depth 

resolution for the chemistry, dust, black carbon and water isotopes in ice cores using a 

similar source of sample stream as described above with the core melting on a melt-head in 

a cold room.  A combination of CFA UV/Visible, fluorescence and laser spectrometers 

measure simple chemical compounds and the water isotopes, together with instruments for 

black carbon and dust.  Critically for the dating of the JRI core described in Chapter 7, the DRI 

system incorporates two high mass resolution inductively coupled plasma mass 

spectrometers (ICP-MS) for trace elements. These two ICP-MS instruments are capable of 

measuring heavy metals and rare earth elements at ultra-trace levels, as well as some light 

elements such as sulphur that cannot be measured at BAS.  The DRI system is referred to 
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here as the BC-TE-CFA (Black Carbon-Trace Element-Continuous Flow Analysis) system and is 

fully described by McConnell et al. (2002) and Sigl et al. (2015).   

The continuous chemical and stable water isotope dataset used in this study for JRI pertains 

to the analysis at DRI.  Analysis of the JRI ice core measured sea-salt and non-sea salt trace-

element species, black carbon, and stable water isotopes.  Using the BC-TE-CFA system, at a 

melt rate of ~50 mm min-1, an effective resolution of ~20 mm was achieved (McConnell et 

al., 2002; McConnell, 2010; Pasteris et al., 2014a; 2014b).  For this thesis, it is the additional 

ultra-trace elements and sulphur that are used to match the ages between the BAS JRI ice 

core, and a very well-dated deep core from the West Antarctic Ice Sheet (the United States 

WAIS Divide Ice Core).  

3.3.2 Stable Water Isotopes 

For BI and FP, the stable water isotope (D and 18O) profiles were obtained prior to the 

commencement of this study by measuring discrete samples cut from the cores.  

Measurements were made using an Isotope Ratio Mass Spectrometer (IRMS) at the NERC 

Isotope Geochemistry Laboratory (NIGL, courtesy of Carol Arrowsmith) and using two cavity 

ring down laser spectrometers at BAS.  The water isotope data for the two institutes were 

compiled by R. Mulvaney (pers comm).  Discrete samples were cut from the original cores at 

a range of resolutions: initially at ~550 mm (the ‘bag average’) to give a rapid overview of 

the shape of the isotope profile and likely age range along the full core depth, and 

subsequently at 110 mm near the surface and decreasing in sample size down to 10 mm at 

full depth to improve the resolution of the isotope/climate record.  A parallel study 

completed during the course of this research project by Masters Student, Amy Pike, took 

very high-resolution samples of the FP ice core in the upper depths of the ice core record 

and measured stable water isotope content.  The highest resolution data available were 

used in this thesis. 

3.4 Laser Ablation Inductively-Coupled Plasma Mass Spectrometry  

The following chemical analysis has been carried out by myself for the purpose of this study.  

In this thesis, the age-depth profile for BI is constructed using glaciological models (section 

2.5), and will be assessed against ice chemistry measurements made using a novel method 

in ultra-high resolution trace-element analysis.  The work described in this section 

contributes to the second objective outlined in section 1.2.1, and it involves making 

measurements of annual layer thickness which may be compared with accumulation 
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reconstructions developed as part of the first objective.  To observe seasonal cycles in 

chemistry in the glacial period, where the layer thickness is very small, ice chemistry was 

measured at a sub-millimetre resolution using laser ablation ICP-MS (LA ICP-MS).  The 

analysis of BI ice using LA ICP-MS was completed at the W.M. Keck Laser Ice Facility, part of 

the Climate Change Institute (CCI), University of Maine, USA, in collaboration with Dr. 

Sharon Sneed and Professor Paul A. Mayewski.  Annual layer thicknesses were measured at 

depths where seasonal cycles could not be retrieved using standard laboratory methods.  

The LA ICP-MS methodology is a novel method for Antarctic ice (Muller et al., 2011; 

Mayewski et al., 2014; Sneed et al., 2015).  The measurements for BI ice represent the first 

test of LA ICP-MS on Antarctic ice from the last glacial period; this is significant because 

annual layers from this period of low mean annual accumulation will have a mean thickness 

of less than 5 mm, which is beyond the means of standard laboratory methods.  The 

following section outlines the methodology used in obtaining ultra-high resolution 

measurements using LA ICP-MS.    

3.4.1 Sampling Strategy for LA ICP-MS 

In order to validate the modelled estimates for annual layer thickness, samples of ice were 

taken at several depths along the BI ice core.  The large variations in surface temperature 

that occur over glacial-interglacial cycles lead to large differences in the stable water isotope 

record.  Therefore, it is relatively easy to identify which sections of the ice core record were 

originally deposited during an interglacial or a glacial period, by comparing stable water 

isotope records with published Greenland and Antarctic ice core records (Rasmussen et al., 

2014; Sigl et al., 2016).  In this study, samples have been taken from sections of the BI core 

identified as the mid-Holocene period and the last glacial period. 

Sample depths are listed below; within each ice core bag (table 3.03), sample depths were 

chosen based on the condition of the archive material and so the ice sample has not been 

taken from the same place in each ice core bag.  The inconsistency in the sampling strategy 

from the depth point in each ice core bag yields no significant difference to the analytical 

results as all of the ice samples are treated for potential contamination from the drilling 

process (this process is outlined in section 3.5.4).  Table 3.03 lists the bottom depth of the 

ice core bag as well as the depth range of analysed ice and the approximate age of the ice, 

based on its position in the isotopic record.   
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Table 3.03: BI sample depths for LA ICP-MS.  The assumed time-origin of deposition and an estimated 

age using a simple age-depth model are also included. 

Core Bag 

Number 

Bottom depth 

of ice core bag 

(m below the 

surface) 

Analysed ice (m 

below the 

surface) 

Assumed origin in 

time (based on the 

isotope record) 

Estimated age 

using a simple 

age-depth model 

(ka BP) 

03/T2/826 454.31 454.11 – 454.15 Mid-Holocene 5.5 

03/T2/830 456.51 456.31 – 456.35 Mid-Holocene 5.6 

03/T2/834 458.71 458.51 – 458.59 Mid-Holocene 5.6 

AQ/T2/1263 694.65 694.45 – 694.53 Last Glacial Period 27.1 

AQ/T2/1265 695.75 695.55 – 695.67 Last Glacial Period 27.4 

AQ/T2/1267 696.85 696.65 – 696.73 Last Glacial Period 27.7 

AQ/T2/1278 702.9 702.35 – 702.43 Last Glacial Period 29.7 

AQ/T2/1281 704.55 704.51 – 704.55 Last Glacial Period 30.4 

AQ/T2/1285 706.75 706.20 – 706.40 Last Glacial Period 31.1 

 

3.4.2 Cutting Process 

Ice samples were cut in cold room conditions at around 253 K.  During the cutting process, 

ice loss from the band saw was accounted for to ensure the ice samples were cut at 30 mm x 

15 mm dimensions.  After cutting, sticks of ice were placed in plastic lay-flat bags with the 

ice core bag number and top of the core clearly indicated.  The ice samples were cut from 

the inner section of the archive material to avoid potential contamination by the drilling 

fluid residue on the exterior of the ice core; this is demonstrated in fig. 3.02 below.   
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Figure 3.02: Diagram of ice sampling from the archive material; left: the orange shaded section shows 

sampled ice for LA ICP-MS; right: the blue section shows sampled ice for discrete sampling (see section 

3.5). 

 

3.4.3 Chemical Analysis using LA ICP-MS 

For the analysis completed at the CCI, the ice samples were stored in a polystyrene box 

along with several eutectic gel packs to prevent melting en route from Cambridge to the US.  

From previous work (Mulvaney, unpublished) using temperature loggers, this method 

guaranteed minimal warming in the box for up to 24 hours.  In transit to CCI, the ice was in 

the polystyrene box for 17 hours. 

LA ICP-MS profiles were generated using the Sayre CellTM cryocell, developed at the 

University of Maine, which is capable of holding up to 1 m of ice at 248 K and has a small 

volume (~20 cm3) open-design ablation chamber.  The cryocell system is held underneath a 

New Wave UP-213 laser which is connected to a Thermo Element 2 ICP-MS with Teflon 

tubing; the engineering of the Sayre CellTM cryocell is described by Sneed et al. (2015).   
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Figure 3.03: Images taken from Sneed et al. (2015): (a) Complete Sayre CellTM system with labels; (b) 

Side view of the LA system, with modules labelled. (c) End view into the cryocell; (d) Top view of 

ablation chamber positioned in centre of fixed upper rail of cryocell; (e) Image of ablated pass on an 

ice sample. Triple junction can be seen in the surface.  

 

Before analysis, the ice sample was cleaned by removing the outer 1 mm layer using a 

ceramic scraper.  After this, the ice was placed in the cryocell and the Argon (Ar) gas flow 

was purged for 2 minutes.  To obtain ultra-high resolution (sub-millimetre) chemical profiles, 

the ice is analysed using an individual line scan per element (fig. 3.03e).  LA profiles are 

measured using a 100 μm-diameter laser spot and are continuous for 40 mm.  Once a line 

scan has been completed, the cryocell can be moved automatically to either continue the 

analysis for a further 40 mm, or to begin a new analysis parallel to the previous line scan.  

Line scans are separated by 200 μm to prevent any overlap.  Sampling resolution is 121.25 

μm per sample, but can vary depending on the laser spot diameter, firing rate, scan speed 

and the ICP-MS sampling rate (Sneed et al., 2015). 

The BI ice samples were analysed for seasonal cycles of sodium (Na) only, with results 

available in counts per second (counts s-1 or cps).  The relative intensity of element 

concentrations can be converted to concentrations (ppb) using calibration curves 

constructed by lasing frozen standards (Sneed et al., 2015). 
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Daily calibration of the ICP-MS is facilitated using a combination of liquid standards and 

frozen reference materials in a two-step process.  Firstly, liquid standards of known 

concentrations were measured; the results of these initial analyses were used to construct 

the calibration curves for posterior analysis (the relative standard deviations of the liquid 

standards are shown below in table 3.04).  The second step analysed frozen reference 

material, SLRS-5.  SLRS-5 is frozen river water from the National Research Council, Canada, 

and was ablated by the LA ICP-MS system to establish the conversion factor between the 

liquid standards and ablated reference material. 

Table 3.04: Relative Standard Deviations (σ) of liquid standard measurements for the CCI ICP-MS 

calibration. 

Liquid Standard  Relative Standard Deviation of liquid 

standard measurements (%) 

Sodium (Na) 1.4 

Calcium (Ca) 3.3 

Iron (Fe) 2.9 

 

3.4.4 Mitigation of Sampling Errors 

To ensure accurate results using the Sayre CellTM cryocell, the base of the open cell must 

have an airtight seal with the ice sample (fig. 3.03d displays a top-view of the LA system and 

the cell that is sealed against the ice sample).  Soundness of the seal is tested in two ways: (i) 

a flowmeter is built into the cryocell system and (ii) the ICP-MS is tuned with the ice in place 

so that a small leak would be observable in the ice chemistry signal (Sneed et al., 2015).   

Secondly, the daily calibration of the Sayre CellTM LA ICP-MS system could affect the 

consistency of the ice-core analysis if inhomogeneities were present in the frozen reference 

material used in the calibration process.  To counter this potential limitation, a stepwise 

process is employed to minimise inhomogeneities in frozen ionic solutions. A 75 mm petri 

dish is partially filled with SLRS-5 standard and allowed to freeze at ~239 K in a class-100 

clean room facility.  The process is repeated two times, adding more SLRS-5 to the initial 

petri dish and allowing the solution to freeze.  Finally, a layer of ~1 mm is added and allowed 

to freeze.  Three 10 mm ablated lines are lased in the frozen SLRS-5 and the mean counts s-1 
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for each element is used to account for any inhomogeneities.  The results of this stepwise 

process are discussed in Sneed et al. (2015). 

3.5 Discrete Sampling at a high resolution 

A second technique used in obtaining high-resolution chemical profiles from an ice core 

measures ion concentrations of the bulk content of small, discrete samples.  This technique, 

hereafter referred to as the ‘discrete sampling’ technique, differs from the LA ICP-MS and 

CFA techniques in that a section of ice is not measured continuously on one instrument.  

However, it is similar to LA ICP-MS and CFA techniques in that, where the sampling 

resolution is sufficient, annual layers can be identified and hence the annual layer thickness 

can be measured along the ice core.  By developing methods of high-resolution sampling, 

discrete sampling can obtain annual layer thickness measurements at a higher standard 

laboratory resolution than is currently available using a CFA system (~10 mm).   

As outlined in section 1.2.1, the second objective of this study is to obtain measurements of 

annual layer thickness in the three deep ice cores in order to assess the accuracy of 

accumulation reconstructions developed through the first objective.  In addition to the LA 

ICP-MS analysis that has been carried out on BI ice (as described in section 3.4), discrete 

sampling at a high resolution has been used to analyse ice samples from the BI and FP ice 

cores.  To assess the reliability of LA ICP-MS at ultra-high resolution, a comparison study was 

required.  For this comparison study, discrete samples were cut on parallel sections of the 

ice (fig. 3.02), and measured using IC.  For the upper depth ranges analysed (454 – 459 m), 

three 200 mm sections of ice were analysed, with each section being discretely subsampled 

at a spatial resolution of 5 mm resolution using a band saw.  The 200 mm sections of ice 

expand the LA ICP-MS records covering parallel sections of ice, where 40 – 80 mm of ice was 

analysed.  At the greatest depths analysed (702 – 705 m), two 80 mm sections of ice were 

analysed, with each being cut into discrete samples at a spatial resolution of 0.32 mm; this 

higher resolution was achieved using a microtome device. 

In addition to the discrete sampling on BI, used to compare with – and expand upon – LA 

ICP-MS analysis, sections of the FP ice core have been analysed using the discrete sampling 

technique.  This was done in conjunction with the analysis of BI, in order to fulfil the second 

objective of this study and assess the accumulation reconstructions developed through the 

first objective (section 1.2.1).  The sampling strategy for the FP analysis differs from BI, as 

sections of ice were chosen for analysis using the model estimates for layer thickness 
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(results of the model that was used to estimate mean annual layer thickness are presented 

in Chapter 4).  Depths were initially chosen for the FP ice core where the modelled annual 

layer thickness was ~20 mm.  This is at a depth in the ice core profile where ice, according to 

the stable water isotope profile, is considered to have originally been deposited during the 

Mid-Holocene.  Subsequent sample depths were chosen when the modelled annual layer 

thickness had halved, continuing until the annual layer thickness estimate was ~5 mm.  At 

the greatest depth analysed, the stable water isotope profile suggests that the ice was 

deposited during the transition into the Early Holocene.  Sections of ice were cut at 80 mm, 

and sampled using the microtome device at a spatial resolution of 0.32 mm. 

The remaining subsections of this chapter section outline the sample depth ranges for each 

core, and describe in detail the cutting processes for high- and low-resolution discrete 

sampling (using a band saw and the microtome device), and subsequent analysis using IC.  

The measures taken to mitigate potential errors in the sampling and analytical process are 

also outlined. 

3.5.1 Sampling Strategy for Discrete Methods 

The following section describes the sampling strategies used for the two ice cores.  Sampling 

strategies differ for the FP and BI ice cores, due to the ongoing development of the sampling 

process throughout the study.    

3.5.1.1 Berkner Island 

Five sections of ice were analysed using a discrete sampling method for comparison with LA 

ICP-MS cation results.  The sections of ice were cut using a band saw into dimensions of 30 

mm x 20 mm (see fig. 3.02), with the length of sampled ice ranging between 80 mm and 200 

mm of ice before they were cut into discrete samples.  After this sampling process, sticks of 

ice were placed in plastic lay-flat bags with the ice core bag number and top of the core 

clearly indicated.   

The sections of ice originating from the Mid-Holocene period were sampled at a resolution 

of 5 mm (table 3.05), and were cut using a band saw.  Deeper sections of ice originating from 

the last glacial period were sampled at a resolution of 0.32 mm, and have been cut using the 

microtome device.  The sections of ice sampled, the depth range in the ice core, the 

sampling resolution, and the assumed time of deposition are outlined in table 3.05.   
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Table 3.05: BI sample depths for discrete sampling.  The assumed original of deposition and an 

estimated age using a simple age-depth model are also included. 

Core Bag 

Number 

Bottom 

depth (m) 

Analysed ice 

(m) 

Sampling 

Resolution 

(mm) 

Assumed 

origin in time 

(based on the 

isotope 

record) 

Estimated age 

using a simple 

age-depth 

model (ka BP) 

03/T2/828 455.41 455.21 – 455.41 5.00 Mid-Holocene 5.5 

03/T2/830 456.51 456.31 – 456.51 5.00 Mid-Holocene 5.6 

03/T2/834 458.71 458.51 – 458.71 5.00 Mid-Holocene 5.6 

AQ/T2/1278 702.9 702.35 – 702.43 0.32 Last Glacial 

Period 

29.7 

AQ/T2/1285 706.75 706.3 – 706.38 0.32 Last Glacial 

Period 

31.1 

 

3.5.1.2 Fletcher Promontory 

As with BI, FP ice was sampled at dimensions 30 mm x 20 mm.  Originally, the sections of ice 

were cut to 80 mm in length but some ice at the bottom of each section was lost due to the 

sample fracturing in the vice system of the microtome.  All of the samples from FP were cut 

using a microtome device at a sampling resolution of 0.32 mm.  Table 3.06 outlines the 

sample characteristics including the depth range, sampling resolution, and the assumed 

period of deposition. 
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Table 3.06: FP sample depths for discrete sampling.  The assumed original of deposition and an 

estimated age using a simple age-depth model are also included. 

Core Bag 

Number 

Bottom 

depth (m) 

Analysed ice (m) Sampling 

Resolution 

(mm) 

Assumed 

origin in 

time  

Estimated age 

using a simple 

age-depth 

model (ka BP) 

11/FP/532 425.6 425.419 – 425.600 0.32 Mid-

Holocene 

4.9 

11/FP/605 484.2 484.086 – 484.157 0.32 Mid-

Holocene 

7.5 

11/FP/654 523.2 523.121 – 523.2 0.32 Early 

Holocene 

10.9 

 

3.5.2 Cutting Process 

Using the prepared sticks of ice for each ice core, one of two techniques of discrete sampling 

was used, depending on the resolution required.  The lower resolution technique involved 

using a band saw, this was sufficient for a 5 mm resolution.  For ice originating from deeper 

in the ice core, a microtome technique was employed to achieve sub-millimetre resolution, 

but it should be noted that this method is time- and labour-expensive.  The methods for 

each technique are described below.  Fig. 3.04 shows the cold room set-up for the band saw 

and microtome techniques. 

3.5.2.1 Band Saw Cutting 

Discrete samples were cut at 5 mm resolution using a band saw in the cold room.  The band 

saw has a blade of 1mm thickness which causes ice loss between samples and is accounted 

for in the resolution calculation.  

3.5.2.2 Microtome Cutting 

The microtome is able to hold a section of ice in a mantle system (fig. 3.04b; 3.04c).  Once 

mounted, the ice was passed under the blade; with every forward stroke under the blade, 

the mantle automatically raises 40μm, thus the exact sample size could be determined by 
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the number of times the ice is passed under the blade and collected in the same vial.  As this 

method shaves the ice at a high resolution and the sample remains on the microtome blade 

until it is manually brushed into the vial, no ice loss is recorded. 

 

 

Figure 3.04: Photos taken of the cold room sampling set-up.  From top left: (a) the band saw; (b) a 

front profile of the microtome system; (c) a section of ice held in the mantle system of the microtome 

during sampling; (d) Collecting a discretely-cut sample on the microtome blade using a sterile pipette 

tip. 
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3.5.3 Chemical Analysis using Discrete Methods 

Ion profiles were measured on a Dionex IC 4000 IC system in a class-100 clean room, which 

has less than 100 particles of 0.5 μm ft-3.  Use of an injection volume of only 10 μL into the IC 

separator column increased the spatial resolution from 100 μL used in earlier discrete 

sampling studies carried out at BAS due to the lower volume of sample required for IC 

injection.  Two channels measure a full ion profile: for the cations, sodium (Na+), potassium 

(K+), magnesium (Mg2+) and calcium (Ca2+), whilst for the anions, chloride (Cl-), nitrate (NO3
-), 

methanesulfonic acid (MSA-), fluoride (F-), and sulphate (SO4
2-) were measured.  

3.5.4 Mitigation of Sampling Errors 

To ensure the discrete samples were cut cleanly, several precautions were designed and 

included in the methodology to minimise the risk of contamination to the low-volume 

samples.  The methodology aims to limit the apparatus with which the sample comes into 

contact, and to minimise outer surface contamination. Specifically, two additional 

procedures were included to confirm the continued cleanliness of the sample throughout 

the process. 

3.5.4.1 Ensuring clean apparatus 

In order to prevent contamination of the sample, protective clothing and powder-free nitrile 

gloves were worn throughout the sampling process.  All of the apparatus was cleaned before 

and after the cutting process using isopropanol, including the tongs, a scalpel and the band 

saw and the microtome device.  The ice sample was only handled with tongs and the outer 

millimetre of the ice sample was scraped away using a scalpel to remove any contaminants 

from the surface of the sample. 

In addition to cleaning the microtome blade using isopropanol prior to a cutting session, a 

pre-frozen section of ultra-high purity (UHP) water was passed under the blade to ensure it 

had been cleaned thoroughly.  Five 0.32 mm samples of UHP shavings were collected for use 

as a background standard for the cold room method during the chemical analysis of the 

Antarctic ice samples.  After each section of Antarctic ice was sampled, the work surface and 

surroundings were cleaned to remove snow powder generated by the cutting process, to 

avoid contamination. 
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3.5.4.2 Potential contamination in the sampling process using the microtome 

The initial procedure used a paintbrush to collect the sample ice shavings from the 

microtome blade into 10 ml vials, before transferring the melted sample to smaller 2 ml vials 

by a pipette.  Measurement of procedural blanks of frozen UHP water that had been in 

contact with each piece of apparatus showed negligible concentrations except for the 

samples that had been in contact with the paintbrush and the tongs (see table 3.07).  As a 

result, the paintbrush was removed from the methodology and instead a plastic pipette tip 

was used to collect ice shavings directly into 2 ml vials to limit the total pieces of apparatus 

used.  Extra care was taken to clean the metal tongs before sample preparation, with the 

UHP samples used as a calibration for any remaining contamination from the tongs and the 

microtome blade. 

Table 3.07 outlines the various experiments carried out to identify potential sources of 

contamination to the sample collection.  For the results, “N/D” indicates where the 

concentration of the chemical species is lower than detection limits and negligible.  Five 

samples were taken for each experiment and stored in their various conditions for 24 hours: 

“CL/x” is a UHP water sample in an unsealed vial that was stored in clean room conditions; 

“CL/Lx” is a UHP water sample in a sealed vial that was stored in clean room conditions; 

“T/x” is UHP water that has been in contact with the tongs; “PB/x” is a UHP water sample 

that has been in contact with the paintbrush; “CR/x” is a UHP water sample in an unsealed 

vial that was stored in cold room conditions (and melted in clean room conditions prior to 

analysis); “CR/Lx” is a UHP water sample in a sealed vial that was stored in cold room 

conditions; “LF/x” is UHP water that was frozen in a plastic lay-flat bag and sampled from the 

centre of the UHP ice core. 
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Table 3.07: Table of anion results for all instruments that come into contact with ice samples as part of 

the discrete sampling method.  In the sample ID names, UHP water is referred to as MilliQ (MQ) water. 

N/D signifies ‘not determined’ (below the detection limit).  Precision of the ion chromatography is 

estimated at 4-10% on measurements; the precision is lower for measurements close to the detection 

limit. 

Sample ID Contamination 

test 

F (ppb) MSA 

(ppb) 

Cl (ppb) NO3 (ppb) SO4 (ppb) 

Detection 

limit (ppb) 

 0.4 0.1 0.5 1.45 1.7 

MQ/CL/1  UHP water 

samples in  

that have been 

stored in 

unsealed vials 

in clean room 

conditions for 

24 hours 

N/D N/D N/D N/D N/D 

MQ/CL/2 N/D N/D N/D N/D N/D 

MQ/CL/3 N/D N/D N/D N/D N/D 

MQ/CL/4 N/D N/D N/D N/D N/D 

MQ/CL/5 N/D N/D N/D N/D N/D 

MQ/CL/L1  UHP water 

samples that 

have been 

stored in  

sealed vials in 

clean room 

conditions for 

24 hours 

N/D N/D N/D 0.5 N/D 

MQ/CL/L2 N/D N/D N/D N/D N/D 

MQ/CL/L3 N/D N/D N/D N/D N/D 

MQ/CL/L4 N/D N/D N/D N/D N/D 

MQ/CL/L5 N/D N/D N/D N/D N/D 

MQ/T/1  UHP water 

samples that 

have been in 

contact with 

the tongs used 

in the 

sampling 

process 

N/D N/D N/D 3.0 N/D 

MQ/T/2 N/D N/D N/D 3.9 N/D 

MQ/T/3 N/D N/D N/D 3.2 N/D 

MQ/T/4 N/D N/D N/D 6.4 N/D 

MQ/T/5 N/D N/D N/D 3.0 N/D 

MQ/PB/1  UHP water N/D N/D 43.5 185.2 12.9 
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MQ/PB/2 samples that 

have been in 

contact with a 

paint brush 

used in the 

sampling 

process 

N/D N/D 31.4 40.7 7.6 

MQ/PB/3 N/D N/D 30.6 21.7 7.2 

MQ/PB/4 N/D N/D 29.3 17.2 6.8 

MQ/PB/5 N/D N/D 30.5 18.0 6.7 

MQ/CR/1  UHP water 

samples that 

have been 

stored in 

unsealed vials 

in cold room 

conditions for 

24 hours 

N/D N/D N/D N/D N/D 

MQ/CR/2 N/D N/D N/D N/D N/D 

MQ/CR/3 N/D N/D N/D N/D N/D 

MQ/CR/4 N/D N/D N/D N/D N/D 

MQ/CR/5 N/D N/D N/D N/D N/D 

MQ/CR/L1  UHP water 

samples that 

have been 

stored in 

sealed vials in 

cold room 

conditions for 

24 hours 

N/D N/D N/D N/D N/D 

MQ/CR/L2 N/D N/D N/D N/D N/D 

MQ/CR/L3 N/D N/D N/D N/D N/D 

MQ/CR/L4 N/D N/D N/D N/D N/D 

MQ/CR/L5 N/D N/D N/D N/D N/D 

MQ/LF/1  UHP water 

samples that 

have been 

frozen in a 

plastic lay-flat 

bag  

N/D N/D N/D N/D N/D 

MQ/LF/2 N/D N/D N/D N/D N/D 

MQ/LF/3 N/D N/D N/D N/D N/D 

MQ/LF/4 N/D N/D N/D N/D N/D 

MQ/LF/5 N/D N/D N/D N/D N/D 

 

3.5.4.3 Testing for contamination of outer core section  

Thomas (2006) found that it was necessary to remove as much as 10mm from the outer 

edges of the ice core to remove contamination from handling.  As part of that study, a full 

section of the GRIP ice core, 50 mm in length, was cut using a band saw and cleaned using a 
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scalpel to remove the outer millimetre of ice.  The convex area of the cut section was then 

removed and sampled to test the hypothesis that drilling fluid contamination from the outer 

surface of the ice core permeates into the ice core section.  Using a band saw, this convex 

section of ice was cut into 4 mm sections of ice from the outside edge to the inside edge 

until no ice remained (fig. 3.05).  The ice sections were then melted and analysed via ion 

chromatography.   

 

Figure 3.05: Diagram of the convex section of ice sampled in an experiment to test the hypothesis that 

contaminants from the drilling process permeate into the ice core (Thomas, 2006).  Figure taken from 

Thomas (2006). 

 

The ion concentrations measured from the cut sections were presented in relation to the 

distance from the centre of the ice core.  The outer edges have the highest concentrations of 

all the ions measured whilst the lowest concentrations were found at the centre (fig. 3.06) 

(Thomas, 2006).  This suggests that the outermost sections of ice are contaminated through 

the drilling process, and that the innermost section of the ice core should be analysed 

separately to yield an uncontaminated chemical profile.  The maximum amount of ice that 

should be removed in order to eliminate the risk of contamination from the outer section of 

the ice core was determined to be 10 mm.  Therefore, in this study the sampled ice was 

taken from the middle section of the archive ice in order to avoid the most contaminated 
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outer surface, and we can be confident that by scraping the outer millimetre at the start of 

every cutting session we will remove any remaining contamination from the ice sample.   

 

Figure 3.06: Factor increase of ion concentrations emanating from the centre of a section of the GRIP 

ice core.  Results show concentrations decrease from the outside towards the centre of the core, 

suggesting that the outer 1 cm of ice contains contaminants from the drilling process.  Figure taken 

from Thomas (2006). 

 

3.5.5 Potential uses of high-resolution analysis on ice cores 

By developing techniques that improve the spatial resolution at which ice cores can be 

sampled, measurements now have the potential to yield sub-annual profiles originating from 

periods of time currently not available using standard laboratory techniques.  Sub-annual 

profiles can be an important tool for assessing the accuracy of accumulation reconstructions 

and thinning profiles.  The comparison of modelled annual layer thickness with measured 

values can also be used as a constraint within an inverse approach.  The following section 

outlines how such a technique has been used to improve a standalone age-depth model.  

Annual layer thickness has been used as an observational constraint within an inverse 

approach for all three age-depth profiles constructed during this study. 

3.6 Development of ice-core modelling techniques 

Working from a platform based on published techniques in ice core reconstructions, this 

study seeks to develop and improve age-depth modelling techniques by accounting for 

several factors that are important for dating high accumulation coastal ice cores.  The 

techniques developed here employ free parameters that are solved for within the inverse 
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approach; these free parameters have been used to optimise either accumulation or 

thinning profiles and are constrained using observational data measured either in situ on the 

ice sheet, or in the ice-core record. 

The following sections will outline the mathematical approaches that have been used in this 

study, from the established inverse approaches to the methodological approach particularly 

developed for this study. 

3.6.1 Inverse Probabilistic Approach 

Using the mathematical approach explained in section 2.5.6 (eq. 2.28 – 2.30), several inverse 

approaches have been developed in this study. These approaches use age horizons to 

anchor the modelled age-depth profile at specific depths using a variety of techniques.  The 

general purpose of an inverse approach is to explore options within a defined model space 

and calculate optimal values for poorly-constrained parameters that are associated with 

either the accumulation reconstruction or thinning function.  This permits the optimisation 

of the reconstructed profiles and leads to a better fit between age estimates and known-age 

horizons at shared depths. 

In addition to the known-age horizons, the deep ice cores studied here can also be 

constrained using physical data, such as annual layer thickness measurements, obtained 

from the ice-phase of the ice core by both LA ICP-MS and the discrete sampling technique 

(sections 3.4 and 3.5).  In the following section, two statistical techniques that can be applied 

to a forward model to iteratively search the model space and optimise age-depth profiles 

are described. 

3.6.1.1 Monte Carlo Markov Chain (MCMC) algorithm 

The most simplistic inverse approach involves the use of an iterative MCMC model, where a 

single parameter is constrained using the observational data.  Translated from mathematical 

notation, eq. 2.28 – 2.30 explore the model space using eq. 2.28 to quantify the misfit 

between the model estimates and the observational data, and hence constrain the p-

parameter (Chapter 2; section 2.5).   

This p-parameter controls the shape of the thinning function (section 2.5.3.3; eq. 2.13 – 

2.17).  By starting with a priori information (in the case of this model it is the empirically-

calculated p-parameter; eq. 2.16), the model space is explored by increasing or decreasing 

the p-parameter value, and then re-solving for the thinning function, the annual-layer 
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thickness, and the age-depth profile.  Comparison of these profiles with the observational 

data determines the direction of the next iteration by the assessment of the root mean 

square error (RMSE) value with the previous iteration.  This approach seeks to minimise the 

RMSE value in order to find the p-parameter value which reduces the deviation between 

observed and modelled profiles the most.  Convergence on a stable solution is assumed 

once RMSE values from the previous and present iterations differ by less than 0.005%. 

The a posteriori information provides a new value for the p-parameter, which controls the 

shape of the vertical deformation and the thinning function; this also allows the 

recalculation of an a posteriori value for Glen’s flow law exponent, n.  

3.6.1.2 Directed Search Algorithm 

The MCMC approach used in the ice-core age-depth model is ideal when assessing a large 

model space.  Alternatively, when the boundaries of a model are well understood and can 

be constrained, one or more free parameters can be optimised using a ‘pattern search’ 

approach.  This approach is part of the ‘Directed Search’ methods, and was first used by 

Fermi and Metropolis on the Los Alamos MANIAC (Lewis et al., 2000). 

A 5-dimensional model, explained in detail later in this chapter, optimises the geothermal 

heat flux (GHF), surface temperature, and mean annual accumulation, whilst accounting for 

potential error in depth and borehole temperature measurements.  The model uses a 

Directed Search algorithm to optimise the five variables, which are tightly bounded by small 

error margins. These tight boundaries mean that a random search approach, such as the 

MCMC algorithm, is not required.  Instead, the Directed Search method is more useful in this 

scenario as it can efficiently and systematically calculate optimal values by working through 

every potential solution quickly.   

3.6.1.3 Perturbed Accumulation Profile 

In Chapter 2, the general principles behind perturbation theory were introduced (section 

2.5.6).  Perturbation theory has been used in this study to develop an inverse approach 

where the results are evaluated in a two-step model: in the first step, a perturbed 

accumulation profile is constructed by adding a smooth perturbation profile, ε(z), to the 

empirically-derived initial accumulation profile, Ain (estimated using any of the three 

empirical accumulation relationships outlined in eq. 2.05 – 2.09).  
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The perturbation profile is a randomly-generated, spatially-variable array that varies with 

respect to the depth below the surface (mweq).  The number of points in the perturbation 

profile is determined on an ice-core specific basis; observational constraints are located 

between two perturbation points and this controls the length of an ice-core profile that is 

perturbed by the same value.  The perturbation profile is applied to Ain to calculate a 

randomly-perturbed accumulation estimate (eq. 3.01).  The randomly-perturbed 

accumulation profile is then used in the second step of this inverse approach.  

 A(z) =  Ain  ∙  [1 +  ε(z)] (3.01) 

The second step uses the Directed Search approach to solve for the optimal thinning 

function, as explained in section 3.6.1.2.   To solve for the optimal shape function, the p-

parameter used in the One-Dimensional thinning function was adjusted during the second 

step of the iterated model.  The p-parameter is used in the optimisation process as the 

empirical estimate is uncertain; as outlined in the introduction of the One-Dimensional ice-

flow model (section 2.5.3.3), the estimated value of the p-parameter is based on several 

assumptions.  In addition, the One-Dimensional ice-flow model is based on the Shallow Ice 

Approximation (SIA) (Lliboutry, 1979) that does not necessarily hold true at the ice divide 

(Parrenin et al., 2007a).  In the case of the deep ice cores drilled at Berkner Island and 

Fletcher Promontory, the Shallow Ice Approximation (SIA) does not hold due to the presence 

of Raymond stacks at the bed (Raymond, 1983).  The plugs of ice forming stiff arches (a 

Raymond stack) at the bed lead to increased thinning towards the bed and a build-up of 

older ice.  Empirical estimations of ice flow that do not consider this scenario would 

underestimate the age of the ice at the bed.    

A profile that fits the boundary conditions and the observational data will ‘pass’ and be kept 

as a potential age-depth profile.  For this technique, the boundary conditions are set as a 

range of values in the p-parameter of the thinning function.  The boundaries for the p-

parameter are set as 0.5 ≤ p ≤ 5.5 (Raymond, 1983; Wolff and Doake, 1986; Gillet-Chaulet et 

al., 2011).  

Following the two-step approach, optimised profiles of accumulation and thinning yield 

profiles of annual layer thickness and age-depth.  The optimised profiles of accumulation 

and thinning are assessed based on the annual layer thickness and age-depth profiles that 

they yield, by comparing the differences between the estimated age and annual layer 

thicknesses at depths corresponding to observed values using a root mean square error 



Chapter 3 

 79 

analysis (RMSE, eq. 2.28).  The final profiles of accumulation, thinning, annual layer thickness 

and age-depth were chosen based on the fit within the observational data confidence 

intervals.  

3.6.2 Phase-Sensitive Radio Echo Sounding (pRES) Thinning Function 

Two techniques have been developed in this study to estimate age-depth profiles using pRES 

data.  The principles of pRES and its potential to be used to calculate an independent 

thinning function is explained in section 2.5.3.4.  pRES measurements have been provided by 

Jonathan Kingslake (pers. comm.)  The two techniques differ: the first technique is steady-

state and assumes that the mean annual accumulation rate is unchanged with time.  The 

second technique is a dynamic model that optimises the annual layer thickness profile in 

order to reconstruct a variable past accumulation rate. 

3.6.2.1 Steady-state Age-Depth Profile 

A steady-state age-depth profile is estimated by assuming that mean annual accumulation is 

unchanged with respect to time, t, and depth, z.  Vertical velocity, w, is interpreted from the 

pRES measurements, u(z), applied to the mean present-day annual accumulation rate, b: 

 
w(z) =  

∂u

∂z
∙ b 

(3.02) 

The age-depth profile of the ice core is calculated using a finite difference approach, using 

eq. 3.03.  For this approach, i and j are indexes on a grid defined by the time- and depth-

steps, dt and dz. 

 
agej

i = agej
i−1 + dt ∙ [1 − w(z)] ∙ (

agej
i−1 − agej−1

i−1

dz
) 

(3.03) 

3.6.2.2 Variable Accumulation History and pRES 

The second model derives an annual layer thickness estimate using the pRES measurements 

as an independent thinning function.  Age-depth is then estimated using eq. 2.21.  An initial 

profile of annual layer thickness is derived in a forward model using eq. 2.19.  Eq. 2.19 uses 

the difference of the pRES measurements with respect to depth as a vertical velocity profile, 

and requires initial estimates of accumulation and age (the integral of the inverse of vertical 

velocity, 1/w, can be used to reconstruct an initial steady-state age-depth estimate).  
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Fig. 3.07 outlines the pRES model.  Following the calculation of the initial estimates, the age-

depth profile has been updated using an annual layer thickness profile that is calculated 

using a perturbed accumulation history.  Eq. 2.19 can be repeated, using an updated age-

depth profile and a perturbed accumulation history with each iteration.  The initial 

accumulation profile is perturbed using eq. 3.01.   

 

Figure 3.07: A flow diagram outlining an approach to reconstruct the accumulation, annual layer 

thickness, and age-depth profile using pRES measurements. 

 

The model uses an MCMC algorithm to iterate the perturbation profile until the optimal 

profiles of accumulation, age, and annual layer thickness are found.  Mean annual layer 

thicknesses and the age-depth profiles are compared with observational data.  The approach 

is optimised by iterating eq. 2.19 until the model converges on the optimal profiles of age-

depth, accumulation, and annual layer thickness; the optimal profiles are determined by 

comparison of the age-depth and annual layer thickness estimates with observational data.  

This process is repeated until 1000 possible profiles of accumulation, age, and annual layer 

thickness scenarios are outputted.  The range of the 1000 profiles form the uncertainty in 

the model results. 

Finally, the steps above are computed in snow-equivalent units because the vertical velocity 

measurements reflect densification of the firn layers in the upper 100 m of the ice core.  

Final modelled profiles are corrected for the firnification process using the density profile 
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(section 2.6.1).  A thinning function, η, can be interpreted from the relationship between 

annual layer thickness and accumulation, after correction for density (for which the 

measured density profile is ρ(z), and the density of ice is ρi), with all profiles in snow-

equivalent units: 

 

η(z) =  

λ(z)
A(z)

ρ(z)
ρi

⁄  

(3.04) 

3.6.3 Borehole Thermometry Profiles 

In order to fulfil the fourth objective outlined in section 1.2.1, and to assess the degree to 

which in situ temperature measurements along the ice-core borehole can be used to 

reconstruct an independent surface temperature history, a second type of model has been 

developed.  Based on the principles of heat advection, the advection from the surface of the 

ice sheet to the bedrock has been reconstructed using an MCMC Direct Search algorithm in 

order to minimise the error propagated from the observed depth measurements along the 

borehole.  The model uses the equations outlined in section 2.5.5 (eq. 2.22 – 2.27), leaving 

the boundary conditions of GHF, mean annual accumulation, b, and surface temperature, TS, 

open in order to solve for the optimal values by comparison with measured borehole 

temperature profiles.  The model is outlined in the flow chart (fig. 3.08).   

 

Figure 3.08: Flow chart outlining the methodological approach of the borehole temperature model. 
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Using the relationship for the advection of heat, three assumptions are made in this study, 

pursuant to similar studies by Nagornov et al. (2006) and Zagorodnov et al. (2012): (i) that 

the viscous heating term is negligible; (ii) that past variations in the ice velocity, u, have had 

little effect on the temperature field and accumulation rate due to the stability of the ice 

sheet thickness and location of the ice divide, and (iii) that the horizontal thermal gradient is 

negligible relative to the vertical gradient.  As a result, we can assume that the temperature 

distribution can be completely described by solving the one-dimensional heat equation: 

 
 αD

∂2T

∂z2 − w(z)
∂T

∂z
= 0 

(3.05) 

Where αD is the term for thermal diffusivity, defined as αD = αC/ρC.  In this relationship, ρ is 

the density of pure ice, 0.917 Mg m-3, αC is the thermal conductivity (2.1 W m-1K-1), and the 

specific heat capacity of ice (C) is 2097 J kg-1 K-1.  The density-corrected vertical velocity 

profile, w, is the product of the steady-state accumulation rate, b, and the Dansgaard-

Johnsen thinning profile (Dansgaard and Johnsen, 1969).  As part of the forward model, b 

and TS (taken as the borehole temperature measurement at the surface of the ice sheet) are 

prescribed using present-day mean values in order to estimate GHF.  These are the same 

values as used in the ice-core age-depth reconstructions for the three locations (table 3.01).   

In order to limit potential error from the assumed present-day values and the depth and 

temperature measurements in GHF calculations, b and TS are optimised as free parameters 

in an inverse approach.  Using a ‘pattern search’ algorithm as part of a direct search method 

(section 3.6.1.2), the inverse model iterates the eq. 3.05, changing the value of the present-

day accumulation rate, surface temperature and GHF.  As a result, the optimal values of b, 

TS, and GHF are determined as the values that produce the best-fit reconstruction of the 

borehole temperature profile.  Confidence intervals are estimated by solving for 1000 

optimal values for each parameter; each unique parameter solution is optimised using a 

unique set of boundary conditions defined by perturbing the depth and temperature 

measurements within the prescribed error margin of the measured profiles (0.1 K for 

temperature measurement). 

3.7 Summary 

For this study into the most accurate techniques used to reconstruct the age-depth and past 

temperature profiles of three deep ice cores from the Antarctic Peninsula and Weddell Sea 

region, a combination of realistic ice flow modelling, observational data and novel 
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techniques in annual layer counting are required.  Application of ultra-high resolution trace-

element analysis will improve our interpretation of the accumulation rate in the deepest ice 

within the ice cores, where sub-annual profiles are not obtainable through regular 

techniques, due to small annual layer thicknesses.  In order to be confident of the age-depth 

reconstructions presented in this study, novel applications of geophysical data have been 

introduced as a new option in estimating the thinning function at an ice divide, as well as 

reconstructing past surface temperature with a view to assessing the reliability of 

accumulation reconstructions from the stable water isotope profile.  The following chapters 

will present the results of both these novel and published techniques in ice core modelling, 

and assess the results using an improved ice core chemical profile in order to best interpret 

the ice core records. 
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Chapter 4: Results – Construction and analysis of age-

depth models applied to the Fletcher Promontory deep 

ice core. 

4.1 Introduction 

Objective 1 of this project (section 1.2.1) is to quantify the variation in age-depth modelling 

techniques by comparing the relationships that are used to reconstruct accumulation and 

ice-sheet processes in order to model the age scale of an ice core.  Quantification and 

assessment of these techniques is imperative in order to ensure that we apply the most 

robust modelling techniques to the Fletcher Promontory (FP), Berkner Island (BI), and James 

Ross Island (JRI) ice-cores.  Within this chapter, multiple methods used in the reconstruction 

of ice sheet and atmospheric processes (sections 2.5, 2.6, and 3.6) have been synthesised 

and applied to the FP ice core profile in order to assess the variation between methods.  In 

addition to using established techniques, this chapter also presents ice core profiles that 

have been reconstructed using novel techniques, combinations of techniques, and in situ 

measurements that can provide an independent validation of the modelling.  The results are 

analysed with a view to understanding the impact that the use of each method can have on 

the age-depth profiles.  The chapter only presents results for the FP ice core, since this is the 

only site at which all reconstruction techniques can be applied, due to the availability of in 

situ vertical velocity measurements at this site.  Where applicable, each modelling technique 

has also been applied to the JRI and BI ice core records and results can be found in Appendix 

1. 

4.2 Ice-Core Reconstructions 

As previously explained, the age of an ice particle at a particular depth is the sum of the 

annual layers above it.  Following this principle, the most important properties that must be 

reconstructed are the local accumulation history and the rate of thinning of each annual 

layer subsequent to deposition.  This allows us to estimate present-day annual layer 

thicknesses throughout the ice core, the integral of which yields an age-depth record.  

Accumulation and thinning profiles can be estimated using empirical reconstructions, and 

optimised using an inverse approach.  This chapter will present empirical reconstructions for 

water-equivalent depth (mweq), surface temperature (TS), accumulation (A), and thinning 

(η), before assessing the annual layer thickness (λ) and age-depth profiles that are generated 
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via the application of thinning functions to each accumulation history.  Accumulation is 

reconstructed using three empirical techniques, and three different thinning functions are 

applied to each accumulation reconstruction.   In addition, an unconstrained age-depth 

reconstruction using phase-sensitive radio echo sounding (pRES) measurements is 

presented.  Overall, ten unconstrained age-depth scenarios will be produced.  The results of 

the inverse modelling techniques are presented as ‘constrained’ profiles later in the chapter.   

In order to assess the techniques that are used in constructing the unconstrained age scales, 

inverse modelling approaches are used to constrain the ice-core reconstructions to 

observational data.  This final step is carried out using four different modelling approaches, 

and the results are compared with an independent estimate of accumulation from a global 

circulation model (GCM).  Different approaches in age-depth modelling can use different 

initial profiles of accumulation and thinning, resulting in multiple age-depth model scenarios 

from the same approach.  Section 4.4 presents the ‘constrained’ profiles of accumulation, 

thinning, and age-depth, and is divided depending on the modelling approach used.  The 

total number of model scenarios are outlined at the beginning of each subsection, detailing 

the a priori information that has been used. 

4.2.1 Observational Data  

An inverse method requires a priori information to calculate an optimal age-depth profile; 

for this chapter the only observational data used to anchor the age-depth profiles are the 

age horizons identified throughout the ice core.  These age horizons have been selected by 

matching clear features in the EPICA Dome C (EDC) stable water isotope profile with similar 

features observed in FP.  Generally, these features are prominent warming events known as 

Antarctic Isotopic Maxima (AIM) observed in all Antarctic deep ice cores that span at least 

the last glacial cycle.  This is with the exception of the youngest age horizon, which is 

identified as the peak in the stable water isotope signal at the transition from the LGM to 

the Holocene.  The EDC age scale used is the Antarctic Ice Core Chronology 2012 (AICC2012), 

taken from Veres et al. (2013).  Table 4.01 lists the age horizons, depth (snow, m, and water 

equivalent, mweq) and associated uncertainty on the age estimate.  The associated 

uncertainty on each age constraint is taken from the uncertainty on the age from the 

AICC2012 (Bazin et al., 2013; Veres et al., 2013).  Throughout this chapter, all accumulation, 

thinning, and age-depth profiles are presented in water equivalent depth units.  The total 

thickness of the FP ice core is 599 mweq. 
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Table 4.01: List of age horizons used to constrain the FP ice core age-depth profile.  Age horizons have 

been derived by Rob Mulvaney (pers. comm.) by matching FP stable water isotope signatures with 

EDC stable water isotope signatures of assumed-synchronous AIM events (Bazin et al., 2013; Veres et 

al., 2013). 

Depth below 

the surface (m) 

Depth below the 

surface (mweq) 

Observed 

Age (ka BP) 

Uncertainty (ka 

BP) 

Observed 

feature 

540.59 495.73 14.60 0.25 AIM 1 

562.40 515.72 38.25 0.80 AIM 8 

573.98 526.34 46.48 0.80 AIM 12 

589.00 540.11 53.70 0.80 AIM 14 

592.40 543.24 59.57 0.80 AIM 17 

 

4.3 Empirical Reconstructions 

The relationships for temperature, accumulation, and thinning functions, described in 

section 2.5 (eq. 2.03 – 2.19) and 3.6 (eq. 3.01 – 3.04), have been applied to the FP ice core.  

The relationships all assume a water-equivalent volume and depth scale, which is calculated 

using the Herron and Langway model (section 2.6).  Age-depth profiles are estimated using 

an initial profile for accumulation and thinning.  Three accumulation techniques, referred to 

as the Arrhenius (Arr, eq. 2.05; section 2.5.2.1), Clausius-Clapeyron (CC, eq. 2.06 – 2.08; 

section 2.5.2.2), and Simple Exponential (SE, eq. 2.09; section 2.5.2.3) relationships, are 

applied to the stable water isotope profile to reconstruct an empirical accumulation history.  

In order to estimate a present-day annual layer thickness, three thinning functions following 

the Nye (eq. 2.10; section 2.5.3.1), Dansgaard-Johnsen (D-J, eq. 2.11-2.12; section 2.5.3.2), 

and One-Dimensional Ice Flow (1-D, eq. 2.13-2.17; section 2.5.3.3) relationships are applied 

to the accumulation history.  It has already been stated that in Polar Regions, where the 

mean annual surface temperature is below the freezing point and hence the annual snow 

deposition is preserved, the age of a particle of ice at a particular depth in the ice sheet is 

assumed to be the sum of the annual layers of snowfall above it.  This is estimated using eq. 

2.21.  In addition to these techniques, a steady-state age-depth profile is interpreted from 

pRES in situ measurements of vertical velocity (eq. 2.19; eq. 3.03-3.04).  This approach 

assumes accumulation has been steady through time. 
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Site-specific variables for the FP ice core are listed in table 4.02, including the present-day 

ice sheet thickness, mean annual present-day values for temperature (at the surface (TS), 

bed (TB), and inversion layer (Ti)), accumulation, and the stable water isotope ratio. 

 

Table 4.02: Site specific variables for the FP ice core.  Information has been obtained from Mulvaney et 

al. (2014); the inversion temperature has been calculated using eq. 2.04. 

 

4.3.1 Water-Equivalent Depth Conversion 

The ice core density profile is reconstructed using the Herron and Langway relationship 

(section 2.6).  The density profile (fig. 4.01) is reconstructed in three stages, and a least 

squares regression analysis accounts for potential inconsistencies in the ice core (such as 

fractures and chips missing from the core).  Using the density profile, the snow depth of the 

ice core is converted into a water equivalent depth by accounting for the lower density 

values in the shallow depths of the ice core. 

Variables FP 

Mean Annual Present-Day Accumulation Rate (m yr-1) 0.38 

Mean Annual Present-Day Deuterium Ratio, δDθ (‰) -258.64 

Present-Day Ice-sheet thickness, H (m) 654.00 

Mean Annual Present-Day Surface Temperature, TS
θ (K) 

Mean Annual Present-Day Surface Temperature, TS
θ (oC) 

246.00 

-27.10 

Mean Annual Present-Day Temperature at the bed, TB (K) 

Mean Annual Present-Day Temperature at the bed, TB (oC) 

255.00 

-18.10 

Mean Annual Present-Day Temperature at the inversion layer, Ti
θ (K) 

Mean Annual Present-Day Temperature at the inversion layer, T i
θ (oC) 

254.01 

-19.14 
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Figure 4.01: (a) Density Reconstruction for the FP ice core plotted against snow depth.  The three 

different colours refer to the three stages of densification; parameters describing these three stages 

are optimised by least squares approach (section 2.6).  The raw density profile is shown as black circles 

and was measured prior to this research project.  Raw density was not measured for the full length of 

the ice core, and hence the reconstructions only go to the same depth.  Density is extrapolated to the 

bed using the third stage equation fitted to the data; (b) Water-equivalent depth with respect to snow 

depth. 

 

4.3.2 Temperature Reconstruction 

The techniques for reconstructing the surface temperature and inversion layer temperature 

history are presented in section 2.5.1 (eq. 2.03-2.04); the temperature profiles are plotted 
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against depth below surface in fig. 4.02.  Temperature profiles are reconstructed using the 

stable water isotope profiles already available prior to this project. 

 

Figure 4.02: (a) Reconstructed surface temperature using eq. 2.03 using the stable water isotope 

profile obtained prior to this research project (section 2.5.1); (b) Reconstructed temperature at the 

inversion layer with respect to depth below the surface (mweq) using eq. 2.04 using the stable water 

isotope profile obtained prior to this research project (section 2.5.1).  In both plots, a higher 

temperature at ~580 mweq that steadily decreases towards 500 mweq likely relates to the cooling 

from the last interglacial to the last glacial period.  Furthermore, a sharp increase in temperature from 

~500 mweq to 400 mweq is likely to be the transition from the Last Glacial Maximum (LGM) to the 

Holocene. 
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4.3.3 Accumulation Reconstructions 

Three methods in accumulation reconstruction – that use the CC, SE and Arr relationships 

(section 2.5.2, eq. 2.05-2.09) – all assume that accumulation is proportional to the stable 

water isotope profile obtained from the ice cores.  This is due to the shared assumption 

between the three empirical relationships that accumulation rates are partially dependent 

on the transport of moisture from warmer regions.  The transportation is temperature-

dependent, and hence there are obvious similarities between the three accumulation 

reconstructions and the surface temperature reconstruction, which is derived from the 

stable water isotope profile (fig. 4.02 and 4.03).  Fig. 4.03 presents three empirical 

accumulation reconstructions, plotted against depth below surface, where the surface of the 

ice sheet is at 0 mweq. When converted to age, this depth corresponds to the year the ice 

core was drilled.  The age of the ice increases with depth below surface. 

The three accumulation reconstructions follow a similar shape due to the shared 

relationship based on stable water isotopes or temperature derived from the stable water 

isotope record.  Between 500 mweq – 450 mweq, each accumulation reconstruction 

increases sharply.  Based on the increases in stable water isotopes and temperature also 

observed in the FP record at this depth range, it has been hypothesised earlier in this 

chapter to be the transition from the LGM to the Holocene.  Across this depth range, the 

temperature profile increases sharply by 15 K (fig. 4.02); the sensitivity of each technique is 

discussed in section 4.5.1.    

The Simple Exponential (blue), Arrhenius (red), and Clausius-Clapeyron (purple) 

accumulation reconstructions are estimated as a difference in accumulation in comparison 

to the present-day mean annual accumulation rate, and hence estimate a mean annual 

accumulation rate throughout the upper 450 mweq close to the present-day value of 0.38 m 

yr—1.   
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Figure 4.03: Accumulation reconstructions using empirical relationships using the stable water isotope 

profile obtained prior to this research project. 

 

4.3.4 Thinning Functions 

Estimation of the compaction of annual layers due to total strain, and the effect on original 

layer thickness, is the second step in the age-depth reconstruction.  The results of three 

methods – Nye, Dansgaard-Johnsen, and a One-Dimensional model (eq. 2.10 – 2.17; section 

2.5.3) – that can estimate the rate of thinning of an original annual layer to its present-day 

thickness are presented (fig. 4.04).  Unlike the accumulation reconstructions, these three 

techniques do not use any chemical or geophysical data obtained from the ice core or ice 

sheet.  These methods provide only a depth-dependent view of the thinning function, and 

cannot account for any temporal variations in vertical velocity or ice flow.  The thinning 

function is a non-dimensional ratio of the original annual layer thickness to the present-day 

annual layer thickness and varies with depth (in mweq), where 1 indicates no thinning at the 

surface, and 0 is total thinning at the bedrock.  Mathematically translated, a thinning 

function with a value of 0 at the bed means that the age-depth profile will tend towards 
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infinity; the infinite value represents the high total strain that limits the precision of annual 

layer thickness estimates at the bed.  As a result, the age scales presented in this chapter 

cover 99% of the ice core record, but do not yield an age at the bed, in order to prevent the 

age scale tending towards infinity. 

The notable difference between the three thinning functions is the linearity of each profile.  

A steep gradient, where the thinning function decreases rapidly in the ice core profile, is 

interpreted as reflecting a high rate of thinning.  The Nye relationship is a simple linear 

calculation; the linearity of the Dansgaard-Johnsen thinning function is determined by the 

prescribed basal shear depth (h – in this study I have used a value of 30% of the total ice 

sheet thickness, [0.3*H]), whilst the shape of the One-Dimensional thinning function is 

determined by the value of the p-parameter (eq. 2.16).  In an empirical reconstruction, the 

p-parameter directly controls the shape of the deformation profile that in turn controls the 

shape of the thinning function, presented in fig. 4.04.  It is calculated by assuming a value for 

Glen’s flow exponent of n = 3, and that the temperature gradient between the surface of an 

ice sheet and the bedrock is linear. 

 

Figure 4.04: Unconstrained thinning functions – blue: Nye; green: Dansgaard-Johnsen; red: One-

dimensional ice flow. 
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4.3.5 Age-Depth Profiles 

Fig. 4.05 presents the age-depth profiles that are calculated by integrating annual layer 

thickness, which is calculated as the product of each of the accumulation and thinning 

function combinations.  Results are presented in a table format: each column uses an 

accumulation estimate, combined with a thinning function that changes with each row, i.e. 

the first column presents the results of the Clausius-Clapeyron-derived accumulation history 

with each thinning function applied.   

A tenth plot is presented at the bottom-left of fig. 4.05; in this particular case, using in situ 

measurements of vertical velocity from pRES and assuming a steady state rate of 

accumulation through time, an additional empirical age-depth profile can be reconstructed 

(section 2.5.3; eq. 2.18).  For reference, the age horizons are marked on each plot by crosses 

so that the results can be compared with observational data, but this information has not 

been used to constrain the age-depth reconstructions.  For further comparison, table 4.03 

presents the age estimates at depths corresponding to age horizons for the ten empirical 

age-depth profiles. 

 

 



Chapter 4 

 95 

Figure 4.05: Age-depth profiles calculated by a combination of accumulation and thinning functions 

(grey) with respect to water equivalent depth below the surface of the ice sheet; age horizons plotted 

as black crosses with their associated age uncertainty.  The uncertainty associated with each age 

constraint is represented as the height of the black cross marking each horizon, but this is too small to 

be visible in the figure.  Each row applies a different thinning function; each column applies a different 

accumulation technique.  This is with the exception of the bottom-left plot which assumes a steady-

state rate of accumulation and uses in situ vertical velocity measurements to estimate an age-depth 

profile.  All results present age with respect to the depth below the surface (mweq).  None of the age-

depth profiles agree with the age horizons, with the profiles using the Nye thinning technique 

reconstructing the youngest ages towards the bed (~20 ka BP) and One-Dimensional, Dansgaard-

Johnsen, and pRES thinning profiles estimating an age close to the bed of 60-90 ka BP. 

Table 4.03: Age estimates (yrs BP) at depths corresponding to age horizons in the FP ice core.  Nine 

combinations of age-depth profiles using different empirical reconstructions of accumulation 

(Clausius-Clapeyron (CC), Simple Exponential (SE), and Arrhenius (Arr)), and different thinning functons 

(Nye, Dansgaard-Johnsen (DJ), and One-Dimensional (1-D)).  A tenth set of age estimates are 

calculated using the empirical pRES model. 
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4.4 Constrained Profiles 

The age-depth profiles constructed using the forward relationships in section 4.3.5 do not 

use age horizons to constrain the final age-depth profile.  The results shown in fig. 4.05 do 

not fit the age constraints plotted for reference, and are referred to as unconstrained 

profiles. Optimised, or ‘best-fit’, profiles can be estimated by searching for optimal values of 

free parameters.  The free parameter can be a single value, or a set of values, that is poorly 

constrained in the empirical model.  It is notable that, through the development of the 

inverse approaches, the optimised parameters must balance the interplay between the 

accumulation and thinning profiles; i.e. a high mean annual accumulation rate must be 

balanced with a high rate of strain in order to reconstruct an annual layer thickness that 

 Age estimate (yrs BP) 

 Observed age and 

uncertainty (yrs) 

Nye DJ 1-D 

CC 14600 ± 250 5474 8673 9590 

38250 ± 800 6866 13231 14347 

46480 ± 800 7629 16202 17390 

53700 ± 800 8753 21398 22630 

59570 ± 800 9028 22850 24079 

 Age estimate (yrs BP) 

 Observed age and 

uncertainty (yrs) 

Nye DJ 1-D 

SE 14600 ± 250 5389 8576 9477 

38250 ± 800 6908 13551 14669 

46480 ± 800 7729 16744 17940 

53700 ± 800 8929 22295 23538 

59570 ± 800 9221 23835 25075 

 Age estimate (yrs BP) 

 Observed age and 

uncertainty (yrs) 

Nye DJ 1-D 

Arr 14600 ± 250 5611 8828 9770 

38250 ± 800 6779 12656 13765 

46480 ± 800 7446 15252 16424 

53700 ± 800 8437 19838 21048 

59570 ± 800 8684 21141 22348 

 Age estimate (yrs BP) 

 Observed age and 

uncertainty (yrs) 

pRES  

pRES 14600 ± 250 7061 

38250 ± 800 9979 

46480 ± 800 13373 

53700 ± 800 21337 

59570 ± 800 23915 
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drives the age-depth profile through age constraints.  In the previous chapters, a number of 

inverse methods have been outlined; further explanation of the approaches is given with the 

results.  The accumulation and thinning relationships described in sections 4.3.3 and 4.3.4 

are therefore used as a priori information for the IceChrono, Direct Search (DS), pRES, and 

Optimised Accumulation and Thinning (OptAcc) inverse approaches, which anchor the a 

posteriori profiles to age horizons (table 4.01).  The following section presents the results of 

five approaches that explore the model space in order to estimate the optimal profiles of 

accumulation, thinning and age-depth.   

4.4.1 IceChrono 

The IceChrono toolbox is introduced in section 2.7.1, as well as in Parrenin et al. (2015).  

Using the IceChrono model approach, seven scenarios, using different a priori information, 

reconstruct the optimal accumulation and thinning profiles, with an estimated uncertainty 

for the optimal profiles. In all cases the age horizons (table 4.01) are used as a priori 

information. Of the seven scenarios, three scenarios also use the three empirical 

accumulation profiles (section 4.3.3), where it is assumed that each accumulation estimate 

has a 95% confidence interval as a priori information; three use the three empirical thinning 

profiles (section 4.3.4) set with a 95% confidence interval as a priori information, and the 

final scenario uses the stable water isotope profile (obtained prior to this research project) 

in combination with the age horizons as a priori information (this model scenario will 

hereafter be referred to as the freely-calculated profile).  The 95% confidence interval on a 

priori accumulation or thinning profiles is used to limit the degree to which these profiles are 

allowed to vary from their original values.   In these scenarios, a good fit to the age horizons 

must therefore be achieved by perturbing the remaining profiles, or other free parameters 

in the calculation. 

The IceChrono age-depth profiles differ greatly towards the bed; age-depth profiles reach a 

maximum age varying between 60 and 100 ka BP (fig. 4.06).  The age estimate and 

uncertainty at the depths corresponding to observational constraints are presented in table 

4.04.  Model scenarios that use a Dansgaard-Johnsen and One-Dimensional thinning 

function yield similar age estimates and uncertainty at these ‘known-age’ depths despite the 

differences between reconstructed accumulation and thinning profiles (fig. 4.07).   These 

two model scenarios do not estimate ages to within the age uncertainty of the observational 

data in the oldest two constraints.  For the remaining scenarios, the age-depth profiles 

produced by IceChrono consistently reach the age horizon of ~14 ka BP one mweq earlier 
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than the corresponding depth at 496 mweq, but they nevertheless agree with the observed 

age horizon to within the modelled uncertainty (fig. 4.06; table 4.04).  The modelled age 

estimates at 496 mweq, the depth corresponding to the first age constraint, are 156 - 220 

years older than the age horizon, with the exception of the age estimate using the Nye 

thinning function which estimates an age at the corresponding depth 30 years younger than 

the age constraint.  

 

Figure 4.06: Age-depth profiles constructed using the IceChrono model.  Top row (a-c): age-depth 

profiles with prior information on the accumulation profile; middle row (d-f): age-depth profiles with 

prior information on the thinning profile; bottom left (g): no prior information on either reconstruction.  

Uncertainty (grey) and age horizons with their associated uncertainty (black crosses) are included with 

each figure. 
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Table 4.03: Age estimate and uncertainty at the corresponding depth for the age constraints used in 

each scenario in the IceChrono model. 

Depth 

(mweq) 

Observed 

age and 

uncertainty 

(yrs BP)  

Modelled age (yrs BP) and uncertainty (yrs BP) 

CC  EXP  Arr  Nye  D-J  1-D  Free  

495.73 14600 ± 

250 

14781 

± 943 

14780 

± 273 

14820 

± 273 

14570 

± 265 

14756 

± 273 

14758 

± 275 

14770 

± 277 

515.72 38250 ± 

800 

38366 

± 977 

38068 

± 448  

38003 

± 449 

38406 

± 418 

38364 

± 459 

38363 

± 461 

38361 

± 467 

526.34 46480 ± 

800 

46263 

± 995 

46318 

± 434 

46342 

± 434 

46736 

± 379 

46172 

± 450 

46195 

± 452 

46259 

± 459 

540.11 53700 ± 

800 

55239 

± 1018 

55582 

± 366 

55589 

± 366 

55870 

± 327 

55254 

± 401 

55237 

± 404 

55238 

± 409 

543.24 59570 ± 

800 

58732 

± 1023 

58272 

± 429 

58271 

± 429 

57413 

± 378 

58729 

± 456 

58738 

± 458 

58713 

± 462 

 

The accumulation and thinning reconstructions that are produced when one of three 

empirical accumulation histories is set as boundary conditions with a 95% confidence 

interval are presented here (fig. 4.07 – 4.08).  The empirical and optimised profiles of 

accumulation do not differ greatly in these scenarios.  This is expected as a high confidence 

interval was assigned to each empirical profile.  The freely-calculated scenario calculates an 

accumulation profile that suggests a similar mean accumulation rate throughout the 

Holocene (upper 520 m snow), but is more sensitive to changes in the stable water isotope 

ratio, as indicated by its variability (fig. 4,07a, grey line). The greatest deviations in a 

posteriori profiles occur during the last glacial period (~540 m; fig. 4.07a).  The freely-

calculated accumulation profile reaches similar minimum rates of accumulation (0.05 m yr-1) 

as the Clausius-Clapeyron a posteriori profile.  Unlike the empirical reconstructions of 

accumulation, the IceChrono scenario that uses a Simple Exponential relationship as a priori 

information predicts accumulation rates that are in the middle of the range of glacial 

accumulation rates; the Arrhenius relationship continues to estimate higher accumulation 

rates in comparison with the other techniques during glacial conditions (540 m).  The higher 

rates of accumulation across 500 – 600 m result in a ‘kink’ feature in the thinning profiles for 
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the Arrhenius and Simple Exponential model scenarios (fig. 4.07b, red and blue lines); this 

feature is not replicated in model scenarios where mean accumulation rates reach a 

minimum value of 0.05 m yr-1 at 540 m.   

In addition, the IceChrono model scenarios that use prescribed thinning functions at a 95% 

confidence interval to reconstruct accumulation and thinning profiles are presented in fig. 

4.08.  The thinning profiles display differing amounts of curvature.  The differences between 

these thinning profiles are clear when comparing the modelled accumulation profiles for 

each a priori thinning profile; the freely-calculated, One-Dimensional, and Dansgaard-

Johnsen reconstructions of accumulation demonstrate higher mean annual rates of 

accumulation in comparison to the Nye reconstruction of accumulation.  The high rates of 

thinning are balanced by high accumulation rates to compensate for rapidly decreasing 

annual layer thickness (fig. 4.08).  In contrast, the low rates of thinning from the Nye model 

leads to low rates of mean annual accumulation (fig. 4.08, green lines).  
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Figure 4.07: (a) Four accumulation reconstructions that have been optimised using the IceChrono 

toolbox, and (b) the associated thinning profiles for each model scenario.  In these model scenarios, 

boundary accumulation profiles were fixed with 95% confidence to assess how this constraint would 

affect the thinning profile.  Optimised profiles are colour-coded for each model scenario.  Black: freely-

calculated; green: Clausius-Clapeyron; blue: Simple Exponential; red: Arrhenius, with the associated 

uncertainty for each profile marked by a lighter shade of the main profile colour.  The freely-calculated 

and Clausius-Clapeyron reconstructions are so similar that the freely-calculated reconstructions are 

presented as a 5-point moving average in order to smooth the profile and ensure that all profiles are 

visible.   
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Figure 4.08: (a) Four thinning reconstructions that have been optimised using the IceChrono toolbox, 

and (b) the associated accumulation profiles for each model scenario.  In these model scenarios, 

boundary thinning functions were fixed with 95% confidence to assess how this constraint would 

affect the accumulation profile. Optimised profiles are colour-coded for each model scenario.  Black: 

freely-calculated; Blue: Nye; Green: Dansgaard-Johnsen; Red: One-Dimensional, with the associated 

uncertainty for each profile marked by a lighter shade of the main profile colour. 

 

4.4.2 GCM 

A global circulation model (GCM) simulates climate and can yield information to a 250 km2 

resolution, including past accumulation rates over the Antarctic continent through time.  The 

methodology is outlined in section 2.5.2.4.  Accumulation is calculated using a Clausius-

Clapeyron approach as explained in Gregory & Morris (1996).  For this study, the HadCM3 

GCM uses 200-year simulations for each millennium, spanning back to 21 kyr, and it provides 

a temporally dependent accumulation estimate for 250 km2 grid cells (GCM results were 

provided by Dr Max Holloway, British Antarctic Survey).  Each simulation runs for 200 years 

in order to reach an equilibrium state and is constrained by orbital parameters and 
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atmospheric gas markers.  As a result, an independent estimate of accumulation and δ18O is 

available for comparison with the ice core chemistry and modelled accumulation profiles.   

Table 4.05 outlines the results of each GCM simulation.  The GCM simulations estimate a 

monthly mean precipitation rate, which is extrapolated to an annual rate of accumulation 

for direct comparison with other models.  The mean accumulation per month (and 

extrapolated to per year) at the present day is significantly lower than the observed present-

day mean accumulation rate of 0.38 m yr-1.  Additionally, accumulation estimates covering 

the LGM period are not consistent with accumulation estimates from the empirical methods 

of reconstruction nor the accumulation profile derived from some inverse approaches but 

they do agree with the freely calculated estimates in the IceChrono model.  A comparison of 

accumulation estimates from each model scenario with the GCM estimates will be 

presented later in this chapter (4.5.2.1). 

Table 4.04: GCM results of mean monthly and annual precipitation and stable water isotope values for 

each 200-year simulation per millennium. 

Age (kyr) Monthly 

Precipitation (mm) 

Annual Precipitation 

(mm) 

δ18O (‰) 

0 18.5 ± 3.4 222.0 ± 41.1 -29.0  1.5 

1 18.0 ± 3.6 216.0 ± 43.0 -29.5  1.7 

2 17.6 ± 3.3 221.2 ± 40.2 -29.5  1.8 

3 19.4 ± 3.3 232.8 ± 39.8 -28.7  1.8 

4 19.3 ± 3.0 231.6 ± 35.5 -29.4  1.8 

5 16.8 ± 2.8 201.6 ± 33.8 -29.9  1.8 

6 16.3 ± 2.6 195.6 ± 31.2 -30.3  1.4 

7 17.0 ± 3.1 204.0 ± 37.3 -30.1  1.6 

8 17.0 ± 3.1 204.0 ± 44.2 -30.5  2.2 

9 14.8 ± 3.9 177.6 ± 35.2 -31.2  2.0 

10 15.7 ± 3.0 188.4 ± 34.9 -31.1  1.9 

11 14.7 ± 3.0 176. 4 ± 35. 2 -29.1 ± 1.7 

12 10.2 ± 2.7  122.4 ± 35.0 -32.8  1.7 

13 10.2 ± 3.2 122.4 ± 32.8 -33.3  1.7 

14 9.6 ± 3.0 115.2 ± 38.1 -33.6  1.7 

15 8.2 ± 2.6 98.4 ± 35.3 -33.3  2.1 
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16 7.7 ± 2.1 92.4 ± 30.8 -34.3  2.0 

17 7.5 ± 2.2 90.0 ± 24.8 -34.8  1.6 

18 7.9 ± 2.2 94.8 ± 26.3 -34.3  2.0 

19 8.0 ± 2.0 96.0 ± 26.5 -34.9  2.4 

20 9.0 ± 1.4 108.0 ± 24.5 -35.7 ± 2.4 

21 7.4 ± 1.9 88.8 ± 16.9 -34.6  2.5 

 

4.4.3 Direct Search 

The Direct Search method seeks to optimise the One-Dimensional thinning profile (section 

4.3.4) by iterating within the model to find the optimal value of the p-parameter (eq. 2.16) 

using a Monte Carlo Markov Chain (MCMC) algorithm.  The accumulation history is not 

changed through this method.  The model starts with an initial age-depth profile calculated 

as the integral of the inverse of annual layer thickness, estimated as the product of an 

accumulation reconstruction and the empirical One-Dimensional thinning profile.  Following 

this, it calculates a root mean square error (RMSE) value (eq. 2.28), which reflects the misfit 

between the modelled age estimate and age horizons.  The value of the p-parameter is then 

changed, before the thinning function, and hence the annual layer thickness and age-depth 

profile, is recalculated.  The RMSE value for the difference between modelled and observed 

constraints is calculated again, and compared with the previous iteration’s RMSE value.  

Comparison of the RMSE value with the previous RMSE value controls the direction of the 

search for the optimal value of the p-parameter; the value of the p-parameter will be 

increased or decreased depending on whether the RMSE value has increased or decreased in 

line with the direction of the search.  This leads to a direct search of the model space that 

converges on the optimal age-depth profile when the RMSE value is within 0.005% of the 

previous RMSE value.  

Uncertainty bounds are determined through this method by adding a small perturbation to 

each age value within the associated age uncertainty for each constraint.  The model is 

iterated to find 1000 possible age-depth scenarios; each iteration is constrained by the age 

constraints that have been perturbed randomly within the age uncertainty.  The range of 

possible values of thinning and age-depth profiles across 1000 optimal profiles yields an 

uncertainty on the optimised profiles.  The model run for 1000 iterations for the FP ice core 

typically requires 100 seconds.   
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Four alternative age-depth and thinning profiles are calculated using the Direct Search 

method: three using the empirical accumulation estimates from section 4.3.3 and one using 

the optimised accumulation history from the IceChrono model (the seventh model scenario).  

The age horizons are plotted as black crosses on each plot; the height of the cross indicates 

the uncertainty on the age horizon but the width of each cross is not associated with any 

uncertainty.  As there is no uncertainty on the depth measurement for the age horizon, the 

width of the cross is specified by the software programming when the plot is constructed. 
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Figure 4.09: Age-depth profiles using the Direct Search approach as calculated using four different 

accumulation history profiles.  Plot a-d: individual age-depth estimates (coloured line) and age 

horizons (black crosses; height of cross indicates age uncertainty but the differences are not visible); 

plot e: four age-depth estimates zoomed into the depth range 480 – 550 mweq to focus on fit with age 

horizons (black crosses).  Each model scenario uses a different profile of accumulation and can be 

identified as: (a) Clausius-Clapeyron (green); (b) Simple Exponential (red); (c) Arrhenius (blue); (d) 

IceChrono (black).  The zoom-in on plot (e) shows the four age-depth profiles; the Simple Exponential 

profile (red) is not easily visible in the figure due to its similarity with Clausius-Clapeyron profile 

(green). 
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Table 4.05: Age estimates and uncertainty for depths with corresponding age constraints used in the 

Direct Search method. Results are given for four different accumulation reconstructions.  The colours 

used in the profiles presented in fig. 4.09 and 4.10 are listed after each initial accumulation to aid 

comparison with figures. 

Depth 

(mweq) 

Observed 

age and 

uncertainty 

(yrs BP) 

Modelled age (yrs BP) and uncertainty (yrs BP) 

CC (green 

profile) 

EXP (red 

profile)  

Arr (blue 

profile)  

Free (black 

profile)  

495.73 14600 ± 250 19033 ± 679 18264 ± 776 21085 ± 564 12820 ± 395 

515.72 38250 ± 800 31548 ± 1150 31409 ± 1375 32635 ± 892 33481 ± 1112 

526.34 46480 ± 800 39829 ± 1463 39947 ± 1767 40573 ± 1118 41515 ± 1394 

540.11 53700 ± 800 54485 ± 2020 54938 ± 2458 54753 ± 1523 53945 ± 1834 

543.24 59570 ± 800 58612 ± 2177 59125 ± 2652 58809 ± 1640 58430 ± 1993 

 

The Direct Search method stops when the RMSE between observed and modelled profiles 

improves by less than 0.005% per iteration.  This does not guarantee age-depth and thinning 

profiles that match the observed data, as outlined in table 4.06 and demonstrated in fig. 

4.09e.  The method leads to large uncertainties on the modelled age estimates and yet these 

values still do not agree to within the age uncertainty for the majority of the horizons.   

The fourth model scenario used the freely-calculated IceChrono profile to prescribe the 

accumulation history (section 4.4.1; fig. 4.09d).  The final age-depth profile fits the age 

constraints better than the age-depth estimates determined using the empirical 

accumulation profiles, and leads to a less negative p-parameter value (fig. 4.09e; table 4.07).  

This suggests that in order to improve the fit to the age constraints, it is useful to use an 

algorithm that can optimise the value of more than one free parameter within the inverse 

approach.  

This inverse approach estimates the optimal value for the p-parameter that controls the 

profile of deformation in the One-Dimensional thinning function.  Fig. 4.10 presents the 

thinning profiles estimated using the Direct Search model when different empirical 
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accumulation histories are used.  As previously stated, four accumulation profiles have been 

used in the age-depth model: three empirical reconstructions following Arrhenius, Clausius-

Clapeyron and Simple Exponential relationships and the freely-calculated accumulation 

history reconstructed using the IceChrono model.  The differences in the accumulation 

reconstructions appear to have a significant impact on the resulting thinning and age-depth 

profiles.   

 

Figure 4.10: Posterior thinning functions and associated uncertainty constrained using the Direct 

Search method: four model scenarios using prescribed empirical accumulation. Green: Clausius-

Clapeyron; Red: Simple Exponential; Blue: Arrhenius; Black: IceChrono. 
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The Direct Search model uses the One-Dimensional thinning function to optimise the age-

depth profile, by estimating the optimal value of the p-parameter.  This value can be 

empirically estimated using eq. 2.16, following the assumptions that the temperature 

gradient throughout the ice core is linear, the value of Glen’s exponent, n, is 3, and the ice-

sheet thickness, temperature at the bed, and activation energy are constant and accurate.  

The assumptions are numerous and so the p-parameter is an ideal parameter to optimise.  

However, by inverting eq. 2.16 using the optimised value of the p-parameter from the 

inverse approach, and an understanding of the assumptions made in the empirical 

relationship, an alternative estimate of Glen’s exponent can be calculated.  Although this 

estimate should not be assumed to be the correct value of Glen’s exponent, it can yield 

information on the reliability of the optimised thinning function.  

Table 4.07 lists the optimised values of the p-parameter for each a priori profile and solves 

for Glen’s flow law exponent, n.  The empirical estimate of the p-parameter in table 4.07 is 

calculated using eq. 2.16 and assumes n = 3; for the remainder of the rows in table 4.07, the 

p-parameter is estimated using the Direct Search approach, and the value of n is calculated 

by inverting eq. 2.16.  The optimised values of the p-parameter lead to consistently negative 

values of Glen’s exponent.  Negative values of n (table 4.07) suggest a deformation profile 

that is not consistent with current understanding of ice rheology, since a negative value 

would cause the rate of strain to decrease from the surface to the bed and the amount that 

annual layer thickness decreases from the original layer thickness with increasing depth 

from the surface would decrease.  This profile of strain, estimated by the modelled thinning 

functions, cannot be replicated in any direct measurements of the ice core, and hence the 

modelled thinning functions using the Direct Search approach should not be considered a 

robust reconstruction.   

The negative value of Glen’s exponent calculated using the Direct Search model could be 

affected by the assumptions made in eq. 2.16.  The temperature gradient from the surface 

of the ice sheet to the bed is not linear due to the diffusion of heat through an ice column 

(this will be further discussed in Chapter 8); furthermore, the value of the activation energy, 

Q, is not well-constrained but assumed to be ~60 kJ mol-1 (Parrenin et al., 2007a).  These 

assumptions could lead to an under-estimation of the n exponent.  However, it is apparent 

that in order to minimise the deviation between the observed and modelled age estimates 

using the Direct Search approach, a non-linear profile of thinning is required and thus a low 

value of the p-parameter is required.  The value is increased for the age-depth profile 
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estimated using the fourth scenario (the optimised accumulation profile estimated using the 

IceChrono approach).  The fourth scenario – the freely-calculated scenario – yields a more 

accurate age-depth reconstruction through the reduction of the differences between 

observed and modelled age estimates.  This reduces the non-linearity in the thinning 

function, and yields a p-parameter closer to the range of reasonable values of 1-5 (Wolff and 

Doake, 1986; Petitt et al., 2003; Gillet-Chaulet et al., 2011).  Therefore, by comparing the 

age-depth and thinning reconstructions using empirical accumulation estimates with the 

equivalent results using the IceChrono optimised accumulation reconstruction, this study 

suggests that an additional approach is required to account for the remaining uncertainties 

and natural variability preserved in the ice core record. 

Table 4.06: Glen Exponent value for the Direct Search model.  The first row lists the empirical estimate 

of the p-parameter using eq. 2.16, assuming a value of n = 3 for Glen’s exponent.  The following rows 

present the p-parameter values optimised using the Direct Search model and different initial 

accumulation profiles.  The value of Glen’s exponent is calculated by inverting eq. 2.16. 

Accumulation Method Profile of deformation, p, 

and uncertainty 

Glen’s Exponent, n, and 

uncertainty 

Empirical estimate (eq. 2.16) 2.2220 3.000 

Clausius-Clapeyron -1.46 ± 0.02 -0.67 ± 0.02 

Simple Exponential -1.31 ± 0.03 -0.53 ± 0.03 

Arrhenius -1.43 ± 0.03 -0.65 ± 0.03 

IceChrono -0.91 ± 0.07 -0.17 ± 0.07 

 

4.4.4 OptAcc 

The OptAcc model is outlined fully in section 3.6.1.  This model searches for the optimal 

values for two variables: (i) a smooth perturbation profile, and (ii) the p-parameter.  The 

smooth perturbation profile, developed within this project and introduced through eq. 3.02, 

perturbs an initial accumulation history before the model solves for an optimised one-

dimensional thinning function (as used in the Direct Search model).  The RMSE does not 

control the direction of the search for the optimised accumulation profile, but it is again 

used to solve for the optimal p-value associated with each accumulation profile.  The model 

searches for optimised perturbation profiles using an MCMC random search direction 

algorithm.  Like the Direct Search model, the model iterates until it finds 1000 possible 

optimal perturbation profiles for accumulation and corresponding p-parameter values.  The 
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range of possible values of accumulation, thinning, and age-depth profiles across 1000 

optimal profiles yields an uncertainty on the optimised profiles.   

Each model scenario requires an initial accumulation history.  Three separate profiles of 

accumulation, thinning, and age-depth have been reconstructed using a different initial 

accumulation profile from the three empirical techniques available.  Table 4.08 outlines the 

age estimates and uncertainty for the depths that correspond to the age horizons in the FP 

ice core.  The optimised age-depth profiles agree with the age constraints, with the 

exception of the fourth constraint.  The OptAcc models consistently estimate the ice age 25 

mweq above the bedrock to be 120 – 140 ka BP, depending on the a priori accumulation 

history prescribed (fig. 4.11).  This age estimate close to the bed agrees with the hypothesis 

that the surface temperature and accumulation reconstructions derived from the stable 

water isotope demonstrate a climate signal preserved from the last interglacial period (LIG). 

Table 4.07: Age estimates and uncertainty for depths with corresponding age constraints used in the 

OptAcc method. 

Depth 

(mweq) 

Observed age and 

uncertainty (yrs BP) 

Modelled age (yrs BP) and uncertainty (yrs BP) 

CC  EXP  Arr  

495.73 14682 ± 250 14681 ± 349 14749 ± 194 14462 ± 323 

515.72 38250 ± 800 38456 ± 568 38628 ± 959 38526 ± 304 

526.34 46480 ± 800 45891 ± 134 45972 ± 1054 45945 ± 239 

540.11 53700 ± 800 55668 ± 280 55603 ± 613 55637 ± 961 

543.24 59570 ± 800 58405 ± 495 58278 ± 1001 58393 ± 1578 
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Figure 4.11: Age-depth profiles using the Optimised Accumulation models with uncertainty (grey) and 

age horizons (black crosses).  Clockwise from top left: (a) Clausius-Clapeyron, (b) Simple Exponential, 

and (c) Arrhenius relationships were used as initial accumulation profiles prior to optimisation. 

 

In fig. 4.12, three optimised accumulation records are presented (blue); these have been 

derived using the (a) Clausius-Clapeyron, (b) Simple Exponential, and (c) Arrhenius 

relationships to prescribe the initial accumulation history. Also shown is the optimal annual 

layer thickness (red), with the associated uncertainty on the annual layer thickness profile, 

and a priori accumulation profile (grey).  Fig. 4.13 presents the perturbation profiles used in 

the reconstruction of the three optimised accumulation histories in the same order as fig. 

4.12.  Results are similar for accumulation, thinning and age-depth when the initial 

accumulation history is estimated using any of the three empirical relationships, with only 

the size of the perturbation to the initial profile changing.  Table 4.09 presents the p-

parameter values and Glen’s flow law exponent for each inputted accumulation history.  As 

previously explained, Glen’s exponent, n, can be calculated by inverting eq. 2.16.  Although, 

this interpretation of n is not robust, it does yield information on the optimisation process.  
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The OptAcc model yields more reasonable estimates for the p-parameter and Glen’s 

exponent than estimated using the Direct Search approach (table 4.07) but are still lower 

than typical values of Glen’s exponent that are within an appropriate range measured using 

in situ techniques (Gillet-Chaulet et al., 2011).  Further discussion of the shape of the 

deformation profile is included later in this study, when the optimised accumulation, 

thinning, and age-depth profiles are presented for the FP, BI, and JRI ice cores. 

 

Figure 4.12: Annual layer thickness profiles and accumulation estimated for FP ice core.  A priori 

accumulation profiles: (a) Clausius-Clapeyron; (b) Simple Exponential; (c) Arrhenius.  Dark blue: 

optimal accumulation profile modelled using the optimisation model; pale blue: uncertainty on the 

optimal accumulation profile; grey: the a priori accumulation profile (one of three empirical 

reconstructions); red: optimal annual layer thickness profile; pale red: uncertainty on annual layer 

thickness profile.  
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Figure 4.13: Perturbation profiles for each possible optimal profile (1000 profiles) for the FP ice core 

using an initial accumulation profile derived from the (a) Clausius-Clapeyron relationship; (b) Simple 

Exponential relationship; (c) Arrhenius relationship.   

Table 4.08: Glen Exponent value for the OptAcc model. The following rows present the p-parameter 

values optimised using the Direct Search model and different initial accumulation profiles.  The value 

of Glen’s exponent is calculated by inverting eq. 2.16. 

Accumulation Method Profile of deformation, p 

and uncertainty 

Glen’s Exponent, n 

and uncertainty 

Clausius-Clapeyron -0.75 ± 5.2 0.03 ± 5.2 

Simple Exponential -0.51 ± 0.01 0.12 ± 0.01 

Arrhenius -0.68 ± 0.15 0.10 ± 0.15 

 

4.4.5 pRES 

The fifth inverse approach still relies on the assumption that the age of ice at a particular 

depth is the sum of annual layers above it.  However, the pRES inverse model seeks to 

reconstruct the optimal annual layer thickness profile, and hence age, using eq. 2.19 (section 

2.5.3.4).  The full model approach is explained in section 3.6.2.2.  To estimate annual layer 

thickness this way requires an accumulation history as input as well as in situ measurements 

of vertical velocity (obtained from Jonathan Kingslake (pers. comm.)).  This model seeks to 

perturb and optimise the accumulation history, using the same approach in the OptAcc 
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model (eq. 3.01).  One model scenario, using an initial accumulation history derived using 

the Simple Exponential relationship (eq. 2.09) and pRES measurements, is used to determine 

an optimal accumulation, annual layer thickness and age-depth profile (eq. 3.04).  For the FP 

ice core, the upper 80% of the record is modelled using this approach, where there are 

continuous pRES observations.  Beyond this, the thinning function is extrapolated to reach 0 

(total thinning) at the bedrock.   

Table 4.10 presents the modelled age estimates at the depths corresponding to the age 

constraints, with the age-depth profile presented in fig. 4.14.  The modelled age estimates 

agree with the constraints with the exception of the second and third age estimates, which 

are 5 – 10 kyr younger than the age horizon.  Annual accumulation decreases rapidly into the 

LGM from the last interglacial but remains higher than the empirical reconstruction until 500 

mweq (fig. 4.15); this is a large difference between the empirical and optimised 

accumulation profiles and would result in a higher mean annual layer thickness that would 

lead to an age-depth profile where age increases more slowly with depth across this range.  

The pRES age-depth profile (fig. 4.14) estimates an age close the bed (570 mweq) greater 

than 140 ka BP.  This is likely due to the high thinning rates estimated in the deepest part of 

the core (pRES observations do not extend to bedrock and so vertical velocity has been 

extrapolated to 0).  Mathematically, this would cause age-depth estimations to tend toward 

infinity and estimate annual layer thickness to be sub-mm.     

Table 4.9: Age estimate and uncertainty for the depths that correspond to an age horizon using the 

pRES model. 

Depth (mweq) Observed age and 

uncertainty (yrs BP) 

pRES age estimate and 

uncertainty (yrs BP) 

495.73 14600 ± 250 14027 ± 579 

515.72 38250 ± 800 29758 ± 899 

526.34 46480 ± 800 42829 ± 1861 

540.11 53700 ± 800 56223 ± 2649 

543.24 59570 ± 800 59887 ± 3459 
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Figure 4.14: Age-depth profile using an empirical age-depth model based on pRES data with 

uncertainty (grey) and age horizons (black crosses). 

 

Similar to fig. 4.12, fig. 4.15 presents the a posteriori accumulation (blue) and annual layer 

thickness (red) profiles.  The accumulation history strongly resembles the Simple Exponential 

empirical profile (grey) throughout the Holocene, but with a large uncertainty estimate of ± 

10% throughout the period.  Despite solving for the compaction of snow in the upper 

sections of the ice core (eq. 3.04), the model reproduces a non-linear and rapid rate of 

thinning in the upper 100 m of the ice core.   
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Figure 4.15: As calculated by pRES model: accumulation (original annual layer thickness) profile (blue) 

with uncertainty (pale blue); present-day annual layer thickness (red) with uncertainty (pale red). An 

initial accumulation history calculated using the Simple Exponential empirical relationship is shown in 

grey. 

 

4.5 Discussion 

In order to date these ice core records accurately, an assessment of the multiple techniques 

that are used to reconstruct the accumulation, thinning and age-depth profiles of an ice core 

was required.  As part of this study, a synthesis of these techniques is presented and 

analysed in this chapter for the FP core (similar results for BI and JRI are included in the 

Appendix) before the optimal age-depth strategy is applied to the FP, BI, and JRI ice cores in 

chapter 6 and 7.  Differences between profiles are evident for each technique, and the 

reasons for the differences must be understood in order to decide which set of techniques 

are the most reliable for reconstructing the most accurate accumulation, thinning and age-

depth histories in the three ice cores.  The following section will discuss the differences 
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between empirical and constrained approaches to reconstructing accumulation, thinning, 

and age-depth profiles of the FP ice core, with a view to determining the reliability of each 

technique in order to address the first objective of this study. 

4.5.1 Empirical Reconstructions 

Accumulation reconstructions are all based on an exponential relationship with the surface 

temperature or the stable water isotope profile.  However, the underlying principles of each 

method lead to differences in accumulation that are most evident when compared with 

changes in surface temperature.  Fig. 4.16 demonstrates the sensitivity of accumulation to 

changes in temperature.  It is clear that the sensitivity of accumulation is more linear in the 

Arrhenius reconstruction (fig. 4.16, red line), whilst the Simple Exponential and Clausius-

Clapeyron relationships are more sensitive to changes in temperature (blue and purple 

lines), leading to the largest changes in annual accumulation during the LGM and glacial-

interglacial transition.  There is no method to statistically quantify which is the most 

accurate accumulation reconstruction without laboratory analysis, despite the deviations 

between profiles.  The atmospheric processes that are invoked in the reconstructions must 

be considered in addition to an analysis of the thinning, annual layer thickness, and age-

depth profiles determined by the inverse approaches.   

 

Figure 4.16: Sensitivity change of accumulation reconstructions with respect to temperature. 
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Unlike the empirical estimations of accumulation, the differences in the thinning functions 

are more apparent.  In the empirical age-depth estimations (fig. 4.05), the use of a different 

accumulation reconstruction does not alter the age-depth profile as significantly as the use 

of a different thinning function.  The historical development of these thinning functions has 

had the greatest effect on the accuracy of deformation profiles.  Most notably, it is the 

progression from steady-state assumptions and uniform plastic deformation (Nye, 1963), to 

understanding the nonlinear deformation of an ice column (Dansgaard and Johnsen, 1969; 

Lliboutry, 1979; Parrenin and Hindmarsh, 2007) which determines the improvement in age-

depth estimates as demonstrated in table 4.03.  As a result, the forward age-depth 

estimates that apply the One-Dimensional thinning function (eq. 2.13 - 2.17) provide the 

best fit to the age horizons, although it should be noted that none of the methods fit the age 

constraints within the observational uncertainty.   

4.5.2 Constrained Models  

Accumulation and thinning profiles of ice cores can be improved through the application of 

one of several inverse approaches.  This study has synthesised five approaches; the 

IceChrono, Direct Search, pRES, a GCM, and OptAcc models.  These techniques provide 

alternative solutions for accumulation and thinning, which differ and ultimately affect the 

age-depth solutions.    

4.5.2.1 Accumulation Reconstructions 

The perturbed profiles from the OptAcc model, IceChrono, pRES, and the precipitation 

estimates from the HadCM3 GCM can yield information on the reliability of each 

reconstruction.   The perturbation profile revises the assumed relationship between stable 

water isotopes and surface temperature and accumulation.  Assessment of the accumulation 

reconstructions provides insight into whether these profiles are realistic and, if they are 

realistic, what impact these reconstructions have on the assumed surface temperature – 

accumulation relationship. 

a)  IceChrono: the accumulation reconstructions do not differ greatly during the 

current interglacial record until 450 mweq, with the greatest deviation occurring 

during the last glacial/interglacial transition.  This is due to the 95% confidence 

interval prescribed for the empirical accumulation reconstructions that were used as 

boundary conditions for each scenario, and hence the thinning function must 

account for any variability in the annual layer thickness profile.  A ‘kink’ at ~600 m in 
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the thinning profiles are more significant for profiles outputted from model 

scenarios that used a priori accumulation reconstructions based on the Simple 

Exponential and Arrhenius relationships (fig. 4.07b).  One reason for this is that the 

model scenarios using the Arrhenius accumulation history estimate higher rates of 

accumulation during the last glacial period, and hence the model needs to reduce 

the annual layer thickness to drive the profiles through age horizons around this 

depth.   

b) GCM: The HadCM3 GCM under-estimates observed present-day mean annual 

accumulation, which the empirical relationships are based on.  As a result, 

accumulation estimates during the present interglacial are lower than the 

accumulation profiles reconstructed using the IceChrono and pRES models, though 

not much lower than the accumulation profile derived using no prior information in 

the IceChrono toolbox.  Table 4.11 compares accumulation rates estimated using a 

number of different approaches with millennial-scale GCM estimates for 

accumulation (see also fig. 4.17).  Changes in GCM-derived accumulation with 

respect to changes in surface temperature follow a similar relationship to that 

displayed by the IceChrono-derived accumulation profile (fig. 4.18).  For comparison 

with the empirical reconstructions, the GCM accumulation rates are estimated using 

a method based on the Clausius-Clapeyron relationship (Gregory and Morris, 1996), 

and therefore they follow a similar rate of change in accumulation with respect to 

surface temperature as this corresponding technique.   

c) pRES: The perturbed accumulation history that has been reconstructed from the 

pRES data does not differ greatly from the initial accumulation profile prescribed in 

the pRES model, but the mean annual accumulation rate does drop to ~0.1 m yr-1 

during the LGM (fig. 4.15).  Apart from during the LGM, the accumulation rate is 

consistently higher than other optimised profiles, due to the high rates of thinning 

calculated from the in situ vertical velocity measurements.  The accumulation rates 

estimated by the pRES model during the LGM are higher than the rates of the 

OptAcc model, and increase sharply from glacial conditions to interglacial conditions 

to a mean annual accumulation closer to the present-day mean annual accumulation 

rate (fig. 4.17). 

d) OptAcc: The optimal profiles reconstructed using these models yield an age-depth 

profile that is capable of fitting the age horizons, with a minimum accumulation rate 

of ~0.03 m yr-1 at the LGM.  This is similar to results obtained using the IceChrono 
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model.  The accumulation reconstructions are consistent, despite varying a priori 

accumulation histories, due to the role of the perturbation profile (fig. 4.13).  The 

accumulation reconstruction using the Clausius-Clapeyron relationship yields a 

larger uncertainty than the reconstructions using the Simple Exponential and 

Arrhenius techniques, as demonstrated in fig. 4.12 and 4.13. 

In order to reconstruct age-depth and thinning profiles accurately to fit the age constraints, 

optimal accumulation profiles suggest a mean interglacial accumulation rate lower than 

estimated through the empirical techniques.  The large uncertainty of the OptAcc CC-derived 

accumulation profile is evident when compared to the other model scenarios.  The large 

uncertainty across 0 – 14 ka BP is due to the lack of constraints across this time period in the 

FP ice core.  Unlike other modelling approaches that use the same constraints, the OptAcc 

profile requires more information to constrain the potential perturbation range. 

 

Figure 4.17: Accumulation estimates for each millennium for comparison with GCM estimates.  

Crosses at each modelled data point represent the associated uncertainty for each estimate.  The 

results present the freely-calculated IceChrono and the Clausius-Clapeyron-derived OptAcc 

approaches. 
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The most realistic profiles are chosen based on the goodness-of-fit between the observed 

and modelled ages at depths corresponding to age constraints.  The most realistic 

accumulation reconstructions, coupled with realistic rates of thinning and a good fit to the 

age constraints, reach a mean annual accumulation rate of 0.05 m yr-1 during the LGM (the 

IceChrono and OptAcc reconstructions that are derived using the Clausius-Clapeyron 

relationship; fig. 4.07a green and fig. 4.12).  The accumulation reconstructions that use an 

initial accumulation estimate derived from the Clausius-Clapeyron relationship do not show 

a significant ‘kink’ in the modelled thinning functions as they are not perturbed in order for 

the modelled profiles of annual layer thickness and age-depth to agree with observational 

data.   

The pRES reconstruction does not require a large perturbation on the initital accumulation 

estimate in order to agree with the age horizons, with the exception of the second youngest 

constraint.  The pRES model is able to develop pRES observations of vertical velocity into an 

ice core thinning function for the FP ice core.  The thinning function is dependent on in situ 

observations only, and cannot account for any temporal ice-sheet thickness changes at 

Fletcher Promontory.  Although the other inverse approaches also do not consider temporal 

changes in the ice sheet thickness, the free parameter within the thinning functions could 

account for some of the uncertainty in the ice flow history.  Furthermore, the OptAcc and 

IceChrono accumulation reconstructions estimate a mean present-day accumulation rate 

lower than the present-day mean annual value.  Despite this, the IceChrono and OptAcc 

models appear to be the most accurate and reliable age-depth reconstructions for the FP ice 

core (table 4.04; table 4.08; table 4.12). 
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Table 4.10: Precipitation estimates for each millennium, estimated by each inverse accumulation 

approach for comparison with GCM estimates (mm yr-1).  Uncertainty in the modelled estimates is 

included.  The OptAcc and IceChrono reconstructions use an initial accumulation profile estimated 

using the Clausius-Clapeyron relationship. 

Age (kyr) GCM (mm) OptAcc (mm) IceChrono (mm) pRES (mm) 

0 222.0 ± 41.1 274.0 ± 180.2 274.5 ± 6.7 374.8 ± 1.3 

1 216.0 ± 43.0 305.0 ± 200.6 381.5 ± 6.5 406.6 ± 68.0 

2 221.2 ± 40.2 328.9 ± 216.3 364.9 ± 5.6 399.9 ± 73.4 

3 232.8 ± 39.8 324.5 ± 213.4 406.7 ± 5.4 443.4 ± 71.2 

4 231.6 ± 35.5 321.0 ± 211.1 397.9 ± 5.6 433.5 ± 71.2 

5 201.6 ± 33.8 330.3 ± 217.2 430.8 ± 5.9 443.2 ± 72.8 

6 195.6 ± 31.2 319.6 ± 210.2 392.3 ± 5.2 440.7 ± 72.4 

7 204.0 ± 37.3 326.9 ± 215.0 355.3 ± 5.0 411.8 ± 67.6 

8 204.0 ± 44.2 307.5 ± 202.2 360.2 ± 5.6 354.6 ± 52.1 

9 177.6 ± 35.2 302.4 ± 198.8 305.1 ± 4.5 229.7 ± 97.9 

10 188.4 ± 34.9 279.1 ± 183.5 210.4 ± 3.4 231.7 ± 98.8 

11 176.4 ± 35. 2 264.5 ± 174.0 202.3 ± 3.0 240.0 ± 40.0 

12 122.4 ± 35.0 236.4 ± 155.7 84.1 ± 1.4 189.0 ± 69.8 

13 122.4 ± 32.8 185.6 ± 123.6 81.9 ± 1.3 127.8 ± 35.4 

14 115.2 ± 38.1 123.9 ± 83.4 82.8 ± 1.4 111.2 ± 23.9 

15 98.4 ± 35.3 111.4 ± 75.8 74.3 ± 1.3 114.8 ± 18.1 

16 92.4 ± 30.8 74.9 ± 51.5 60.8 ± 1.0 116.2 ± 11.8 

17 90.0 ± 24.8 60.6 ± 42.0 59.2 ± 1.0 108.9 ± 5.6 

18 94.8 ± 26.3 54.1 ± 37.8 57.6 ± 1.0 108.7 ± 2.9 

19 96.0 ± 26.5 50.9 ± 35.9 57.2 ± 0.9 98.5 ± 4.1 

20 108.0 ± 24.5 49.1 ± 34.9 47.3 ± 0.9 120.0 ± 5.0 

21 88.8 ± 16.9 43.8 ± 31.6 52.9 ± 0.8 92.3 ± 3.9 

 

Fig. 4.18 suggests that the relationship between surface temperature and accumulation is 

not robust when accumulation is reconstructed using an inverse approach.  In contrast to fig. 

4.16, in which the surface temperature – accumulation relationship is well-defined for the 

empirical techniques (section 4.3.3), the relationship is weakened by the perturbation profile 

on each of the optimised accumulation records.  Most notably, fig. 4.18 demonstrates that 
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the assumed role of the surface temperature – accumulation relationship differs for each 

inverse approach.   

Fig 4.18a presents the surface temperature – accumulation relationships for the seven 

IceChrono model scenarios used in this study.  The figure does not show visibly correlating 

profiles of accumulation with respect to a change in surface temperature. When 

accumulation is reconstructed using IceChrono, bounded by a thinning function, a change in 

accumulation with respect to a change in surface temperature shows no correlation with an 

r2 coefficient of 0.159 – 0.223.  For the IceChrono scenarios that are bounded by an initial 

accumulation history, the r2 coefficient improves to 0.255 – 0.622 but still suggests that 

there is little correlation between surface temperature and accumulation.  Finally, the freely-

calculated IceChrono scenario yields a r2 value of 0.621 but still suggests weak correlation.  

This demonstrates the independence of the IceChrono accumulation reconstruction with 

respect to the changes in surface temperature. 

Fig. 4.18b presents the surface temperature – accumulation relationship for the three 

accumulation reconstructions using the OptAcc model.  This plot is easier to read in 

comparison with fig. 4.18a, suggesting strong correlation between surface temperature and 

accumulation despite the perturbed accumulation profiles.  For the accumulation 

reconstruction using a Clausius-Clapeyron relationship as an initial accumulation estimate, 

an r2 coefficient of 0.964 determines that the assumed relationship between stable water 

isotopes – surface temperature – accumulation is robust.  This is replicated in the Simple 

Exponential model scenario, with an r2 coefficient of 0.956, and the Arrhenius model 

scenario with an r2 coefficient of 0.906.  Despite the high coefficient values, two distinct 

surface temperature – accumulation relationships are visible in the OptAcc profiles on fig. 

4.18b.  Although the full initial accumulation profile is perturbed throughout the ice-core 

record, the perturbation profile is steady for the majority of the record with a significant 

perturbation between 450 mweq and 500 mweq.  The combination of a steadily perturbed 

accumulation profile until the greatest perturbation at 450 mweq leads to these two distinct 

temperature – accumulation profiles in fig. 4.18b (the perturbation profiles are shown in fig. 

4.13).  This perturbation coincides with the suggested transition from the last glacial period 

to the present-day interglacial.  The shift in the surface temperature – accumulation 

relationship using the OptAcc model suggests a change in the relationship between these 

time periods and will be further investigated later in this study.   
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Finally, fig. 4.18c presents the surface temperature – accumulation relationships for the 

HadCM3 estimates and the pRES estimates, and the freely-calculated IceChrono scenario 

and the Clausius-Clapeyron-derived OptAcc scenario for comparison.  The Clausius-

Clapeyron-derived accumulation estimate using the HadCM3 GCM strongly correlates a 

change in accumulation with a change in surface temperature.  The pRES model suggests the 

perturbation profile impacts on the surface temperature – accumulation relationship with an 

r2 coefficient of 0.551.  Overall, the OptAcc model preserves the relationship between 

surface temperature and accumulation, and can yield information on potential changes in 

this relationship as interpreted from the perturbation profiles.   

 



Chapter 4 

 126 

 

Figure 4.18: Changes in accumulation reconstructed using inverse methods with respect to changes in 

surface temperature (K) for (a) IceChrono model scenarios; (b) OptAcc model scenarios; (c) all model 

approaches for comparison. 

 

4.5.2.2 Thinning Reconstructions 

The more realistic assumptions underpinning the One-Dimensional thinning function is the 

reason why, when developing a more complex age-depth model using an inverse approach, 

this relationship alone was used to determine the optimum profile of deformation along the 
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ice core.  Three inverse approaches have been used to reconstruct the profile of 

deformation at the drilling location from an initial profile.  The IceChrono, Direct Search and 

OptAcc models optimise a free parameter in the thinning function.  The following section 

will discuss the implications of the differences between the thinning functions optimised 

using these inverse approaches. 

a) IceChrono: In order to assess the empirical thinning techniques, three scenarios 

used in the IceChrono study had thinning functions prescribed (Nye, Dansgaard-

Johnsen, and One-Dimensional Thinning functions), and a fourth (as used in the 

accumulation reconstructions) used no a priori information.  The results (fig. 4.08) 

demonstrate the significance of the assumptions used in these empirical thinning 

functions when assessing the range of accumulation reconstructions.  Most notably, 

the low rates of thinning estimated by the linear Nye method (resulting in 

consistently young age-depth estimates on an empirical age-depth profile (fig. 

4.05)), force the accumulation reconstruction to be ~30% of the present-day mean 

accumulation rate throughout the Holocene.  As already suggested in this chapter, 

this is to keep the annual layer thickness values sufficiently low to ensure that the 

age horizons fit throughout the ice core.  Therefore, this thinning function must be 

considered an unreliable reconstruction of the ice core record due to the age-depth 

underestimations.  Similarly, by limiting the variability in the a priori Dansgaard-

Johnsen and One-Dimensional thinning profiles, the accumulation reconstructions 

display lower present-day rates of accumulation than the observed present-day 

mean rate of accumulation. During glacial conditions where accumulation rates are 

much lower, the accumulation reconstructions using a priori thinning information 

match the profile reconstructed using no prior information.  

b) Direct Search: Thinning functions estimated using the Direct Search method are 

dependent on the a priori accumulation history that is unchanged through the 

inverse model.  For the FP ice core, a high rate of deformation is predicted in the 

model.  This is reflected in the value for the p-parameter and the n-exponent in 

Glen’s Flow law (n is calculated by inverting eq. 2.16; presented in table 4.07).  High 

rates of thinning – particularly in the upper 200 m of the FP ice core – are evident in 

all model simulations irrespective of accumulation input.  This is despite a correction 

for the densification of snow in the upper 100 m of the ice core.  The p-parameter 

that controls the shape of deformation is a single value, and cannot always fit the 

age constraints throughout the ice core record if there is a step-change in the 
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thinning profile.  This is the case for FP; when the thinning function is reconstructed 

through the Direct Search method using an accumulation history optimised through 

the IceChrono model, the fit of constraints is improved.  Through this experiment, it 

is evident that it is not sufficient to optimise just a single parameter when 

calculating the age-depth profile of the FP ice core.  An already-optimised 

accumulation profile is required to account for further uncertainties, such as the 

natural variability in the accumulation history, and improve the accuracy of the age-

depth reconstructions produced using this model. 

c) OptAcc: Following the development of the Direct Search inverse approach, an 

additional optimisation process is included in the inverse approach in order to 

improve the accumulation reconstructions in addition to the thinning function.  Fig. 

4.11 and 4.12 present the results of this model with three different a priori 

accumulation reconstructions.  The results are all similar as the final age-depth 

profile is mostly controlled by the perturbation that is applied to the accumulation 

history.  Table 4.09 presents the p-parameter and n-exponent values determined 

using this optimisation technique.  Results yield a higher p-parameter for all 

reconstructions than the Direct Search approach, and hence a value for Glen’s 

exponent that is positive but these values remain low.  This suggests that the 

reconstructed values of the p-parameter are improved using the OptAcc model, in 

comparison to the Direct Search model.   

 

4.5.3 Optimal Dating Strategy 

Through the synthesis of these models, it is evident that the choice of techniques used to 

reconstruct the accumulation and thinning profiles impacts on the accuracy of the age-depth 

profile.  Throughout this chapter, the age estimates at the depths corresponding to age 

horizons are presented with the modelled age uncertainty; table 4.12 concatenates these 

results to present the RMSE value for each scenario, in order to directly assess the accuracy 

of each simulation. The final section of this chapter will discuss the results of each model 

approach with a view to suggesting the optimal dating strategy for the FP ice core.  This will 

be completed by first assessing the different model approaches, before discussing the most 

accurate independent reconstructions of accumulation and thinning. 
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4.5.3.1 Assessment of the Modelling Approaches 

The results presented throughout this chapter consistently suggest that optimising a single 

parameter is not sufficient to reconstruct the most accurate profiles of accumulation and 

thinning.  Assessment of the RMSE values confirms this statement; the optimisation of a 

single profile, using the pRES or the Direct Search methods, leads to the age-depth 

reconstruction with the largest RMSE value (table 4.12).   Without a method to account for 

uncertainty in both the accumulation and thinning profiles, the final age-depth profile will 

incur error.  To test this, an additional scenario for the Direct Search method used the 

optimised accumulation profile from the freely-calculated IceChrono scenario (fig. 4.07; 

4.08; table 4.04 (final column)).  This model scenario appears to fit the constraints better 

(fig. 4.09 and table 4.04), despite the fact that the resulting RMSE value for the IceChrono-

derived Direct Search model scenario is higher than the other model scenarios (table 4.12).  

The improvement in the accuracy of the age scales (when compared with age horizons) is 

assumed to be because of the additional solution to accumulation.  Therefore, IceChrono 

and OptAcc models yield smaller RMSE values than the pRES and Direct Search methods by 

incorporating additional free parameters and multiple constraints (table 4.12).  As a result, 

the model scenarios from the IceChrono and OptAcc approaches present the most accurate 

age-depth profiles with RMSE values up to 25 times smaller than the corresponding values 

for the Direct Search and pRES approaches.  

 

Table 4.11: RMSE values quantify the misfit between observed age constraints and the modelled 

estimates at corresponding depths for the optimised age-depth profile in every scenario presented in 

this chapter.  The row across the top of the table establishes the model boundary conditions (initial 

profiles) for each modelling technique.  All RMSE values are in years.  For the Direct Search and OptAcc 

models, the results are presented based on the scenarios using different initial accumulation profiles, 

despite an a priori thinning function is prescribed using the One-Dimensional approach in all cases. 

Model CC SE Arr Nye D-J 1-D Free 

IceChrono 195 188 190 176 301 309 331 

Direct Search 3712 3604 1937 N/A N/A N/A 5066 

OptAcc 204 257 148 N/A N/A N/A N/A 

pRES N/A 4031 N/A N/A N/A N/A N/A 
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Following the assessment of the models, it is apparent that the IceChrono and OptAcc 

techniques yield age-depth profiles of higher accuracy than the other approaches.  However, 

further assessment is required to compare these two approaches.  The RMSE values for the 

OptAcc scenarios of 148-204 years are similar to those calculated for the IceChrono model 

scenarios.  The differences between these RMSE values are minor as they are all derived 

from age-depth profiles that agree with the age constraints.  Furthermore, the profiles of 

accumulation and thinning reconstructed using the accumulation-derived IceChrono 

scenarios are similar to the equivalent reconstructions by the OptAcc approach (fig. 4.07 and 

4.12).  However, the two approaches differ when one compares the age-depth estimations 

close to the bed.  The IceChrono model consistently estimates an age at bedrock of 60-100 

ka BP, regardless of the initial profiles bounding the seven different IceChrono scenarios.  In 

the optimised simulation with no prior information, the age at bedrock is estimated as 85.5 

 7.4 ka BP.  The OptAcc model estimates an age close to the bedrock of 120-140 ka BP.  

Without age constraints in the final 100 m of the FP ice core, we must seek independent 

evidence to determine the age of ice at the base of this ice core.   

Assessing the stable water isotope record of the FP ice core, the values indicate that ice from 

the end of the LIG is preserved in the record.  By comparing the FP stable water isotope 

record with annual-layer counted Greenland records that are known to contain LIG ice 

(NEEM, 2013), the LIG is present in the deepest 50 mweq of the FP ice core.  Annual-layer 

counted ice core records indicate that the globally synchronous Eemian interglacial ended at 

115 ka BP (NEEM, 2013).  As a result, the IceChrono age-depth profiles that consistently 

estimate an age at the bed of 60 – 100 ka BP are not accurate and it must be assumed that 

the OptAcc model reconstructs the most reliable age-depth profile, producing an age at the 

bedrock consistent with independent evidence (NEEM, 2013). 

4.5.3.2 Assessment of the Reconstructions of Accumulation and Thinning 

The a priori empirical accumulation profiles, calculated in section 4.3.3 and used as initial 

profiles in the constrained approaches, lead to differences in the final age-depth estimates.  

This is due to the differences in each empirical relationship – particularly the sensitivity of 

the rate of accumulation to changes in surface temperature (fig. 4.16 and fig. 4.18).  

Assessment of the optimised accumulation profiles should determine which of the empirical 

accumulation relationships could be the most reliable for reconstructing the FP 

accumulation record.   
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The Arrhenius approach yields the smallest RMSE value in all of the constrained approaches, 

followed by the Clausius-Clapeyron technique and Simple Exponential for the OptAcc 

approach.  Using the IceChrono method, the RMSE values for each accumulation 

reconstruction agree to within seven years.  Despite the relatively similar RMSE values 

across the OptAcc and IceChrono approaches, the Arrhenius and Simple Exponential 

relationships do not provide the most reliable constructions of accumulation.  In the 

IceChrono approach, the Arrhenius and Simple Exponential-derived thinning functions 

present ‘kinks’ (fig. 4.07).  Furthermore, using the OptAcc and Direct Search approaches, 

Simple Exponential and Arrhenius initial accumulation profiles result in more negative and 

lower values of the p-parameter and Glen’s exponent.  This is because of the differences in 

the surface temperature – accumulation relationship for each technique, that controls the 

sensitivity of accumulation with respect to a change in surface temperature.  For Arrhenius 

and the Simple Exponential, there is a less significant change in accumulation with respect to 

a change in surface temperature (as derived from the relationship assumed with stable 

water isotopes) (fig. 4.16 and 4.18).  Therefore, the Arrhenius and Simple Exponential 

accumulation profiles do not estimate a mean annual accumulation rate during glacial 

conditions that is sufficiently low to ensure a stable reconstruction of strain throughout the 

ice core; instead a change in the profile of thinning at 600 m in these scenarios suggest a 

change in the ice flow at the site.  This suggestion is not reasonable for the FP ice core, as 

previously explained (section 4.5.2.1). 

Therefore, this study suggests that despite the slightly higher RMSE value, the Clausius-

Clapeyron accumulation relationship yields a more reliable reconstruction of accumulation.  

Clausius-Clapeyron-derived RMSE values remain smaller than the smallest uncertainty on 

the age constraints and should therefore be considered reliable.  IceChrono scenarios that 

use a Clausius-Clapeyron initial accumulation profile yield similar profiles of thinning (fig. 

4.07) as other accumulation-derived scenarios, but do not require an adjustment to the ice 

flow in order to attain a low annual layer thickness at 600 m in the FP ice core.  Furthermore, 

comparison of the initial accumulation reconstructions with the final modelled profile using 

the OptAcc approach suggests that the initial Clausius-Clapeyron relationship yields a more 

accurate profile and requires less perturbation throughout the ice core record.   

This chapter has already concluded that the OptAcc model approach reconstructs the most 

reliable FP ice core record.  The OptAcc model optimises the p-parameter that is used in the 

calculation of the One-Dimensional thinning function.  In table 4.03, the age estimates at 
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depths corresponding to age horizons are similar for age scales estimated using either a 

Dansgaard-Johnsen and or the One-Dimensional thinning function.  However, the One-

Dimensional thinning function contains a parameter that can be optimised, and therefore 

this relationship was used in the development of constrained approaches.  However, one 

can still discuss the accuracy of each thinning function by assessing the accumulation 

reconstructions from thinning function-derived IceChrono model scenarios.  It has already 

been discussed that the accumulation and age-depth profiles reconstructed from IceChrono 

scenarios using the Nye thinning is not realistic for long ice core records (section 4.5.2.2).  

The Nye thinning function is satisfactory for short ice-core records, but longer ice-core 

records that experience substantial annual layer thinning are not accurately reconstructed 

using this approach (fig. 4.08).  The aforementioned balance of interplay between 

accumulation and thinning profiles is demonstrated here: as a result of low rates of strain 

using an a priori Nye and Dansgaard-Johnsen thinning profiles in the IceChrono approach, 

the modelled accumulation reconstructions remain low throughout the record to maintain a 

sufficiently low annual layer thickness (fig. 4.08).  The freely-calculated and One-Dimensional 

thinning functions result in a steeper deformation profile, like the profiles estimated through 

the OptAcc model, and an accumulation history throughout the current interglacial period 

that is closer to the present-day mean annual accumulation rate.   

Additional assessment on the accumulation reconstruction throughout the ice core record 

must be completed to confirm the most reliable initial accumulation estimate.  However, the 

results of this chapter suggest that the most accurate reconstruction of the FP ice core is 

achieved using by optimising free parameters in the Clausius-Clapeyron accumulation 

relationship and the One-Dimensional thinning profile, using the OptAcc model approach.  

4.6 Summary 

A synthesis of all the modelling techniques that are used to reconstruct the accumulation 

history and thinning profile of an ice core was required before this study progresses.  The 

age-depth profile of the FP ice core has been reconstructed using three different empirical 

accumulation techniques, and three different thinning techniques, with an additional four 

inverse approaches employed to optimise either accumulation, thinning, or both.  In 

addition to these four inverse approaches, a GCM provides an independent technique to 

estimate the mean annual accumulation on a millennial-scale resolution.  The differences 

between age-depth profiles produced using different model combinations have been 

assessed in order to determine the impact alternative dating strategies have on age-depth 
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profiles.  Differences in the thinning profile have a greater impact on the final age-depth 

profile than differences in the accumulation history, but the accumulation reconstruction 

must also be improved through an inverse approach to account for any inconsistencies in 

the ice core record that are not reconstructed using a forward model.  Further assessment of 

the results demonstrates that the most accurate empirical reconstructions of accumulation 

and thinning profiles for this ice core are the Clausius-Clapeyron and One-Dimensional 

relationships, respectively.  To evaluate these techniques, and the inverse approaches, 

critical assessment of the stable water isotope record is required.  Despite having a 

reasonable, stable accumulation rate throughout the Holocene, and fitting all age 

constraints, the IceChrono age-depth estimation at bedrock is too young to explain the 

stable water isotope record that is preserved in the ice core.  Moving forward with this 

study, the FP, BI, and JRI ice core age-depth profiles have been reconstructed using the 

OptAcc model, with a priori accumulation information estimated using the Clausius-

Clapeyron relationship.  This combination is capable of reconstructing the higher, more 

variable annual accumulation at coastal sites that is preserved in high resolution in the FP, 

BI, and JRI ice cores. 

Before the FP, BI, and JRI ice cores can be accurately reconstructed, additional information 

must be gathered and assessed as part of the first objective of this project (section 1.2.1).  

Annual layer thickness measurements can assess the accuracy of the model estimates, or 

constrain the annual layer thickness estimates.  In the following chapter, novel techniques of 

chemical analysis are used to retrieve sub-annual records from sections of the Berkner Island 

ice core, and used to assess the various inverse approaches more comprehensively. 
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Chapter 5: A comparison of annual layer 

thickness model estimates with observational 

measurements using the Berkner Island ice core, 

Antarctica  

A. Massam, S.B. Sneed, G.P. Lee, R.R. Tuckwell, R. Mulvaney, P.A. Mayewski, P.L. 

Whitehouse. 2017.  A comparison of annual layer thickness model estimates with 

observational measurements using the Berkner Island ice core, Antarctica.  Antarctic 

Science, doi: doi:10.1017/S0954102017000025. 

5.1 Summary 

Reconstructions of ice-sheet and atmospheric processes yield varying annual layer thickness 

and age-depth profiles (Chapter 4).  In order to assess the accuracy of the reconstructed age-

depth models, comparison with observational data is needed. The following chapter is the 

manuscript of a peer-reviewed paper that presents annual layer thickness measurements.  

The text in the manuscript is unchanged; only the layout has been reformatted for this 

thesis.  The annual layer thickness measurements have been obtained by three different 

analytical techniques at varying analytical resolution, taken from three depth ranges along 

the Berkner Island ice core.  The principal motivation behind this paper was to apply a novel 

technique in ultra-high resolution trace-element analysis and assess the reliability of the 

resulting profiles in identifying annual layers at a resolution currently beyond standard 

laboratory techniques.  In doing this, the identified annual layers contribute to the second 

and third objective of this study (section 1.2.1), in which the measured thicknesses are 

compared with the modelled estimates of annual layer thickness at corresponding depths. 

 

Supplementary to this manuscript (section 5.8 onwards), this chapter explains the choice of 

the most accurate and reliable age-depth model constructed in Chapter 4 and Appendix 1. 

This is done by comparison of all modelled annual layer thickness estimates from the 

approaches described in Chapter 4.  In addition, the chapter provides a brief statistical 

analysis of the LA ICP-MS analytical data that was not included in the final manuscript. 
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5.2 Abstract 

A model to estimate the annual layer thickness of deposited snowfall at a deep ice core site, 

compacted by vertical strain with respect to depth, is assessed using ultra-high resolution 

laboratory analytical techniques.  A recently established technique of high-resolution direct 

chemical analysis of ice, using ultra-violet laser ablation inductively-coupled plasma mass 

spectrometry (LA ICP-MS) has been applied to ice from the Berkner Island ice core, and 

compared with results from lower-resolution techniques conducted on parallel sections of 

ice.  The results from both techniques have been analysed statistically in order to assess the 

capability of each technique to recover seasonal cycles on deep Antarctic ice where annual 

layer thickness is beyond the current standard laboratory resolution of ~10 mm.  Results do 

not agree with the annual layer thickness estimates from the age–depth model for individual 

samples < 1 m long as the model cannot reconstruct the natural variability present in annual 

accumulation. However, when compared with sections >4 m long, the deviation between 

the modelled and observational layer thicknesses is minimized to within two standard 

deviations. This confirms that the model is capable of successfully estimating mean annual 

layer thicknesses around analysed sections. Furthermore, our results confirm that the LA 

ICP-MS technique can reliably recover seasonal chemical profiles beyond standard analytical 

resolution.     

Keywords: ice core; ultra-high resolution; chemistry; Berkner Island; mass spectrometry; 

age-depth model  
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5.3 Introduction 

The deposition of snow across Antarctica results in a record spanning millennia and capable 

of recording seasonal cycles of several different climatic proxies, revealing past climatic 

conditions on local, regional and global scales, on both short- and long-term timescales.  

Preservation of temporal variations in stable water isotopes and chemistry as the deposited 

snow turns to ice creates an isotope-chemistry series that can provide seasonal to 

glacial/interglacial reconstructions of past climate (Dansgaard 1953, 1964).   

Unreactive gases trapped within the ice matrix offer continuous records of atmospheric 

conditions on a global scale due to rapid rates of atmospheric mixing.  In order to 

reconstruct large-scale climatic events on an inter-hemispheric scale, climate proxies from 

multiple sources must be integrated and tied to a single chronology, which requires a 

continuous, high-resolution record.  Accurate synchronisation of ice core records with 

climate proxy records from marine, polar and terrestrial sites gives the best view of global 

climate responses during glacial/interglacial periods, and high-resolution profiles are vital to 

the full interpretation of the timing and characteristics of underlying mechanisms and to 

understanding the relationship between the Polar Regions and the rest of the Earth. 

The dating of deep Antarctic ice cores still relies primarily on modelled accumulation derived 

from seasonal cycles in the stable water isotopes and chemistry.  Therefore, improvements 

to existing chronologies depend on further developments of the analytical techniques.  The 

low mean annual accumulation characterizing much of Antarctica makes it difficult to obtain 

sub-annually resolved proxy records in ice cores beyond certain depths.  Therefore, the 

construction of Antarctic ice-core chronologies – and the subsequent interpretation of 

palaeoclimate records – typically relies on glaciological modelling techniques that are 

constrained using observational data, e.g. known-age horizons preserved in the ice or 

chemical records.  Increasing the resolution of palaeoclimate records improves the 

information that can feed into climate or chronological models.  The models applied to ice-

core profiles rely on the resolution of the stable water isotope profile as well as a number of 

glaciological assumptions on ice-sheet stability and thus have larger age-uncertainty 

compared to annual layer counted ice core chronologies.   

As water isotopes tend to diffuse in ice and the seasonal cycles may be lost, improvements 

to analytical resolution have been progressing following two main approaches, continuous 

and discrete trace-element analysis.  A direct, continuous method (continuous flow analysis 
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– CFA) takes measurements continuously along the length of the ice core.  CFA methods are 

less labour-intensive, although they usually result in the destruction of the ice core by 

melting.  Continuous melting of an ice section coupled with the in situ analysis of trace-

chemical species by ICP-MS and UV/visible spectroscopy improves the resolution of 

continuous records and achieves a spatial resolution of ~10 mm (Sigg et al. 1994, 

Rothlisberger et al. 2000).  A great advantage of CFA systems relies on their relatively low 

contamination levels, ensured by removing the meltwater produced by the outermost part 

of the ice core.    A disadvantage of CFA systems is the dispersion in the melting and liquid 

transport that limits the sub-annual resolution of deep Antarctic ice cores and consequently, 

the information available on long timescales that can be accurately synchronised with other 

climate proxy archives.   

Developments to direct trace-element analysis improve the depth-resolution by the 

application of ultra-violet laser sampling coupled with an ICP-MS.  For some time, LA ICP-MS 

has been applied to geological samples in order to optimise the resolution and accuracy of 

trace-element analysis in geochemical contexts (Arrowsmith 1987, Bea et al. 1996).  More 

recently, this technique in ultra-high resolution direct trace-element analysis has been 

independently developed in ice-core laboratories (Reinhardt et al. 2001, Müller et al. 2011, 

Sneed et al. 2015).  Previous studies have demonstrated that the ultra-violet LA ICP-MS 

apparatus and calibration technique developed at the WM Keck Laser Ice Facility at the 

Climate Change Institute (University of Maine) yields data that are similar in the shape and 

trends of the ice-core profile to those produced using CFA profiles, but at orders of 

magnitude higher resolution (Sneed et al. 2015).  Correlation of LA ICP-MS results with 

existing chemical records on alpine ice-core chemistry profiles confirms the reproducibility 

of the results (Sneed et al. 2015).  Further to this, LA ICP-MS can be utilized as a basis of 

comparison for previous studies; a recent study dramatically increased the resolution of the 

record comprising the end of the Younger Dryas and the onset of the Holocene as preserved 

in the GISP2 ice core.  This ultra-high resolution record offered a novel view of abrupt 

climate change over this period and suggested a decrease in storm frequency and an 

increase in the length of the Arctic summer season at this transition (Mayewski et al. 2014).  

Most recently, LA ICP-MS has been applied to West Antarctic ice originating from the last 

glacial period at Siple Dome-A.  Successful analysis of sub-seasonal profiles demonstrated 

the variability in the annual layer thickness measurements that had not been identified 

earlier in glaciological models or ice core chemistry (Haines et al. 2016). 
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In addition to increased resolution of climate records, major advantages of the LA ICP-MS 

technique include the rapid analysis time and the fact that the ultra-violet laser results in 

negligible ice loss, allowing repeated analyses to be carried out (Müller et al. 2011).  In 

repeating the analysis, individual line scans can be used to measure single- and multi-

element arrays, increase the spatial resolution available, and provide an alternative 

technique to acquire ultra-high resolution profiles of climatic proxies in ice cores.   

An alternate discrete high-resolution technique, developed by R. Mulvaney and E. Wolff 

(pers. comm, 2016) at the British Antarctic Survey, cuts samples at a higher resolution than 

standard discrete techniques of ~10 mm by employing a microtome device to shave the ice 

sample at a sub-millimetre resolution (Thomas et al. 2009).  Seasonal cycles in chemistry 

recovered in glacial ice from the North Greenland Ice Core Project (NGRIP) ice core allowed 

an absolute measurement of annual layer thickness and insight into the phasing of chemical 

signals and characteristics of the DO 8 event at circa 38 ka BP at 2 mm depth-resolution 

(Thomas et al. 2009).  A full geochemical profile outlined the dominant and recessive 

mechanisms for the duration of the climatic transition into DO 8 at sub-annual resolution.  

The method, though effective for high-resolution analysis on deep ice, is labour-intensive 

and it is difficult to cover more than small sections of an ice core.  Improvements to the ion 

chromatography system at the British Antarctic Survey – principally a new Dionex 4000 IC 

system – allow a reduced sample volume and therefore improve the spatial resolution of 

each measurement. 

Despite these advances in direct ice-core analysis, LA ICP-MS is yet to be employed on ice 

originating from the Weddell Sea, Antarctica, where traditional discrete and CFA methods 

fail to recover seasonal chemical cycles at great depths.  The aim of this study is to compare 

the different analytical techniques, and then use the results to test the accuracy of the 

modelling of the annual layer thickness of the Berkner Island ice core.  The Berkner Island ice 

core was drilled over three field seasons 2003-2006 (Mulvaney et al. 2007), reaching the ice 

sheet base at a depth of 948 m, at the south dome of the island which is embedded within 

the Ronne and Filchner ice shelves in the Weddell Sea, Antarctica.  In this study, we 

reconstruct annual layer thickness from the stable water isotope profiles and glaciological 

modelling and, following a study to assess the reliability of the records, we compare these 

model estimates with the observational annual layer thickness measurements obtained by 

LA ICP-MS. 
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5.4 Methodology 

High-resolution analysis, completed on parallel sections of ice from three depth ranges along 

the Berkner Island ice core, was achieved by indirect and direct trace-element methods.  For 

comparison and confirmation of the record obtained by LA ICP-MS on Antarctic frozen 

samples, discrete sampling has been completed on parallel sections of ice to obtain a second 

geochemical profile.  Where the annual layer thickness is estimated to be greater than 20 

mm, the discrete samples were not cut using the microtome technique, but instead using a 

band saw for which an associated ice loss is calculated.  The ion profiles generated by each 

method have been compared by identifying annual peaks in each profile and calculating the 

mean annual layer thickness for each section.  For assistance in the identification of annual 

layer peaks, a long section of CFA data is presented for the Berkner Island ice core at a depth 

where sub-annual resolution is still attainable by this lower-resolution technique. 

Successively, comparison of annual layer thickness measurements with the annual layer 

thickness estimated from the model is the final assessment in this work.  The methodology 

for the annual layer thickness model is included in the supplementary material, 

accompanied with a list of the parameters and known-age horizons used in the estimation of 

annual layer thickness at Berkner Island. 

5.4.1 Continuous Flow Analysis 

A full ice core can be continuously melted in core sections with the dimensions of 30 x 30 

mm, with only the inner part of the ice section measured to eliminate the risk of 

contamination.  The remainder of the ice section melted runs off the melt-head as waste.  

Analysis of the Berkner Island ice core by CFA was completed at BAS, on a system that is 

capable of measuring a full ion profile among other chemical species, at a continuous rate 

with a maximum resolution of 10 mm.   

5.4.2 LA ICP-MS and Discrete Sample Details 

The ice core retrieved from Berkner Island was selected for this study for its low mean 

annual accumulation at the surface, with an overall thickness of 948 m.  Present-day mean 

annual accumulation at the core site is 0.185 m yr-1 in water equivalent, with an age-depth 

profile reaching the last interglacial period.  As a result, the annual layer thickness model 

estimates that the depth at which thinned annual layers are beyond the standard laboratory 

resolution of ~10 mm is ~560 m.  This leaves 40% of the total ice core profile beyond the 

reach of sub-annual profiles using standard methods.   



Chapter 5 

 141 

Parallel sticks of ice, cut from the archived ice core material, have been analysed by two 

methods including high and ultra-high resolution measurements.  Sticks of ice were cut from 

the inner section of the ice core to avoid potential contamination by the drilling fluid residue 

on the exterior of the ice core.  Sticks of ice were placed in plastic lay-flat bags with the ice 

core bag number and top of the core section clearly indicated.   

5.4.3 LA ICP-MS 

The analysis of Berkner Island ice using LA ICP-MS was completed at the WM Keck Laser Ice 

Facility, at the Climate Change Institute (CCI), University of Maine.  The laser-ablated ICP-MS 

methodology is largely described in Sneed et al. (2015) and only a brief summary of the key 

features is mentioned here.  Profiles were acquired using the Sayre CellTM cryocell, 

developed at CCI, which is capable of holding up to one metre of ice at 248 K and has a small 

volume (~20 cm3) open-design ablation chamber.  The cryocell system is positioned 

underneath a New Wave UP-213 laser, connected to a Thermo Element 2 ICP-MS with 

Teflon tubing (Sneed et al. 2015). 

Prior to analysis, the ice sample was cleaned by removing the outer millimetre of ice using a 

ceramic scraper to limit the contamination risk.  The ice is held in the cryocell whilst the gas 

flow was purged for two minutes in order to remove impurities in the system.  Individual line 

scans, measured using a laser spot size of 100 µm in diameter, yield the ultra-high spatial 

resolution of LA profiles.  LA ICP-MS profiles are continuous for 40 mm; once finished, the ice 

is automatically moved to begin the next 40 mm segment to start at the end of the previous 

ablation pass.  Adjacent line scans, used for multi-element analysis, are separated by 200 µm 

to prevent overlapping scans.  Sampling resolution is 121 μm sample-1; this resolution is 

dependent on the laser spot diameter, firing rate, scan speed and the ICP-MS sampling rate 

(Sneed et al. 2015). 

Ice samples, up to 200 mm in length, were analysed for sodium (Na), which has been shown 

to have a clear annual cycle (Sommer et al. 2000).  The LA ICP-MS generates results available 

in counts per second (cps).  The relative intensity of element concentrations in cps were 

converted to concentrations (g/L) using calibration curves constructed from liquid samples 

and lasing frozen standard reference material (Sneed et al. 2015). 

A dual-cyclonic spray chamber with entrance ports for liquid samples and laser aerosols is 

fitted to the ICP-MS system.  A low-flow nebuliser (20 µL min-1 from Elemental Scientific) 

aims to reduce the amount of liquid aspirated and to enable higher gas flow in the laser 
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ablation chamber.  This facilitates daily calibration of the ICP-MS, which is completed using a 

combination of liquid standards and frozen reference materials in a two-step process 

outlined by Sneed et al. (2015).  To ensure accurate results using the Sayre CellTM cryocell, 

the base of the open cell must have an airtight seal with the ice sample.  Soundness of the 

seal is tested in two ways: (i) a flowmeter built into the cryocell system, and (ii) the ICP-MS is 

tuned with the ice in place so that a small leak would be observable in the ice chemistry 

signal (Sneed et al. 2015). 

5.4.4 Discrete Samples 

For the deepest sections investigated by LA ICP-MS, we obtained discrete samples from a 

parallel cut of the same ice core, to be measured in solution mode.  This method has been 

used successfully to analyse the warming transition of Dansgaard-Oeschger 8 (DO8), at circa 

38kyr in Greenland ice (Thomas 2006, Thomas et al. 2009). 

Unlike the ice sampled by the other techniques in this study, sections of ice for the discrete 

method were limited to 80 mm in length.  The reason for this was to limit the bending 

moment exerted on the stick of ice as it passed under the blade whilst being held in the 

microtome vice system.  The depth ranges of discretely cut samples are included in table 

5.01. 

Prior to cutting the discrete samples, any dust or residue was removed from the instruments 

by cleaning the microtome blade and mantle using isopropanol.  A pre-frozen section of 

ultra-high purity (UHP) water was passed under the blade to clean it thoroughly; after this 

process, five samples of UHP water were collected for use as a background standard for the 

cold room procedure during the chemical analysis. 

A clean microtome blade removed the outer millimetre of ice in order to avoid 

contamination from the outer layers.  The ice was then placed in the mantle of the 

microtome and passed under the blade.  The mantle automatically raises 40 µm with every 

forward stroke so the exact sample size can be determined by the number of times the ice 

has passed under the blade. 

5.4.5 Lower Resolution Discrete Sampling 

A lower-resolution discrete sampling method was employed on sections of ice for which 

annual layer thickness is estimated to be greater than 20 mm.  For these sections, the high-

resolution microtome technique would not be necessary and instead 5 mm discrete samples 
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were cut using a band saw and measured using the same method as samples obtained from 

the microtome device.  An associated ice loss of a millimetre was accounted for in the depth 

profile, as calculated by the width of the band saw blade. 

For all discrete samples, a full ion profile was obtained in sterile conditions by ion 

chromatography (IC), except for the ice section at 703.2 – 703.22 m where due to low 

sampling volume, only a cation profile was measured.  In order to prevent contamination 

during the discrete sampling process, protective clothing and powder-free nitrile gloves 

were worn throughout both the sampling and analysis procedures.  The ice sample was only 

handled with pre-cleaned tongs and the outer millimetre of the ice sample was scraped 

away using a scalpel or microtome blade to remove any contaminants from the surface of 

the sample.  Ion profiles were measured on a Dionex IC 4000 ion chromatography system in 

a class-100 clean room, which has less than 100 particles of 0.5 μm foot-3.   

5.5 Results 

We begin by presenting the estimated age and layer thickness of the analysed samples, as 

derived using the glaciological model.  Subsequent sections contain the LA ICP-MS and 

discrete sampling results, respectively.  Annual cycles are identified in the IC and LA ICP-MS 

records based on the prominence of the Na and Mg peaks from the baseline, and the return 

of the peak to the baseline between the seasons.  Peaks that do not return to the baseline 

are characterised as discrete events within one annual cycle. 

5.5.1 Model Estimates 

Specific sampled depths were chosen based on the estimated period of original deposition, 

as interpreted from the isotopic record (see figure 5.01), the modelled annual layer 

thickness (equation S5.01-S5.03), and ultimately the condition of the archive material at BAS 

(presented in table 5.01).   
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Figure 5.01: Berkner Island ice core sampled sections of ice (pink bands) across the (a) isotopic and (b) 

modelled annual layer thickness profiles. See supplementary information for model description.  

5.5.2 CFA Results 

As a method of comparison, and to aid the analysis of annual layer identification, a four-

metre section of the Berkner Island ice core at 447 m, analysed by CFA, is presented with the 

correlating dielectric profiling (DEP) data (fig. 5.02).  The section shows a mean annual layer 

thickness of ~57 mm, and highlights the variable annual layer thickness and values of Na. 

 

Figure 5.02: Four-metre section analysed by CFA and DEP.  Top: CFA Na; bottom: DEP. 
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5.5.3 LA ICP-MS results 

5.5.3.1 Mid-Holocene Ice from 5.5 ka BP (454 – 459 m) 

Fig. 5.03 shows the sections of ice analysed by LA ICP-MS originating from the mid-Holocene 

period.  Three sections were taken from the depth range 454 – 459 m, where the model 

predicts the annual layer thickness model to be ~57 mm (table 5.01).  Results are presented 

on semi-logarithmic plots.  Red dashed lines delineate peaks that could represent either an 

annual or sub-seasonal deposition increase in Na.  Between these sections, we are not as 

confident that the seasonal peak can be seen unequivocally.  Examination of the results 

suggests that the seasonal cycles within these sections of ice are not uniform, rather they 

vary in layer thickness.   

 

Table 5.01: Annual layer thickness determined as the mean thickness value of all layers identified in 

each analysed section, and the standard deviation of each set of annual layers.  Modelled annual layer 

thickness given with model error attached.  For depths that have not been analysed by a particular 

technique, the table reads “N/A”.  The estimated age for each sample depth is presented, as estimated 

by the age-depth model. 

Depth 

Analysed 

(m) 

LA ICP-MS +/- 

std dev (mm) 

Discrete Sampling 

+/- std dev (mm) 

CFA +/- std 

dev (mm) 

Model +/- 

error (mm) 

Estimated 

age (ka 

BP) 

447-451 N/A N/A 57.0  8.8 56.7  1.5 3.6 

454 Variable 57.0  10.0 N/A 56.7  1.5 3.7 

456 6.7  0.6  55.0  1.3 N/A 54.9  1.4 3.7 

458 26.1  2.3 70.0  2.8 N/A 52.9  1.4 3.8 

694 2.9  0.1 N/A N/A 2.1  0.3 28.5 

695 3.6  0.1  N/A N/A 2.3  0.3 29.0 

696 4.0  0.2  N/A N/A 2.1  0.2 29.4 

702 3.1  0.1 2.6  0.1 N/A 2.3  0.2 31.2 

704 6.1  0.2 N/A N/A 2.3  0.1 32.8 

706 5.1  0.2 6.0  2.3  N/A 2.3  0.1 33.6 
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Figure 5.03a – c: LA ICP-MS profiles for three sections of sample from 454 – 459 m; semi logarithmic 

plots show the log(Na+) on a common depth scale with red dashed lines delineating a seasonal peak. 

 

5.5.3.2  Glacial Ice from 27.1 – 27.7 ka BP (694 – 697 m) 

Over the second depth range of 694 – 697 m, the mean annual layer thickness is estimated 

by disregarding sections of ice where the chemical signal is not resolvable (~19 – 38 mm and 

~50 – 70 mm).  An increase in the periodicity per sampled section of ice, as determined by 

the seasonal fluctuations in Na, is due to the compaction of annual layers.  In fig. 5.04c, a 

drop in concentration at 40 mm is likely due to the recommencement of a line scan. 
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Figure 5.04a – c: LA ICP-MS profiles for three sections of ice from 694-697 m; semi logarithmic plots 

show the log(Na+) on a common depth scale with red dashed lines delineating a seasonal peak. 
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Figure 5.05a – c: LA ICP-MS profiles for three sections of ice from 702 - 707 m; semi logarithmic plots 

show the log(Na) on a common depth scale with red dashed lines delineating a seasonal peak. 

 

5.5.3.3 Glacial Ice from 29.7 – 31.2 ka BP (702 – 707 m) 

Similar to the sections of ice analysed from 694 – 697 m, there is a drop in concentration 

values at 40 mm in fig. 5.05a, and 80 mm in fig. 5.05c, due to the recommencement of line 

scans.  Additionally, as with the observed layer thickness estimations from 694 – 697 m, 

observed layer thickness has been estimated only for sections of ice where a seasonal signal 

is resolvable in the ice. Layer thickness is counted between ~10 – 25 mm and ~45 – 60 mm in 

fig. 5.04a, meaning an average thickness of 3.1 mm.  Across the ice sections analysed 

between 702 and 707 m, the chemical signal appears to be a smoothed signal where annual 

layers are no longer resolvable either in the ice-core record or through the analytical 
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technique.  Where identifiable in these profiles, the peaks appear to increase from ~3 mm in 

fig. 5.05b to 5-6 mm in fig. 5.05c. 

Initial observations on the geochemical profiles confirm that fluctuations in the Na signal are 

visible in the Berkner Island ice-core record.  These layers do not show a clear seasonal 

pattern in many places, with variations in strength, thickness and signature common 

throughout the profiles.  This is most visible between the Holocene sections at 454 – 459 m 

and the late glacial sections at 695 – 697 m where the number of layers over a common 

depth range increases by up to a factor of 10. 

Focussing on the LA ICP-MS profiles within the depths of 454 and 459 m it is not possible to 

identify a uniform annual layer thickness, despite a relatively stable isotopic record for this 

depth range (fig. 5.01a, 5.03a – c).  The layers identifiable in these sections range in 

thickness between 5 and 30 mm, compared with the 57 mm estimated in the annual layer 

thickness model. 

Within the profiles analysed from a depth 694 m and deeper, sections of ice appear to have 

little seasonality in the analysed profiles (fig. 5.04a and 5.05c).  These results raise the 

following questions regarding the reliability of LA ICP-MS at greater depths: firstly, is the 

method capable of obtaining sub-annual cycles in the ice originating from the last glacial 

period, preserved in the Berkner Island ice core?  Secondly, has the chemical signal diffused 

at these depths, leading to a smoothed record in the ice? The answers to these questions 

will partly be addressed by determining the repeatability of the ultra-high resolution results 

using the alternative, established methods. 

In the deepest analysed sections of the ice core, the observed mean annual layer thickness 

doubles between 695 m and 704 m, suggesting a significant increase in annual accumulation 

at the time of original deposition.  This is contrary to what has been predicted by the model 

that is unable to identify natural variability not preserved in the stable water isotope profile. 

5.5.4 Discrete Sampling 

The results presented have been obtained using both lower- and high-resolution discrete 

sampling methods. Results are presented as semi logarithmic plots of chemical profiles 

against the sample length, mm. 
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5.5.4.1 Mid-Holocene Ice from 5.5 ka BP (454 – 459 m) 

Discrete samples were cut roughly at a 5 mm spatial resolution on sections of ice parallel to 

ice analysed by LA ICP-MS.  In addition, the dataset has been expanded by sampling an 

additional 100 – 150 mm of ice per metre of ice in each depth range.  Fig. 5.06 displays the 

results from this study, and the expanded profiles for sections of ice sampled from 455 – 459 

m, with red dashed lines indicating the point at which a peak is visible.  An immediate 

observation of the three expanded profiles is that seasonality appears smoothed throughout 

each profile, with a variable annual layer thickness of 50-70 mm that agrees with the CFA 

profiles and annual layer thickness model.  Additional chemistry and the DEP datasets for 

the corresponding depths have been included for a thorough comparison of the between 

the LA ICP-MS Na and the lower-resolution datasets (fig. 5.07-5.08).  The LA ICP-MS Na signal 

is presented a semi logarithmic in two ways: (i) the original dataset high-resolution dataset; 

(ii) smoothed to the lower-resolution used in the discrete sampling.  Sub-seasonal discrete 

events are visible in the sodium and chloride profiles but are not identifiable in the non-sea 

salt Sulphur (nss-S) and DEP datasets.  Annual layers are delineated with grey bands in each 

figure, in comparison to the red dashed lines in previous plots where chemical peaks could 

have been interpreted as an annual signal.   
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Figure 5.06a – c: Three sections of ice originating from 455 – 459 m analysed by ion chromatography 

and displayed as semi logarithmic plots of element concentration with red dashed lines indicating 

annual peaks. 
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Figure 5.07: Comparison of parallel sections of ice from 456.31 m – 456.51 m from top to bottom: the 

DEP data; nss-S profile analysed by discrete sampling; sodium and chloride profiles analysed by 

discrete sampling; ice analysed by LA ICP-MS with the profile smoothed to the same resolution used in 

the discrete sampling technique, with annual layers indicated by grey lines. 
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Figure 5.08: Comparison of parallel sections of ice from 458.51 – 458.71 m from top to bottom: the 

DEP data; nss-S profile analysed by discrete sampling (red); sodium and chloride profiles analysed by 

discrete sampling; ice analysed by LA ICP-MS with the profile smoothed to the same resolution used in 

the discrete sampling technique (red), with annual layers indicated by grey lines. 

 

5.5.4.2  Glacial Ice from 29.7 – 31.2 ka BP (702 – 707 m) 

A microtome blade was used to discretely cut samples for two sections of ice, originating 

from the last glacial period, at a spatial resolution of 320 – 480 m.  The results of these 

analyses are displayed in fig. 5.09-5.10, against the LA ICP-MS results.  The IC profiles are 

displayed as semi logarithmic plots of trace-element sodium, (Na+), magnesium (Mg2+), and 
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calcium (Ca2+) against sampled depth (mm).  Only a cation profile is available for ice at 703.2 

– 703.22 m due to low sampling volume, meaning there is a sulphate signal only available at 

706.3 – 706.38 m in this depth range. 

Additional annual layers are identified in the lower-resolution profile, suggesting that the 

loss of an annual signal during the LA ICP-MS analysis is due to the capability of the 

technique and that the seasonal record of the Berkner Island ice core is resolvable and 

preserved. 

 

 

Figure 5.09: Comparison of parallel sections of ice from 703.2 - 703.22 m from top to bottom: ice 

analysed by discrete sampling technique; ice analysed via LA ICP-MS with a smoothed profile (red). 
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Figure 5.10: Comparison of parallel sections of ice from 706.3 - 706.38 m from top to bottom: ice 

analysed by discrete sampling technique; the nss-S profile from the discrete sampling technique; ice 

analysed via LA ICP-MS with a smoothed profile (red). 

 

5.6 Discussion 

The methods employed in this study have all used a sample resolution where seasonal 

variability should be visible in the resulting profile based on the estimated annual layer 

thicknesses at each analysed depth.  As a result, the detection of annual layers is dependent 

on three factors: (i) the preservation of a seasonal cycle in the ice-core record, (ii) the 
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reliability of the method to extract the seasonality, and (iii) whether the sampling resolution 

was sufficient.  The following section will discuss the feasibility of each analytical approach 

to obtain a seasonal profile on the ice used as part of this study.  

Analysis of ice at depths 454 – 459 m using the lower-resolution discrete technique was not 

successful in repeating the trends in the high-resolution profile due to the high sampling 

volume required (fig. 5.07-5.08).  This opened the line of inquiry into the small-scale 

variations resolved in the high-resolution analysis that suggest the LA ICP-MS technique was 

able to measure sub-annual discrete events within an annual layer.  In addition to this sub-

seasonal variability, the profile shows the changes in annual accumulation in short 

timeframes.  The Holocene period shows no consensus of a mean annual accumulation rate 

consistent over the timeframe analysed, suggesting a highly variable annual accumulation.  

Both of these unresolved questions can be answered by comparison of the high-resolution 

datasets with longer time series of annual layers from the Berkner Island ice core.  

Wagenbach et al. (1994) presented a high-resolution profile for the upper depths of ice at 

two domes (north and south) on Berkner Island.  The annually resolved profiles 

demonstrated significant variability in annual layer thickness over a depth range of 11 m; 

CFA and the corresponding DEP profile replicates this variable profile (fig. 5.02).  Results 

show a mean annual layer thickness that matches the modelled estimate for its depth range, 

but the measured profile demonstrates great variability over a couple of metres, suggesting 

a natural variability in annual accumulation at the site.   

This study has assessed the preservation of annual layers in ice originating from the last 

glacial period by comparing with lower-resolution techniques.  Good correlation can be seen 

between LA ICP-MS profiles and profiles derived using lower-resolution techniques on ice 

from the last glacial period, as well as comparison of each sampling technique with the 

modelled estimates (fig. 5.09-5.10; table 5.01).  The trend, magnitude and frequency of Na 

cycles suggests that annual layers are visible and that these methods can be applied to deep 

Antarctic ice cores with confidence that the technique is capable of a sub-annual resolution 

where annual layers are at least as small as 3 mm. 

In the deeper section, continuous seasonal profiles are not always visible in the record 

despite the fact that annual layer thickness is estimated to be greater than the resolution of 

all the techniques used.  This implies a potential loss of signal within the ice core record, 

resulting in a smoothed profile with limited seasonal fluctuations.  However, this loss of 

seasonality in the record is not repeated in the lower-resolution discretely cut ice core 
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profile at 702 – 707 m (fig. 5.09-5.10) when presented as semi logarithmic, suggesting the 

annual record is still resolvable at this depth.  In the glacial ice analysed, annual layer 

thickness appeared to increase dramatically; this increase in annual layer thickness from ~3 

mm at 704 m to ~6 mm at 706 m indicates significant natural variability not previously 

identified through modelling techniques. 

5.6.1 Annual Layer Visibility in the LA ICP-MS Record  

The cycles visible in the laser-ablated profiles follow the pattern expected of ice core annual 

layers.  The greatest annual layer thicknesses are visible in the upper depths of the ice core, 

with the number of seasonal cycles visible increasing with depth due to the compaction of 

annual layers in the ice core.  The patterns that emerge as the analysed depth increases 

indicate that the ultra-high resolution method at shallower depths results in a “noisy” signal.  

The low sampling volume required makes the LA ICP-MS profiles more sensitive to small-

scale variations; as the frequency of the cycles increase with depth, the number of small-

scale variations decreases, suggesting that the main cause for this “noise” in the signal is the 

analytical resolution.   

The seasonal layers visible in the Berkner Island ice, retrieved at a depth in the ice sheet 

previously unattainable by standard laboratory resolution, confirm that our results are in 

line with other studies suggesting that LA ICP-MS is a valuable technique for high-resolution 

ice core analysis (Müller et al. 2011, Mayewski et al. 2014, Sneed et al. 2015).  Since the 

initial development of LA ICP-MS on frozen samples, the technique has been established 

through successful application to Greenland and alpine ice.  Most notably, LA ICP-MS 

demonstrated a clear sub-annual view of abrupt climate events including the onset of the 

Holocene in the GISP2 record as well as the assessment of the capability to identify sea ice 

and dust markers in the GRIP ice core record (Reinhardt et al. 2001, Mayewski et al. 2014).  

In particular, the ultra-high resolution records that can be produced using LA ICP-MS have 

the potential to enhance the information available to constrain age-depth models.  The 

profiles presented as part of this study show that the method is capable of inferring climatic 

variability not recorded in the stable isotopic history of the ice core such as rapid changes in 

mean annual accumulation.   

In addition to the ultra-high spatial resolution achieved when using LA ICP-MS on frozen 

samples, the contribution of LA ICP-MS to ice-core analyses is significant.  The rapid analysis 

time, permitted by the balance between the laser spot diameter and high spatial resolution, 
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means it is possible to measure a 40 mm profile in several minutes.  Furthermore, the 

methodology and implementation of an ultra-violet laser is non-destructive to the frozen 

samples unlike both discretely-cut and IR LA ICP-MS.  These features of ultra-violet LA ICP-

MS add support to the recommendation that this technique should be applied to frozen 

samples where possible in order to improve the resolution of an ice core profile, and the 

subsequent chronology and palaeoclimate analysis. 

5.6.2 Annual Layer Visibility in Discrete Sampling Record 

The lower-resolution sampling technique used to analyse the sections of ice originating from 

the Holocene does not reproduce similar results to the laser-ablated profiles.  Seasonal 

variations in the high-resolution LA ICP-MS results were beyond the 5 mm sampling 

resolution of the lower-resolution technique.  Similarities in the broad shape of the lower-

resolution profiles suggest a smoothed record that is comparable to the shape and trends in 

the high-resolution LA ICP-MS record.  These results agree with the comparison study on the 

Colle Gnifetti ice core, which found that lower-resolution CFA was unable to detect seasonal 

variability but showed a profile resembling a smoothed version of the ones acquired by LA 

ICP-MS (Sneed et al. 2015). 

In ice originating from the last glacial period, a higher and variable spatial resolution of 320 – 

480 µm was necessary.  The results presented in fig. 5.09-5.10 correlate well with the 

corresponding ultra-high resolution records, and help confirm the potential of LA ICP-MS on 

Antarctic ice from the last glacial.  Annual layers identified throughout each analysed profile 

correspond well, though discrepancies are apparent between the discretely sampled and 

laser-ablated profiles, with more annual layers identifiable in the lower-resolution profile. 

5.6.3 Assessment of the Annual Layer Thickness Model 

As part of this study, a model was used primarily to estimate the annual layer thickness 

along the ice core to assist the initial sampling observations (see the supplementary 

information to this article).  The confirmation that seasonal profiles are visible in the glacial 

ice permits a second comparison study; the observational data with the modelled layer 

thickness estimates.  By comparing these two profiles, the model can be independently 

validated and give insight into the empirical relationships that contribute to age-depth 

determinations. 

Table 5.01 outlines the depths (m, to the nearest integer) that have been sampled and 

analysed by LA ICP-MS and the discrete sampling techniques, the observed annual layer 
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thickness (if available), and the modelled annual layer thickness estimate and standard 

deviation (2, mm).  The results of the ultra-high resolution analysis, in comparison with the 

modelled annual layer thickness approximations, demonstrate that the model is successful 

in estimating the annual layer thickness along the ice core at each depth section except for 

the depth range 704 – 707 m.   

The Holocene record produced by both techniques does not agree with the modelled 

estimates, suggesting a highly variable accumulation profile that cannot be accurately 

modelled to account for small-scale accumulation rates over several years.  Looking at a 

broader view, the mean annual layer thickness over the four metres analysed by CFA is 57.0 

 8.8 mm, and 51.75  3.51 mm for the discretely measured profiles.  The confidence 

intervals of the mean annual layer thickness values agree to within the confidence interval of 

the mean modelled estimate of 54.8  1.4 mm.    

The small uncertainties attached to the annual layer thickness retrieval and estimations are 

also close to corroboration between high and low sampling resolutions and the model 

estimates on ice originating from the last glacial period.  Estimates agree to within 2 mm, 

but not the prescribed error margin for ice analysed at a depth of 694-704 m.  For the full 10 

m section analysed, the mean annual layer thickness measured by LA ICP-MS is 3.4  0.2 

mm, which does not corroborate with the mean modelled annual layer thickness estimate of 

2.2  0.3 mm.   

The inter annual mean annual layer thickness measurements agree with the modelled 

estimates for upper depth section analysed, suggesting that the model is reliable for 

estimating annual layer thickness for sections of the ice-core on a metre resolution or 

greater, but cannot accurately reconstruct natural, local variability in the accumulation 

profile.  This is unsurprising as the resolution of this model is 0.55 m, based on the resolution 

of the stable water isotope data in the accumulation reconstruction (eq. S5.01). 

At 704 m, the layer thickness observations deviate from the estimated profile due to an 

increase in annual layer thickness despite continued compaction along the ice core and no 

evidence in the record to suggest a deviation from the ice-core physics of strain and layer 

compaction.  The age estimate at 706 m (~34 ka BP) coincides with a large increase in stable 

nitrogen isotopes (δ15N) identified in the gas-phase of Berkner Island (Mani 2010).  From 37 

ka BP, a large, positive excursion in δ15N begins and does not return to start-values for ~10 

ka.  One suggestion for this excursion in δ15N records is a rapid and significant increase in the 
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accumulation rate that increased the firn diffusive height, and the gravitational 

fractionation.  This accumulation increase would have been rapid in order to leave little-to-

no trace in the isotopic record.  It is highly probable that the deepest section of ice analysed 

by LA ICP-MS corresponds to this signature preserved in the gas-phase record, and that the 

observed increase in annual layer thickness within this section strengthens the hypothesis of 

a rapid increase in annual accumulation. However, the employment of further analysis by 

ultra-high resolution techniques could explore the potential of these results.  The increase in 

annual layer thickness is likely due to a significant increase in mean annual precipitation at 

the time of original deposition, and warrants further investigation.   

Ultra-high resolution records are paramount to the assessment and improvement of ice-core 

chronologies.  With respect to the annual layer thickness model and the application of high-

resolution trace-element analysis, the results of this study suggest that a combination of 

glaciological modelling and reliable annual layer thickness observations, derived using ultra-

high resolution measurement techniques, would improve the estimation of annual layer 

thickness and consequently the age-depth profile of Antarctic ice cores.  

5.7 Conclusions 

LA ICP-MS on ice has the potential to retrieve continuous, seasonal signals from ice core 

records at depths currently beyond the range of standard laboratory methods.  The 

application of two techniques in high-resolution trace element analysis on frozen ice 

samples from the Berkner Island ice core agree in measurements of annual layer thickness at 

three depth ranges, providing a detailed snapshot of the Na and Mg seasonal record of the 

last glacial period.  The results of this analysis have been compared with results from a 

lower-resolution technique applied to parallel sections of ice; trends, depositional peaks in 

Na and Mg, and absolute values of calibrated concentration in the IC and LA ICP-MS profiles 

agree – particularly well in the ice originating from the last glacial period.  The low sample 

volume required for LA ICP-MS yields additional information and small-scale variability is 

resolved in the Holocene profiles.  Care and extra assessment of LA ICP-MS profiles should 

be taken to ensure annual layers are not misappropriated during the analysis of ice cores. 

Assessment of a simple one-dimensional model to estimate the annual layer thicknesses 

along an ice core confirms that the model is effective at estimating annual layer thicknesses 

for Holocene and glacial ice on a low resolution.  Modelled annual layer thickness for each 

individual ice section do not compare well with the observed measurements; the model is 



Chapter 5 

 161 

unable to reconstruct the natural variability on a local scale without a higher resolution 

stable water isotope profile and better observational data.  The optimal annual layer 

thickness estimates should be constructed using a combination of the glaciological 

techniques used in the paper, and ultra-high resolution analytical techniques to constrain 

the compaction rates such as LA ICP-MS and the discrete sampling technique. 

5.8 Supplementary Material to the Paper 

5.8.1 Annual Layer Thickness Model Variables 

Table S5.01: List of parameters and the values used in calculating the annual layer thickness in the 

Berkner Island ice core, Weddell Sea. 

Variable Value 

Present-Day Mean Annual Accumulation, Aθ 0.185 m yr-1 

Ice-Sheet Thickness, H 948 m 

Temperature at the bed, TB
 262 K 

Surface Temperature, TS 248.2 K 

Glen’s Exponent, n 3 

Activation Energy, Q 60 kJ mol-1 

 

Table S5.02ː Known-age horizons along the Berkner Island ice core with associated error.  Age horizons 

have been derived by Rob Mulvaney (pers. comm.) by matching BI stable water isotope signatures 

with EDC stable water isotope signatures of assumed-synchronous AIM events events (Bazin et al., 

2013; Veres et al., 2013). 

Depth below the surface 

(mweq) 

Age (ka BP) Error (ka BP) 

579.341 13.50 0.3 

584.843 14.75 0.5 

596.351 17.60 0.5 

641.788 38.10 0.5 

666.712 46.50 1.0 
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693.700 57.16 1.0 

709.591 64.75 1.0 

 

5.8.2 Statistical Analysis of LA ICP-MS data 

In addition to the work reported in the published paper and its accompanying 

supplementary information, I present here a statistical analysis of the LA ICP-MS Na data.  As 

an alternative method of identifying annual signals in the LA profiles, fast fourier transform 

(FFT) analysis was applied to the data.  Fourier transforms are tools for processing discrete 

data that is presented as a function of time or space.  Data is fragmented into frequency 

components with a view to identifying a periodicity or frequency of a profile.  In the case of 

the LA profiles, FFT analysis was applied in order to identify a periodicity of peaks in Na 

deposition.   

The results show that regardless of the modelled annual layer thickness, and the details of 

the layers identified in the semi-logarithmic plots (fig. 5.03 – 5.05), power density spectrums 

yield similar results for all nine sections of ice analysed.  The greatest power is seen at the 

shortest wavelength, with additional frequencies occurring with decreasing strength with 

respect to increasing annual layer thickness, suggests that there are numerous layer 

thicknesses identified in each measured series  (fig. S5.01).  This is particularly surprising as 

one would expect the results to change dependent on the analysed ice; i.e. one would 

expect the annual layer thickness in ice originating from the Holocene to be greater than 

annual layer thickness in ice originating from the last glacial period.   

The reason these datasets do not show different results at different depths is that the 

analysis has been completed with respect to a depth series that is not linear with time.  As 

such, the FFT analysis is able to pick out power spectra at any wavelength. 



Chapter 5 

 163 

 

Figure S5.01(a-i): FFT power spectrum density plots for each section of ice analysed.  Results are 

presented for sections of ice in increasing depth order, and the plots read left to right, starting with 

the top row.  Each plot suggests multiple peaks of potential annual layer thicknesses. 
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5.8.3 Modelled Annual Layer Thickness 

The peer-reviewed publication focussed on validating the LA ICP-MS Na results by 

comparison with alternative trace-element profiles.  In addition to this, the LA ICP-MS Na 

record was used to measure annual layer thickness for comparison with the modelled 

estimates of annual layer thickness.  The paper presents annual layer thicknesses estimated 

using the Optimised Accumulation and Thinning (OptAcc) model, with an a priori 

accumulation history that was derived using the Clausius-Clapeyron relationship (section 

4.2.2(b)).  However, the LA ICP-MS Na results and annual layer thickness measurements 

were also compared with the estimated thicknesses from all of the inverse approaches 

presented in Chapter 4.  Similar to the results of Chapter 4, which found that the OptAcc 

model yielded the most accurate reconstruction of accumulation, thinning, and age-depth 

for the FP ice core, table S5.03 suggests that the OptAcc model is most accurate in 

reconstructing annual layer thickness for the BI ice core.  For the BI ice core, the OptAcc 

model is able to produce optimised profiles for accumulation as well as thinning, unlike the 

Direct Search method.  Both models use an initial accumulation history estimated using a 

Clausius-Clapeyron relationship, but the OptAcc model perturbs this initial accumulation 

profile in order to estimate the optimal profile.  This relationship assumes a direct 

relationship between water vapour sources and the rate of precipitation.   

As explained earlier, the optimised annual layer thickness estimates do not correlate with 

measured layer thicknesses at a resolution of one metre (section 5.5.3).  This includes the ice 

analysed that does not show a significant increase in accumulation at 694-704 m.  The 

OptAcc model is no more accurate at estimating annual layer thicknesses than IceChrono 

when compared with the observational data (shown in table S5.03).  Both the IceChrono and 

OptAcc approaches estimate annual layer thickness outside of the measured standard 

deviation at a metre-resolution, particularly when comparing sections from a depth greater 

than 694 m.  Comparison of model estimates with annual layer thickness measurements 

provides no additional evidence towards the most robust modelling approach.  Therefore, 

this study chose to continue with the OptAcc approach, using a Clausius-Clapeyron 

accumulation relationship. 
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Table S5.03: Annual Layer Thickness estimates from every model combination, using a Clausius-

Clapeyron accumulation reconstruction 

Depth 
(m) 

Forward model (mm) Inverse model (mm) Measured 
Annual Layer 
Thickness 
(mm) 

Nye Dansgaard 

-Johnsen 

One-
dimensional 

Direct 
Search 

IceChrono OptAcc 

447 103.2 86.4 83.1 35.1  4.2 66.0  0.7 56.7  1.5 57.0 ± 8.8 

454 103.1 85.7 82.4 34.4  4.2 57.6  0.7 56.7  1.5 57.0 ± 10.0 

456 100.1 83.1 79.8 33.2  4.1 57.6  0.7 54.9  1.4 6.7  0.6  

458 96.7 80.1 77.0 31.9  3.9 57.6  0.7 52.9  1.4 26.1  2.3 

694 16.0 7.9 8.4 2.4  0.5 2.4  0.06 2.1  0.3 2.9  0.1 

695 17.0 8.4 8.9 2.5  0.5 2.4  0.06 2.3  0.3 3.6  0.1  

696 15.5 7.6 8.1 2.3  0.5 2.4  0.06 2.1  0.2 4.0  0.2  

702 16.2 7.8 8.3 2.3  0.5 3.0  0.07  2.3  0.2 3.1  0.1 

704 16.0 7.6 8.2 2.3  0.5  3.5  0.07 2.3  0.1 6.1  0.2 

706 17.2 8.1 8.7 2.4  0.5 2.8  0.07 2.3  0.1 5.1  0.2 
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Chapter 6: The optimal age-depth profiles for the 

Berkner Island and Fletcher Promontory ice cores 

6.1 Introduction 

The overall rationale of this study is to develop the optimal dating strategy for three deep 

ice cores from the Antarctic Peninsula (AP) and Weddell Sea region.  The third specific 

objective of this study, as outlined in section 1.2.1, aims to use the results of the model 

development and chemical analysis of the ice cores (the previous two objectives) and 

develop and apply the most robust approach to reconstruct the accumulation, thinning, and 

hence annual layer thickness and age-depth profiles for the ice cores from Fletcher 

Promontory (FP), Berkner Island (BI), and James Ross Island (JRI). 

Through previous chapters, the optimal dating strategy has been developed by applying an 

inverse approach to empirical accumulation and thinning functions.  The model calculates 

the optimal values of two functions: (i) the first function controls the sensitivity of 

accumulation change with respect to temperature, and (ii) the second function controls the 

shape of deformation in the thinning function.  This model is referred to as the Optimised 

Accumulation and Thinning (OptAcc) model.  The optimal profiles of annual layer thickness 

and age-depth are constrained using observational data; age horizons identified throughout 

the ice core record and measured annual layer thicknesses at sub-millimetre resolution.  The 

additional observational data improves on the constraints used in the FP reconstructions 

presented in Chapter 4, by incorporating the annual layer thickness measurements yielded 

through three techniques of high-resolution trace-element analysis along the ice core 

records, applied to ice from multiple depths of the FP and BI ice core records (Chapter 5).  

Constraining the mean annual layer thickness in this way, using observed measurements 

throughout the ice core, further refines the optimised age-depth profile as the age of an ice 

particle at a particular depth is ultimately the sum of annual layers above it. 

In this chapter, the age-depth profiles of the FP and BI deep ice cores are reconstructed 

using the OptAcc model.  The JRI ice core age-depth profile is presented separately to this 

chapter, due to the additional work and collaboration required in reconstructing the 

accumulation and annual layer thickness profiles. 
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6.2 Methods 

The techniques used in reconstructing the FP and BI accumulation and annual layer 

thickness records are outlined in previous chapters.  In order to reconstruct the most 

accurate climate record, the profiles of accumulation and thinning are optimised using the 

dating strategy that produces the most accurate ice core record (Chapter 4). 

The profiles of accumulation, thinning, and hence annual layer thickness and age-depth are 

constructed using the OptAcc model presented in Chapter 4 (section 4.4.4).  An initial 

accumulation history is estimated following the Clausius-Clapeyron relationship (eq. 2.06-

2.08; section 2.5.2.2) and is optimised through an inverse approach by estimating a smooth 

perturbation profile (eq. 3.01).  Annual layer thickness is estimated by reconstructing the 

thinning function using the One-Dimensional relationship (eq. 2.13-2.17; section 2.5.3.3) and 

applying this to the optimised accumulation profile.  Finally, the estimated annual layer 

thickness and age-depth profiles (eq. 2.20-2.21; section 2.5.4) are compared with 

observational data for the optimisation of the parameters that control the accumulation and 

thinning profiles, which feed into the annual layer thickness profile. Final profiles of 

accumulation, thinning, annual layer thickness, and age-depth are the output from the 

model iteration that yields the smallest root mean square error (RMSE) value. 

Age horizons are commonly identified in ice cores by globally- or regionally-synchronous 

signatures preserved in the stable water isotope and gas records, as well as the sulphate and 

tephra peaks from volcanic eruptions.  Detailed chemical and gas records are not available 

along the length of the FP and BI ice cores, but a small number of age horizons have been 

selected by matching climate features in the water isotope records of these two cores with 

similar features in the EPICA Dome C (EDC) ice core.  Novel techniques for very high 

resolution chemistry measurements across short sections of the cores yield annual layer 

thickness measurements that can be used to further constrain the BI and FP ice core 

records.  For BI, low-resolution discrete sampling and continuous flow analysis (CFA) analysis 

yield layer thickness measurements for middle depths of the ice core, and ultra-high 

resolution LA ICP-MS data is used to determine layer thickness on ice originating from the 

last glacial period at greater depths.  The annual layer thickness measurements are 

presented in Chapter 5, with the assessment of each technique and its ability to obtain sub-

annual profiles at great depths in the ice sheet.  Additional chemical profiles are presented 

in this chapter for FP, for which sub-annual profiles were collected by discrete sampling 

using the microtome technique and analysed by ion chromatography (IC) (section 3.5).  Five 
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depth ranges were analysed for the FP ice core.  For the two uppermost depth ranges, δ18O 

concentrations were measured at a spatial resolution of 10 mm and 3 mm, respectively.  

These results are from a parallel study, as explained in section 3.3.2.  The remaining three 

depth ranges have been sampled and analysed using the discrete sampling approach as used 

on BI ice in Chapter 5 at a spatial resolution of 0.32 mm. 

6.3 Results 

The analysis of the BI and FP ice cores at a high resolution yields observational data that can 

constrain the annual layer thickness and age-depth profile.  The following section presents 

the measured annual layer thickness and age horizons from the laboratory analysis, section 

6.3.2 presents modelled profiles of accumulation, thinning and annual layer thickness, and 

section 6.3.3 presents age-depth profiles for the BI and FP ice cores. 

6.3.1 Observational Constraints 

6.3.1.1 Berkner Island 

The observational data used to constrain the optimisation model are presented as table 6.01 

and 6.02 for age constraints and observed annual layer thickness, respectively.  Annual layer 

thickness measurements are presented in millimetres, with the associated standard 

deviation to 2σ.   

Age horizons only exist for depths greater than 650 m of the 947 m ice core; the BI 

reconstructions of accumulation and annual layer thickness throughout the uppermost 650 

m of the ice-core record therefore predominantly rely on the accuracy of the empirical 

relationships.  The age horizons are identified in the stable water isotope record, and tuned 

to the AICC2012 ice-core chronology.  The uncertainty in the age horizons is based on the 

AICC2012 model uncertainty (Bazin et al., 2013; Veres et al., 2013).   

Some additional constraints in the form of observed annual layer thickness measurements 

are obtained from depths shallower than 650 m to provide a balanced distribution of 

observational data throughout the ice core record.  Depths are presented in snow (m) and 

ice equivalent (mweq) units; the snow depth is converted into ice equivalent units by 

accounting for the increase in density with depth (section 4.3.1).  Model results are 

presented solely in ice-equivalent units.  
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Table 6.01: BI age constraints and uncertainty.  Age horizons have been derived by Rob Mulvaney 

(pers. comm.) by matching BI stable water isotope signatures with EDC stable water isotope 

signatures of assumed-synchronous AIM events (Bazin et al., 2013; Veres et al., 2013). 

Depth below 

the surface 

(m) 

Depth below 

the surface 

(mweq) 

Observed Age 

(yr since drill 

date) 

Uncertainty 

(yrs) 

Observed feature 

650.80 

 

 

 

596.78 

 

 

 

13050.0 

 

 

 

250.0 

Coldest part of the 

Antarctic Cold Reversal 

(ACR), tuned to 

AICC2012 

656.80 602.28 14600.0 250.0 AIM 1 

669.35 613.79 18390.0 1000.0 Start of warming 

718.90 659.23 38250.0 800.0 AIM 8 

745.08 683.24 46480.0 800.0 AIM 12 

775.51 

 

 

711.11 

 

 

56890.0 

 

 

800.0 

Coldest part of stadial, 

tuned to AICC2012 

792.84 726.59 64750.0 2200.0 AIM 18 

 

Table 6.02: Observed annual layer thickness and standard deviation used as constraints in the BI age-

depth profile, with method of analysis used to obtain the sub-annual record and the analytical 

resolution used during the sampling in Chapter 5. 

Depth below 

the surface 

(m) 

Depth below 

the surface 

(mweq) 

Observed 

layer 

thickness 

(mm) 

Standard 

deviation 

(mm) 

Method of 

analysis  

Sample 

Resolution 

(mm)  

447 – 451 409 – 413 57.0 8.8 CFA 5.0 

454 – 458  416 – 419   51.7 3.5 LA ICP-MS 0.1 

694 – 704 636 – 645 3.2 1.0 LA ICP-MS 0.1 
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6.3.1.2 Fletcher Promontory  

Similar to the BI ice core, two forms of observational data are used to constrain the model.  

The age horizons, with their corresponding depth and uncertainty were presented in 

Chapter 4, section 4.2.1 (table 4.01).  In addition to the age constraints, annual layer 

thickness measurements derived from the discrete sampling methods are presented in fig. 

6.01.  The mean annual layer thickness measurements and the respective standard deviation 

(2σ) are presented in table 6.03; additional information on the method of analysis and snow 

and ice-equivalent depth is included.  For the uppermost two depth ranges, between 299 – 

390 m, δ18O concentrations are measured at a depth resolution of 3 – 10 mm (table 6.03), 

these are results from a parallel study (Pike, unpublished).  Annual layers were identified in 

the same manner as in Chapter 5 for the BI ice core: by identifying the minimum value over a 

presumed seasonal cycle of trace-element or stable water isotope deposition (section 5.4.3). 
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Figure 6.01: Sub-annual measurements on the Fletcher Promontory ice core.  A-B: stable water isotope 

measurements with respect to depth in metres (snow); C-E: ion profiles with respect to depth in 

millimetres (snow).  Dashed lines delineate assumed annual peaks in deposition.  Measurements in 

plots (a-b) were obtained separate to this study by Amy Pike.  Measurements in plots (c-e) were 

obtained by this study using discrete sampling techniques. 
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Table 6.03: Observed annual layer thickness and standard deviation used as constraints in the FP age-

depth profile, with method of analysis used to obtain the sub-annual record and the analytical 

resolution used during the sampling for measurements presented in fig. 6.01. 

Depth 

below the 

surface (m) 

Depth below 

the surface 

(mweq) 

Observed 

layer 

thickness 

(mm) 

Standard 

deviation 

(mm) 

Method of 

analysis 

Sample 

Resolution 

(mm)  

299  270 98.0 30.0 18O profile 10.00 

390 354 52.0 17.0 18O profile 3.00 

425 387 18.0 0.0 Discrete 

Sampling 

(microtome) 

0.32 

484 444 15.9 0.0 Discrete 

Sampling 

(microtome) 

0.32 

523 480 7.7 2.6 Discrete 

Sampling 

(microtome) 

0.32 

 

6.3.2 Accumulation and Annual Layer Thickness 

The OptAcc Model estimates 1000 possible profiles of accumulation and thinning that are 

perturbed in order to agree with the observational data, at least to within the associated 

uncertainty on the observational data.  The observational data used to constrain the 

optimised profiles includes age horizons and measured annual layer thicknesses.  The 

reconstructions are presented with their confidence interval – the spread of possible values 

for each profile found through 1000 iterations. 

6.3.2.1 Berkner Island 

Fig. 6.02 presents the present-day (blue) and original annual layer thickness (accumulation) 

(red) profiles, as derived using the OptAcc approach; the empirical accumulation history is in 

grey.  The range of perturbation profiles on the initial Clausius-Clapeyron accumulation 
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history is across the Holocene period (-5% – +35% than the initial profile; fig. 6.03a).   The 

only constraints throughout this period are measured annual layer thicknesses at 409 – 413 

mweq and 416 – 419 mweq, and hence the range of potential mean annual accumulation 

rates is large.  At the perceived Last Glacial Maximum (LGM) in the isotope record (~600 

mweq), the greatest perturbation of -50% is applied to the empirical estimate; this coincides 

with the start of age horizons at 579 mweq.  The accumulation profile is perturbed at 720 – 

800 mweq by around +7%, before dropping to -6% close to the bedrock (fig. 6.03a). 

 

 

Figure 6.02: Present-day (blue) and original annual layer thickness (red) for the BI ice core.  Present-

day annual layer thickness is assumed to be the product of the final accumulation and thinning 

profiles. Black crosses show the observed annual layer thickness measurements.  The initial Clausius-

Clapeyron accumulation history is presented in grey.  The depths corresponding to age horizons are 

delineated by black dashed lines. 
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Figure 6.03: Perturbation profiles for each ice core reconstruction: (a) 1000 perturbation profiles for BI; 

(b) 1000 perturbation profiles for FP.  Each coloured line is an individual perturbation profile. 

 

Annual layer thickness replicates the sharp decrease in accumulation at around 500 mweq 

(fig. 6.02).  The observed annual layer thickness measurements throughout the ice core 

constrain the modelled annual layer thickness and are represented in fig. 6.02 as black 

crosses.  Fig. 6.04 presents the range of modelled annual layer thicknesses at the depths 

corresponding to measured values, with a normal density function fitted (red line), with the 

modelled values from the annual layer thickness values and RMSE values presented in table 

6.04.  The modelled annual layer thicknesses distributions agree to within the standard 

deviation of the measured values.  

The profile of deformation is controlled by the p-parameter, which is solved for within the 

inverse approach (fig. 6.05).  The optimal thinning function is presented on the normalised 

depth scale used in the One-Dimensional thinning function (section 2.5.3.3), where 1 is the 

surface and 0 is the normalised depth at the bed.  The thinning function yields a value of the 

p-parameter of -0.54  0.18 (also presented in table 6.05 with the calculated value of Glen’s 

Flow Law exponent, n, which is estimated by inverting eq. 2.16 in section 2.5.3.3).  This 

initially appears to be a large range in the uncertainty, but it isn’t reflected in the confidence 
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interval of the annual layer thickness profile where the confidence interval is presented as 

pale blue band surrounding the mean annual layer thickness profile (fig. 6.02). 

 

Figure 6.04: Density distribution of the modelled annual layer thickness at depths corresponding to 

measured values in the BI ice core, with a normal density distribution fitted (red line).  The depth at 

which the annual layer thickness is measured and compared is shown in the top-left corner.  The 

standard deviation of the measured annual layer thickness is shown as a grey box.    
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Table 6.04: Estimated annual layer thicknesses at depths corresponding to the depths of annual layer 

thickness measurements and the respective RMSE value for BI. 

Depth below the 

surface (m) 

Depth (mweq 

below the surface) 

Layer Thickness 

Constraint (mm) 

Modelled Layer 

Thickness (mm) 

447 – 451 409 – 413 57.0 ± 8.8 56.9 ± 1.4 

454 – 458  416 – 419   51.7 ± 3.5 55.3 ± 1.4 

694 – 704 636 – 645 3.2 ± 1.0 2.2 ± 0.2 

RMSE (mm) 1.4 

 

 

Figure 6.05: Thinning functions reconstructed through the model for each ice core (FP is blue; BI is red) 

with the associated uncertainty, presented on a normalised depth scale where the depth is 1 at the 

surface of the ice sheet and 0 at the bed. 
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Table 6.05: Optimised values of the p-parameter and Glen's Flow Law exponent, n, with associated 

error for the BI and FP ice core.  Glen’s Flow Law exponent has been estimated by inverting eq. 2.16 in 

section 2.5.3.3. 

Ice Core p-value ± error n-value ± error 

BI -0.54 ± 0.18 -1.12 ± 0.18 

FP -0.73 ± 1.93 0.06 ± 1.93 

 

6.3.2.2 Fletcher Promontory 

Immediate observations for the FP ice core reconstructions are that the accumulation and 

thinning profiles yield a large uncertainty throughout the Holocene period due to the lack of 

constraints.  As such, the uncertainty is carried forward to the annual layer thickness profile.  

As a result of the large uncertainty, the empirical accumulation profile estimated using the 

Clausius-Clapeyron relationship is within the uncertainty of the optimised accumulation 

reconstruction.  However, the modelled accumulation history over the LGM to the Holocene 

suggests a different relationship between accumulation with respect to a change in surface 

temperature to that assumed in the Clausius-Clapeyron relationship.  For the optimised FP 

reconstruction, the accumulation profile (red) is perturbed to be consistently lower in 

comparison to the initial accumulation history (grey, fig. 6.06).  The perturbations to the 

initial accumulation profile result in a lower mean annual accumulation rate throughout the 

Holocene by ~34%, decreasing to 86% during the LGM (fig. 6.03b).  However, the large 

uncertainty on the accumulation reconstruction during the Holocene period suggests that 

the mean annual accumulation rate could have been up to 63% less than the present-day 

accumulation rate.  The perturbation doesn’t change the apparent timings of the response 

to the transition between glacial and interglacial cycles.   

Fig. 6.07 presents the range of modelled annual layer thicknesses at the depths 

corresponding to measured values, with a normal density function fitted (red line), with the 

modelled values from the annual layer thickness values and RMSE values presented in table 

6.06.  The modelled annual layer thicknesses distributions agree to within the standard 

deviation of the measured values, with the exception of the third annual layer thickness 

measurement at 387 mweq (425 m snow).  The third measured value is 18.0 mm ± 0.0 mm; 

the standard deviation is 0.0 mm as only one annual layer is identified in this analysed 

section of ice.  Without expanding the analysis of this section of ice to the surrounding ice in 
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order to identify further annual layer thicknesses, this constraint should not be considered 

robust. 

The thinning function reconstructs a high rate of thinning in the upper part of the FP ice core 

(fig. 6.05).  The optimised value of the p-parameter, that controls the shape of deformation, 

is -0.73 ± 1.93 (table 6.05 with the calculated value of Glen’s Flow Law exponent, n).  The low 

value controls the high rate of thinning (the highly non-linear profile) that continues from 

100 mweq to the bed (corresponding to 0.16 in the normalised depth units on fig. 6.05).  

When this thinning function is combined with the lowered mean annual accumulation 

throughout the ice core record, the annual layer thickness reconstruction fits to within the 

standard deviation of the observed annual layer thickness measurements, with the 

exception of the constraint at 387 mweq. 

 

Figure 6.06: Present-day and original annual layer thickness for the FP ice core.  Present-day annual 

layer thickness is assumed to be the product of the final accumulation and thinning profiles. Black 

crosses show the observed annual layer thickness measurements.  The initial Clausius-Clapeyron 

accumulation history is presented in grey.  The depths corresponding to age horizons are delineated by 

grey dashed lines. 

0 100 200 300 400 500 600

Depth below surface (mweq)

0

0.1

0.2

0.3

0.4

0.5

0.6

A
n
n
u

a
l 
L
a

y
e

r 
T

h
ic

k
n
e
s
s
 (

m
) 

/ 
A

c
c
u

m
u
la

ti
o
n

 (
m

 y
r-1

) 



Chapter 6 

 

 180 

 

Figure 6.07: Density distribution of the modelled annual layer thickness at depths corresponding to 

measured values in the FP ice core, with a normal density distribution fitted (red line).  The depth at 

which the annual layer thickness is measured and compared is shown in the top-left corner.  The 

standard deviation of the measured annual layer thickness is shown as a grey box.    

Table 6.06: Estimated annual layer thicknesses at depths corresponding to the depths of annual layer 

thickness measurements and the respective RMSE value for FP. 

Depth below the 

surface (m) 

Depth (mweq 

below the surface) 

Layer Thickness 

Constraint (mm) 

Modelled Layer 

Thickness (mm) 

299  270 98.0 ± 30.0 71.2 ± 9.4 

390 354 52.0 ± 17.0 41.1 ± 1.9 

425 387 18.0 ± 0.0 28.3 ± 0.7 

484 444 15.9 ± 0.0 14.5 ± 0.4 

523 480 7.7 ± 2.6 7.4 ± 0.3 

RMSE (mm) 5.8 
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6.3.3 Age-depth profiles 

The age of an ice particle at a particular depth is assumed to be the sum of annual layers 

above it (eq. 2.21).  The age-depth profiles are presented below, with the age horizons and 

their associated age uncertainty marked in black crosses. 

6.3.3.1 Berkner Island 

The optimal age-depth profile is constrained using seven age horizons and three observed 

mean annual layer thickness measurements.  The modelled age estimations agree with the 

observed age constraints to within 97.5% of the value and within the absolute age 

uncertainty (fig. 6.08).  The distributions of modelled ages at depths corresponding to the 

age constraints demonstrate this (fig. 6.09; table 6.07), with the largest range of modelled 

ages in the deepest three age constraints.  The uncertainty of 0.25-2.20 kyr on the age 

estimates allows a greater independence in modelled profiles, leading to larger uncertainty 

on the optimal profiles.  Despite this, the age 50 m (snow equivalent) above the bed is 

estimated to be 250 ± 16 ka BP.   

 

Figure 6.08: Age-depth profile of the BI ice core (black line) with associated error margin (grey).  Age 

constraints are represented by black crosses with the associated age uncertainty. 
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Figure 6.09: Probability distribution with the normal density function fitted (red line) of all age 

estimates at the depths corresponding to age constraints for BI.  The depth corresponding to the age 

constraint is shown in the top-left corner.  The age constraint and associated uncertainty is shown as a 

grey box. 
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Table 6.07: Estimated ages at depths corresponding to the depths of age horizons and the respective 

RMSE value of the modelled age-depth profile for BI. 

Depth below 

the surface (m) 

Depth (mweq 

below the surface) 

Observed Age (kyr 

since drill date) and 

uncertainty (kyr) 

Modelled Age Estimate 

(kyr since drill date) and 

uncertainty (kyr) 

650.80 596.78 13.05 ± 0.25 13.37 ± 0.44 

656.80 602.28 14.60 ± 0.25 14.52 ± 0.42 

669.35 613.79 18.40 ± 1.00 18.17 ± 0.78 

718.90 659.23 38.25 ± 0.80 38.16 ± 0.71 

745.08 683.24 46.48 ± 0.80 46.52 ± 0.45 

775.51 711.11 56.90 ± 0.80 56.93 ± 0.23 

792.84 726.59 64.75 ± 0.80 64.75 ± 0.80 

RMSE (kyr) 0.01 ± 0.30 

 

6.3.3.2 Fletcher Promontory 

The FP ice core record is constrained using five age constraints and five additional observed 

annual layer thickness measurements.  This is an increase in the number and type of 

observational constraints than what has been used in the candidate FP age scales 

constructed in Chapter 4.  The age-depth profile has a much smaller confidence interval (fig. 

6.10) despite fewer age constraints than the BI ice core; this is due to the balanced 

distribution of the observational data throughout the ice core record.  The distributions of 

modelled ages, at depths corresponding to the age constraints demonstrate the good fit of 

the optimised profiles to the observational data (fig. 6.11; table 6.08).  The age 25 m (snow 

equivalent) above the bed is estimated to be 120 ± 5.5 ka BP. 
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Figure 6.10: Age-depth profile of the FP ice core (black line) with associated error margin (grey).  Age 

constraints are represented by black crosses with the associated age uncertainty. 
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Figure 6.11: Probability distribution with the normal density function fitted (red line) of all age 

estimates at the depths corresponding to age constraints for FP. The depth corresponding to the age 

constraint is shown in the top-left corner. The age constraint and associated uncertainty is shown as a 

grey box. 
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Table 6.08: Estimated ages at depths corresponding to the depths of age horizons and the respective 

RMSE value of the modelled age-depth profile for FP. 

Depth below 

the surface (m) 

Depth (mweq below 

the surface) 

Observed Age (kyr 

since drill date) and 

uncertainty (kyr) 

Modelled Age Estimate 

(kyr since drill date) and 

uncertainty (kyr) 

540.59 495.73 14.60 ± 0.25 14.69 ± 0.36 

562.40 515.72 38.25 ± 0.80 38.49 ± 0.40 

573.98 526.39 46.48 ± 0.80 45.91 ± 0.16 

589.00 540.11 53.70 ± 0.80 55.66 ± 0.26 

592.40 543.25 59.57 ± 2.20 58.38 ± 0.41 

RMSE (kyr) 0.05 ± 0.71 

 

6.4 Discussion 

Through the course of this study, multiple combinations of modelling techniques have been 

assessed in order to determine the optimal dating strategy (Chapter 4).  The OptAcc model, 

using an initial accumulation history calculated using a Clausius-Clapeyron relationship and 

an initial thinning profile derived using the One-Dimensional thinning function, produced the 

most accurate annual layer thickness and age-depth profile (Chapter 4 and 5).  Therefore, 

this model has been further developed for the FP and BI ice core chronology, making use of 

additional observational layer thickness data retrieved through techniques outlined in 

Chapter 5. 

6.4.1 Inclusion of Annual Layer Thickness Measurements as Model Constraints 

Before the ice core chronologies can be discussed, the two separate FP ice core age scales 

must be assessed.  In Chapter 4, candidate FP age scales were constructed using several 

approaches in order to assess the accuracy of each method in comparison with age horizons.  

Following this, Chapter 5 develops three analytical chemistry techniques to measure annual 

layer thickness in the ice core.  The success in measuring actual annual layer thickness deep 

in the cores provides additional observational constraints for the inverse approach, leading 

to an improvement on the accumulation, thinning, and age-depth reconstructions initially 

presented in Chapter 4.  The inclusion of measured annual layer thicknesses constrains the 

FP ice core chronology at more depth ranges along the profile.  Fig. 6.12 presents the 

accumulation and layer thickness reconstructions presented in Chapter 4 (without annual 
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layer thickness constraints), and the reconstructions presented here (with annual layer 

thickness constraints).  

The reconstructions presented in Chapter 4 and Chapter 6 both yield large uncertainty in the 

unconstrained sections of the accumulation and annual layer thickness profiles.  The age 

constraints cover a 50 mweq section of ice that preserves the climate record during the last 

glacial period and transition into the Holocene.  The inclusion of additional observational 

data throughout the ice core reconstruction leads to a shift in the final optimised profile of 

accumulation at all depths, as well as improving on the precision of the modelled 

accumulation profiles by limiting the uncertainty associated to the modelled chronology (as 

shown in fig. 6.12).   

 

Figure 6.12: The optimised accumulation and present-day annual layer thickness profiles of FP, 

estimated using the OptAcc model.  The 10-point averaged accumulation profiles and associated 

uncertainty for the model scenarios that are constrained by either only age horizons (red), or 

constrained by age horizons and measured annual layer thickness (black).  Also shown are the 10-

point averaged layer thickness profiles and associated uncertainty for the model scenarios that are 

constrained by only age horizons (blue), or constrained by age horizons and measured annual layer 

thickness (purple).  Annual layer thickness constraints are also shown as black crosses on the figure. 
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The annual layer thickness measurements provide additional constraints on the ice-core age-

depth model, and test the layer thickness output of the model.  By choosing the depths to 

analyse, the inclusion of annual layer thicknesses as a constraint means that the distribution 

of the constraints along the ice core profile can be spread more evenly and add confidence 

to the reconstructed profiles.  The FP and BI ice core reconstructions are constrained by 

annual layer thickness measurements.  The results for each annual layer thickness profile 

agree to within the standard deviation of the measured values, with the exception of the 

annual layer thickness measurement at 387 mweq in the FP ice core, where only one annual 

layer is identified in each of the sections of ice analysed.   

6.4.2 Age-Depth Profiles 

The constrained OptAcc chronology for the FP ice core implies an age of 120 ± 5.5 ka BP at 

25 m from the bed.  The same model predicts that the BI ice core reaches an age of 250 ± 16 

ka BP 50 m from the bed.  Fig. 6.13 presents the surface temperature and accumulation 

reconstructions for FP and BI on a common age scale.  The 11.3 ka BP boundary delineating 

the start of the Holocene is marked on each of the plots by a grey dashed line (Walker et al., 

2009).  Beyond this line, the timing of globally-synchronous events across the LGM and last 

glacial period are synchronised between the ice cores, due to the identification of 

synchronous AIM events.  The age scales correlate from 15 – 53 ka BP (after 53 ka BP, the FP 

age scale does not estimate an age to within the uncertainty of an age horizon at ~56 ka BP).  

The age scales agree again at 59 ka BP as FP is constrained to AIM 17 (~59 ka BP) and BI is 

constrained to AIM 18 (~65 ka BP).  Beyond this age, the age scales no longer correlate as 

they are no longer constrained to AIM events. 

There are two notable observations in the BI reconstruction: firstly, the BI accumulation 

record is slower to increase from the LGM (21 ka BP) to Early Holocene (11 ka BP) 

accumulation values when compared with the FP ice core.  Secondly, a signature in the BI 

surface temperature and accumulation reconstructions at ~150 ka BP can be identified 

through comparison with other records as the last interglacial (LIG) (Bazin et al., 2013; Veres 

et al. 2013).  This suggests that the BI ice core is not correctly dated as the LIG is assumed to 

be synchronous at 115 – 126 ka BP.  Therefore, the accuracy of the accumulation for BI 

throughout the Holocene will be considered later in this chapter. 



Chapter 6 

 189 

 

Figure 6.13: (a) Temperature reconstructions, and (b) Accumulation reconstructions for FP and BI ice 

cores. Blue: FP records; Red: BI ice core reconstruction.  The 11.3 ka BP initiation of the Holocene 

period is marked by the grey dashed line. 

6.4.3 Thinning Profiles 

The FP thinning profile decreases steadily until 500 mweq (0.19 in normalised depth units; 

fig. 6.05); below 500 mweq the thinning profile continues to decrease but less steeply than 

the rates above.  This suggests that there is a decrease in the vertical velocity 100 mweq 

above the bed.  This feature is not replicated in the empirical estimates of thinning (section 
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4.3.2; fig. 4.04).  Our understanding of the ice rheology and topography of the bedrock at 

Fletcher Promontory is that the ice core was drilled at a Raymond arch.  A Raymond arch 

(Raymond, 1983) develops due to the low deviatoric stress and hence slow vertical flow of 

ice beneath the ice divide, which ultimately leads to the accumulation of stiff ice at the bed.  

The stiff plug of ice then further decreases the vertical velocity towards the bed.  Using 

phase-sensitive radio echo sounding (pRES), the internal structure of radar reflecting layers 

within the ice sheet can be identified. Measurements at a single site by pRES made over 

several years can identify distinct radar reflections and their vertical displacement between 

observations can be used to interpret the velocity by measuring the rate of the downwards 

trajectory with respect to time (Hindmarsh et al., 2011).  The FP and BI ice cores were both 

drilled at ice divides; continuous over-snow radar data collected using a travelling radar 

system pulled by skidoo around the two ice core sites show the internal layering and the 

prominent elevation of the Raymond arch at both sites, which at FP was at least 100 m 

(snow equivalent units) from the bed (Hindmarsh et al., 2011; Kingslake et al., 2014; 2016).   

The in situ measurements of vertical velocity at the FP ice core site using the pRES radar 

permits a test of the accuracy of the thinning function reconstructed using the OptAcc 

model.  In order to be compared with the thinning function, the in situ vertical velocity 

profiles are normalised.  Fig. 6.14 presents (a) the vertical velocity measurements, and (b) 

the reconstructed thinning function (red) and the normalised vertical velocity measurements 

(blue) (data is courtesy of J. Kingslake and is only available for the FP ice core).  Uncertainty 

on the vertical velocity measurements increases substantially close to the bed due to the 

extrapolation of data.  Vertical velocity measured over several field seasons at the FP site 

suggests a decrease in velocity with depth, reaching zero at 550 m below the surface (100 m 

above the bed).  This agrees with the expected profile of vertical velocity in the presence of 

a Raymond arch, where the stiff plug of ice at the bed leads to slow vertical flow of ice. At 

around 400 m (fig. 6.14b), the pRES measurements suggest a lower vertical velocity than the 

modelled thinning function.  This change in the gradient of the pRES measurements suggests 

that the in situ pRES measurements identify the sudden change in vertical velocity 

associated with the Raymond arch in a way that the modelled thinning profile cannot.  

Despite this, these measurements of in situ vertical velocity agree fairly well with the 

thinning profile reconstructed using the OptAcc model (fig. 6.14b).  Comparison of the 

normalised profiles show similarities in the rate of thinning throughout the ice core profile, 

with the thinning profile and normalised vertical velocity reaching less than 0.1 by 420 m.   
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Figure 6.14: (a) Vertical velocity measurements with the associated error margin using pRES at the FP 

ice core site.  Data courtesy of J. Kingslake; (b) Normalised pRES measurements (blue) and the optimal 

thinning profile calculated using the OptAcc model (red). 

 

In order to account for the Raymond arches at the ice divide, the optimised thinning 

functions must rapidly decrease with depth in the upper depths of the ice core in order to 

accurately reconstruct the low stresses towards the bed.  As a result, the optimised p-

parameter in the thinning function of the OptAcc model is low for the FP and BI ice cores 

(table 6.05).  Low values of the p-parameter suggest a highly non-linear deformation profile 

within the ice sheet that agrees with the expected effect of a Raymond arch.  High rates of 

thinning through the majority of the ice sheet could reflect either a large ice sheet thickness 

or high mean annual accumulation rates.  Accumulation rates at both BI and FP are an order 

of magnitude higher than in East Antarctica (EPICA, 2004; Mulvaney et al., 2007; 2014), but 

this study concludes that the presence of the Raymond arch is the most likely reason for the 

high stress on the ice flow in the upper part of the ice core, as implied by both the modelled 

thinning function at both sites and the additional pRES data on FP.   
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The estimated value of Glen’s exponent, n, is still lower than any values inferred from direct 

measurements in the ice sheet.  For this analysis, the value of n has been interpreted by 

inverting eq. 2.16 (section 2.5.3.3).  This estimate of n should only be considered a ‘best 

guess’ approximation due to the assumptions made in eq. 2.16.  It is generally understood 

that the temperature profile through the ice column is not linear (as assumed in eq. 2.16), 

and the activation energy, Q, necessary for the approximation of k (calculated in eq. 2.17, 

also a parameter required in eq. 2.16), could differ greatly from the assumed value of 60 kJ 

mol-1 (Parrenin et al., 2007a).   

Furthermore, laboratory experiments consistently calculate the value of Glen’s exponent to 

be ~ 3 (Glen, 1958), although in situ ice sheet calculations suggest the value could be 

between 1 and 5 (Raymond, 1983; Martin et al., 2006; Gillet-Chaulet et al., 2011).  

Therefore, despite the unusually low estimates for the parameters used to calculate the 

thinning profile, there is sufficient evidence to suggest that non-linear thinning functions are 

necessary to accurately estimate the ice flow at the divide where a Raymond arch is present, 

such as at FP and BI. 

6.4.4 Accumulation Profiles 

The most likely accumulation scenarios for FP and BI ice cores are compared in fig. 6.13b.  

The accumulation scenarios have been perturbed by the OptAcc model, and yield 

information on the accumulation history for each site.  The following section will discuss the 

final accumulation scenarios and compare past precipitation rates with other ice core sites 

from the West Antarctic Ice Sheet (WAIS) and AP regions, in order to assess the accuracy and 

reliability of the ice-core reconstructions through the OptAcc model. 

6.4.4.1 Industrial Era (1850 – Present-Day) 

As already stated, the perturbed FP accumulation rate is lower than the empirically-

estimated accumulation rate.  The Clausius-Clapeyron relationship (eq. 2.06-2.08, section 

2.5.2.2), used for the initial accumulation profile, assumes a steady present-day rate of 

accumulation, and it estimates the accumulation history as a deviation from the present-day 

rate.  For the FP ice core, this steady present-day rate of accumulation is 0.38 m yr-1 as 

interpreted directly from annual layers observed in the ice core over the most recent 

decade, yet the modelled mean accumulation rate is ~0.28 m yr-1.  One explanation for the 

discrepancy between empirical and reconstructed accumulation profiles at FP could be that 

there has been an increase in accumulation coinciding with rapid regional warming across 
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the AP and Weddell Sea regions over the most recent 150 years (Rignot et al., 2004; Turner 

et al., 2005; Steig et al., 2009).  Other sites across the AP and WAIS, such as Gomez, record 

accumulation increases by up to 100% in the last 300 years (Thomas et al., 2008; 2015).  

Thomas et al. (2008) presented the mean annual and decadal snowfall at sites in the AP and 

WAIS, for which present-day mean annual accumulation was consistently greater than the 

30-year average annual accumulation rate.  A warmer surface temperature brings a warmer 

moisture source that leads to increased accumulation (Krinner et al., 2007; Bracegirdle et al., 

2008; Frieler et al., 2015); the current rapid regional warming across the AP and Weddell Sea 

region may suggest a higher mean annual accumulation rate than is true for a long-term 

mean annual rate. 

A steady increase in accumulation is visible in the FP ice core record, particularly over the 

most recent 150 years; this agrees with an increase in surface temperature (fig. 6.15).  Using 

a linear regression model, an increase in the rate of mean annual accumulation of 10 mm 

century-1 is calculated, with a total 15 mm increase in mean annual accumulation since the 

onset of Industrial Era warming at 1850 AD.  In contrast to the FP record, the BI 

accumulation record does not show any change in the most recent 150 years.  However, 

absence of evidence is not evidence of absence.  The BI ice core was retrieved in 2004, and 

does not include the upper 8 m of the firn (the modelled reconstructions assume a steady 

stable water isotope concentration equivalent to the present-day value, and a mean annual 

accumulation rate equivalent to the present-day rate, for the top 8 m of the ice core).  

Assuming a mean annual accumulation rate of 0.18 m yr-1 from the ice core model and 

including the 13 years since the retrieval, more than 50 years of accumulation history could 

be missing from the record.  The short ice core retrieved from Berkner Island in 1994, ahead 

of the deep ice core used throughout this study, would not shed light on the most recent 23 

years of accumulation at BI (Wagenbach et al., 1994), but the 1000-year record retrieved 

from this short ice core does agree with the deep ice core record (Mulvaney et al., 2002).  

However, early indications from the information preserved in this short ice core suggested 

that BI is influenced by large-scale air mass regimes and hence could be susceptible to 

changes in the surface temperature across the region (Wagenbach et al., 1994).  Analysis of 

alternative ice core and ice sheet proxies should be completed before confirming the 

response of Berkner Island to rapid regional warming across the Weddell Sea sector.  In 

particular, proxies that reflect the extent of annual sea ice (Sodium - Na) or the proximity of 

open ocean conditions (methanesulfonic acid - MSA) yield information on the region 
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surrounding an ice core site that could be used to interpret the sensitivity of the region to 

temperature changes (which are reconstructed from the stable water isotope record). 

 

Figure 6.15: Accumulation reconstructions over the last 2000 years; a) accumulation spanning 2000 

years; b) accumulation over the last 150 years.  Red: BI accumulation with the initial profile in pale 

red; Blue: FP accumulation profile with the initial profile in pale blue.  Underneath, the surface 

temperature reconstructions of the BI and FP ice cores spanning (c) 2000 years, and (d) the last 150 

years. 

6.4.4.2 Holocene 

Throughout the Holocene period, the modelled BI accumulation history is significantly 

perturbed.  Using cubic interpolation, between 9 ka BP and 2.5 ka BP, the accumulation 

increases by 160% from ~0.10 m yr-1 to 0.26 m yr-1 (fig. 6.16).  The sharpest increase in the 

modelled accumulation rate is observed between 9 ka BP and 5.5 ka BP at a rate of 30 mm 

millennia-1.  At 5.5 ka BP, the accumulation rate increases more slowly until 2 ka BP, from 

0.24 m yr-1 to 0.26 m yr-1 at a rate of 5 mm millennia-1.  The rapid increase in accumulation is 

constructed using a perturbation profile as part of the OptAcc model; in the empirical 

reconstruction of accumulation, the increase is observed more gradually from the onset of 

the Holocene.  This change in accumulation is not replicated in the FP ice core record (fig. 
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6.16).  The optimised accumulation in the FP ice core increases by 7% from 9 ka to 5 ka BP 

before decreasing for the remainder of the ice core record to the present day (fig. 6.16).   

An increase in accumulation from 9 ka BP is recognised in other Antarctic ice core records 

which experience a later Holocene Thermal Maximum (HTM) (Koutnik et al., 2016).  A highly 

variable accumulation record is recorded in the Taylor Dome ice core record, which does not 

resemble the stable water isotope record (Monnin et al., 2004).  This is similar to the 

modelled accumulation record at BI, as the increase in accumulation over 9 – 5.5 ka BP is not 

as abrupt in the empirical accumulation estimate, which estimates a 28% increase over the 

equivalent time period.  Similarly, an increase in accumulation from 9 ka to 2.3 ka BP has 

been retrieved in the WAIS Divide ice core (Koutnik et al., 2016).  The 40% increase in 

accumulation at WAIS Divide during this period is significantly less than the increase 

reconstructed at BI, but it is greater than the increase inferred by the empirical BI 

accumulation history. 

  

Figure 6.16: Accumulation in-depth view of 11.3 ka BP to 2 ka BP.  Blue: FP 10-metre average 

accumulation records with the metre-average accumulation history in pale blue; Red: BI 10-metre 

average accumulation records with the metre-average accumulation history in pale red.  In addition, 

the WAIS (green) and Taylor Dome (black) accumulation records are presented for comparison.   
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The 112% increase in accumulation over 9 – 5.5 ka BP is reconstructed in the ice core 

between the 450 – 550 mweq.  In this section, there are no observational constraints on 

annual layer thickness or age.  The annual layer thickness measurement at 409 mweq, and 

the youngest age constraint at 596 mweq sandwich this section of the ice core, and 

therefore, it is likely that the OptAcc model reacts slowly to an increase in accumulation 

from glacial conditions at the ACR to the Holocene conditions as there are no additional 

constraints across this period of time.  Therefore, the accuracy of the BI accumulation and 

age-depth reconstruction throughout this depth range should be treated with caution, 

before the shape of the perturbation profile is assessed against the stable water isotope 

profile.   

6.4.4.3 LGM 

The FP and BI age scales correlate throughout the last glacial period insofar as they are 

constrained to age constraints that correspond to synchronous AIM events.  At ages greater 

than 60 ka BP, where the FP stable water isotope profile is no longer at a sufficient 

resolution to observe and identify age constraints, the accumulation and surface 

temperature profiles do not agree in fig. 6.13.  The oldest constraint used in the construction 

of the BI age scale is at ~64 ka BP.  As such, it is difficult to ascertain the accuracy of either 

age scale beyond this point without additional constraints at greater depths in the ice-core 

profile. 

Unlike the FP and BI ice core records covering 14 – 60 ka BP, the FP and BI ice core records 

spanning 0 – 14 ka BP are poorly-constrained and unsynchronised.  Over the transition from 

the ACR to the Early Holocene (14 – 11 ka BP), there is only one age horizon younger than 

the ACR in the FP and BI ice core records.  The discussion of the FP and BI accumulation 

records for this time period is derived from the OptAcc approach alone.  The modelled BI 

accumulation is slower to respond to changes in temperature due to the modelled 

perturbation to the accumulation record.  This slower response to warming temperatures 

continues into the Holocene and feeds into the delayed increase in accumulation over 9 – 

5.5 ka BP.  Therefore, there is additional reason to be cautious when assessing the perturbed 

accumulation profile during this period.  Following the end of the LGM, the BI accumulation 

record rapidly increases to Holocene conditions but this response occurs over 1 kyr later 

than at FP (fig. 6.13b).  This is not replicated in the temperature record, which gradually 

increases to interglacial conditions (fig. 6.13a).  When compared with surface temperature 

history, the magnitude of the change in the accumulation records is greater because of the 
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perturbation of empirical accumulation reconstructions.  The optimal ice-core 

reconstruction is determined by the agreement of the annual layer thickness and age scale 

with observational constraints, of which the success of the fit of these profiles to 

observational constraints is demonstrated in fig. 6.08.  As already stated, during the 

Holocene only the BI accumulation record increases whilst the FP accumulation record 

shows little change throughout this period.  The delayed response to accumulation change 

during the LGM/Holocene transition at BI should raise doubts in the efficacy of the 

perturbed accumulation profile for BI (fig. 6.13; 6.16).  The perturbation profiles should be 

compared and assessed with the stable water isotope profiles and the climate history of the 

AP and Weddell Sea region. 

6.4.5 Stable Water Isotopes and Accumulation 

The questions remaining over the accuracy of the BI and FP accumulation reconstructions 

can be investigated further by analysing the modelled perturbation profiles against the 

surface temperature reconstructions.  Surface temperature profiles are reconstructed 

directly from the measured stable water isotope profiles (eq. 2.03).  It is assumed that 

changes in precipitation rates are proportional to changes in the surface temperature due to 

the atmosphere’s ability to hold moisture (Bracegirdle et al., 2008; Palerme et al., 2017).  

Therefore, the following section will analyse the relationship between stable water isotopes, 

surface temperature, and the modelled accumulation profiles for the BI and FP ice cores in 

order to thoroughly investigate the reliability of the perturbation algorithm developed in the 

OptAcc model. 

6.4.5.1 Berkner Island 

As already mentioned in this chapter (section 6.4.4.2), the BI accumulation, annual layer 

thickness, and age-depth profiles are presented in this study with low confidence.  The 

perturbation profile has a large range throughout the Holocene, with tighter control on the 

perturbation profile deeper in the core.  Despite the large range, the possible perturbation 

profiles of the BI ice core are stable in the Late Holocene (0 – 4 ka BP) and from the ACR to 

the end of the age-depth profile (14 – 250 ka BP).  The stability throughout these periods 

results in a surface temperature – accumulation sensitivity of 4 % K-1; in line with published 

estimates of sensitivity rates of 4 – 6 % K-1 (Palerme et al., 2017). 

The surface temperature – accumulation sensitivity rate increases from 4 % K-1 to 18 % K-1 

over the period 4 – 14 ka BP.  This change in the sensitivity rate suggests a deviation from 
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the understood relationship between stable water isotopes – surface temperature – 

accumulation.  This change is due to one of two possible reasons: (i) the lack of age and 

annual layer thickness constraints in the 400 – 600 mweq of the BI ice core, or (ii) the 9 – 5.5 

ka BP accumulation profile reflects a later surface temperature warming from ACR 

conditions to the Early Holocene than is recorded at FP.  The BI and FP ice core records both 

identify an isotopic signature in the ice-core record that reflects the ACR, and hence each 

record should be readily tuneable to each other.  However, the BI ice-core record at 400 – 

600 mweq, preceding the ACR constraint, is not constrained to any age horizons.   Therefore, 

this study cannot rule out that the lack of constraints throughout this depth range is a 

vulnerability to the BI accumulation reconstruction.  

The alternative explanation for the change in the surface temperature – accumulation 

sensitivity, and the late temperature warming and accumulation increase into the Early 

Holocene, is that there are asynchronous climate conditions at the BI and FP site locations.   

To investigate this, it is necessary to assess the BI ice core record in a regional context for 

the time period 0 – 21 ka BP.  It was suggested earlier that the BI ice core location is 

susceptible to regional climate and that the accumulation record is dominated by regional 

air masses rather than local climate (Wagenbach et al., 1994).  Therefore, the accumulation 

history preserves a record of continental accumulation change across the WAIS.   

Following the LGM maximum ice-sheet elevation and extent, research indicates that the 

deglaciation of the AP and Weddell Sea did not reveal BI as a standalone ice rise in the 

Weddell Sea at the same time as FP and JRI.  The BI ice core is drilled on an ice rise within 

the Filchner and Ronne ice shelves, and the dynamics of this ice rise will be affected by 

changes in the extent of the surrounding ice shelves.  During the last glacial period, it is 

assumed that the grounding line of the Antarctic Ice Sheet (AIS) reached approximately 450 

km north of Berkner Island, with an ice sheet thickness up to three times greater than the 

current ice sheet thickness (Ritz et al., 2001; Huybrechts et al., 2002; Pollard and DeConto, 

2009; Le Brocq et al., 2011; RAISED Consortium, 2014).  This means that the present-day BI 

drilling site was an inland, continental location at a high altitude at the LGM ice-sheet extent.  

Following the LGM, the AIS did not retreat across the AP and Weddell Sea region uniformly.  

Research suggests that whilst the AP was undergoing significant deglaciation 21-15 ka BP, 

the Weddell Sea remained mostly ice-covered (Siegert et al., 2013; RAISED Consortium, 

2014).  By 10 ka BP, the AIS grounding line was north of BI, leaving the southern region of 

the Weddell Sea still ice-covered (RAISED Consortium, 2014).  The AIS did not retreat to the 



Chapter 6 

 199 

present-day grounding line south of BI until ~4 ka BP (Siegert et al., 2013; RAISED 

Consortium, 2014), despite research indicating that the location of FP – at a similar latitude 

to BI – was already an exposed ice rise (RAISED Consortium, 2014; Hein et al., 2016).   

The geometry of the deglaciation could explain the different accumulation profiles 

reconstructed using the OptAcc model.  A site in the Weddell Sea during the deglaciation 

would transition from a continental to coastal location and decrease in altitude, affecting 

the mean annual rates of precipitation and surface temperature.  In particular, based on 

recent research into the AIS deglaciation, as BI emerged as a standalone island more 

recently than FP, one would expect a later, gradual increase from surface temperature and 

mean annual accumulation rates at both sites, occurring later at BI than at FP.  This is 

evident in the modelled reconstructions of accumulation, where a longer deglaciation at BI 

would extend into the Holocene period and yield a later HTM, as expressed in fig. 6.13 and 

6.16.   

This study suggests that the delayed onset of the Early Holocene conditions and later HTM 

should not be considered surprising.  However, the post-LGM change in ice sheet thickness 

history and the migration of the ice divide through time could have had a significant impact 

on the ice core record.  By addressing the additional factors that may influence the modelled 

estimates of annual layer thickness, such as temporal changes in ice sheet thickness and the 

migration of the ice divide, the BI accumulation reconstruction might change from the 

profile that is presented in this chapter.  The perturbation to the stable water isotope – 

surface temperature – accumulation relationship from the LGM to the Early Holocene likely 

accounts for the differences not reconstructed as part of the OptAcc approach as well as the 

delayed HTM. 

6.4.5.2 Fletcher Promontory 

As previously stated, the reconstructed FP accumulation profile was consistently perturbed – 

34% throughout the Holocene in accordance with the initial accumulation history and 

therefore the stable water isotope profile and final accumulation profiles preserve the same 

trends.  In addition to the uncertainties in the TS/A relationship, the OptAcc model assumes 

the observed present-day mean annual accumulation rate is correct.  Despite the increases 

in accumulation due to rapid regional warming seen in other West Antarctic and AP ice cores 

(Thomas et al., 2008; 2015), the mean annual accumulation rate has been measured here 

from ice core records over only the previous decade.  A wrongly-estimated present-day 
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mean annual accumulation rate, calculated as a decadal mean value during a period in which 

the annual accumulation is increasing, may explain the reason for the high rate of 

perturbation in the OptAcc accumulation reconstruction throughout the Holocene at this ice 

core site. 

The significant perturbation over the Holocene period required by the OptAcc model could 

also be explained by the rapid regional warming across the AP region, and the record of 

warming and increased accumulation preserved in the FP ice core.  The Gomez and Ferrigno 

ice core sites have experienced an increase in mean annual accumulation of up to 100% in 

the late 20th century to present-day (Thomas et al., 2015).  The FP accumulation 

reconstruction shows a small increase in accumulation over the last 125 years (fig. 6.15b).  

This increase is replicated in the stable water isotope and hence the surface temperature 

reconstructions (fig. 6.15d), as the relationship between the three processes is unchanged 

by the perturbation profile during the last 125 years.  We should consider that the rapid 

regional warming, leading to an increase in the present-day mean annual accumulation, 

could be responsible for an incorrect value for present day mean accumulation that 

underpins the empirical accumulation estimate.   

The supposition of an overestimated present-day accumulation rate is supported by the 

OptAcc model and data observations.  Over the Holocene period, the mean annual rate of 

accumulation, estimated using the GCM, IceChrono, and OptAcc model approaches, is 0.22 ± 

0.04 m yr-1 (section 4.3.2; table 4.02).  The agreement between the IceChrono, GCM, and 

OptAcc model reconstructions, which reconstruct accumulation through different methods, 

support the theory that the measured present-day rate of annual accumulation is 

inaccurate.  If this is true for the FP ice core, the optimised accumulation profile might not 

sufficiently reconstruct the amplitude of the change in accumulation with respect to rapid 

regional warming, as the perturbed accumulation profile never reaches the measured 

annual layer thickness of 0.38 m yr-1, which is used in the empirical estimates.  Therefore, 

the discrepancies between the initial and final accumulation reconstructions for the FP ice 

core could be explained by a wrongly-estimated present-day mean annual accumulation 

rate.   

6.5 Summary 

This chapter presents results that directly contribute to achieving the third objective of this 

thesis (section 1.2.1).  The BI and FP ice core records have been reconstructed using the 
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OptAcc model.  Annual layer thickness observations, retrieved by techniques used in Chapter 

5, have constrained accumulation, thinning, annual layer thickness and hence age-depth 

profiles.  Optimised profiles of annual layer thickness and age-depth profiles have been 

constrained using measured annual layer thickness, accounting for associated uncertainties 

on the observations.  The new annual layer thickness observations provide a more balanced 

range of constraints across the FP ice core profile to counter the pre-Holocene cluster of 

known ages, but more analysis is required to balance the BI ice-core record.  The 

accumulation records over the current interglacial period at each site indicate variability that 

is replicated in ice cores from across the WAIS and AP regions, including Taylor Dome and 

WAIS Divide (fig. 6.16).  Similarly, due to the stiff ice causing Raymond arches at ice divides, 

the thinning functions agree with both measured vertical velocity and theoretical 

explanations for a highly non-linear thinning function causing slow vertical velocity towards 

the bed.  The FP and BI ice core records extend beyond the last glacial period, preserving a 

record that covers at least 120 kyr at FP and 250 kyr at BI.   

This work confirms that these two ice caps did not undergo retreat or collapse during the LIG 

but may preserve a record of proxies indicating open ocean (MSA) and hence the potential 

collapse or retreat of the WAIS during this period, or the continued presence of WAIS sea ice 

(Na).  The FP optimised profiles provide reliable reconstructions that can be used to 

interpret the climate history of the site in the wider context of the AP and Weddell Sea 

region, Antarctica, and the rest of the world.  Following this work, the inclusion of additional 

information at BI is necessary to investigate the BI ice core record further, in particular the 

response of the BI ice core to periods of warming.  The lack of evidence of a recent 

accumulation increase or present-day regional warming at BI disagrees with other records 

from the WAIS, yet the region should respond to regional changes in climate more than local 

changes.  Furthermore, the ACR transition into the Holocene occurs later at BI than at other 

ice cores, with a rapid increase in accumulation occurring 1 kyr after FP.  Following this, the 

Holocene record shows a response to regional warming with a steady increase in the 

accumulation record.  Additional research must be completed in order to better interpret 

the BI ice core record and constrain the accumulation and surface temperature record. 
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Chapter 7: A revised chronology for the James 

Ross Island ice core 

 

7.1 Introduction 

 
The previous chapter presented model results for the Berkner Island (BI) and Fletcher 

Promontory (FP) ice core records. In this chapter, the James Ross Island (JRI) ice core age-

depth profile is reconstructed following similar techniques to those used in Chapter 6.  The 

JRI ice core already has a published chronology (Mulvaney et al., 2012); initial analysis was 

carried out at the British Antarctic Survey (BAS), with a primary chronology (JRI1) published 

by Mulvaney et al. (2012), suggesting an age at the base of the core of ~50 ka BP.  Recent 

chemical analysis of the JRI ice core by colleagues at the Desert Research Institute (DRI) by 

high-resolution continuous-flow analysis (CFA) highlighted some inaccuracies in the 

observed age horizons that had previously been used in the chronology.  The upper section 

of the ice core has now been annual layer counted to a greater depth than the earlier JRI 

chronology.  Following this, the past accumulation and thinning have been reconstructed 

using the Optimised Accumulation and Thinning (OptAcc) model (section 4.4.4).  In this 

chapter, revised age horizons are tied to the annual layer-counted West Antarctic Ice Sheet 

(WAIS) Divide ice core; these additional constraints are considered to be robust, and 

increase the confidence in the age-depth estimate for JRI.  This chapter presents a revised 

chronology for JRI, hereafter referred to as the JRI2 chronology.   

 

James Ross Island is located in one of the most rapidly warming regions on Earth, where ice 

mass loss has been particularly significant following the break-up of the Prince Gustav 

Channel and Larsen B ice shelves (Pudsey and Evans, 2001; Vaughan et al., 2003, Mulvaney 

et al., 2012).  Marine sediment core records suggest the extent of the local ice shelves has 

changed markedly through the Holocene (Domack et al., 2005; Pudsey and Evans, 2006; 

Hjort et al., 1997).  Geomorphological records suggest that a warming event and period of 

deglaciation and loss of ice shelves in the north-eastern Antarctic Peninsula (AP) at 

approximately 7.4 – 4.6 ka BP was followed by a period of glacier and ice-shelf advance to 

present-day limits (Hjort et al., 1997; 2001).  If the current AP ice shelves are not remainders 

of the ice sheet extent during the Last Glacial Maximum (LGM), this raises questions about 

the processes and climate thresholds controlling the presence of ice shelves in the region.  
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Principally, if the ice sheet did retreat behind its present-day extent at some point during the 

mid-Holocene, what were the climate conditions during this retreat?  To answer this, the 

James Ross Island ice core was drilled to 363.9 m in 2008, on the north-eastern tip of the AP 

(Mulvaney et al., 2012; 2014).  The JRI ice cap is perhaps the best site in the northern AP to 

recover an ice core record of local climate as it sits on a discrete ice dome with almost radial 

ice flow.  Around 80% of JRI is covered by the Mount Haddington ice cap and its outlet 

glaciers (fig. 7.01) (Hjort et al., 1997).   

 

a)  b)  

Figure 7.01: (a) JRI in the AP region; (b) a zoom-in to JRI showing the drill site in the context of the Mt. 

Haddington ice cap that covers the majority of the island. 

7.2 Methods 
 
The construction of the JRI2 chronology makes use of a number of additional techniques 

compared with those used to reconstruct the FP and BI ice core records.  As such, the JRI2 

chronology is presented in this chapter, separate to the FP and BI ice cores.  The high-

resolution chemistry profile for this core enables annual layer counting of the upper layers, 

as well as the identification of a set of precisely-dated age horizons.  The chemical profile 

and precisely-dated age horizons tightly constrain the ice-core reconstructions of 

accumulation and thinning.  The OptAcc age-depth reconstruction must agree to within the 

uncertainty of the age horizons.  The numerous age horizons over a short ice-core range 
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poses a problem for the OptAcc model: the increase in age with depth is not linear under the 

assumption that the accumulation rate is stable throughout the Holocene.  This was the first 

indication that the past accumulation rate is highly variable over the ice core.  The OptAcc 

model reconstructs the mean annual accumulation at a 50 cm-resolution.  In the shallowest 

100 m of the JRI ice core, annual layer thickness fluctuates between 40 cm – 70 cm.  The 

OptAcc model is not capable of the necessary resolution in the upper part of the JRI ice core 

to reconstruct the variable accumulation history, and hence additional techniques must be 

applied.  The following section introduces the methods used in the re-analysis, annual layer 

interpretation, and modelling of the JRI ice core record.  

 
7.2.1 Continuous Flow Analysis 
 
The DRI Ultra Trace Chemistry Laboratory is capable of continuous measurements at high 

resolution for the chemistry, dust, black carbon and water isotopes in ice cores.  These 

measurements are made using a combination of CFA Ulta Violet (UV)/Visible, fluorescence 

and laser spectrometers for simple compounds and water isotopes, together with 

instruments for black carbon and dust and two high resolution inductively coupled plasma 

mass spectrometers (ICP-MS) for trace elements (McConnell et al. 2002; Sigl et al. 2015).  

This system, hereafter referred to as black carbon trace element continuous flow analysis 

(BC-TE-CFA) system, was used to reanalyse the JRI ice core at a melt rate of ~50 mm min-1, 

and an effective resolution of ~20 mm is achieved (McConnell et al., 2002; McConnell, 2010; 

Pasteris et al., 2014a; 2014b).  The BC-TE-CFA system is introduced in the methodology 

(section 3.3.1) with a full explanation in McConnell et al. (2002); the chemicals measured on 

the BC-TE-CFA system are listed in table 7.01. 

 

Table 7.01: List of chemicals measured using the BC-TE-CFA system at DRI. 

Measurement Used in this study 

Stable Water Isotopes Primary marker of winter/summer 

seasonality – signal dampens with depth 

Hydrogen Peroxide Primary marker of summer layer – signal 

dampens with depth 

Ammonia Secondary marker of summer layer 

Total sulphur Non sea salt sulphur (nss-S) calculated from 

sea salt sodium (ss-Na) – primary marker 

either as nss-S or as the ratio nss-S/ss-Na 
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Also used as volcanic origin reference 

horizons to tie with WAIS core 

Sea salt elements sodium, calcium, 

magnesium, potassium 

Sodium – primary marker; Calcium – 

secondary marker 

Chlorine From sea salt – signal similar to sodium.  

Not used 

Nitrate Secondary marker of summer layer 

Liquid conductivity Not used 

Particle counts (dust), binned into four size 

ranges 

Medium size bin particles occasionally used 

as secondary markers 

Black carbon Not used 

Trace elements – heavy metals and rare 

earth elements 

Used as markers of volcanic origin 

reference horizons as tie with WAIS core 

 

 
7.2.2 Age-Depth Profile 
 
The JRI2 ice core age-depth profile is constructed in two parts: (i) annual layer counting in 

the upper sections; and (ii) the OptAcc model (section 4.4.4) reconstructs the accumulation, 

thinning, and annual layer thickness profiles from the surface to the bed, but only uses the 

reconstructed profiles from the base of the layer-counted section to the bed.  Unlike the 

reconstruction of the FP and BI ice core records, the present-day annual layer thickness in 

the JRI ice core has been counted to 246 water equivalent metres (mweq) (290 m) by 

multiple observers using the Matchmaker tool.  Matchmaker is a Matlab-based tool, 

primarily used to synchronise multiple ice core age-depth records based on the chemical 

signatures preserved in the ice (Rasmussen et al., 2013).  Annual layer counting was 

completed at three institutions (BAS, DRI, and the Australian National University, ANU) and 

corroborated.   

 

For the remaining age-depth profile, the OptAcc model has been employed.  The model uses 

an initial accumulation profile following the Clausius-Clapeyron relationship, based on the 

stable water isotope profile measured at DRI (eq. 2.06 – 2.08), and optimises the profile 

through an inverse approach by estimating a smooth perturbation profile (eq. 3.01; eq. 2.28-

2.30).  A thinning profile is reconstructed using the One-Dimensional relationship, which 

does not account for any temporal variation in ice thickness (eq. 2.13-2.17).  Combining the 
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optimised accumulation and thinning profiles allows one to calculate annual layer thickness 

and age-depth profiles (eq. 2.20 – 2.21); an iterative approach to determining the 

perturbation profile and the thinning function is used in order to provide the best fit with 

observed age horizons.   

 

The ice-core age-depth model is constrained using observational data throughout the ice 

core.  For JRI2, unlike the FP and BI reconstructions which used additional observed annual 

layer thickness data, this reconstruction used only age horizons.  The OptAcc model seeks 

1000 possible scenarios for accumulation, thinning, annual layer thickness, and age-depth 

profiles that agree to within the uncertainty of the observed constraints.  The range of 

values for each profile determines the uncertainty in the modelled reconstructions.  The JRI1 

chronology used age horizons in the upper part of the ice core that can now be improved 

upon by using a higher-resolution chemical dataset to identify age horizons tied to the WAIS 

Divide ice core.  Revised age horizons are identified by synchronising the JRI CFA profile with 

the WAIS Divide ice core that is annual layer counted to 38 ka BP (Sigl et al., 2016).  The 

OptAcc model reconstructs the accumulation, thinning, annual layer thickness, and age-

depth profiles for the whole of the JRI ice core.  At shallow depths (ice younger than 662 

years), age uncertainties associated with the layer counting method are less than 2 years, 

but there is large variability in the annual layer thickness which makes it difficult for the 

OptAcc model to precisely reproduce the layer-counted age-depth profile.  Annual layer 

counted constraints older than 662 years have an uncertainty of 5 years.  Despite the 

limitations of the OptAcc model, it is used to produce the full ice core reconstructions of 

accumulation, annual layer thickness, and age-depth, which can be compared with the more 

accurate annual layer counted profiles.  This is a useful test for the reliability of the OptAcc 

model.    

 

In greater depths of the JRI ice core, four age horizons correctly identified in the JRI1 

chronology can be used to constrain the deepest 50 m of the ice core.  These constraints are 

a tephra horizon and three stable water isotope globally-synchronised signatures, with ages 

tuned to the EPICA Dome C (EDC) ice core.  The stable water isotope signatures correspond 

to the Antarctic Cold Reversal (ACR) event, which interrupted the deglaciation at circa 14.5 

ka BP following the release of Melt Water Pulse 1A (MWP1A) (Blunier et al., 1997; Mulvaney 

et al., 2012; Pedro et al., 2016).  The given ages of these horizons have been updated since 

the JRI1 publication, following more recent studies on the geochronological constraints 
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across the Antarctic continent (Bazin et al., 2012; Roberts et al., 2017).  The tephra at 349.53 

m below the surface has been geochemically identified in sediment records from James Ross 

Island and radiocarbon dates associated with this event are constrained to 5,330 – 5,645 yr 

BP (Roberts et al., 2017).  The three stable water isotope age constraints (which were tied to 

the EDC3 chronology in JRI1) have been updated in line with the latest EDC chronology, 

AICC2012, and are presented in the next section of this chapter (Bazin et al., 2012). 

 
7.3 Results 
 
Prior to the presentation of the JRI2 reconstructions, the re-analysis of the JRI ice core is 

presented here with seasonal profiles that can be used to annual layer count the ice-core 

record and identify a new set of constraints that are synchronised with the WAIS Divide ice 

core.  Following this, the JRI2 reconstructions of accumulation, annual layer thickness and 

age-depth profile are presented.   

 

7.3.1 Seasonality 
 
The reanalysis of the JRI ice core by colleagues at the high resolution achievable by CFA 

permitted annual layer counting using the Matchmaker tool to a depth of 246 mweq (290 

m), and an age of 899 years.  A strong seasonal profile is visible in several trace-element 

aerosols that are believed to be deposited seasonally (fig. 7.02).  The annual layer-counted 

record was agreed between three separate observers.  Fig. 7.02 presents four trace-element 

aerosols deposited at 120 – 130 m; in the figure, the annual layers are delineated by a grey 

dashed line during the winter season.  The volcanic signal from the Tambora eruption in AD 

1817 can be identified in the figure at ~ 126 m. 
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Figure 7.02: Seasonal cycles across a 10 m section of the JRI ice core (120 – 130 m) analysed by 

colleagues at DRI; a) Ammonium b) Sodium; c) the ratio of non-sea salt Sulphur and sea-salt Sodium; 

d) Hydrogen Peroxide.  Grey dashed lines indicate annual layers identified using the Matchmaker tool. 

 

7.3.2 WAIS Divide tie points 

 
The high-resolution analysis of JRI has permitted the identification of chemical signatures 

that are also identifiable in the WAIS core and so can supplement the deeper constraints 

used in the new age-depth model (table 7.02).  The WAIS Divide tie points are reported as 

having a small error associated with each constraint for two reasons: (i) due to the type of 

age horizon that is identifiable in the chemical profile measured on the high-resolution DRI 

BC-TE-CFA system, such as the annually-mixed and annually-deposited chemicals that 

directly relate to bomb exposure in the atmosphere of a known historical date, and (ii) 

because the annual-layer counted WAIS Divide age-depth profile has a small uncertainty for 

the Holocene period of a maximum 11 years (Sigl et al., 2016).   

 

In addition to the WAIS Divide-derived tie points, four horizons of tephra and globally-

synchronous climate events constrain the greatest depths in the JRI ice core.  These 

constraints had previously been used to constrain the JRI1 chronology, and are included in 

table 7.02.  More recent publications have updated the original age estimates (Bazin et al., 



Chapter 7 

 

 210 

2012; Roberts et al., 2017).  For the tephra at 349.53 m (300.62 mweq), the JRI1 chronology 

suggested that the tephra was originally deposited at ~5000 years before the drilling but 

with a large uncertainty (Mulvaney et al., 2012), but an updated James Ross Island volcanic 

history has tightened the uncertainty around this constraint (Roberts et al., 2017).  

Furthermore, the most up-to-date chronologies for the deep Antarctic ice cores have been 

synchronised onto a single chronology using the Datice modelling tool (Lemieux-Dudon et 

al., 2010).  This chronology, hereafter referred to as the AICC2012 chronology, updates the 

timing of continent-wide climate events, which are preserved in the isotopic profile of all ice 

cores and can be used as age constraints (Bazin et al., 2012).  As a result, the oldest two age 

horizons used in the JRI2 chronology are carried forward from the JRI1 chronology but 

updated to agree with the most up-to-date ice-core chronologies.   

 

Table 7.02: Age constraints tied to the annual layer counted WAIS Divide ice core to 299 m below 

surface (provided by Joe McConnell (pers. comm.), and then to tephra or stable water isotope features 

below this point (see text for details). 

Depth 

below the 

surface (m) 

Depth below 

the surface 

(mweq) 

Observed Age 

(yr since drill 

date) 

Uncertainty 

(yrs) 

Observed feature 

0.00 0.00 0.00 0 Top 

18.72 10.14 16.5 2 Pinatubo volcanic signal 

(Sigl et al., 2013) 

50.98 32.94 52.5 2 1955 Bomb test 

68.01 46.76 78.5 2 Raikoke volcanic signal 

(Sigl et al., 2013) 

87.81 63.78 113.5 2 Additional volcanic 

horizon seen in JRI 

112.81 86.06 160.0 2 Additional volcanic 

horizon seen in JRI 

126.88 98.76 191.5 2 Tambora volcanic signal 

(Sigl et al., 2013) 

152.15 121.60 248.0 2 Unknown volcanic signal 

(Sigl et al., 2013) 

177.62 144.63 313.0 2 Ruiz volcanic signal 

263.70 222.62 662.0 5 Unknown volcanic signal 
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(Sigl et al., 2013) 

273.40 231.43 737.0 5 Unknown volcanic signal 

(Sigl et al., 2013) 

275.02 232.90 748.0 5 1259 CE volcanic signal  

284.10 241.14 836.0 5 Unknown volcanic signal 

(Sigl et al., 2013) 

289.96 246.46 899.0 5 Hekla volcanic signal (Sigl 

et al., 2013) 

295.92 251.88 968.0 11 Unknown volcanic signal 

(Sigl et al., 2013) 

298.96 254.64 1014.0 11 Unknown volcanic signal 

(Sigl et al., 2013) 

349.53 300.62 5478.0 500 Tephra (Roberts et al., 

2017) 

358.50 308.78 12024.0 550 ACR tuned to AICC2012 

358.78 309.04 12771.0 550 ACR tuned to AICC2012 

359.00 309.24 14664.0 550 Optimum temperature of 

ACR, tuned to AICC2012 

 

 

The JRI2 reconstructions are capped at the depth of the oldest age constraint (359.00 m).  

The final constraint used in the JRI1 chronology of 17,480 ± 500 yr BP, at a depth of 359.07 

m, signifying the start of the deglaciation and tuned to the EDC3 chronology, is not used in 

the JRI2 chronology because of a potential hiatus in the ice-core record.  Fig. 7.03a presents 

the JRI stable water isotope profile at 357-363 m, with dotted lines indicating the depths of 

the isotopic constraints that are tuned to other deep ice core records.  Between the depths 

of the bottommost two constraints in the JRI1 chronology, a mean annual layer thickness of 

0.02 mm is required, as the age constraints suggest that the 70 mm of ice between the 

constraints covers > 3 kyr.  For comparison to JRI, fig. 7.03b presents the transition from the 

LGM to the Early Holocene in the EPICA Dome C ice core, with the dotted lines delineating 

the same age horizons.  The age horizons at 14.7 ka BP and 17.5 ka BP do not occur in rapid 

succession in the EPICA Dome C ice core, as is seen in the JRI record.  Further examination of 

the mean annual layer thickness profile from the JRI2 reconstruction will determine whether 

some of the JRI ice core record is missing. 



Chapter 7 

 

 212 

 

Figure 7.03: (a) The JRI stable water isotope profile at 357 - 363 m (black line) (measured separate to 

this study); (b) The EPICA Dome C stable water isotope profile at 300 – 600 m (black line) (measured 

separate to this study).  Age constraints at circa 12.8 ka BP, 14.7 ka BP, and 17.5 ka BP are identified 

by blue dotted lines in each figure. 

 

7.3.3 Accumulation and Annual Layer Thickness 
 
Figure 7.04a presents the accumulation history (black) and annual layer thickness (green) 

profile for the JRI2 chronology.  As previously explained, the JRI2 ice core has been annual 

layer counted to 246 mweq (290 m), marked in fig. 7.04a as the dashed line.  The annual 

layer measurements (green; fig. 7.04a) have been used to reconstruct accumulation above 

this depth by using the modelled thinning function to invert the compression of annual 

accumulation into annual layer thickness.  Below 246 mweq (290 m) (to the right of the 

dashed line in fig. 7.04a), the annual layer thickness and accumulation is estimated from the 

results of the OptAcc model. 
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Figure 7.04: The final accumulation and annual layer thickness profiles, and the accumulation 

reconstructions that contribute to the final accumulation reconstruction.  Plot (a) Dark green: present-

day annual layer thickness; black: the final accumulation profile.  The final accumulation profile is 

constructed by combining the ten-year mean of the annual layer measurements (left of the grey 

dashed line), and the OptAcc model reconstruction (right of the grey dashed line).  Figure (b) presents 

the three alternative accumulation profiles. Grey: the initial accumulation profile, reconstructed 

empirically from the stable water isotope record using the Clausius-Clapeyron relationship; red: the 

full modelled accumulation reconstruction using the OptAcc model; blue: the annual layer-measured 

accumulation reconstruction.  In each plot, uncertainty on the profiles is presented in the pale shade of 

the optimised profile.  The annual layer measured accumulation reconstruction is estimated by 

inverting the annual layer thickness measurements (green profile; plot a) using the optimised thinning 

function. 
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Fig. 7.04b presents the three different accumulation histories that have been reconstructed 

for the JRI2 chronology.  The Clausius-Clapeyron-derived accumulation profile, used as an 

initial accumulation input for the OptAcc model, is shown in grey (fig. 7.04b).  The OptAcc-

modelled accumulation history for the full length of the JRI ice core is shown in red, and the 

inverted annual layer thickness measurements that are used for the mean annual 

accumulation profile in the upper 246 mweq (290 m) are shown in blue.  The three 

accumulation profiles demonstrate the significant differences between the OptAcc-modelled 

accumulation (red) and the initial accumulation profile (grey).  In the modelled accumulation 

profile, there is an increase in the mean annual accumulation rate from 0.69 m yr-1 by up to 

7% between 150 – 200 mweq, before an equivalent decrease over the next 50 mweq.  The 

modelled accumulation decreases by 40% from the empirical accumulation reconstruction, 

leading to a mean annual accumulation rate lower in the final reconstruction during the 

transition from the LGM to the Early Holocene (the deepest 50 m) than the empirical 

accumulation reconstruction.   

 

Presenting the three accumulation profiles provides the opportunity to compare and assess 

the individual reconstructions.  The modelled and measurement-derived accumulation 

profiles can be compared to assess the validity of using a perturbation profile in the OptAcc 

model.  The perturbation profile used in the OptAcc model suggests a lot of adjustment to 

the initial accumulation profile is required to replicate the observed natural variability (fig. 

7.05).  However, the modelled accumulation profile does reconstruct the trends in variability 

along the ice core.  Despite this, it is apparent that the resolution of the OptAcc model is not 

sufficient to reconstruct the high variability observed in the recent accumulation history at 

JRI. 

 

Initial observations between the final accumulation profile and the empirical profile are that 

the final profile shows variability over a longer depth range.  These longer variations are not 

evident in the stable water isotope record.  Instead, the annual layer measurements, and 

(for deeper sections of the JRI ice core) the perturbation profile used in the OptAcc model, 

present a variability not captured in the stable water isotope record, suggesting that the 

assumed relationship between isotopes – temperature – accumulation is inaccurate on the 

JRI ice core.  
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Figure 7.05: 1000 perturbation profiles for the JRI2 accumulation reconstruction.  All of the possible 

scenarios of the perturbed accumulation profile that are presented here can be combined with a 

thinning function to produce an annual layer thickness profile, and hence an age-depth profile that 

agrees (within uncertainty) with the observational data. 

 

Fig. 7.06 presents the thinning function for the JRI2 chronology; this thinning function is 

applied throughout the ice core.  At ice core depths shallower than 246 mweq (290 m), the 

thinning function is used to ‘decompress’ the measured annual layer thicknesses and 

interpret past rates of annual accumulation.  At depths greater than 246 mweq (290 m), the 

thinning function is applied to the modelled accumulation reconstruction to estimate annual 

layer thicknesses.   
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Figure 7.06: Thinning function for the JRI ice core with associated uncertainty in grey. 

 

7.3.4 Age-Depth Profile 

 
The age-depth profile and associated uncertainty is presented with the age horizons and 

their associated uncertainty in fig. 7.07.  The age-depth profile extends beyond the Holocene 

to reach the end of the Last Glacial Maximum (LGM) at circa 18 ka BP, and the stable water 

isotope profile suggests the record continues to > 40 ka BP (Mulvaney et al., 2012; 2014).  

However, the JRI2 chronology is only presented until c. 14.7 ka BP (~310 mweq) due to the 

suspected hiatus in the ice-core record beyond this age.  As a result, there are no differences 

to the JRI1 chronology due to the common age constraints used in the deepest 50 mweq of 

the ice core.   

 

The high mean annual accumulation at the site means that much of the upper 300 mweq of 

the ice core covers the last two millennia at a high resolution, and this provides much insight 

into the region’s sensitivity to climate events.  This means that the rest of the 40 kyr climate 

record is preserved in the deepest ~10 mweq of the ice core.  Despite the long record 
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preserved in the ice, a high rate of strain towards the bed has compacted much of this 

record to a resolution beyond any laboratory analysis of seasonal cycles.   

 

 

 

Figure 7.07: (a) Age-depth profile with confidence interval (grey).  Black crosses show age horizons 

(table 7.02) and the associated error of the observational constraints used in the model; (b) A zoom-in 

of plot (a) to show the most recent 1100 years.   
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A condition of the OptAcc model is that no possible age-depth profile is accepted unless it 

agrees with the age horizons to within the confidence interval.  Therefore, the distribution 

of modelled ages for each age horizon all demonstrate good fit for all observational data 

beyond the depth to which the chronology was layer counted (see fig. 7.08).   Fig. 7.08 

presents the modelled distribution of ages for the full length of the ice core.   The model 

does not always agree to within the uncertainty of the age horizons above 246 mweq (290 

m), but the age-depth profile in the upper depth section is constructed by layer counting.  

However, the results in fig. 7.08 demonstrate the goodness-of-fit for the modelled age-

depth profile despite the small uncertainty on each age horizon and the high variability in 

the accumulation profile that could not be accurately reconstructed using empirical 

methods.  Table 7.03 presents the modelled age estimates and uncertainty at depths 

corresponding to the age horizons used throughout the ice-core profile.  This provides a 

useful comparison of the modelled and measured profiles, with a root mean square error 

(RMSE) value of 199.3 ± 143.5 years across 20 age horizons.  The high RMSE value is due to 

the large uncertainty on the older age constraints used in the greatest depths of the JRI ice 

core. 
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Figure 7.08: Histogram distributions of modelled age estimates at depths corresponding to age 

horizons with a normal distribution function fitted.  A grey box corresponds to the age horizon and 

uncertainty. The depth in snow-equivalent metres is in the top-left corner. 

Table 7.03: Estimated ages at depths corresponding to the depths of age horizons and the respective 

RMSE value of the modelled age-depth profile for JRI. 

Depth below 

the surface 

(m) 

Depth below 

the surface 

(mweq) 

Observed Age (yr 

since drill date) 

and uncertainty 

(yr) 

Age Estimate 

for JRI1 (yr 

since drill 

date)  

Modelled Age 

Estimate for JRI2 (yr 

since drill date) and 

uncertainty (yr) 

0.00 0.00 0.00 ± 0.0 0.0 0.00 ± 0.0 

18.72 10.14 16.5 ± 2.0 16.8 14.7 ± 0.1 

50.98 32.94 52.5 ± 2.0 55.9 51.7 ± 0.3 

68.01 46.76 78.5 ± 2.0 81.9 76.8 ± 0.4 
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87.81 63.78 113.5 ± 2.0 116.3 110.5 ± 0.7  

112.81 86.06 160.0 ± 2.0 166.9 157.7 ± 1.2 

126.88 98.76 191.5 ± 2.0 198.8 187.0 ± 1.5 

152.15 121.60 248.0 ± 2.0 263.4 245.7 ± 2.6 

177.62 144.63 313.0 ± 2.0 340.9 314.4 ± 0.7 

263.70 222.62 662.0 ± 5.0 806.6 676.5 ± 0.5 

273.40 231.43 737.0 ± 5.0 903.1 744.9 ± 2.0 

275.02 232.90 748.0 ± 5.0 920.9 757.7 ± 0.8 

284.10 241.14 836.0 ± 5.0 1032.9 837.5 ± 0.5 

289.96 246.46 899.0 ± 5.0 1118.0 900.1 ± 1.4 

295.92 251.88 968.0 ± 11.0 1217.8 979.2 ± 1.0 

298.96 254.64 1014.0 ± 11.0 1275.0 1028.8 ± 0.2  

349.53 300.62 5478.0 ± 500 5306.6 5323.0 ± 310.3 

358.50 308.78 12024.0 ± 550.0 13429.0 12778.0 ± 46.3 

358.78 309.04 12771.0 ± 550.0 14134.0 13540.9 ± 111.5 

359.00 309.24 14664.0 ± 550.0 14744.0 14141.0 ± 162.7 

RMSE (yrs) 4161.7 199.3 ± 143.5 

 

 

7.4 Discussion 

 
Reanalysis of the JRI ice core highlighted the need for an updated chronology.  High-

resolution analysis, carried out by colleagues at DRI and presented in this study, permitted 

the development of an annual layer counted record that extends beyond the initial 

chronology (Mulvaney et al., 2012).  In addition, the new high-resolution analysis presented 

in this thesis identified a new set of age horizons that can be used to constrain a revised 

chronology; these age constraints are tied to the annual-layer counted WAIS Divide ice core 

chronology with a maximum uncertainty of  11 years for the Holocene period.  Hence, the 

JRI2 chronology is a tightly-constrained age-depth profile and it has a small confidence 

interval for the upper 300 mweq due to the number of WAIS-derived constraints. 

 

7.4.1 Age-Depth Profile 

 
The JRI2 chronology is constructed in two parts: (i) the record in the shallowest 246 mweq 

(290 m) is at a resolution sufficient to count annual layers, and (ii) the remainder of the ice 
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core at a depth greater than 246 mweq (290 m) is reconstructed using the OptAcc model.  

Therefore, there is much information that can be interpreted due to the accuracy of the 

reconstruction, the differences between the JRI1 and JRI2 reconstructions, and thus the JRI 

climate history.   

 

For the JRI2 record at depths shallower than 246 mweq (290 m), the record is annual layer 

counted to 899 years.  The constraints up to this depth have an uncertainty of less than 2 – 5 

years, where the chemicals that can be preserved in the ice originate from a globally 

synchronous event such as volcanic eruptions, which rapidly mixes in the atmosphere.  The 

original JRI1 age-depth profile was also annual layer counted in the upper section of the ice 

core; comparison of the original annual layer record with the revised record used in the JRI2 

chronology (fig. 7.09) shows divergence throughout the upper 260 mweq.  In the uppermost 

50 mweq, there is a 3.5 year age discrepancy between annual layer counted profiles, 

increasing to a 7-year difference by 100 mweq.  The largest differences in the JRI1 and JRI2 

chronologies occur in the greater depths which are still annual layer counted in the JRI2 

chronology.  Comparison of the JRI1 chronology to the modelled JRI2 age estimates show 

differences of 139.20 years at 222.62 mweq, increasing to 270.50 years at 254.64 mweq.  By 

this latter depth, the JRI1 age-depth profile estimates an age of 1275 years in comparison to 

1004 years in the JRI2 chronology, for which the age constraint at 254 mweq is 1014 years 

(since the drill date in 2008) (table 7.03).  

 

Below 246 mweq (290 m) the JRI2 chronology is modelled using the OptAcc model (section 

4.4.4) which reconstructs the accumulation and thinning profiles to the bed.  The number of 

constraints in the upper 300 mweq of the ice core heavily constrains the age-depth profile 

so that by this depth, the JRI2 chronology deviates from the JRI1 chronology by 310 years 

(fig. 7.09).  The tight error margins on the age horizons in the upper 300 mweq in the ice 

core originate from the confidence interval on the WAIS Divide ice core.  The WAIS Divide ice 

core has been annual layer counted to 31.2 ka BP with a confidence interval of up to 5 years 

for the upper sections of the ice core and 11 years for the remainder of the Holocene (Sigl et 

al., 2016).   

 

The deviations between the original and revised age-depth profiles for JRI are stark in fig. 

7.09, but the divergence does not continue in the deepest 50 mweq of the ice core as the 

updates to the age horizons only improve the precision of the modelling process.  The 
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modelled age-depth profile (JRI2) agrees with the observations to within the uncertainty of 

the revised age constraints, and yields a more precise age-depth record in the deepest 50 

mweq of the ice core.  However, beyond the depth of the oldest age constraint used in the 

JRI2 chronology (359 m), this study does not seek to update the JRI ice core chronology.  The 

omission of the final constraint used in JRI1, alongside the decision to cap the JRI2 

chronology at the constraint indicating the ACR (14,664 ± 500 yrs since 2008 at 309.24 

mweq), yields an age-depth profile that does not disagree with the assertion that the JRI ice 

core preserves a climate record originating from > 40 ka BP, as implied by the presence of 

several Antarctic Isotopic Maxima (AIM) events in the stable water isotope record, which are 

assumed to be synchronous with dated events in the EDC record (Mulvaney et al., 2012; 

2014).   The updated annual layer thickness record from the JRI2 reconstructions of age-

depth and layer thickness is evidence of the hypothesis that there is a hiatus in the 

preserved ice-core record.   The modelled annual layer thickness, supported by annual layer 

counting in the upper 246 mweq (290 m) of the record, yields a thickness value of 2.6 ± 0.3 

mm yr-1 at the depth of the ACR-derived constraint (309.24 mweq).  This is in contrast with 

the estimated thickness value of 0.02 mm that would be required in order to increase the 

age-depth profile ~3 kyr in the 70 mm of ice-core record between the 14.7 and 17.5 ka BP 

age horizons (Mulvaney et al., 2012).   

 

The JRI2 chronology is an improvement on the original chronology due to the use of 

observational data derived from the highly-resolved and precise WAIS Divide age-depth 

profile.  As a result, interpretations based on the initial age-depth profile must be corrected 

for this new JRI2 chronology.  
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Figure 7.09: (a) Comparison of the JRI1 age-depth profile (blue) with the JRI2 chronology (red) and age 

horizons (black crosses) for the last 1500 years; (b) Comparison of the initial JRI age-depth profile 

(blue) with the JRI2 chronology (red) and JRI2 age horizons (black crosses). 

  

7.4.2 Thinning Profile 

 
A thinning function can be used in two ways on the JRI2 profiles: firstly, it can be used to 

invert the annual layer thickness measurements to produce an accumulation history.  Layer 

thicknesses in the upper section of the JRI ice core record are highly resolved due to the high 

mean annual accumulation at the site, which permits annual layer counting.  Hence, where 

annual layers can be measured, an accumulation history is interpreted by ‘decompressing’ 

the measured profile.  Secondly, the thinning function can be used to ‘compress’ the 

modelled accumulation (for example, as derived using the Clausius-Clapeyron relationship) 

into a present day annual layer thickness in the core, which can then be used to construct an 

age-depth profile.  The thinning function is used to compress the accumulation history in the 

JRI2 chronology where annual layer thickness is beyond the analytical resolution and hence 

can no longer be identified and measured in the ice core record. For the JRI ice core, at 

depths greater than 246 mweq (290 m), the ice is highly thinned and its age rapidly increases 
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with depth as annual layer thickness is reduced (to sub-centimetre) in comparison with the 

annual layer thickness above this depth.   

 

In the OptAcc model, the One-Dimensional relationship is used to reconstruct the thinning 

function.  Using the One-Dimensional thinning function, a vertical profile for deformation is 

controlled by one parameter, p.  The JRI2 thinning function required a p-value of 5.4.  The p-

parameter depends on the exponent in Glen’s flow law, n, which directly influences the rate 

at which ice sheets respond to external stress (Glen, 1958; Gillet-Chaulet et al., 2011).  

Assuming linear relationships for the other parameters in the calculation of p, as explained 

in chapter 2 (section 2.5.3.3), a value of n = 6.1 is inferred for the flow of ice at the JRI ice 

core location. 

 

Laboratory experiments on ice to determine strain rates suggest a mean value for Glen’s 

exponent of n = 3 (Glen, 1958); in situ measurements of Glen’s exponent in the ice sheets 

suggest that the value could range between 1 and 5 (Wolff and Doake, 1986; Petit et al., 

2003; Gillet-Chaulet et al., 2011).  A value of n greater than 3 is suitable for ice sheets with 

high mean surface temperatures, high rates of annual accumulation and thus higher stress 

on the ice sheet (Glen, 1958).  The high, present-day mean annual accumulation of 0.63 m 

yr-1 could explain the high value of Glen’s exponent at JRI.  In addition, the JRI ice divide is 

frozen to the bedrock with a temperature at the bed of -8°C; since the low ice sheet 

thickness results in the ice at the bed being below the ‘pressure melting point’ (Chapter 8).  

Values of n greater than 4 have been reported at ice divides where the ice is frozen to the 

bed, forming Raymond stacks that affect the vertical strain rate profiles at the greatest 

depths in the ice sheet (Raymond, 1983; Martin et al., 2006; Gillet-Chaulet et al., 2011).   

 

7.4.3 Accumulation Profile 

 
The JRI2 reconstruction of accumulation is highly resolved for the most recent 2000 years.  

In this time frame, the accumulation profile (fig. 7.04, black) contains five oscillations that 

are visible in fig. 7.11a.  Four of the oscillations are on a frequency of ~100 years, with one 

large oscillation spanning ~900 – 1600 AD.  The longest recorded event coincides with two 

major northern hemispheric climate events, discussed below.  Finally, this section will 

discuss the accumulation reconstruction for the Industrial Era warming between ~1850 AD 

and the present-day, in relation to recent studies on West Antarctic surface mass balance 

(Thomas et al., 2008; 2015).   
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7.4.3.1 Early Holocene Accumulation Record 

 
Fig. 7.10 presents two reconstructions from the JRI ice core spanning 15 – 0 ka BP: (a) the 

final accumulation reconstruction that is derived from annual layer measurements (the most 

recent 900 years) and modelling, with the associated uncertainty presented in grey; (b) the 

mean annual surface temperature.  For each plot, the oldest age constraint at 14.7 ± 550 ka 

BP is delineated using a dotted line.  This age constraint corresponds to the initiation of the 

ACR, a climate event identified in the stable water isotope profile and tuned to the AICC2012 

ice-core chronology (Bazin et al., 2012).  The annual layer counted accumulation profile is 

presented in full resolution, and appears in fig. 7.10a as a noisy, highly variable accumulation 

profile.  The remainder of the ice core accumulation profile is reconstructed using the 

OptAcc model at a depth resolution of 0.5 m, and is therefore less variable.  The surface 

temperature profile is reconstructed using the empirical relationship outlined in section 

2.5.1 (eq. 2.03).  This is also reconstructed at a depth resolution of 0.5 m.  The profiles agree 

in the stepped increase in accumulation and surface temperature over 15 – 11.3 ka BP, 

coinciding with the timing of the oldest age constraint corresponding to the ACR.  Following 

11.3 ka BP, accumulation and surface temperature remain stable until 1.5 ka BP.  This profile 

of accumulation is similar to the FP ice core, but it does not agree with the Early Holocene 

accumulation profile reconstructed for the BI ice core (Chapter 6).  The accumulation and 

surface temperature profiles spanning the most recent 1,500 years will be discussed in detail 

in the following section. 

 

7.4.3.2 Climate of the Common Era 

 
The most recent 2000 years, hereafter referred to as the Common Era (CE), is a useful time 

period to study as an analogue to present-day environment and climate systems.  The 

climate is similar to the present day and proxy records often yield highly-resolved profiles 

that permit the collation of proxies and interpretation of northern and southern hemispheric 

climate (PAGES 2k Consortium, 2013; 2017).  The annually-resolved JRI profile can be 

compared with the findings of the PAGES 2k Consortium.  Fig. 7.11 presents the 900-year 

annually-resolved accumulation and uncertainty, and surface temperature records.  Two 

coloured boxes on each plot indicate the supposed timings of the Medieval Warm Period 

(MWP; red box) and Little Ice Age (LIA; blue box) in the southern hemisphere (PAGES 2k 

Consortium, 2013). 
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Figure 7.10: (a) Full-resolution accumulation reconstruction from 15-0 ka BP with the uncertainty 

(grey), and the 14.6 ka BP constraint presented as a dotted line; (b) Mean annual surface temperature 

spanning 15 - 0 ka BP, with the 14.6 ka BP constraint presented as a dotted line. 

 

The MWP and LIA events are no longer thought to be geographically confined to the 

Northern Hemisphere (Neukom et al., 2011; Guglielmin et al., 2015).  The PAGES 2k 

Consortium discuss in detail the spatial and temporal homogeneity of centennial-to-

millennial warming and cooling periods.  Recent research suggests that a warming period is 
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not identifiable in southern hemispheric ice core and glacial records (PAGES 2k Consortium, 

2013; Neukom et al., 2014).  The JRI accumulation and surface temperature reconstructions 

corroborate with the PAGES 2k research conclusions, as the reconstructions yield no 

evidence of an MWP-like warming period.  Despite a positive temperature anomaly 

throughout AD 1200-1450, there is no evidence of a prolonged period of increasing surface 

temperature and accumulation (fig. 7.11).  Throughout the last 900 years, there are 

oscillations visible in the annually-resolved accumulation profile smoothed to a decadal 

resolution.  The variability in the accumulation record is not matched by the variability in the 

surface temperature over the same period; the change in accumulation in comparison to the 

change in surface temperature is not on the same magnitude.  Elsewhere in Antarctica, the 

EDC record corroborates the JRI ice core record: evidence of an increase in accumulation 

and wind processes from AD 1300 -1500 at EDC is not supported by the surface temperature 

record (Castellano et al., 2005).  

 

Following the proposed timing of the MWP, a subsequent cooling period is evident in the 

palaeoclimate records lasting AD 1580-1880 (Neukom et al., 2011; PAGES 2k Consortium, 

2013).  The only agreement between the seven continental-scale regions analysed as part of 

the PAGES 2k Consortium (2013) is that the climate during this period was generally cooling 

until the late nineteenth century.  On a decadal-centennial scale, the general cooling trend is 

variable, and dominated by solar irradiance and volcanic activity (PAGES 2k Consortium, 

2013).  Antarctic ice core records are punctuated by decadal-scale variability that is out of 

phase with Northern Hemispheric ice-core records (Kreutz et al., 1997; Goosse et al., 2004; 

Rhodes et al., 2012).  In the JRI2 accumulation reconstruction, oscillations in accumulation 

are evident on a multi-decadal to centennial scale throughout the annual layer counted 

record, particularly over the period AD 1450-1850 (fig. 7.11a and fig. 7.12a).  These events 

follow a pattern of a sharp increase in accumulation over 10-15 years, with a subsequent 

decrease over a similar period before an even greater increase in accumulation over 20-30 

years; accumulation returns to the original baseline accumulation value within 50 years.  

This pattern is replicated in the sea-salt Sodium (ss-Na) and Calcium (Ca) proxies of the ice 

core, until the oscillations in accumulation continue into the Industrial Era (AD 1850 

onwards) (fig. 7.12).   
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Figure 7.11: (a) Optimised Accumulation reconstruction for the most recent 900 years with the 

Medieval Warm Period (red) and Little Ice Age (blue) highlighted.  Dashed lines indicate oscillations in 

accumulation identified throughout the annual layer counted JRI2 record; (b) Reconstructed surface 

temperature anomaly (K) from the stable water isotope record; mean decadal surface temperature 

(continuous blue line) and mean annual surface temperature (blue dashed); present-day (0 K) is 

delineated as a grey dashed line for comparison; the LIA and MWP events are highlighted in blue and 

red, as perceived by the accumulation reconstruction. 
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The occurrence, timing, and magnitude of the accumulation oscillations are very similar to 

the patterns seen in the accumulation record of an ice core obtained from Mt. Erebus, 

Saddle (Rhodes et al., 2012).  The Mt. Erebus ice core preserves a surface temperature and 

ion chemistry record that demonstrates three 12-30 year intervals of cooler temperatures 

over AD 1690 – 1840 (fig. 7.12d).  Fig. 7.12 presents the JRI measurements of two proxies 

(ss-Na and Ca) and accumulation, along with two proxies measured in the Mt. Erebus ice 

core (Na and Mg).  Dashed lines indicate the decadal-centennial variability identifiable in the 

Common Era records.  There is a noticeable shift in both JRI and Mt. Erebus ice cores from 

centennial to decadal variability from AD 1700 to the present day, corroborating the climate 

records at each site with PAGES 2k results. 

 

Variability in the decadal surface temperature agrees with the variability in the accumulation 

profile over the LIA period, but does not show the general trend of increase and decline as 

seen in the accumulation record over the time period AD 1100-2000 (fig. 7.11).  The surface 

temperature variability translates to variability in precipitation due to the role that the 

atmospheric water masses have in controlling the rate of snowfall over the continent, but 

the magnitude of change in accumulation with respect to surface temperature shows no 

correlation despite the presumed relationship (fig. 7.11).  In modelled reconstructions of 

precipitation, the variability in surface temperature should affect the rate of accumulation 

by ~5% K-1 (Frieler et al., 2015), but analysis of our JRI2 accumulation reconstruction suggests 

this relationship does not hold true.  Assessment of the rate of change in accumulation with 

respect to a change in surface temperature suggests that there is no correlation between 

the reconstructed surface temperature record and the accumulation record derived from 

annual layer measurements.  Deviation from the modelled rate of change of ~5% K-1 is 

evident in other coastal sites in West Antarctica.  The annual layer counted WAIS Divide ice 

core demonstrates a 17% K-1 accumulation sensitivity between 0-8 ka BP (Fudge et al., 

2016).  The WAIS Divide ice core chronology is similar to the JRI2 chronology in that the 

annual layer counted ice-core record allows accumulation to be reconstructed by 

‘decompressing’ the observed annual layer thickness observed in the detailed chemistry 

record by inverting the role of the thinning function.  Although the JRI2 accumulation 

sensitivity rate does not agree with the WAIS Divide rate, it does highlight that precipitation 

at coastal sites does not follow the presumed surface temperature – accumulation 

relationship that proves more accurate and reliable on longer – and lower resolution – ice 

core records from inland sites.  It is the natural variability in the precipitation record over 
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West Antarctica and the Antarctic Peninsula, coupled with the high-resolution record of the 

last millennia in the JRI ice core, that makes it difficult for  

 

 

Figure 7.12: LIA signatures in the JRI ice core from 1400 AD – 2000 AD.  From top to bottom, a: 

accumulation (m yr-1); b: sea-salt Sodium (ngg); c: Calcium (ngg).  All profiles were measured separate 

to this research project at DRI. Profiles are presented on a decadal-mean to show trends. Plot d: Mt 

Erebus ice core data presented as a smoothed decadal mean record in parts per trillion (ppt) (data 

available courtesy of Rhodes et al. from https://www.ncdc.noaa.gov/paleo-search/study/13175). 

Purple: Sodium; green: Magnesium.  Dashed lines indicate decadal to centennial variability in the 

records. 

https://www.ncdc.noaa.gov/paleo-search/study/13175
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the age-depth model to accurately reconstruct accumulation, and hence the age-depth 

profile, for the upper section of the ice core.  Furthermore, it is the natural variability and 

unreliable surface temperature-accumulation relationship at these sites that should be 

considered in future PAGES 2k research. 

 

7.4.3.3 Rapid Regional Warming 

 
The Antarctic Peninsula is one of the most rapidly warming regions on Earth, with increasing 

atmospheric surface temperatures contributing to significant ice mass loss across the region 

(Vaughan et al., 2003; Rignot et al., 2008).  General circulation model (GCM) predictions 

suggest that, despite an increase in ice mass loss in line with an increase in surface 

temperature, the potential contribution of ice mass loss from the AP to global mean sea 

level (GMSL) could be partly offset by an increase in surface mass balance in line with an 

increase in surface temperature (Bracegirdle et al., 2008; Frieler et al., 2015; Palerme et al., 

2017).  Recent studies on the surface mass balance across the WAIS and the AP suggest 

accumulation has increased since 1850 AD by up to 100%, with an average accumulation 

increase across WAIS of 30% (Thomas et al., 2008; 2015).  Whilst accumulation has doubled 

since 1850 AD at Gomez, which is located in the south-western AP, no change in 

accumulation is observed in the WAIS Divide ice core over the same period (Thomas et al., 

2008; 2015).  For the JRI site, accumulation has increased by 10% between 1900 and 1975, 

based on cubic interpolation (fig. 7.13), with a peak in accumulation at 0.91 m yr-1 and a 

decadal mean deposition of 0.78  0.01 m yr-1 (fig. 7.13).  Between 1975 and 1994, a rapid 

decrease in accumulation is observed; this decrease in snowfall is replicated in records from 

Bryan Coast and Ferrigno (Thomas et al., 2015).  During the twentieth century, the decadal 

mean surface temperature record at JRI increased by 3 K, as reconstructed from the stable 

water isotope profile (fig. 7.11b).  This increase in surface temperature, coupled with a 10% 

increase in mean accumulation, suggests a present-day accumulation-surface temperature 

relationship of 4.4% K-1.  This value is close to the stable water isotope – accumulation 

relationship used in both empirical reconstructions of accumulation and GCM estimates 

(Frieler et al., 2015; Palerme et al., 2017).  The high rate of recent warming at James Ross 

Island has been discussed in previous publications using the earlier JRI chronology, and this 

still holds true for the most recent annual-layer counted section of the record (Mulvaney et 

al., 2012; Abram et al., 2011; 2013).  
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Figure 7.13: (a) Mean Decadal Accumulation for James Ross Island and std dev (red); annual 

accumulation (black); minimum mean accumulation at 1890 – 1910 AD of 0.56 m yr-1 (purple dash) 

and maximum mean accumulation at 1970 – 1990 of 0.79 m yr-1 (blue dash).  Data fitting using cubic 

interpolation is presented as the bold red line. (b) Mean annual surface temperature (K) (black line) 

with a smoothed decadal average (blue). 

 

 

 



Chapter 7 

 233 

7.4.4 Stable Water Isotopes and Accumulation 

The JRI measured accumulation record is highly variable through the most recent 2000 

years.    The high variability in the measured annual accumulation, coupled with the small 

uncertainty on the age constraints, means that the OptAcc model could not reconstruct the 

accumulation and hence age-depth profile at a high-enough resolution to agree with the age 

constraints and corresponding uncertainty.  As discussed in Chapter 6 (section 6.4.5) for the 

FP and BI ice cores, the JRI accumulation variability suggests that the stable water isotope – 

accumulation relationship is not robust.   

Fig. 7.04 shows the natural variability in the JRI ice core record, as the final accumulation 

record (black line in fig. 7.04a) before 264 mweq is taken from the measured accumulation 

rate (blue line in fig. 7.04b).  The natural variability is particularly significant when compared 

with the initial accumulation history estimated from the Clausius-Clapeyron relationship 

with temperature (grey line in fig. 7.04b).  The regional position of JRI and the local climate 

are the likely causes of the high variability that is seen in the empirically-reconstructed 

accumulation record, but not recorded in the stable water isotope profile.  

The JRI ice core was retrieved from an island at the northernmost tip of the AP.  The island is 

particularly exposed to the climate variability described by the Southern Annular Mode 

(SAM) index, which is defined as the difference in the normalised monthly zonal mean sea 

level pressure (SLP) between 40°S and 70°S (Nan and Li, 2003).  James Ross Island, at 64°S, is 

subjected to the climate variability across this latitudinal zone.  A positive SAM index is an 

indicator of a higher storm frequency, which may lead to a variable mean annual 

accumulation record.  However, the mean annual SAM index from 1957 to 2012 does not 

correlate with the annual accumulation at JRI, with an r2 coefficient of less than 0.3 (fig. 

7.14), suggesting that the high variability in accumulation at this site is not dominated by the 

SAM index and the storm frequency.  Fig. 7.14a is a comparison of the mean annual (bar) 

and smoothed (line) five-year mean SAM index (data from Marshall et al., 2003); a distinct 

increase in the positivity of the SAM index from 1990 onwards coincides with a steady 

increase in accumulation, but this change in accumulation is preceded by a significant 

decrease from the mean annual accumulation throughout 1950-1970, a period where the 

SAM index was steadily negative.  Instead, the accumulation variability at JRI must be 

controlled by additional forcing to lead to strong inter-annual variability that decouples the 

surface temperature-accumulation relationship at coastal locations (Fudge et al., 2016; 

Turner et al., 2016). 
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Figure 7.14: (a) the Mean Annual SAM index for the period 1957 – 2012, for comparison with (b) 

annual accumulation at JRI between 1955 and 2005.  Comparison of the annual records in plot (a) and 

plot (b) give an r2 coefficient of 0.3, suggesting there is additional forcing on the high variability in 

annual accumulation at JRI. 

 

Initial assessment of the accumulation profile for the JRI ice core suggested that significant 

perturbation was required in order to reconstruct an accumulation history that can fit 

observational constraints.  Hence, it was suggested that the empirical relationships used to 

estimate an accumulation history relied on assumptions that did not account for all 

necessary factors that impact on the rate of precipitation.  The deviation between the initial 

and optimal accumulation profiles for each ice core, particularly in the changes in 

accumulation during transitional periods or periods of rapid regional warming, could be 
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evidence of a decoupling between the surface temperature and accumulation relationship, 

as is evident in the WAIS Divide ice core (Fudge et al., 2016).   

7.5. Summary 

 
The JRI2 chronology is presented in order to address the third objective outlined in section 

1.2.1.  High-resolution sub-annual CFA measurements are used to identify seasonal signals, 

and improve upon the existing JRI1 chronology.  The JRI2 chronology has been constructed 

using a combination of annual layer counting and inverse modelling; the annual layer 

counted profile reaches a greater depth in the ice core than was achieved in the JRI1 

chronology, and has a maximum error margin of 2 – 5 years.  The remainder of the ice core 

has been reconstructed using the OptAcc model, constrained to fit new observational tie 

points identified in the annual-layer counted WAIS Divide ice core.  An increase in the 

uncertainty on the modelled portion of the age-depth profile is evidenced, but uncertainties 

are limited to 11 years in the most recent 1200 years due to the use of well-dated volcanic 

age horizons observed in the annual-layer counted WAIS Divide ice core and the high level of 

confidence on their identification.  JRI2 deviates from the original chronology by up to 270 

years in the most recent two millennia of the record.  The highly-resolved ice-core profiles 

present a new, optimised accumulation history for a site that demonstrates significant 

natural variability in precipitation over the last 1500 years, recording the MWP and the 

variability in accumulation and surface temperature punctuating the LIA.  Finally, an increase 

in accumulation of up to 10% during the twentieth century correlates with other ice core 

records from the Antarctic Peninsula and West Antarctica. 

 

At greater depths in the JRI ice core, the final age at the bed does not change between the 

chronologies but the age horizons at depths greater than 300 m have been updated 

according to the AICC2012 EDC chronology.  Furthermore, the JRI2 chronology is capped at 

the depth of the oldest constraint used, circa 14.7 ka BP, and evidence is found to suggest 

that ice is missing from the JRI record between 14.7 – 17.5 ka BP. 

 

The JRI2 chronology is the third ice-core reconstruction presented in this thesis using the 

OptAcc model, and it yields further information on the climate history of the AP and Weddell 

Sea region.  Following this, further investigation of the region will be completed in order to 

understand the present-day climate dynamics before addressing the results of this study in a 

wider context. 
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Chapter 8: Determination of geothermal heat flux 

from borehole temperature measurements in the 

Weddell Sea sector of Antarctica 

8.1 Introduction 

This chapter will present the geothermal heat flux (GHF), present-day surface temperature 

(TS), and a steady-state mean annual accumulation rate (b) for three boreholes, drilled to 

retrieve the James Ross Island (JRI), Fletcher Promontory (FP), and Berkner Island (BI) ice 

cores.  In addition to the three ice-core sites, b and TS values are reconstructed for 

comparison with measured values at two additional borehole sites, Dolleman and Dyer 

Plateau.  The values are calculated using a model that was developed to reconstruct the 

transport of heat through an ice column using in situ measured temperatures in the 

borehole with a view to estimating the surface temperature history at each site, as outlined 

in section 2.5.5 and 3.6.3.  A surface temperature history reconstructed from the borehole 

temperature profiles would provide an independent temperature history for comparison to 

the profiles estimated using the stable water isotope profile, and fulfil the fourth objective 

set by this study (section 1.2.1).  The model did not reconstruct a surface temperature 

history using this method; however, the borehole model has been used to calculate the GHF 

information at each borehole site.    

Borehole temperature profiles that are measured to the bedrock can provide information on 

the transport of heat through an ice column.  In turn, this can be inverted to yield 

information on the site location characteristics such as the GHF, TS, b through the ice 

column.  In this chapter, an inverse model is developed and applied to borehole 

temperature profiles from JRI, FP, and BI, to calculate the GHF values, present-day TS, and b.   

GHF has a great influence on ice-sheet dynamics, particularly via its influence on subglacial 

conditions (predominantly the basal temperature and hydrology) (Winsborrow et al., 2010).  

Although the surface conditions of an ice sheet are well understood, studied and 

documented, the subglacial conditions are less easy to observe and thus less well-

constrained in ice-sheet studies. 

Understanding such conditions is critical; the mean GHF is estimated to be ~65 mW m-2 for 

much of West Antarctica and the Antarctic Peninsula (AP), and between ~20-40 mW m-2 



Chapter 8 

 

 238 

across East Antarctica (Shapiro and Ritzwoller, 2004; Fox Maule et al., 2005).  Basal melting 

underneath a glacier can occur for two reasons: (i) GHF beneath the bed provides heat to 

the underneath of a glacier; and (ii) the temperature at which the ice will start to melt 

increases as the pressure in the ice sheet increases from the weight of the ice sheet above.  

This is referred to as the ‘pressure melting point’.  The large ice sheet thickness of the East 

Antarctic Ice Sheet (EAIS), coupled with low mean annual accumulation can lead to basal 

melting where GHF is ~40 mW m-2 (Pattyn, 2010). Consequently, up to 55% of the grounded 

Antarctic Ice Sheet (AIS) is currently at pressure melting point (Pattyn, 2010).  In addition to 

this, high heat flux anomalies beneath the WAIS of up to ~285 mW m-2 provide an 

explanation for the high abundancy of ice streams and subglacial lakes in this region (Wright 

and Siegert, 2012; Fisher et al., 2015). 

A better understanding of the subglacial conditions is necessary to model processes within 

and underneath the ice sheet that can be used to infer more accurate information on Polar 

Regions, at a higher resolution than is currently available (Winsborrow et al., 2010).  In 

particular, a better understanding of the subglacial conditions can lead to better-informed 

decisions on where one should aim to retrieve an ice core (Winsborrow et al., 2010).  The 

oldest climate records preserved within the ice sheet will be found in areas with a large ice 

sheet thickness, and a low mean annual accumulation.  High GHF values promote basal 

melting which will affect the stability of an ice sheet (Fisher et al., 2015).  Basal melting will 

also destroy the oldest part of the record and restrict the length of the climate history that 

can be recovered, as has happened at the current oldest ice-core site at Dome Concordia 

(EPICA, 2004).  For the longest ice-core records, optimal sites would have a low mean annual 

accumulation, an ice sheet thickness greater than 2000 m, and horizontal flow velocity of 

less than 2 m yr-1, with a basal temperature estimated to be below freezing so the oldest ice 

is not lost to basal melting (Pattyn, 2010; van Liefferinge and Pattyn, 2013).  Recent studies 

propose potential locations of records spanning over a million years of ice (van Liefferinge 

and Pattyn, 2013).  These possible sites avoid subglacial lakes and areas of basal melting 

underneath the AIS.  Without prior knowledge of the subglacial conditions, ice core sites at 

Vostok, EPICA DML, Dome C and Dome Fuji were later found to be above a subglacial lake, 

or in an area of basal melting (Salamatin et al., 1994; Augustin et al., 2007, Pattyn, 2010).  

Despite the influence of GHF on ice dynamics, there are few measured values across 

Antarctica.  Three continent-wide studies have estimated GHF values (Shapiro and 

Ritzwoller, 2004; Fox Maule et al., 2005; Purucker, 2016).  The first study used a global 
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seismic model of the crust and upper mantle to extrapolate existing heat-flow 

measurements (Shapiro and Ritzwoller, 2004); the second set of GHF estimates was derived 

from satellite magnetic measurements (Fox Maule et al., 2005).  A third set of GHF estimates 

is based on low-resolution satellite magnetic measurements and follows the method used in 

Fox Maule et al. (2005) and Purucker (2016).  Discrepancies between these estimates are 

evident in spatial patterns across the continent, with the later sets of modelled values 

suggesting GHF values that are greater than those predicted by Shapiro and Ritzwoller 

(2004) across the EAIS and the WAIS.  The resolution of these datasets of varies between 

150 and 300 km2.  This can be a problem for ice-sheet models; higher-resolution directly-

measured GHF datasets suggest that GHF varies on a spatial resolution of 50 – 100 km2 

(Dahl-Jensen et al., 2003; Näslund et al., 2005).   

Directly measuring GHF at a particular site remains the optimal method for testing modelled 

GHF values across Antarctica.  These directly measured values are sparse across the 

continent, as they mostly rely on the presence of a borehole drilled to bedrock and 

temperature measurements from within the borehole.  Using borehole temperature 

measurements, simple GHF estimates can be calculated using a linear thermal gradient and 

an estimate for the thermal conductivity, αC (Fisher et al., 2015).  Alternatively, an inverse 

approach can be used to estimate the optimal GHF value by solving the standard equation 

for heat transport (Pattyn, 2010; Zagorodnov et al., 2012).  Both of these approaches do not 

account for temporal changes in surface temperature in relation to changes to the transport 

of heat through an ice column.  A novel third technique was developed using airborne radar 

sounding coupled with a subglacial water routing model over Thwaites Glacier in order to 

estimate the distribution of basal melting and GHF (Schroeder et al., 2014).  These 

techniques do not yield direct measurements of GHF but can provide alternative estimates 

to those produced by the continent-wide studies of Shapiro and Ritzwoller (2004) and Fox 

Maule et al. (2005).  GHF values calculated by borehole temperature measurements across 

the WAIS demonstrate a high variability that has not been detected by low resolution 

modelling (Schroeder et al., 2014; Fisher et al., 2015). It is also apparent that the globally-

modelled GHF values appear to be underestimated when compared with the direct 

temperature measurements.   

The differences in GHF estimates add to the argument that better coverage of Antarctica by 

robust site-specific observations is necessary.  Three deep ice cores originating from the AP 

and Weddell Sea region have been drilled to bedrock at JRI, FP, and BI.  Following 
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completion of the drilling at each site, temperature measurements were made throughout 

the borehole to bedrock.  This study uses an inverse approach that solves the heat transport 

equation along the borehole, to calculate the optimal values for GHF, TS, and b, for 

comparison with the observed present-day surface temperature and the mean annual 

accumulation rate.  Alongside this inverse method, GHF values have been separately 

calculated from the thermal gradient of the bottom 25% of the borehole temperature profile 

in order to compare with the GHF values derived using the inverse model.  The results 

provide three GHF values for the AP and Weddell Sea region, adding to the current 

Antarctic-wide database of modelled and calculated GHF values.  

8.2 Methods 

GHF, TS, and b are estimated in this study by reconstructing the diffusion and advection of 

heat within an ice sheet.  Using an iterative model, the reconstructions are compared with 

temperature observations from the borehole column; the optimum solution is assumed to 

be the one where there is minimum deviation between the observed and modelled 

temperature profiles.  Tests on the robustness of this method are carried out by comparing 

the model results with GHF calculations from a second method that uses the temperature 

gradient in the lower 25% of the ice sheet.  

8.2.1 Site Description and Drilling 

Measurements of the in situ temperature profiles of the boreholes for the three ice cores 

used throughout this study have been used for this research.  The site description and 

drilling process is outlined in Chapter 3 (section 3.2.1). 

8.2.2 Temperature Measurements 

The method used to measure the borehole temperature profiles differs slightly at each site, 

but all followed a scheme of measuring the resistance across calibrated glass bead 

thermistors with a low current device to reduce self-heating to a negligible amount.  

Resistances were converted to temperature using the Steinhart-Hart equation, and the three 

parameters A, B and C used in the equation were derived by calibration in the laboratory for 

each thermistor (Steinhart and Hart, 1968).  The methodology used to measure the 

temperature profiles for each borehole is outlined in Chapter 3 (section 3.2.2). 
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8.2.3 The Inverse Model Approach 

The iterative model used to calculate the GHF, TS, and b, uses the relationship explained in 

section 2.5.5 (eq. 2.22 – 2.27).  Following this relationship, the borehole temperature model 

is designed to calculate GHF, TS, and b, using eq. 3.05 (section 3.6.3).  As mentioned in 

section 8.1, this approach does not account for temporal changes in surface temperature in 

relation to changes to the transport of heat through an ice column.   

The assumed error on the accuracy of thermistor measurements of 0.1 K is principally 

accrued from errors in the calibration and from the influence of heat carried from a 

particular depth measurement to the next by the thermal mass of the cable.  The error on 

the depth measurement along the borehole is assumed to be 0.5% of the depth 

measurement, this error is cumulative with depth throughout the borehole.  In order to 

account for potential error on each of these measurements, 1000 different realisations of 

the temperature-depth profile are calculated.  These are assessed against the measured 

temperature-depth profiles that have been randomly perturbed to within the uncertainty of 

both temperature and depth.  The temperature-depth reconstruction that yields the 

smallest root mean square error (RMSE) deviation from the perturbed measured 

temperature-depth profile is presented as the final temperature profile and provides the 

values for GHF, TS, and b.   

8.2.4 The Temperature Gradient Approach 

A second method, implemented to calculate an alternative GHF value at each deep ice-core 

site, uses the thermal gradient of the observed temperature profile from the deepest 25% of 

the borehole and the thermal conductivity of ice: 𝐺𝐻𝐹 =  −𝛼𝐶 ∙ 𝜕𝑇 𝜕𝑧⁄ .  In this relationship, 

T is the measured temperature profile in the borehole, and z is depth.  This is a simple form 

of Fourier’s Law for heat flow, and it assumes a linear and stable thermal gradient. The 

depth at which the top of the deepest 25% begins corresponds to a significantly different 

age at each deep borehole site, but it is a fixed point in each temperature profile where the 

thermal gradient is relatively stable down to bedrock.  The thermal gradient is estimated as 

the mean change in temperature with depth in the deepest 25% of the borehole, and the 

error on each GHF estimate is determined as 𝐺𝐻𝐹 =  −𝛼𝐶 ∙ 𝜎𝜕𝑇 𝜕𝑧⁄ , where 𝜎𝜕𝑇 𝜕𝑧⁄  is the 

standard deviation of the temperature profile. 
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8.3  Results 

Values of GHF, TS and b have been calculated using an inverse approach to solve the 

equation for the transport of heat in an ice sheet.  In addition, a second ‘temperature 

gradient’ method, which accounts for uncertainties in the temperature measurements, is 

used to determine alternative values of GHF.  The following sections present the results of 

each of these approaches. 

8.3.1 Optimal Values from the Inverse Model Approach 

The optimal values for GHF, TS and b are presented in table 8.01 for each deep borehole site, 

and compared to the present day measured values.  GHF values that satisfy the constraints 

provided by the temperature profile are shown for each borehole site in fig. 8.01.  Dashed 

lines in each plot indicate the modelled estimate of GHF using published datasets and the 

temperature gradient approach used in this study (Shapiro and Ritzwoller, 2004; Fox Maule 

et al., 2005; Purucker, 2016).  In addition, the distribution of TS and b are presented in fig. 

8.02 and fig. 8.03.  In each figure, the present-day measured mean values of TS and b are 

indicated (these values are the same as were used in the ice-core age-depth models in 

chapter 6 and 7).   

Table 8.01: Values for GHF, surface temperature, and mean accumulation using the inverse approach 

for deep borehole sites at James Ross Island, Fletcher Promontory and Berkner Island, compared to the 

present day observed values of Ts and b taken from Mulvaney (2014). 

 JRI FP BI 

Mean Observed TS (°C) 

Mean Observed TS (K)  

-14.40 

258.75 

-27.10 

246.05 

-24.95 

248.20 

Observed b (m yr-1) 0.63 0.38 0.18 

Modelled GHF (mW m-2) 62.50  4.40 46.80  1.12 47.00  0.90 

Modelled TS (°C) 

Modelled TS (K) 

-14.80  0.25 

258.50 ± 0.25 

-28.00  0.20 

245.15 ± 0.20 

-26.15  0.25 

247.00 ± 0.25 

Modelled b (m yr-1) 0.58  0.11 0.18  0.01 0.11  0.01 
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Figure 8.01: Distribution of GHF values with a probability density function fitted (solid red line) for (a) 

JRI; (b) FP; (c) BI.  Dashed lines indicate the modelled GHF estimates: black: the alternative 

‘temperature gradient’ method in this study (section 8.2.4); red: Shapiro and Ritzwoller (2004); green: 

Fox Maule et al. (2005); blue: Purucker (2016). 
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Figure 8.02: Distribution of TS values with a probability density function fitted (solid red line) for (a) JRI; 

(b) FP; (c) BI.  Present-day mean TS is indicated by a black dashed line.

 

Figure 8.03: Distribution of b values with a probability density function fitted (solid red line) for (a) JRI; 

(b) FP; (c) BI.  The present-day mean annual accumulation rate is indicated by a black dashed line. 
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Fig. 8.04 shows the modelled temperature profiles and the borehole temperature 

measurements for each deep borehole site.  These figures demonstrate the good fit 

between all the modelled profiles and the observational data, with the exception of the 

upper 15% of the borehole profile (where depth is 0 at the surface).  The modelled TS values 

(table 8.01; fig. 8.02; fig. 8.04) for each deep borehole site differ very slightly from the 

present-day mean TS values of 258.75 K, 246.05 K, and 248.20 K (-14.40 °C, -27.10 °C, and -

24.95 °C) for the JRI, FP, and BI sites respectively (taken from Mulvaney, 2014).  Deviation 

between modelled surface temperature values and observed temperature values of up to 

1.5 K is apparent in the upper 5-16% of each of the three borehole temperature profiles.  

There is an inflection in the measured temperature profiles towards the surface.  The 

modelled temperature profiles do not reconstruct this, suggesting a period of rapid warming 

is preserved in the upper 5-15% of the borehole temperature profile that the model is not 

capable of reconstructing.   

Modelled mean accumulation values differ dramatically from present-day mean values of 

0.63 m yr-1, 0.38 m yr-1, and 0.18 m yr-1 for JRI, FP, and BI.  The reconstructed values for FP 

and BI are 40-50% lower than the present-day values, and the reconstructed accumulation 

rate for JRI is 8% lower than the present-day rate.  This is because the rate of accumulation 

reconstructed using this model assumes the same rate of accumulation for the entire ice 

column.  The deepest 80-90% of the ice cores from BI, FP, and JRI consists of ice from the 

last glacial period, during which accumulation was lower (see the accumulation 

reconstructions in Chapters 6 and 7; fig. 6.13 and fig. 7.04).  The reconstructed values 

presented in this chapter reflect a mean accumulation rate throughout a glacial and 

interglacial period, and therefore are both lower than the mean annual accumulation rate 

during the interglacial and greater than the mean rate during the last glacial period.  A 

smaller difference in observed and modelled mean annual accumulation at the JRI site is 

probably due to the fact that this shorter record contains mostly interglacial (Holocene) ice.   
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Figures 8.04: Red crosses: Observed temperature measurements with the associated error on depth 

and temperature measurements (measurements provided by Rob Mulvaney (pers. comm.); black line: 

modelled temperature profiles with associated uncertainty in grey; (a) James Ross Island; (b) Fletcher 

Promontory; (c) Berkner Island.  A dashed line across each plot represents the depth below which the 

temperature gradient is used in the alternative GHF calculation (section 8.2.4).  All of the ice-core 

profiles are presented with respect to the depth from the surface (m). 

 

8.3.2 The Temperature Gradient Approach 

An alternative method described in section 8.3.4 uses the thermal gradient of the deepest 

25% of each borehole and results in GHF values of 61.6 ± 1.7 mW m-2 for JRI, 45.3 ± 1.3 mW 

m-2 for FP, and 47.3 ± 2.8 mW m-2 for BI.  The range of GHF values for each borehole site 

determined using the temperature gradient approach is in close agreement with the values 

calculated using the inverse approach (table 8.01).  This is understandable as the measured 

temperature gradient in the deepest 25% of each borehole does not deviate from the 

modelled temperature gradient in the deepest 60 - 70% of the profile that is used in the 

inverse approach.  
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8.4 Discussion 

The current database of GHF values across Antarctica contains few direct measurements 

from boreholes, despite the significance of the values for glaciology studies and ice-sheet 

models.  This study has presented GHF values for three sites across the Weddell Sea sector, 

to expand the dataset into the AP and Weddell Sea region. The following section will discuss 

the GHF, TS, and b values reconstructed using the inverse approach and the alternative 

temperature gradient approach, and compare the results with the values estimated from 

other studies. 

8.4.1 Comparison of GHF values estimated by the two approaches 

The thermal gradients of 0.029 °C m-1 for JRI, and 0.019 °C m-1 for FP, and 0.022 °C m-1 for BI, 

when combined with a thermal conductivity constant estimated at 2.10 W m-1 K-1, indicate 

GHF values within the confidence intervals of the optimised GHF value for each borehole site 

(fig. 8.01).  The estimates using Fourier’s Law use the thermal gradient from the bottom 25% 

of the borehole.  In the case of BI and FP, this covers the last glacial period only.  However, 

the JRI borehole record spans mostly the current interglacial period and the LGM, extending 

into the LGM in the deepest 3 m of the ice sheet (Chapter 7; see fig. 7.03).  The 

corroboration of the values derived using the simple form of Fourier’s Law with the GHF 

values estimated by the inverse model suggests stability and robustness in the estimated 

values.  This indicates that the simple Fourier’s Law relationship would have been sufficient 

as a standalone method for estimating GHF at these sites (if the sole objective was to 

estimate the GHF) as the verification of results implies that the steady-state assumptions in 

this relationship hold true in the deepest 25% of each borehole site.  

8.4.2 Probability range of optimal values 

The potential error accrued from the thermistor measurements can be used to determine a 

probability range for the optimal values at each borehole site.  In every iteration of the 

borehole model, temperature measurement uncertainty is accounted for by perturbing the 

temperature profile to within the assumed potential error of 0.1 K for every temperature 

measurement.  Every borehole temperature profile is randomly perturbed and therefore 

provides alternative targets for the inverse method, which could impact on GHF, TS, and b 

values.  The limited distributions for the values of GHF, TS, and b at each borehole site 

suggest that the error on thermistor measurements has little significance on GHF 

estimations (fig. 8.01).  Despite this, the accumulation and surface temperature estimates do 
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not match the present-day mean values for each site (table 8.01).  It has already been stated 

in this chapter that the age of the ice at the bedrock of each site originates from the last 

glacial period, and hence the accumulation rates suggested for the mean annual 

accumulation will be lower than the present-day accumulation rates but greater than the 

mean annual accumulation during the last glacial period (interpreted from the accumulation 

reconstructions in chapters 6 and 7).   

The temperature value measured at a 10 m-depth in the borehole is commonly assumed to 

be the mean present-day surface temperature.  However, the surface temperature 

estimated through the inverse model is consistently colder.  Surface temperature and GHF 

act as boundary conditions on the temperature profile, and thus past glacial periods should 

not affect the estimation of these values.  Instead, the colder values estimated using the 

inverse model than the measured surface temperature suggest that the influence of a period 

of rapid recent warming has not yet diffused beyond the upper section of the borehole.  

Potential proof of rapid regional warming in the AP could be evident by the inflection in the 

temperature profile in the uppermost depths of the boreholes, where the temperature 

profiles have warmed rapidly (fig. 8.04).  Further investigation of the inflection in measured 

profiles is necessary to understand the significance of these results and their potential as a 

proxy for the rapid regional warming. 

As the basal temperatures are 264.65 K, 261.55 K, and 255.15 K (-8.5 °C, -11.6 °C, and -18.0 

°C) for the JRI, FP, and BI borehole sites respectively, one can assume that the high mean 

annual accumulation and low ice sheet thickness at each site cools the ice mass and 

prevents basal melting despite the relatively high GHF values.  As previously mentioned in 

this chapter, the pressure from the weight of the ice sheet can increase the temperature 

threshold that leads to basal melting.  Therefore, the weight of a large ice-sheet thickness 

can induce pressure melting with little input from GHF.  However, as the basal temperatures 

are several degrees from melting, it should be suggested that the ice sheet thickness and 

mean annual accumulation rate across the AP region has a greater effect on the basal 

temperatures.  In conjunction, a thinner ice sheet thickness and high mean annual 

accumulation rates lead to a lower “insulating effect” on the ice sheet, in comparison to the 

greater ice sheet thickness and lower accumulation rates across the EAIS.   For an ice sheet 

thickness and mean annual accumulation similar to those found at the BI drill site, it is 

estimated that a GHF of ~140 mW m-2 would be required to reach the pressure-melting 

point at the bedrock (van Liefferinge and Pattyn, 2013).  Extrapolating these GHF estimates, 
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for a site of high mean annual accumulation and low ice sheet thickness similar to JRI, a GHF 

value upwards of ~200 mW m-2 would be required to melt ice at the bed.  This is in contrast 

with conditions across East Antarctica where sites with GHF values as low as 40 mW m-2 

experience basal melting due to the extremely low mean annual accumulation and the large 

ice sheet thickness (Pattyn, 2010).  Therefore, it is with confidence that this study suggests 

that the ice sheet in the region of the three borehole sites studied here does not experience 

pressure melting at the bed. 

8.4.3 Comparison with existing datasets 

The GHF values for JRI, FP, and BI, as estimated from existing global and continent-wide 

models (Shapiro and Ritzwoller, 2004; Fox Maule et al., 2005; Purucker, 2016), are presented 

in table 8.02.  Comparison of the values from this study and the previously published values 

demonstrates a lack of agreement between several of the modelled estimates and GHF 

values calculated from borehole thermometry profiles (table 8.02).  Modelled estimates 

from Shapiro and Ritzwoller’s model (2004), Purucker (2016), and Fox Maule et al. (2005) are 

similar to the values for BI, FP, and JRI, respectively.  However, the remainder of the 

estimates by the three published methods overestimate GHF values considerably in 

comparison to the derived values.  Fig. 8.05 shows the range of GHF values across the 

continent according to the mean value from the three datasets. 

 

Table 8.02: A list of GHF values estimated by methods outlined in this paper, and earlier studies for the 

three sites.  Values are presented in mW m-2. 

 JRI BI FP 

Inverse Model (this study) 62.50  46.80  47.00  

Thermal Gradient approach (this 

study) 

61.6 47.3 45.3 

Shapiro and Ritzwoller (2004) 108.1 46.0 91.5 

Fox Maule et al. (2005) 65.0 66.7 67.9 

Purucker (2016) 125.6 56.2 51.7 
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Figure 8.05: Mean GHF values calculated from three sources compared with the measured GHF values 

at each ice-core site with the locations of the three deep boreholes overlaid, demonstrating the 

contrast between modelled and derived GHF values.  Site locations are denoted using the same colour 

scheme as used in the map. 

 

The precision of borehole-derived GHF values are specific to location but more reliable than 

the continent-wide model estimates due to the direct interpretation of the temperature 

gradient.  One reason for the apparent mismatch between the borehole-derived values and 

the previously-published estimates is the low resolution at which the seismic and magnetic-

derived heat flow estimates are calculated.  The modelled GHF values from published 

studies are all estimated on a 5 x 5 grid resolution, which translates to 156.25 km2 grid 

squares.   Although the results are presented at a resolution of 156.25 km2, these values are 

in fact extrapolated from a much lower resolution of between 500 and 1000 km2 (Shapiro 

and Ritzwoller, 2004; Fox Maule et al., 2005).  GHF values can vary on a resolution of 50 – 

100 km2 (Pattyn, 2010).  Hence, the GHF values calculated for specific locations, directly 

from borehole temperature profiles, yield information that cannot be accurately interpreted 

on a continent-wide model scale.   
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Another potential reason for the wrongly-estimated GHF values by previously-published 

models is the influence of the crustal heat production, mantle heat flow and tectonic history 

of a location.  Past volcanism around the Weddell Sea sector – particularly at the volcanic 

James Ross Island – would be expected to influence the geothermal energy in the region.  

This is a similar case to Iceland, where active volcanism and geothermal energy leads to an 

average GHF value of 175 mW m-2 (Hjartarson, 2015).  The GHF estimates for JRI using the 

Shapiro and Ritzwoller (2004) and Purucker (2016) datasets are 108.1 – 125.6 mW m-2, as to 

the model approaches have inferred information from past volcanism, whilst GHF estimates 

derived from satellite magnetic data correlate with the borehole-derived value of 62.50 ± 

4.40 at JRI (Fox Maule et al., 2005).   

Overall, comparison of the GHF estimates from the three models with the borehole-derived 

GHF values suggests a lack of consistency between all model approaches for the AP and 

Weddell Sea region.  The borehole-derived heat flux measurements should be considered as 

accurate in calculating the GHF values.  However, they are only pertinent for the individual 

location, as GHF can vary relatively short distances (Pattyn, 2010).  Therefore, the borehole-

derived GHF values should be considered a useful tool to calibrate existing and future model 

estimates of the GHF, and this study can be used to enhance the modelled databases (Fisher 

et al., 2010).   

8.4.4 Surface Temperature Warming and Borehole Modelling 

8.4.4.1 Extending the Borehole Model to other Sites 

In addition to estimating the GHF at each ice core location, the borehole temperature model 

showed that there was a substantial deviation between modelled and measured present-

day mean annual surface temperature at each of the sites.  An inflection in the upper 5 – 

20% of the measured curve, tending towards warmer temperatures in comparison to the 

modelled curve, suggests a recent increase in local surface temperature.  This contrasts the 

steady-state profile of the transport of heat through an ice column, that suggests the 

borehole temperature profile should cool throughout the column from the surface to the 

bed, as demonstrated in the modelled profile in the figures (fig. 8.04).  The modelled 

borehole temperature profile would be expected to intersect the surface at the present-day 

mean annual temperature; that the AP and Weddell Sea region borehole profiles do not do 

this suggests an inaccuracy in the present-day mean annual surface temperature estimation.  

Consequently, borehole temperature profiles may be used to interpret information on the 
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present-day mean surface temperature and estimate regional warming (Barrett et al., 2009; 

Zagorodnov et al., 2012).    

The initial hypothesis on why these near-surface values deviate from the steady state model 

solution is that the borehole temperature profiles record the rapid regional warming 

experienced across the AP and Weddell Sea regions over the most recent 150 years (Steig et 

al., 2009; Vaughan et al., 2003).  To investigate this, the borehole model was applied to each 

of the five borehole temperature profiles to replicate the observed borehole temperature 

profile to determine the optimum values for surface temperature.  The methods used are 

briefly described below. 

The methods used to drill into the ice sheet, and to measure the temperature profile within 

the ice sheet for the two additional sites were similar to those outlined in section 3.2.2.  The 

same modelling approach as used to produce the GHF, b, and TS reconstructions is used for 

the five borehole temperature profiles.  Additionally, a simple age-depth model using the 

modelled mean present-day annual accumulation rate, b, and the Nye thinning function (eq. 

2.10; eq. 2.20-2.21) is used to identify the time at which the measured borehole 

temperature profile begins to curve away from the model profile.  The deviation in the 

measured and modelled borehole temperature profiles occurs in the upper 5 – 20% of each 

borehole.  The Nye thinning function can be assumed correct for the upper depths of the ice 

sheet, where the strain at an ice divide is assumed to increase linearly with depth (Nye, 

1963).  As a result, the present-day surface temperature is calculated along with an age at 

the depth that the modelled and measured borehole temperature profiles deviate, yielding 

an age from which the borehole temperature profiles are assumed to begin warming 

significantly. 

Two additional borehole temperature profiles from shallow boreholes on the Dyer Plateau 

and Dolleman Island suggest similar trends in surface temperature warming as observed in 

the BI, JRI and FP borehole temperature profiles (a map showing the location of these 

boreholes is found in Chapter 3; fig. 3.01).  These additional boreholes were not used in the 

main study of this chapter as the temperature profiles do not reach the bed and hence 

cannot be used to calculate the GHF.  However, in each of the five boreholes, the measured 

upper temperature profile can be compared to the modelled temperature profile and used 

to estimate regional surface warming (fig. 8.06).   
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Figure 8.06: Borehole temperature reconstructions (black line) for each borehole site, with measured 

borehole profiles in red crosses.  Measured borehole temperature profiles provided by Rob Mulvaney 

(pers. comm.). 

Table 8.03: Borehole results for each site.  TS
D is the measured surface temperature (K), and TS

M is the 

modelled surface temperature value (K). 

Borehole 

site 

bD 

(m yr-1) 

bM 

(m yr-1) 

TS
D (K) TS

M (K) Date of 

start of 

warming 

Warming 

rate (K 

century-1) 

Latitude Longitude 

JRI 0.63 0.58 259.30 258.50 1890 AD 0.70 64o12.1’S 57o41.1’W 

Dolleman 0.43 0.27 256.20 255.50 1912 AD 0.76 70o37.0’S 60o45.0’W 

Dyer 0.44 0.42 252.20 251.50 1864 AD 0.38 70o60.0’S 65o00’W 

FP 0.38 0.18 246.10 245.15 1858 AD 0.59 77o54.1’S 82o36.3’W 

BI 0.18 0.11 248.30 246.90 1717 AD 0.44 79o32.9’S 45o40.7’W 
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By applying a simple age-depth model to these boreholes and estimating the age of the 

deviation, it is established that the warming in the ice column consistently originates from 

the Industrial Era (AD 1850 – present day).  The mean present-day observed surface 

temperature, TS
D, the mean modelled present-day surface temperature, TS

M, and the rate of 

warming are calculated for each borehole site (table 8.03).   

8.4.4.2 Assessment of the Surface Temperature Records 

It is accepted here that the surface temperature warming study is an over-simplification as it 

neglects vertical diffusion of the temperature signal.  However, it provides a first 

approximation of the time scale of the warming signal.  The calculated rates of warming 

(table 8.03) suggest a north-south trend, indicating that the northernmost tip of the AP is 

warming at a faster rate than the inland, southern sites such as the Dyer Plateau.  The north-

south trend in warming agrees with automatic weather station (AWS) data across the 

region. Between 1950 and 2000, there has been an increase in the number of positive 

degree days (PDD; a PDD event is when the maximum daily surface temperature is great 

enough to cause surface melting) occurring each year across the AP region, with the 

Faraday/Vernadsky AWS demonstrating a 74% increase in PDD events over the same period 

(Vaughan, 2006).  AWS data from the AP region shows that the occurrence of PDD events 

also follow the north-south trend, with the northernmost tip of the AP experiencing more 

PDD events than the inland or southern AP AWS sites between 1999 and 2009 (Barrand et 

al., 2013).  Turner et al. (2005) quantified the AP warming between 1951-2000 to be +0.56 K 

decade-1 at the northern AP AWS at Faraday/Vernadsky, as opposed to a +0.2 K decade-1 

warming rate at the AWS at Orcadas, southern AP.  Despite the agreement in geographical 

trends, the AWS rates of warming are greater than the borehole-derived rates by an order of 

magnitude. 

The geographic trends of the rate of warming derived from borehole measurements agree 

with AWS data (Turner et al., 2005; Barrand et al., 2013) but the rates are not consistent, 

which may be a result of the over-simplification of the estimate on commencement of 

warming.  Furthermore, the rates of warming per century do not agree with the surface 

temperature profile interpreted from the stable water isotope measurements from the ice 

cores.  The JRI isotope-derived surface temperature record suggests an increase of 3 K over 

the last century, whilst the borehole-derived rate of warming estimates +0.7 K century-1.  

This study suggests that these trends in the borehole temperature profiles could be further 

interpreted as a proxy for rapid regional warming and warrant further investigation.  The 
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results of this study could be more robust by improving the modelling approach.  Following 

improvements to the method, the results of this study would provide an independent 

assessment of the records for the AP and Weddell Sea region.  The following section will 

discuss potential improvements to the modelling approach. 

8.4.4.3 Potential Improvements to the Method 

As already stated, the borehole-derived surface temperature warming rates agree with the 

AWS trends.  The difference in the rates of warming between the direct AWS observations 

and borehole measurements could be due to the over-simplification of the modelling 

approach.  The forward model successfully calculates a GHF value, but assumes that the 

mean present-day accumulation rate and mean present-day surface temperature are steady 

state.  This is because the model does not account for vertical diffusion through the ice 

column, as the only objective of the forward model is to determine present-day conditions.  

To improve the estimates of recent warming in surface temperature, it is recommended that 

the forward model is inverted to reconstruct the past surface temperature history.  To do 

this, one must start with initial conditions on the ice sheet and solve the heat equation (eq. 

3.05) backwards in time (MacAyeal et al., 1991).  Following other studies, there are three 

techniques that could be applied to the existing borehole model to improve upon the 

reconstructions of surface temperature history:  

i) Monte Carlo Markov Chain: the forward heat equation used in the borehole 

temperature model (eq. 3.05) could be inverted to estimate a temporal surface 

temperature history using a Monte Carlo Markov Chain (MCMC) algorithm 

(Dahl-Jensen et al., 1998; 1999; Barrett et al., 2009).  Dahl-Jensen et al. (1999) 

used this method to reconstruct the surface temperature history at Law Dome, 

Antarctica.  The borehole temperature profile was discretized into depth steps 

of 20 m using a Crank-Nicholson finite-difference scheme, and the forward 

model was iterated within set boundaries.  An MCMC algorithm can be used to 

randomly explore a model space to construct an infinite number of temperature 

profiles.  However, a drawback of this approach is that the reconstructed surface 

temperature history must satisfy a strict set of mathematical conditions set in 

the forward model, which is not always possible (MacAyeal et al., 1991). 

ii) Least Squares Approach: MacAyeal et al. (1991) argued that using a least 

squares approach to reconstruct the past surface temperature history does not 

require the optimal surface temperature to conform to the stringent 
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mathematical conditions required in an MCMC approach.  This technique 

presents the ‘best-fit’ surface temperature history by approximating a borehole 

temperature profile that closely resembles but is not equal to the measured 

borehole temperature profile.  A surface temperature history has been 

reconstructed using a least squares approach in Greenland and Antarctica, for 

the Dye 3 borehole, and the WAIS Divide borehole, respectively (MacAyeal et al., 

1991; Orsi et al., 2012).   

iii) Stable Water Isotopes: The third technique inverts the borehole temperature 

model for a surface temperature history by including constraints to an inverse 

model.  Cuffey and Clow (1997) constrained a temporal surface temperature 

profile by iterating the heat equation and constraining the reconstructed 

temperature profiles using the stable water isotope profiles for the GISP2 

borehole.  The temporal surface temperature profile was achieved by calibrating 

a profile derived from the stable water isotope profile so that it matched 

changes in the borehole temperature profile. 

In order to pursue the analysis of surface temperature warming rates from borehole 

temperature profiles, the existing borehole model should be optimised using one of the 

approaches outlined.  In doing this, a robust rate of surface temperature warming could be 

reconstructed and assessed against direct AWS observations.  The benefit of this analysis is 

that the borehole temperature profiles could yield a temporally-longer and spatially-variable 

record of surface temperature warming than available from AWS. 

 

8.5 Conclusions 

The fourth objective of this study is to reconstruct a surface temperature history from 

borehole temperature profiles to provide an independent temperature history, for 

comparison to the profiles estimated using the stable water isotope profile (section 1.2.1).  

The model has not been used to reconstruct a surface temperature history using this 

method; however, the borehole model has been used to calculate the GHF information at 

each borehole site.    

GHF estimations are an important tool for geological and glaciological reconstructions.  

Across Antarctica, GHF values are important for accurate ice flow modelling and the 

identification of prospective deep ice-core drilling sites (Pattyn, 2010; van Liefferinge and 
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Pattyn, 2013).  Measurements of the borehole temperature profiles, at three deep ice core 

sites at James Ross Island, Fletcher Promontory and Berkner Island, have been used to 

derive GHF values.  The reconstructed present-day mean annual accumulation values reflect 

conditions throughout the borehole, and therefore are consistently lower than the observed 

present-day mean annual accumulation values.  A second, empirical method of GHF 

estimation using the thermal gradient agrees with the inversely-calculated GHF values, 

suggesting a stable thermal gradient for the bottom 25% of the borehole. 

Key findings of this study include the observation that the GHF values determined from the 

borehole temperature profiles, when compared with modelled estimates from previous 

studies, are significantly lower.  This is likely due to the low resolution of the previous 

models, the extrapolation of the estimated values across the continent, and the influence of 

past volcanism on the region, interfering with modelled estimates.  Secondly, the model is 

capable of estimating an independent mean present-day surface temperature at each site.  

The modelled surface temperature for all three sites is consistently lower than present-day 

values used in ice-core age-depth modelling.  The assumption that the temperature gradient 

is unchanged with time is not true, and this is evident in the upper 5 – 15 % of each borehole 

temperature profile (fig. 8.04).  The results show that there is a discrepancy between the 

present-day observed mean surface temperature and the modelled surface temperature 

value.  These results could be used as an additional measure to understand the recent 

surface temperature warming across the AP and Weddell Sea region.   
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Chapter 9: Climate Records from the Antarctic 

Peninsula and their Wider Context 

9.1 Introduction 

Following the presentation and discussion of results in Chapters 4-8 with a view to addressing 

the five main objectives outlined in Chapter 1 (section 1.2.1), this chapter presents the climate 

and age-depth records of James Ross Island (JRI), Fletcher Promontory (FP), and Berkner Island 

(BI) in the wider context of the climate of the Antarctic Peninsula (AP) and Weddell Sea region.   

The three ice cores are all situated in locations of dynamic and profound environmental 

change in response to the current climate warming (Vaughan et al., 2003; Steig et al., 2009).  

Ice cores from these three locations provide the long-term climate context that underpins 

research on the rate of ice mass loss from the AP and Weddell Sea, as well as the West 

Antarctic Ice Sheet (WAIS), as the region continues to experience rapid regional warming.  The 

three ice cores from the AP and Weddell Sea region can directly contribute to the 

understanding of four topics: firstly, the ice mass loss in these regions is not unique to the 

present day; marine records from the AP suggest that the ice shelves have not been stable 

throughout the Holocene but instead have undergone periodic growth and retreat over the 

last 11 ka BP (Domack et al., 2005; Pudsey et al., 2006).  Secondly, going further back into the 

climate record, multi-disciplinary studies reconstructing sea-surface temperatures (SST) and 

global mean sea level (GMSL) during the last interglacial (LIG), at 129 ka BP – 116 ka BP, 

suggest that the Antarctic Ice Sheet (AIS) (principally the WAIS) may have contributed up to 6 

m of a 6 – 9 m increase to GMSL (Dutton et al., 2015; Hoffman et al., 2017), during a period 

that was 3 – 6 K warmer than the present interglacial (Sime et al, 2009b).  Thirdly, these ice 

cores from the AP and Weddell Sea region can inform us of the climate during periods when 

the region experienced growth and retreat of ice shelves, and may hold clues as to the extent 

of the WAIS during the last interglacial.  Finally, analysis of the results presented in Chapters 

4-8 will contribute to our understanding of the surface temperature – accumulation sensitivity 

that is used in modelling ice-core records.  However, to understand the record preserved in 

these ice cores, it is necessary to construct an accurate and highly-resolved age-depth profile.  

This chapter will seek to place the results of this study in the wider context, in particular it will 

discuss the JRI, FP, and BI ice core reconstructions and how they contribute to our 

understanding of the three main research questions in the AP and Weddell Sea region.  
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9.2 Integration of Results from Chapters 4-8 

 

Throughout Chapters 4-8, this study has addressed the first four objectives outlined in section 

1.2.1.  Following these individual lines of study, a compilation of the results can be used to 

assess the implications of the climate history on the AP and Weddell Sea region from the last 

interglacial to the present day.  

The optimal age-depth profiles of the FP, BI, and JRI ice cores are presented in Chapters 6 and 

7.  Here, these three ice cores will be compared with other records from the region or with 

each other.  Fig. 9.01 presents the temperature and accumulation history for each site on a 

common timescale (semi-logarithmic).  Comparison of the accumulation and temperature 

reconstructions with respect to time yields a number of key observations about the three ice 

cores in Chapters 4-8:  

1. JRI and FP surface temperature profiles record an increase from 1850 – 

present day (Industrial Era); 

2. A highly-resolved accumulation record in JRI shows significant variability in 

the accumulation record throughout the Holocene; 

3. FP extends into the LIG period and may yield information on the potential 

collapse or retreat of the WAIS during the LIG; 

4. JRI and FP accumulation reconstructions are markedly dissimilar with the BI 

deglacial increase in accumulation, which takes place later than at JRI and FP 

with the main increase in accumulation at BI taking place during the period 9 

– 2 ka BP; 

5. BI and FP accumulation and surface temperature reconstructions do not 

correlate beyond ~60 ka BP. 

In Chapter 6 (section 6.4.5.1), the accuracy of the BI accumulation reconstruction was 

questioned due to discrepancies between the BI record and other ice cores.  This is evident in 

fig. 9.01, when comparing BI surface temperature and accumulation reconstructions with the 

JRI and FP reconstructions.  One particular discrepancy between the BI, JRI, and FP 

accumulation profiles is the delayed onset to the Early Holocene period in the BI record.  The 

glacial-interglacial transition in the BI accumulation record does not coincide with the timing 

of the transition in the FP and JRI accumulation records (fig. 9.01).  This transition is expected 

to be synchronous across the whole ice sheet, and therefore the transition into the Holocene 

should line up in all of the ice cores.  The JRI, FP, and BI ice core age horizons all use the 
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Antarctic Cold Reversal (ACR) at 14.6 ka BP as a constraint.  Despite this common age 

constraint, the transition from the ACR to the warmer conditions in the Early Holocene is not 

synchronous.  In Chapter 6, it was suggested that the discrepancies in the BI accumulation 

record are caused by a combination of the characteristics of the deglaciation of drill location 

from the Last Glacial Maximum (LGM) and deficiencies in the modelling approach.  BI is 

embedded in the Filchner and Ronne ice shelves; the Weddell Sea embayment, containing the 

Filchner and Ronne ice shelves.  The BI record could have been disturbed by changes in the 

ice flow around Berkner Island, as is hypothesized to have occurred at the Bungenstock Ice 

Rise south of BI (Bradley et al., 2015).   

As the AIS deglaciation occurred following the LGM (~21 ka BP), the AIS grounding line 

retreated across the Weddell Sea and the AP and the region changed from a high-altitude, 

continental site to a low-altitude, coastal location.  This change from continental to coastal 

location would lead to an increase in mean annual surface temperature and accumulation.  

The location of BI was one of the most recent sites to deglaciate and become a coastal site, 

which explain a slower increase in surface temperature and accumulation from the ACR to the 

Early Holocene in comparison to FP and JRI.  Additional parameters to account for changes in 

the horizontal ice flow, the migration of the ice divide, and changes in the ice-sheet thickness 

should be incorporated in any future revision to the OptAcc model. 
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Figure 9.01: (a) Temperature Reconstructions, and (b) Accumulation Reconstructions for James Ross 

Island (black), Berkner Island (red), and Fletcher Promontory (blue).  The JRI profile is capped at the 

depth of the greatest age constraint used. 

 

 A second discrepancy between the BI ice-core reconstructions and the FP and JRI ice-core 

reconstructions is the mismatch in the timing of Antarctic Isotopic Maxima (AIM) events 

beyond 60 ka BP (fig. 9.01).  These AIM events are thought to synchronous across the 

continent, and are identifiable in the stable water isotope-derived surface temperature 

profile.  The difference between the BI profile and the FP and JRI ice cores is caused by the 
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large uncertainty on the BI age scale.  Beyond 700 mweq, there are no age constraints in the 

BI ice core.  Beyond 700 mweq towards the bed, the BI ice-core record preserves the signature 

of AIM events that are not only preserved, but are better constrained in the FP.   

 

Following the presentation of results in Chapters 4-8, it was necessary to compare the 

reconstructions of the three ice cores.  The results have been presented for comparison (fig. 

9.01), and will be discussed in the context of the wider climate of the AP and Weddell Sea 

region. 

 

9.3 Wider Context 

 

By collating all of the ice-core reconstructions from BI, FP, and JRI from Chapters 6 and 7, the 

accumulation, surface temperature, and age-depth profiles should be discussed in a wider 

context.  In particular, this study will assess how the FP, BI, and JRI ice-core reconstructions 

contribute to five key research topics: (i) the stable water isotopes – surface temperature – 

accumulation relationship; (ii) the potential changes in surface mass balance (SMB) of the AP 

region in the near-future (2005-2050); (iii) the mid-Holocene ice-sheet evolution; (iv) the last 

interglacial global mean sea level (GMSL) and the potential contribution from the WAIS; (v) 

the OptAcc ice-core model and its contribution to ice-core chronologies.   

 

9.3.1 Stable Water Isotopes and Accumulation  

Throughout the development of an ice-core age-depth model, the relationship between 

surface temperature and accumulation rates have formed the basis of accumulation 

reconstructions.  The optimal dating strategy presented by this study perturbs the 

accumulation history from the empirically-estimated initial profile to more accurately 

reconstruct thinning and age-depth profiles.  In Chapter 4 and 5, the Clausius-Clapeyron 

relationship (section 2.5.2.2; eq. 2.06-2.08) was determined as the most accurate 

accumulation reconstruction.  However, following this study, further investigations on the 

optimal dating strategy are warranted to further evaluate the reliability of reconstructions 

and the assumptions that underpin the processes incorporated into the model. 

By comparing the empirical and optimised accumulation reconstructions, the relationship 

between stable water isotopes and surface temperature, and the subsequent relationships 

assumed between surface temperature and accumulation that form the crux of these 
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empirical accumulation relationships (section 2.5.2), could be assessed.  One method to 

investigate the strength of the TS/A relationship at FP, BI, and JRI, could be to use an isotope-

enabled regional climate model to assess the position of each site in the region and the 

regional climate.  Another method to investigate the relationship is by assessing the final 

accumulation profiles reconstructed using the OptAcc approach.  The OptAcc model includes 

a perturbation approach, ε(z), in order to account for uncertainties in the accumulation 

record.  As the OptAcc model uses only a spatially-dependent gradient for the stable water 

isotope – surface temperature relationship, the perturbation profile can account for 

uncertainties in wind erosion at the surface, rapid changes in temperature at the surface, and 

a potential temporal change in the assumed TS/A relationship of 4-6 %K-1 that affects the 

amplitude of accumulation change with respect to a change in surface temperature.  

Section 6.4.5 (Chapter 6) and 7.4.4 (Chapter 7) analysed the stable water isotope – 

accumulation relationship for the BI, FP, and JRI ice cores.  The JRI ice core record 

demonstrates such high annual variability in measured accumulation that the OptAcc model 

couldn’t accurately reconstruct the accumulation history for the upper 264 mweq.  This is 

because the high-resolution chemical analysis and high mean annual layer thickness permit a 

sub-annual profile to be directly determined for most of the ice-core record.  When compared, 

the Clausius-Clapeyron-derived accumulation history bore little resemblance to the optimised 

profile (fig. 9.02c).   

Section 7.4.4 compared the JRI accumulation variability with the mean annual Southern 

Annular Mode (SAM) index.  A positive mean annual SAM index is indicative of increased 

storm frequency, which can lead to variable and wind-scoured accumulation rates.  Analysis 

of the relationship between JRI accumulation variability and the SAM index suggested that 

the site is dominated by external climate forcing but not entirely by the SAM.   
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Figure 9.02: Initial and optimised accumulation profiles for the (a) BI; (b) FP; and (c) JRI ice cores.  Initial 

accumulation profiles are estimated using the Clausius-Clapeyron relationship and presented in a pale 

shade of the colour used to present the optimised reconstruction. 

 

It could also be suggested that the FP and BI ice-core sites also have a high inter-annual 

variability but this has not yet been confirmed largely due to limitations in the routine 

analytical resolution.  The BI ice core accumulation reconstruction derived using the OptAcc 

model is consistently perturbed from the empirical accumulation reconstruction throughout 

the Holocene by up to 32% (fig. 9.02a).  The perturbation is consistent throughout the ice-

core profile, with the exception of the ACR-Early Holocene transition, and a greater 

perturbation was required to decrease the empirical accumulation rates to a low mean annual 

rate throughout the last glacial period.  The FP ice core mean annual accumulation 

reconstruction derived using the OptAcc model is consistently ~34% lower than the 

empirically-calculated accumulation history (fig. 9.02b).  The FP ice core is perturbed 
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consistently throughout the Holocene period, with a greater perturbation required to reduce 

accumulation rates during the last glacial period.  Each accumulation profile needs to be 

perturbed significantly throughout the ice core record in order to reconstruct the most 

accurate profiles of accumulation, thinning, and age-depth, further adding doubt to the 

assumed relationship between accumulation and surface temperature.  Overall, the analysis 

of the stable water isotope – accumulation relationship, conducted in Chapters 6 and 7, 

determined that throughout specific depth and time ranges in the ice cores, the coastal 

location of the ice core sites leads to variable accumulation rates that do not conform to the 

assumed accumulation rate sensitivity of 4-6% K-1.   

For ice core sites located in the interior of the Antarctic ice sheets, the mean annual 

precipitation rate is closely tied to the saturation vapour pressure used in the Clausius-

Clapeyron relationship (eq. 2.06 – 2.08).  By following this method, continuous accumulation 

histories in the low-resolution, long ice-core records demonstrate a 4-6 %K-1 change in 

accumulation with respect to a change in surface temperature (Palerme et al., 2014; 2017).  

This is similar to the 6-8% K-1 change seen in GCM accumulation estimates, which are also 

based on a Clausius-Clapeyron relationship (Gregory & Morris, 1996; Frieler et al., 2016; 

Palerme et al., 2017).  However, the stability of the relationship between isotopic 

fractionation, surface temperature, and mean rate of precipitation over the West Antarctic 

continent should be questioned (Sime et al., 2009; Schlosser et al., 2017; Steiger et al., 2017).   

For coastal sites with a high seasonal variability in surface temperature and climate, surface 

temperature and accumulation are not as tightly coupled as they are at sites on the East 

Antarctic Ice Sheet (EAIS) (Sime et al., 2009).  Evidence of this is found at AP ice cores from 

Dyer, Gomez, and JRI (Sime et al., 2009), and the WAIS Divide ice core, where both modern 

and early Holocene accumulation records are unresponsive to rising temperatures (Fudge et 

al., 2016).  Furthermore, any temporal variability of the stable water isotope – surface 

temperature – accumulation relationship will lead to inaccuracies in the accumulation 

reconstruction derived from an ice core (Masson-Delmotte et al., 2008; Sime et al., 2009).  

Therefore, the stable water isotope – surface temperature relationship that defines the shape 

of the empirical accumulation reconstruction should not be considered robust for coastal 

sites.   
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9.3.2 Future Changes to the Surface Mass Balance of the Antarctic Peninsula 

Extending further back in time than the AWS records in the region, ice core records provide 

context to the changes in the present-day climate that are recorded at AWS stations.  The BI, 

JRI, and FP ice cores were retrieved in 2005, 2008, and 2012, respectively, and hence record 

a modern history of the climate.  It is well observed across the AP that the region has been 

undergoing rapid regional warming (Vaughan et al., 2003; Turner et al., 2005; Steig et al., 

2009).  The warming surface temperatures across the region have led to increased ice mass 

loss from the ice shelves, which in turn speeds up the feedback responses from tributary 

glaciers (Weertman, 1974; Rignot et al., 2004).   

 

Two of the three ice core records (FP and JRI) in this study show an increase in surface 

temperature over the most recent 150 years.  This leads to an increase in mean annual 

accumulation over the last century.  A mean increase in accumulation of 10% is recorded at 

FP and JRI ice core sites over this period.  This occurs at the same time as the surface 

temperature at the FP and JRI sites increases by 1-3 K.  Using a linear regression model, a 

sensitivity rate of 3.3 – 10% K-1 for accumulation with respect to a change in surface 

temperature is interpreted at these sites.  This sensitivity rate is similar to the rate of 5% K-1 

determined when accumulation is derived from an empirical relationship (Frieler et al., 2015), 

and the value of 6 – 8% K-1 that is seen when accumulation rates are derived from a GCM 

(Palerme et al., 2017).   

 

In addition to the ice core data, borehole temperature profiles provide a secondary dataset 

and reveal the extent and commencement of the regional warming at FP and JRI.  Parallel to 

the ice core records, a recent warming of 0.6 – 0.7 K is deduced by comparing reconstructions 

of the present-day surface temperature with measured values of present-day surface 

temperature at FP and JRI (Chapter 8).  An increase in accumulation and surface temperature 

in borehole records may date to the Industrial Era (1850 – present), similar to the ice core 

records at FP and JRI as well as the accumulation record at other sites not used in this study, 

such as the Gomez ice core (Thomas et al., 2008). 

Model simulations of the surface mass balance (SMB) of the AIS predict an increase that began 

in the twentieth century to continue in the twenty-first century (Ohmura et al., 1996; Krinner 

et al., 2007; IPCC, 2013; Palerme et al., 2017).  Model simulations of an increase in the SMB 

across Antarctica are corroborated by ice core evidence from West and East Antarctica.  The 

mean annual accumulation has doubled at the West Antarctic site of Gomez since 1850 AD 
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(Thomas et al., 2008).  The high inter-annual accumulation variability at Gomez strongly 

correlates with the SAM index, suggesting that the increasingly positive index value is a 

primary cause for an increase in accumulation over the last 150 years.  Parallel to this, two 

short ice cores at Ferrigno and the Bryan Coast also demonstrate an increase in mean annual 

accumulation of 30% over the same time period (Thomas et al., 2015).  From 1850 AD, highly 

resolved short ice cores from the Derwael ice rise and the Fimbul ice shelf, Dronning Maud 

Land, East Antarctica, show the first evidence of an increase in SMB in East Antarctica 

(Phillippe et al., 2016; Vega et al., 2016).  An increase in the SMB over the AIS can have a 

significant impact on rising sea levels predicted by increased land ice mass loss (Ohmura et 

al., 1996; Bracegirdle et al., 2008; Palerme et al., 2017).  An increase in precipitation over the 

continent could help to negate the ice mass loss that contributes to a rise in GMSL from other 

sources, including the thermal expansion of ocean waters and changes in the mass of ice 

sheets (IPCC, 2013).   

 

Finally, the poor accumulation history from the deep BI ice core does not initially rule out 

evidence of recent regional warming at the site.  Two short ice cores obtained at BI, before 

the retrieval of the deep ice core, presented an accumulation profile that is influenced by 

large-scale air mass regimes, suggesting that the BI record could be susceptible to surface 

temperature changes (Wagenbach et al., 1994).  In section 6.4.4 of Chapter 6, it was suggested 

that the BI ice core record should be compared with other temperature records from the 

region to determine whether the full ice core record reflects changes to the local surface 

temperature. Despite rapid warming leading to an increase in accumulation across the AP and 

WAIS over the most recent 150 years (Turner et al., 2005; Bracegirdle et al., 2008; Steig et al., 

2009), some coastal sites do not show any change in the accumulation trends.  For example, 

annually-resolved short ice cores from the central WAIS and in situ radar measurements 

across Thwaites Glacier show no change in accumulation over the period 1975 – 2010 

(Burgener et al., 2013; Medley et al., 2013).  Between 1975 and 1995, the FP, BI, and JRI ice 

core records also show no increase in accumulation or a hiatus in the increases evident on a 

century-scale (Chapter 6 and 7).  However, extending beyond 1975, the BI ice core shows no 

century-scale changes in the accumulation history unlike the FP and JRI sites (Chapter 6; fig. 

6.15).   

 

The BI record is corroborated by ice cores retrieved from coastal sites in the northern EAIS.  A 

short core spanning 60 years from Adélie Land in East Antarctica agrees with the BI record, 
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that the surface temperature has not increased from 1975 to the present day unlike FP and 

JRI.  The unchanged surface temperature record demonstrates the complexity of determining 

accumulation reconstructions based on a direct relationship with surface temperature in 

coastal locations (Goursand et al., 2017).  A hiatus in changes to the accumulation record 

demonstrates the complexity of coastal locations, which are subjected to a complicated 

seasonal climate with a high inter-annual variability in surface temperature and high wind 

speeds due to the zonal winds that circumnavigate the Antarctic continent.  This variability is 

evidence of the potential periodic decoupling of the relationship between surface 

temperature and accumulation and hence, results in an accumulation record across WAIS and 

the AP that does not consistently correlate with the sensitivity rate of modelled accumulation 

(Krinner et al., 2007; Frieler et al., 2015; Palerme et al., 2017).  The rates of warming calculated 

using borehole temperature profiles at five sites across the AP, established that the warming 

is consistent with the warming trends recorded at AWS stations.  However, despite the 

evidence of continued warming across the continent, the projected increase in SMB across 

the AP and Weddell Sea region cannot be predicted by the analysis of the ice core and 

borehole temperature profiles.   

 

9.3.3 Mid-Holocene Ice Sheet Evolution 

The three ice cores from the AP and Weddell Sea region were obtained to fulfil specific 

motivations outlined in Chapter 1 (section 1.2.1).  One particular motive was to assess the 

temperature thresholds on the stability of the ice masses on the AP.  The AP region has 

undergone severe ice mass loss following the disintegration of the Larsen A and B ice shelves 

in 1995 and 2002, triggering an increase in glacier and ice stream velocity across the region 

(Rignot et al., 2004).  The retreat or collapse of the ice shelves across the region is not unique 

to the present-day, with terrestrial and marine evidence of ice sheet retreat during the 

Holocene period (Clapperton and Sugden, 1982; Ingolfsson et al., 1992; Hjort et al., 1997; 

Pudsey and Evans, 2001; Pudsey et al., 2006).  A significant deglaciation at JRI between 7.4 – 

4.6 ka BP is recorded (Ingolfsson et al., 1992; Hjort et al., 1997) that correlates with the 

disintegration of the George VI ice shelf at ~6.5 ka BP (Clapperton and Sugden, 1982; Hjort et 

al., 2001).  Marine sediment records suggest the AP region had open oceans between 5 – 2 ka 

BP at five sites which are currently small ice shelves (Pudsey and Evans, 2001).  The present-

day ice mass loss is influenced by warming surface temperatures across the AP and Weddell 

Sea region (Vaughan and Doake, 1996) and thus ice cores provide an insight into the 
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thresholds on climate warming that could rapidly increase the current deglaciation across the 

AP region and lead to open waters.   

 

The reconstruction of the JRI, FP, and BI Holocene age-depth profiles using the OptAcc model 

permits the analysis of the three AP and Weddell Sea ice core surface temperature records 

during this time period.  Fig. 9.03 shows the difference between the present-day surface 

temperature value and the surface temperature reconstruction (section 2.5.1; eq. 2.09), 

spanning the time period 11 – 0 ka BP (fig. 9.03a) and 8 – 4 ka BP (fig. 9.03b).  The JRI2 record 

is poorly-resolved beyond the most recent 2000 years due to the high mean annual 

accumulation and the high rate of strain in the shallowest depths of the ice core record.  As a 

result, there are few surface temperature estimates throughout the age range 8 – 4 ka BP for 

this ice core.  Despite this, a surface temperature reconstruction using the high-resolution 

reanalysis at DRI demonstrates no significant change in mean surface temperature across the 

8 m section of the ice core that covers this time period, but it does suggest a mean 

temperature anomaly of +2 K compared to present day temperature (fig. 9.03b).   

 

The FP surface temperature record is at a higher resolution than the JRI2 record, and 

demonstrates a variable surface temperature history.  The mean surface temperature across 

the period of 8 – 4 ka BP is 3 K higher than the present-day mean surface temperature at FP 

(fig. 9.03b).  Using a cubic interpolation data fitting on the surface temperature record, an 

increase in surface temperature is evident in the BI ice core record, with a rise in 4 K over 8 – 

4 ka BP.  At BI, the surface temperature increases to 1 K higher than the present-day surface 

temperature, but this period of time is covered by 9 – 2 ka BP period in question in the BI age 

scale.  

 

Current rates of warming indicated by AWS observations suggest that average surface 

temperatures are increasing by 3.5 K century-1 (Mulvaney et al., 2012).  IPCC projections range 

from 0.6 – 4 K warming by 2100 (IPCC, 2013), with Antarctic surface temperature warming 

estimated to occur at 0.34 K decade-1 (Bracegirdle et al., 2008).  If these projections are robust, 

as they are expected to since the IPCC ‘best-case’ scenario still predicts 0.6 – 1 K warming 

(IPCC, 2013), the warming will reach a surface temperature similar to the mid-Holocene when 

the AP suffered high mass loss. By combining the AWS data, model projections of climate 

warming and the ice core records, the observations concur with the modelling studies that 
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suggest that the WAIS and AP regions have already reached this surface temperature 

threshold (Vaughan, 2006; Steig et al., 2009).   

 

 

Figure 9.03: (a) Reconstructed surface temperature anomaly covering the Holocene (11.3 - 0 ka BP) for 

JRI (black), FP (blue), and BI (red).  The grey dashed line is a normalised present-day surface 

temperature; (b) a zoom-in of plot (a) on the period 8-4 ka BP when marine and geomorphological 

records indicate the AP had more open ocean. 

 

9.3.4 Last Interglacial GMSL and the WAIS Contribution 

Another motivation behind the retrieval of the FP and BI ice cores is to obtain a climate history 

that extends beyond the last interglacial (Mulvaney et al., 2014).  The LIG (129 – 116 ka BP) is 

preserved in records as a warmer interglacial than the present, with ice core records 
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suggesting a mean surface temperature up to 5 K higher than the present interglacial (NGRIP 

members, 2004).  A warmer interglacial contributed to a significant reduction in the glacial 

coverage across Antarctica, leading to a higher GMSL of 6 – 9 m (Dutton et al., 2015; Hoffman 

et al., 2017).  Modelling studies suggest that the AIS contributed 3.3 – 6 m of this GMSL rise, 

with a significant input from the WAIS (Dutton et al., 2015).  If the WAIS retreated significantly 

or collapsed during the LIG, the FP and BI ice core records would preserve a climate history 

that could reveal the climatic thresholds required for a WAIS collapse.  The FP and BI ice core 

records extend into the last interglacial, confirming that neither ice cap retreated or 

disappeared during the warmer interglacial.  Therefore, the FP and BI ice cores should be 

analysed further to interpret the climate record preserved during the LIG period, when the 

WAIS possibly diminished. 

 

9.3.5 The OptAcc ice core model 

The optimal dating strategy has been developed, assessed, and the results have been widely 

discussed.  The OptAcc model is capable of reconstructing the records preserved in the BI, FP, 

and JRI ice cores, which have been successfully tested against observational data.  The JRI2 

record is annual layer counted to 290 m, with the remainder of the ice-core record 

reconstructed using the OptAcc model.  The principle motivation of this study was to develop 

an ice-core age-depth model that was capable of modelling an accurate accumulation, 

thinning, and hence age-depth profile of three mid-depth, coastal ice cores.  Despite the 

publication of IceChrono during the course of this study, the OptAcc model contributes to the 

interpretation of ice cores from the AP and Weddell Sea region.  To discuss this contribution, 

two main questions must be addressed: 

 

i. Can this model be applied to other ice-core records? 

The success of the ice-core reconstructions at FP and JRI support the use of this model for the 

construction of accumulation, thinning, and age-depth profiles.  As such, it should be assumed 

that the OptAcc model could be applied to other ice core records successfully.  For FP and JRI, 

the records preserve mostly the present interglacial climate history, but the transition from 

the last glacial period to the present-day climate is also successfully reconstructed at the FP 

site.  For JRI, the age-depth reconstruction, and as such the accumulation and thinning 

reconstructions, are capped at the depth of the greatest constraint used.  This is because of 
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the hypothesized hiatus of unknown start, end, or duration, observed in the ice core record 

between two age constraints identified at ~14.6 – ~17.5 ka BP.   

 

Unlike the FP and JRI ice cores, the BI ice-core reconstructions have been presented with high 

uncertainty.  Prior to applying it to other ice core records, the OptAcc model should be 

improved by incorporating additional parameters and variables.  As already discussed in this 

chapter (section 9.2), the location of BI, embedded in the Filchner and Ronne ice shelves, 

threatens the preservation of a clear climate history.  Additional ice-sheet processes, that 

have the potential to impact the preservation of the climate profile, may have disturbed this 

record.  To account for changes in the horizontal ice flow, the migration of the ice divide, and 

changes in the ice-sheet thickness, parameters to reconstruct these processes must be 

incorporated as a second dimension to the OptAcc model.   

 

Further, for sites where the temperature at the bed is at ‘pressure melting point’, the melting 

of the ice – and hence the climate record – must be considered.  For example, the EPICA ice 

cores reach ‘pressure melting point’ and thus the ice record at the bed is constantly being 

destroyed, affecting the ultimate age of the ice at the bed and drawing down ice layers from 

above.  Melting at the bed is incorporated into the IceChrono toolbox, as a ratio in an equation 

for strain that can be interpreted as a thinning function (section 2.5.3.3; eq. 2.13).  Adaptation 

of the OptAcc model is therefore necessary in order to apply the method to other cores. 

 

ii. Why should this model be developed when the IceChrono model is freely-

available? 

The IceChrono model has been developed separately to this study in conjunction with the 

development of the Vostok and EPICA ice core chronologies (Parrenin et al., 2001; 2004; 

2007a; 2007b; 2012; 2015).  The FP, JRI, and BI ice core records were reconstructed using the 

IceChrono model and it was determined that this method would not be the most suitable 

technique to sufficiently reconstruct the records preserved in these three ice cores for several 

reasons.  Principally, the IceChrono age scales did not suggest that the FP ice core records the 

LIG, which does not agree with the information preserved in the stable water isotope profile.  

Secondly, the IceChrono model uses the Simple Exponential technique to reconstruct 

accumulation; this technique assumes a 5% K-1 amplification of accumulation with respect to 

a change in temperature (Parrenin et al., 2007; 2015).  The surface temperature – 

accumulation amplification relationship is assumed not to change with time as the ice-core 
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records reconstructed using IceChrono typically extend across multiple glacial cycles.  For 

example, the EPICA Dome C (EDC) ice core is taken from the EAIS inland plateau, and it 

preserves the climate history of eight glacial cycles; only a small fraction of the ice-core record 

relates to interglacial climates.  The surface temperature – accumulation relationship is less 

stable during interglacial periods, as warmer periods increase the transport of moisture in the 

atmosphere and impact on the rate of precipitation (Bracegirdle et al., 2008).  Therefore, the 

accumulation reconstruction using the IceChrono approach does not reconstruct the natural 

variability in accumulation during interglacial periods, which are the predominant climate 

period preserved in coastal, mid-depth ice cores.  The OptAcc model is capable of 

reconstructing interglacial accumulation, by perturbing the accumulation and assuming that 

the assumed sensitivity of accumulation with respect to a change in surface temperature 

could change with time during interglacial – glacial transitions. 

 

9.4 Summary 

Over the course of this study, four objectives were outlined in order to assess the techniques 

currently used to reconstruct ice-core profiles of accumulation, thinning, annual layer 

thickness, and age-depth.  The fifth objective aimed to assess the results of the study and how 

the results fit into the wider context of research in the region.  This chapter has collated the 

results of Chapters 4-8 and placed the ice-core climate and age-depth profiles within the 

existing record.  In doing this, the study provides evidence that the stable water isotope – 

accumulation relationship is not robust at coastal locations, and that the JRI, FP, and BI ice 

core records are useful analogues for present-day climate warming.  The ice core temperature 

reconstructions suggest that the increasing present-day surface temperature will reach a 

threshold temperature which could trigger mass ice loss across the AP region.  Concurrently, 

the surface temperature increase yields an increase in mean annual accumulation which could 

offset some rise in the GMSL.  The following chapter will conclude this study by summarising 

the main objectives of the study, the outcomes of the study and the interpretation of the 

results in a wider context, and will outline how future research could continue following from 

this study. 
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10.0  Conclusions 

 

10.1 Introduction  

 
This study set out to synthesise and consider all of the relationships that can be used to 

reconstruct past accumulation, thinning, and hence annual layer thickness and age-depth of 

an ice core, with a view to assessing the strengths and weaknesses of each technique and 

developing the optimal dating for three deep ice cores from the Antarctic Peninsula (AP) and 

Weddell Sea region.  The three deep ice cores that this study uses have been retrieved from 

James Ross Island (JRI), Fletcher Promontory (FP), and Berkner Island (BI).  To fulfil the 

rationale of this study, five objectives were outlined (section 1.2.1) that aimed to develop 

and assess the relationships that can be used to reconstruct age-depth profiles, in order to 

apply the most reliable approach to an ice core and reconstruct the past accumulation, 

thinning, annual layer thickness, and age-depth profiles.   

 

10.2 Achievement of Study Objectives 

 
To address the five objectives set out at the beginning of the study, the results can be 

divided into two sections: (i) mathematical modelling, and (ii) chemical analysis.  The 

following paragraphs summarise and highlight the main results from each section of the 

study. 

 

10.2.1 Mathematical Modelling 

 
The mathematical modelling branch of this study had three independent objectives 

(objectives i, iii, and iv).  The first objective sought to collate and compare the relationships 

that are used to reconstruct mean annual accumulation, thinning, annual layer thickness, 

and age-depth with one another.  As well as comparing the established relationships and 

techniques, this objective allowed the development of new techniques and approaches to 

reconstruct these profiles.  In total, 25 alternative age-depth combinations were applied to 

the FP ice core (Chapter 4).  These modelling approaches develop in complexity, provide 

alternative solutions for poorly-defined parameters and yield multiple optimised profiles of 

accumulation, thinning, annual layer thickness and age-depth.  Novel developments include 

constructing a thinning function using the vertical velocity profile within an ice sheet from in 
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situ phase-sensitive radio echo sounding (pRES) measurements.  Vertical velocity 

measurements using pRES provide a direct measurement that can be interpreted as a 

thinning function, but only as a present-day snapshot.  

 

Aside from the novel developments, there were similarities in the established unconstrained 

approaches used to reconstruct accumulation and thinning due to the assumed relationships 

in the ice sheet.  Differences between approaches occurred in the way each technique was 

applied to an ice core.  To minimise the inaccuracy of the age-depth profile, constrained 

approaches used inverse modelling to optimise one or more parameters or variables in the 

ice-core reconstructions.  The accuracy of each constrained modelling approach was 

assessed by comparing the estimated ages at depths corresponding to a known-age horizon 

with the observed age, using a root mean square error (RMSE) value.  The RMSE comparison 

suggested that the OptAcc and IceChrono approaches yielded the most accurate age-depth 

reconstructions by assessment of the RMSE values.  Further assessment of the model 

approaches considered the age estimate at the bed for the FP ice core; the stable water 

isotope profile suggests a record extending into the last interglacial (LIG), at ~126 – 115 ka 

BP.  The IceChrono approach consistently estimated an age at the bed of 80-100 ka BP, 

whereas the OptAcc model estimated an age at the bed of ~150 ka BP, agreeing with the 

interpretation of the stable water isotope record.   

 

Therefore, the results of Chapter 4 suggested that the OptAcc model is the most reliable 

approach to reconstruct the past accumulation, thinning and age-depth profile of a coastal 

ice core.  In order to address the second model-based objective (objective (iii) in section 

1.2.1) – to develop the optimal strategy for reconstructing the ice-core records preserved at 

the JRI, FP, and BI ice-core sites – additional assessment of the modelling synthesis was 

required (objective (ii) of the study).  The outcome of objective (ii) will be discussed in 

section 10.2.2, before discussing the results of objective (iii) in section 10.3.1. 

 

The aim of the final objective that required mathematical modelling (objective (iv) in section 

1.2.1) was to reconstruct the past surface temperature using the borehole temperature 

measurements (Chapter 8).  Instead, an independent borehole model (section 3.6.3) was 

used to calculate the mean annual accumulation rate, mean annual surface temperature, 

and geothermal heat flux (GHF) values for the BI, FP, and JRI ice core sites.  Although not 

directly applicable to the main objectives of this study, GHF values are important to 
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accurately reconstructing ice-sheet processes by constraining the basal conditions.  The 

calculated GHF values were different to the modelled estimates published by other studies 

(Shapiro and Ritzwoller, 2004; Fox Maule et al., 2005; Purucker, 2016), and should be used 

to calibrate future continent-wide modelling studies.   

 

An additional observation of the borehole temperature study suggested that the difference 

between the measured and modelled mean annual surface temperature could be evidence 

of the recent rapid regional warming across the AP and Weddell Sea region that is not yet 

preserved in the ice-core and borehole temperature record.  The surface temperature 

reconstruction was applied to other short borehole temperature profiles from the region.  

By combining this additional work with a simple age-depth profile, further evidence was 

found to support the suggestion that the inflection in borehole temperatures towards the 

surface of the ice sheet was evidence of the rapid regional warming.  The warming trends 

interpreted from the differences between the modelled and measured surface 

temperatures are consistent with the warming trends identified in automatic weather 

stations (AWS) and the trend of the number of positive degree days (PDD) across the AP 

(Turner et al., 2005; Vaughan, 2006; Barrand et al., 2013).  However, the rates of warming 

on a decadal- and centennial-scale do not agree with the AWS-derived rates of warming or 

the ice-core derived rates of warming.  Whether the borehole temperature records of 

warming suggest a gradual rate of warming that extends further than the AWS records, or 

are a proxy of the surface warming, must be further investigated. 

 

10.2.2 Chemical Analysis of BI, FP, and JRI 

 
The analysis and interpretation of the ice-phase chemistry in the FP and BI ice cores was 

required to supplement the modelling work in this study.  The principle motivation for this 

research was to obtain sub-annual profiles at depths along the ice core where the mean 

annual layer thickness is beyond the current standard laboratory resolution (objective (ii) of 

the study).  Real annual layer thickness measurements were used for comparison with the 

corresponding modelled profiles as two techniques in ultra-high resolution chemical analysis 

were developed and applied for the first time to Antarctic ice deposited during the last 

glacial period.  The annual layer thickness measurements provided an additional assessment 

to the modelling synthesis that was carried out.   
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By developing and assessing ultra-high resolution analytical techniques of discrete sampling 

and LA ICP-MS techniques, sub-annual profiles of sodium deposition during the mid-

Holocene, circa 5 ka BP, and the last glacial period, circa 30 ka BP, were obtained from the BI 

ice core.  The annual layer thickness measurements ranged from ~57.0 mm yr-1 in the 

youngest sampled section (c. 5 ka BP at ~447 – 456 m) to ~3.0 mm yr-1 at c. 30 ka BP (694 – 

697 m).  An interesting observation was the increase in layer thickness from 3.0 mm yr-1 at c. 

27 ka BP to ~6.0 mm yr-1 at c. 31 ka BP.  This doubling in annual layer thickness over a depth 

range of <10 m in the ice core suggests a significant accumulation event in the climate 

record.   

 

Discrete sampling also yielded chemical measurements at a sub-annual resolution at three 

depth ranges along the FP ice core, providing annual layer thickness measurements between 

2 – 11 ka BP.  These results were supplemented with two mean annual layer thickness 

measurements identified by the stable water isotope signal, taken from shallower depths in 

the FP ice core.  For the FP ice core, the annual layer thickness measurements range from 

~98.0 mm yr-1 in the youngest sampled section (~2.1 ka BP at 299 m), to 7.7 mm yr-1 at ~11 

ka BP (523 m).  The second objective of this study was to make laboratory measurements of 

annual layer thickness for the BI and FP ice cores to test the accumulation reconstructions 

derived under objective (i).  The annual layer thickness measurements were initially used to 

assess the accuracy of the layer thickness estimates derived from the modelling synthesis 

(section 5.8.3).  Following comparison and assessment of the annual layer thickness 

estimates, the OptAcc model was confirmed as optimal modelling approach for the FP, BI, 

and JRI ice cores, thus fulfilling objective (iii) of the study.  The annual layer thickness 

measurements were later used to provide constraints for the OptAcc model for the ice-core 

reconstructions at FP, BI, and JRI.  As a result, the distribution of the observational data 

available to constrain an ice-core model along the depth of an ice core can be controlled and 

improved. 

 

10.3 Summary of the Results in a Wider Context 

 
In addition to the results already summarised from the modelling and chemical analysis 

completed for this study, the final objectives developed and applied the optimal dating 

strategy to the FP, BI, and JRI ice cores, with a view to interpreting the climate records 

preserved in these ice cores.  
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10.3.1 The Optimal Dating Strategy 

 
By combining both modelling and chemical techniques, this study has developed the optimal 

strategy for reconstructing the past accumulation, thinning, annual layer thickness, and age-

depth profiles.  In order to account for the high inter-annual variability in accumulation at 

coastal ice-core sites, a Clausius-Clapeyron relationship should be applied to the stable 

water isotope profile to derive an accumulation history (section 2.5.2.2).  This accumulation 

reconstruction was optimised by developing a perturbation profile, (z) (section 3.6.1.3).  A 

second variable has been optimised as part of the One-Dimensional thinning function 

(section 2.5.3.3 and section 3.6.1.1).   

 

The modelling approach, referred to as the OptAcc model, has been applied to the FP and BI 

ice cores (Chapter 6) and the JRI ice core (Chapter 7).  The JRI ice core has been annual layer 

counted to 246 mweq (290 m); the remainder of the ice-core profile is reconstructed using 

the OptAcc model, which has been constrained to age horizons.  The full length of the FP ice 

core has been modelled using the OptAcc approach and has been constrained to age 

horizons and annual layer thickness measurements.  The BI ice core has been reconstructed 

using the same approach as used on the FP ice core, constrained using annual layer 

thickness measurements and age horizons.  However, the timing of some Antarctic Isotopic 

Maxima (AIM) events beyond 60 ka BP identified in the BI accumulation history do not agree 

with the same events identified in Antarctic ice cores despite the assumed synchroneity 

across the continent (section 9.2).  The differences between the BI accumulation history and 

the reconstructed accumulation from other Antarctic ice cores (both FP and JRI, and records 

not reconstructed in this study including the WAIS Divide and EPICA Dome C (EDC) ice cores) 

led this study to suggest that the BI ice core requires the reconstruction of additional 

processes such as ice sheet thickness history to accurately reconstruct the accumulation, 

thinning, annual layer thickness and age-depth profiles.  Additional improvements that could 

made to the OptAcc model, such as the incorporation of parameters that would account for 

temporal changes to the ice-sheet thickness and ice divide, would also enable the OptAcc 

model to be applied to other ice core records. 

 

10.3.2 Climate Information Interpreted from the BI, FP, and JRI ice cores 

Although this study has raised doubts on the accuracy of the reconstructions for BI, the FP 

and JRI ice-core reconstructions are presented with confidence.  This study has 
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reconstructed profiles of past accumulation, thinning, annual layer thickness, and age-depth 

using the observational data and modelling approaches available, and it yields information 

on the past climate preserved in the ice records.  Principally, these records show the warmer 

conditions during both the Holocene and the LIG; climatic conditions that resulted in ice 

mass loss across the AP and West Antarctic Ice Sheet (WAIS).  Ice cores from JRI, BI, and FP 

preserve information on the climate ‘thresholds’ of surface temperature warming with 

regards to ice mass loss, suggesting that an increase in surface temperature of 1-3 K across 

the region is sufficient to cause open ocean conditions across the AP and Weddell Sea 

region.  Finally, further analysis and assessment of the ice core records from BI and FP are 

required to fully understand the relationship between the climate and the stability of the 

WAIS during the last interglacial period. 

 

10.4 Future Research 

Models consistently improve our understanding of processes that we cannot directly 

measure.  For an ice core, these processes have occurred in the past.  Precipitation is 

deposited in the past and has been subsequently altered through time, as the original 

accumulation is compacted to the present-day annual layer thickness.  A model is an 

invaluable tool for enhancing our knowledge and understanding of records preserved in the 

ice sheet.  By addressing the objectives of this study, there are several branches of research 

that could be further explored in order to develop the initial results.   

10.4.1 Model Development 

The ice-core age-depth model development, outlined in Chapter 4, sees a gradual 

improvement to the accumulation and thinning reconstructions.  Ultimately, the OptAcc 

model reconstructs the most reliable profiles of accumulation and thinning for the FP, JRI, 

and BI ice core records.  The OptAcc approach is sufficient for the records preserved at the 

FP and JRI sites, where it is understood that the ice sheet and basal conditions have been 

stable for the duration of the record preserved in the ice core.  In order for the age-depth 

model to be applied to other ice core records and BI, additional parameters should be 

included to account for potential uncertainties that do not pose a problem in the FP and JRI 

ice core records.   

As discussed in Chapter 9, the OptAcc approach must be developed to account for additional 

processes that occur to, within, and at the bed of the ice sheet.  Therefore, this study 

summarises here the suggestions to develop the OptAcc approach.  Changes in the ice sheet 



 Conclusions 

 
 

 281 

can influence the final age-depth estimate; the migration of the ice divide, and changes to 

ice-sheet thickness through time.  Furthermore, the preservation of the record at the bed 

can be affected if the temperature at the bed reaches the ‘pressure melting point’ and leads 

to basal melt and sliding.  Towards the end of this research study, early attempts were made 

to introduce a second dimension to the model and incorporate temporal changes to the ice-

sheet thickness.  Unfortunately, time constraints on the study hindered this work, but the 

basic hypothesis is that an ice-sheet thickness history could be interpreted from preserved 

proxies and an initial age-depth profile. 

The OptAcc model only reconstructs the ice-phase processes in the ice core record.  A 

second alternative to improving the efficacy of the OptAcc model is to incorporate a firn 

densification model, and estimate two parallel age-depth profiles: the ice-phase of the ice 

core that is currently modelled using the OptAcc model, and a second profile for the gas-

phase of the ice core.  As introduced in Chapter 2 (section 2.6), the compaction of snow into 

ice in the upper section of the ice core leads to an offset in the timing of the occlusion of gas 

bubbles and ice-phase chemicals deposited synchronously.  As a result, two age-depth 

profiles present simultaneous climate records at different depths in the ice-core record.  By 

including a firnification model to the OptAcc approach, the age-depth model can open an 

alternative line of enquiry by assessing the depth difference between the same age in each 

phase of the ice core.  The depth difference can yield information on the diffusive column 

height, any rapid changes in accumulation history, and it would make use of the gas-phase 

records that are also preserved in the ice core on a synchronized age-depth profile. 

10.4.2 High-resolution Analysis 

The resolution of standard laboratory ice-core analysis is constantly being improved.  Ultra-

high resolution analysis of an ice core is labour-intensive without the adoption of novel 

techniques such as LA ICP-MS.  LA ICP-MS can analyse 1 m of ice in ~ 3 hours, whilst the 

standard laboratory techniques such as CFA operate at 30 mm per minute, or 1.8 m per 

hour, but at a resolution 100 times lower.  Discrete measurements, such as those used in 

this study or previous analysis of the NGRIP ice core (Thomas, 2006; Thomas et al., 2009), 

require weeks of laboratory hours in order to cover up to 1 m of an ice core.  As a result, the 

depth to which a sub-annual record can be retrieved in a deep ice core is substantially 

greater when using a continuous ultra-high resolution technique such as LA ICP-MS, and it 

enables a longer annual layer counted profile to be produced.  The longest annual layer 
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counted record of Antarctic climate extends to 38 ka BP in the WAIS Divide ice core (Sigl et 

al., 2016), retrieved by CFA due to the high mean annual accumulation and low strain rates 

at the site.  Sub-annual records from the WAIS Divide record do not yield only observational 

data along an ice core to constrain an age-depth model, but provide a high-resolution, sub-

annual account of climate processes and interactions (WAIS Divide Project members, 2014).  

In other Antarctic ice-core records, where the present-day ice-sheet conditions yield a mean 

annual layer thickness that is smaller than the standard analytical resolution of 10 mm, sub-

annual profiles and hence an annual layer counted ice-core record are not available using 

traditional techniques.  Therefore, the application of more ultra-high resolution techniques 

could improve our understanding of the processes and feedbacks associated with climatic 

events.  For future research and analysis of a deep ice core from Antarctica, application of 

techniques capable of ultra-high resolution analysis, should be considered in order to 

enhance the length of a sub-annual profile available for interpretation and therefore the 

quality of the interpreted record. 

10.4.3 WAIS Collapse Analysis 

As the FP and BI ice core records extend beyond the last glacial period, additional analysis 

should be completed to further interpret the record preserved during the LIG in these ice 

cores.  The potential collapse or retreat of the WAIS can be interpreted from the ice core 

record by the presence of proxies that indicate open ocean or sea-ice during the warmer 

interglacial.  The success of the ultra-high resolution analysis on the FP and BI ice cores 

(section 3.4 and 3.5 in Chapter 3) could enable the determination of whether the FP and BI 

ice cores were surrounded by open ocean during the last interglacial.  The depths in the FP 

and BI ice cores that correspond to the last interglacial are ~580 mweq and ~750 mweq, 

respectively.  At this depth, the OptAcc model estimates a mean annual layer thickness of 

0.3 mm yr-1 and 0.15 mm yr-1, respectively. A sub-annual record cannot be resolved at this 

thickness using the ultra-high resolution techniques developed in this study, but a sub-

annual record is not fundamental to understanding WAIS dynamics during the whole of the 

LIG.  These techniques should be applied to deeper sections of the ice core records in order 

to obtain a high-resolution record of the sea-ice proxies during the last interglacial.  During 

this study, the greatest depth at which the discrete sampling technique was applied was 523 

m (480 mweq) (section 3.5).  At this depth, the FP ice was brittle and thus prone to breaking.  

Therefore, this study suggests that the LA ICP-MS technique should be applied to a deeper 

section of ice rather than the discrete sampling technique.   
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10.4.4 Borehole Thermometry Modelling 

The fourth objective of this study was to develop an independent temperature record that 

could be compared with the temperature reconstruction derived from the stable water 

isotope profile preserved in the ice core.  As already stated, the borehole temperature 

record was not at a sufficient resolution to yield any significant surface temperature profiles, 

but the borehole model that was supposed to reconstruct a surface temperature history was 

still applied to yield present-day conditions for GHF, surface temperature and the mean 

accumulation rate throughout the ice core record (Chapter 8).  Although this work does not 

have a direct impact on the rest of this study, ice core boreholes provide a temperature 

profile that could improve the GHF coverage of the continent.  Following from this work, 

initial interrogation of the deviation between modelled and measured surface temperature 

led to the suggestion that the rapid regional warming occurring across the AP has perturbed 

the temperature profile in the ice sheet, and the temperature profile has not yet stabilised 

throughout the ice column (section 8.4.4).  Further investigation of the borehole 

temperature profiles as a proxy for rapid regional warming in the AP could be substantial, 

and hence analysis of borehole temperature profiles should be considered for future work in 

the region.  The key questions raised by these interesting results are: 

i. Do the results reflect long-term warming across the AP and Weddell Sea region? 

The results of the initial study in this thesis are only suggestions and have not been 

thoroughly investigated to confirm whether they reflect warming since the Industrial Era or 

the recent increased surface temperatures diffusing through the ice column. 

ii. Could these results be interpreted as a proxy for warming? 

If the results of the borehole model indicate warming in the ice sheet, but are not directly 

comparable with the rates of warming estimated from AWS data, are the results a proxy for 

contemporary warming, or do they suggest a long-term period of warming that is not 

recorded in AWS data?  Further investigation of the results, and additional modelling would 

be required to answer this question. 

iii. Is this study transferrable to other glaciated regions? 

Principally, could this technique reproduce similar results in regions that experience 

seasonal melting, such as the Greenland ice sheet (GrIS) and non-polar glaciated regions?  
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Past surface temperatures can be reconstructed using borehole temperature profiles in the 

GrIS (Dahl-Jensen and Johnsen, 1986; Dahl-Jensen et al., 1998; Tarasov and Peltier, 2003).  In 

long-term records, the diffusion of heat through an ice column does not mask climate events 

such as the Little Ice Age (LIA) in the GrIS (Tarasov and Peltier, 2003).  These records do not 

appear to be affected in the long-term by warmer summer seasons, and they preserve the 

record of rapid climate events in the northern hemisphere (Dahl-Jensen and Johnsen, 1986; 

Dahl-Jensen et al., 1998; Tarasov and Peltier, 2003).  Is the recent rapid regional warming, 

that is having a detrimental impact on the GrIS and leading to an average mass loss of 269 Gt 

yr-1 (MacMillan et al., 2016), visible in the temperature structure of the GrIS? 

iv. What could we learn of the propagation of heat into an ice sheet? 

Finally, succeeding these initial questions, if this technique is able to provide a reliable 

interpretation of warming in glaciated regions, an interesting study could be to assess the 

propagation of heat into an ice sheet such as WAIS or GrIS to assess the role of surface 

temperature on ice sheet retreat in comparison to the role of the ocean and meltwater 

crevasses.  These questions remain pertinent to the wider context of the warming climate 

across Earth, and should be developed and applied in regions where the impact of the 

warming climate on large ice masses is not fully understood. 

10.5 Summary 

 
From synthesising all of the relationships used to reconstruct past accumulation, thinning, 

annual layer thickness, and age-depth, this study has developed the OptAcc model.  In 

addition, chemical analysis of the ice cores provides constraints that can be used to improve 

on the modelled reconstructions of accumulation and annual layer thickness.  The OptAcc 

model is presented as the optimal dating strategy for the FP, BI, and JRI ice cores from the 

AP and Weddell Sea regions, constrained using annual layer thickness measurements and 

age constraints.  Using this model, the accumulation history, thinning, annual layer thickness 

and age-depth profiles are presented for the three ice cores.  These records have been 

presented and compared with each other, and yield information on the past climate across 

the region. 
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Appendix 1: Supplementary model results to 

Chapter 4 

This appendix supplements the results presented in Chapter 4 with the same techniques and 

modelling approaches applied to the ice core records from James Ross Island (JRI) and 

Berkner Island (BI). 

A1.0 Observational Data 

Table A1.01: List of known-age horizons used to constrain the BI ice core age-depth model.  Age 

horizons have been derived by Rob Mulvaney (pers. comm.) by matching BI stable water isotope 

signatures with EDC stable water isotope signatures of assumed-synchronous AIM events (Bazin et al., 

2013; Veres et al., 2013). 

Depth below 

the surface 

(m) 

Depth below 

the surface 

(mweq) 

Observed Age 

(yr since drill 

date) 

Uncertainty 

(yrs) 

Observed feature 

650.80 

 

 

596.85 

 

 

13050.0 

 

 

250.0 

Coldest part of the 

ACR, tuned to 

AICC2012 

656.80 602.10 14600.0 250.0 AIM 1 

669.35 613.79 18390.0 1000.0 Start of warming 

718.90 659.35 38250.0 800.0 AIM 8 

745.08 683.39 46480.0 800.0 AIM 12 

775.51 

 

 

711.11 

 

 

56890.0 

 

 

800.0 

Coldest part of 

stadial, tuned to 

AICC2012 

792.84 726.59 64750.0 2200.0 AIM 18 
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Table A1.01: List of known-age horizons used to constrain the JRI ice core age-depth model.  Age 

horizons have been derived by Joe McConnell (pers. comm.) and Rob Mulvaney (pers. comm.) by 

matching JRI stable water isotope signatures with WAIS Divide stable water isotope signatures of 

assumed-synchronous events and tephra layers. 

Depth below 
the surface 
(m) 

Depth below 
the surface 
(mweq) 

Observed Age 
(yr since drill 
date) 

Uncertainty 
(yrs) 

Observed feature 

0.00 0.00 0.00 0 Top 

18.72 10.14 16.5 2 Volcanic 

50.98 32.94 52.5 2 Pu 

68.01 46.76 78.5 2 Volcanic 

87.81 63.78 113.5 2 Volcanic 

112.81 86.06 160.0 2 Volcanic 

126.88 98.76 191.5 2 Volcanic 

152.15 121.60 248.0 2 Volcanic 

177.62 144.63 313.0 2 Volcanic 

263.70 222.62 662.0 5 Volcanic 

273.40 231.43 737.0 5 Volcanic 

275.02 232.90 748.0 5 Volcanic 

284.10 241.14 836.0 5 Volcanic 

289.96 246.46 899.0 5 Volcanic 

295.92 251.88 968.0 11 Volcanic 

298.96 254.64 1014.0 11 Volcanic 

349.53 300.62 5478.0 500 Volcanic 

358.50 308.78 12024.0 500 Volcanic 

358.78 309.04 12771.0 500 ACR tuned to 
AICC2012 

359.00 309.24 14664.0 500 Optimum 
temperature of ACR, 
tuned to AICC2012 
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Table A1.02: List of ice-sheet variables used in the ice-core age-depth model for BI and JRI (Mulvaney 

et al., 2007; 2014). 

 Value for each ice core 

Parameter BI JRI 

Mean Annual Present-Day Accumulation Rate, Αθ (m yr-1) 0.18 0.63 

Mean Annual Present-Day, δDθ (‰) -218.14 -154.36 

Ice-sheet thickness, H (m) 947.00 364.00 

Mean Annual Present-Day Surface Temperature, TS
θ (K) 

Mean Annual Present-Day Surface Temperature, TS
θ (oC) 

248.20 

-24.95 

259.15 

-14.00 

Mean Annual Present-Day Temperature at the bed, TB (K) 

Mean Annual Present-Day Temperature at the bed, TB (oC) 

262.00 

-11.00 

262.00 

-11.00 

Mean Annual Present-Day Temperature at the inversion layer, 

Tinv
θ (K) 

Mean Annual Present-Day Temperature at the inversion layer, 

Tinv
θ (oC) 

255.37 

 

-17.78 

262.26 

 

-10.89 
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A1.1 Empirical Profiles 

The chapter explores the multiple techniques that can be used to reconstruct atmospheric 

and ice sheet processes without an inverse approach. 

A1.1.1 Water-Equivalent Depth Conversion 

 

Figure A1.01: (a) Density Reconstruction for the upper 450 m of the BI ice core; (b) Depth below the 

surface in snow and water-equivalent units. Raw density (black line) measured prior to this research 

project). 
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Figure A1.02: (a) Density Reconstruction for the JRI ice core; (b) Depth below the surface in snow and 

water-equivalent units. Raw density (black line) measured prior to this research project). 
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A1.1.2 Temperature Reconstructions 

 

Figure A1.03: (a) Surface Temperature reconstruction using eq. 2.03 (stable water isotope profile 

measured prior to this project); (b) Inversion Temperature for the BI ice core reconstruction using eq. 

2.04 (stable water isotope profile measured prior to this project). 
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Figure A1.04(a) Surface Temperature reconstruction using eq. 2.03 (stable water isotope profile 

measured prior to this project); (b) Inversion Temperature for the JRI ice core reconstruction using eq. 

2.04 (stable water isotope profile measured prior to this project). 
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A1.1.3 Accumulation  

 

Figure A1.05: Accumulation reconstructions for the BI ice core. Accumulation reconstructions use 

stable water isotope profiles obtained separate to this research project. 
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Figure A1.06: Accumulation reconstructions for the JRI ice core. Accumulation reconstructions use 

stable water isotope profiles obtained separate to this research project. 
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A1.1.4 Thinning Functions  

 

Figure A1.07: Thinning Functions for the BI ice core. 
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Figure A1.08: Thinning Functions for the JRI ice core. 
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A1.1.5 Age-Depth Profiles 

 

Figure A1.09: Age-Depth Combinations using all forward accumulation and thinning reconstructions 

for the BI ice core.  Figure laid out as a table. 
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Figure A1.10: Age-Depth Combinations using all forward accumulation and thinning reconstructions 

for the JRI ice core.  Figure laid out as a table. 

A1.2 Constrained Profiles 

Following the forward model combinations, the JRI and BI ice core records have been 

reconstructed using three inverse approaches.  Two additional accumulation and age-depth 

reconstructions employed a GCM and in situ pRES measurements, and have been included in 

the chapter.  However, this data is only available for the FP site, and is not presented in the 

appendix for BI and JRI. 
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A1.2.1 IceChrono 

 

Figure A1.11: Accumulation and thinning reconstructions using the IceChrono model and prescribed 

accumulation functions at 95% confidence interval for BI.  Different initial accumulation profiles have 

been used as an input for this figure and are colour-coordinated as black: Clausius-Clapeyron; blue: 

Simple Exponential; red: Arrhenius; green: IceChrono. 
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Figure A1.12: Thinning and accumulation reconstructions using the IceChrono model with prescribed 

thinning functions at 95% confidence interval for the BI ice core.  Different initial thinning profiles have 

been used as an input for this figure and are colour-coordinated as red: Nye; blue: Dansgaard-Johnsen; 

black: One-Dimensional; green: IceChrono. 
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Figure A1.13: Age-depth profiles with the uncertainty (pale shade) and age horizons marked (black 

crosses) for the BI ice core. 
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Figure A1.14: Accumulation and thinning reconstructions using the IceChrono model and prescribed 

accumulation functions at 95% confidence interval for JRI.  Different initial accumulation profiles have 

been used as an input for this figure and are colour-coordinated as black: Clausius-Clapeyron; blue: 

Simple Exponential; red: Arrhenius; green: IceChrono. 
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Figure A1.15: Thinning and accumulation reconstructions using the IceChrono model and a prescribed 

thinning function at 95% confidence interval for the JRI ice core.  Different initial initial profiles have 

been used as an input for this figure and are colour-coordinated as red: Nye; blue: Dansgaard-Johnsen; 

black: One-Dimensional; green: IceChrono. 
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Figure A1.16: Age-depth profiles with the uncertainty (pale shade) and age horizons marked (black 

crosses) for the JRI ice core. 

 

A1.2.2 Directed Search 

Table A1.03: Values of the p-parameter and the subsequent calculation of Glen's exponent using the 

Direct Search model for BI. 

Accumulation p-value n-value 

Clausius-Clapeyron -0.69 -1.23 

Simple Exponential -0.61 -1.19 

Arrhenius -0.79 -1.37 

IceChrono 5.53 4.95 

 



Appendix 1 

 

 304 

 

Figure A1.17: Reconstructed thinning functions for the BI ice core using the Direct Search model.  Each 

scenario uses a different initial accumulation profile: red: Clausius-Clapeyron; blue: Simple 

Exponential; green: Arrhenius; black: IceChrono.  Each scenario has an associated uncertainty 

presented in a pale shade of the presented colour. 
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Figure A1.18: Age-Depth reconstructions for the BI ice core using the Direct Search model. Each 

scenario uses a different initial accumulation profile: red: Clausius-Clapeyron; blue: Simple 

Exponential; green: Arrhenius; black: IceChrono.  Each scenario has an associated uncertainty 

presented in a pale shade of the presented colour; known-age horizons and the associated uncertainty 

are presented as black crosses. 
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Table A1.04: Values of the p-parameter and the subsequent calculation of Glen's exponent using the 

Direct Search model for JRI. 

Accumulation p-value n-value 

Clausius-Clapeyron 8.58 9.28 

Simple Exponential 3.36 4.06 

Arrhenius 4.32 5.02 

IceChrono 1.78 2.47 

 

 

Figure A1.19: Reconstructed thinning functions for the JRI ice core using the Direct Search model. Each 

scenario uses a different initial accumulation profile: red: Clausius-Clapeyron; blue: Simple 

Exponential; green: Arrhenius; black: IceChrono.  Each scenario has an associated uncertainty 

presented in a pale shade of the presented colour. 

0 50 100 150 200 250 300 350

Depth below surface (m)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
h

in
n

in
g



Appendix 1 

 307 

 

Figure A1.20: Age-Depth reconstructions for the JRI ice core using the Direct Search model.  Each 

scenario uses a different initial accumulation profile: black: Clausius-Clapeyron; blue: Simple 

Exponential; red: Arrhenius; green: IceChrono.  Each scenario has an associated uncertainty presented 

in a pale shade of the presented colour; known-age horizons and the associated uncertainty are 

presented as black crosses. 
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A1.2.3 Optimised Accumulation and Thinning 

Table A1.05: Optimised values for the p-parameter and n values using different initial accumulation 

reconstructions on the Optimised Accumulation and Thinning model for Berkner Island. 

Accumulation p-value n-value 

Clausius-Clapeyron -0.57 ± 0.18 -1.12 ± 0.18 

Simple Exponential -0.04 ± 0.30 -0.97 ± 0.30 

Arrhenius -0.53 ± 0.13 -1.10 ± 0.13 

 

 

Figure A1.21: Original (red with the confidence interval in pale red) and present-day annual layer 

thickness (blue with the confidence interval in pale blue) reconstructions using different initial 

accumulation profiles and perturbed using the Optimised Accumulation and Thinning model for BI.  

Initial accumulation history (grey) from top left: (a) Clausius-Clapeyron, (b) Simple Exponential, and (c) 

Arrhenius. 
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Figure A1.22: Age-depth reconstructions using different initial accumulation profiles and optimised 

using the Optimised Accumulation and Thinning model for BI, with known-age horizons in pink crosses.  

Initial accumulation history from top left: (a) Clausius-Clapeyron, (b) Simple Exponential, and (c) 

Arrhenius. 

 

Figure A1.23: Perturbation profiles for 100 possible scenarios for the BI ice core using the Optimised 

Accumulation and Thinning model.  Model scenarios use an initial accumulation profile using (a) 

Clausius-Clapeyron; (b) Simple Exponential; (c) Arrhenius relationships. 
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Table A1.06: Optimised values for the p-parameter and n value using different initial accumulation 

reconstructions on the Optimised Accumulation and Thinning model for James Ross Island. 

Accumulation p-value n-value 

Clausius-Clapeyron 2.30 ± 4.20 3.00 ± 4.20 

Simple Exponential 4.48 ± 0.70 5.19 ± 0.70 

Arrhenius 4.77 ± 0.99 5.47 ± 0.99 

 

 

Figure A1.24: Original (red with the confidence interval in pale red) and present-day annual layer 

thickness (blue with the confidence interval in pale blue) reconstructions using different initial 

accumulation profiles and perturbed using the Optimised Accumulation and Thinning model for JRI.  

Initial accumulation history (grey) from top left: (a) Clausius-Clapeyron, (b) Simple Exponential, and (c) 

Arrhenius.   
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Figure A1.25: Age-depth reconstructions using different initial accumulation profiles and optimised 

using the Optimised Accumulation and Thinning model for JRI, with known-age horizons in pink 

crosses.  Initial accumulation history from top left: (a) Clausius-Clapeyron; (b) Simple Exponential; (c) 

Arrhenius relationships. 
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Figure A1.26: Perturbation profiles for 100 possible scenarios for the JRI ice core using the Optimised 

Accumulation and Thinning model.  Model scenarios use an initial accumulation profile using (a) 

Clausius-Clapeyron; (b) Simple Exponential; (c) Arrhenius relationships. 
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