
Is the Coefficient of Eddy Potential Vorticity Diffusion Positive? Part I:
Barotropic Zonal Channel

V. O. IVCHENKO
a

University of Southampton, and National Oceanography Centre, Southampton, United Kingdom

V. B. ZALESNY

Institute of Numerical Mathematics, Moscow, Russia

B. SINHA

National Oceanography Centre, Southampton, United Kingdom

(Manuscript received 9 November 2017, in final form 8 May 2018)

ABSTRACT

The question of whether the coefficient of diffusivity of potential vorticity by mesoscale eddies is

positive is studied for a zonally reentrant barotropic channel using the quasigeostrophic approach.

The topography is limited to the first mode in the meridional direction but is unlimited in the zonal

direction. We derive an analytic solution for the stationary (time independent) solution. New terms

associated with parameterized eddy fluxes of potential vorticity appear both in the equations for the

mean zonal momentum balance and in the kinetic energy balance. These terms are linked with the

topographic form stress exerted by parameterized eddies. It is demonstrated that in regimes with zonal

flow (analogous to the Antarctic Circumpolar Current), the coefficient of eddy potential vorticity dif-

fusivity must be positive.

1. Introduction

Mesoscale eddies are a very important element of the

global ocean since they usually account for the main

peak in the kinetic energy spectrum (Kamenkovich et al.

1986; McWilliams 2008; Wunsch and Stammer 1995).

This means that ocean models have to either resolve or

parameterize them. To resolve the mesoscale, hori-

zontal grids in models must be much smaller than the

internal Rossby radii of deformation. Improvements

in computing capability (both memory and speed)

allow us to run global models with high resolution.

However, weak stratification in the polar regions and

the associated small internal Rossby radii (2–3 km)

still preclude adequate resolution to explicitly resolve

eddies in these areas. Another significant problem is

the appearance of strong internal variability with in-

creasing resolution. Small disturbances can result in

energetic noise, which can only be removed by aver-

aging over ensembles of numerical experiments; for

example, the Met Office routinely runs ensembles of

10 members for decadal predictions and 42 members

for seasonal prediction (Smith et al. 2007). Rather

than employing an ensemble of high-resolution model

simulations to realistically represent eddies and their

effects on the mean flow, another approach is to

utilize lower-resolution models and include a pa-

rameterization of the important effects of the eddies

on the large-scale circulation. It is very likely that

mesoscale eddy parameterization ‘‘will be needed

for some decades into the future’’ (Bachman and

Fox-Kemper 2013).

Parameterization ofmesoscale eddies is important not

only for practical reasons (reduced computational ex-

pense) but also for theoretical reasons: a physically

correct parameterization allows us to better understand

the dynamics of eddy–eddy and eddy–mean flow in-

teractions, that is, fundamental parts of geophysical fluid

dynamics. There have been many studies devoted to this

problem (e.g., Green 1970; Welander 1973; Marshall
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1981; Ivchenko 1984; Gent and McWilliams 1990;

Ivchenko et al. 1997; Killworth 1997; Treguier et al.

1997; Olbers et al. 2000; Wardle and Marshall 2000;

Olbers 2005; Eden 2010; Marshall and Adcroft 2010;

Ringler and Gent 2011; Marshall et al. 2012; Ivchenko

et al. 2013, 2014a,b; and many others).

Themost popular approach to parameterization is use

of the so-called diffusive parameterization, that is, pro-

portionality of eddy fluxes of a property A to its mean

gradient:

A0y0j
D E

52K
›hAi
›x

j

, (1)

where yj is the velocity component, xj is a spatial co-

ordinate, the h . i denotes some averaging, and primes

mark eddy components (deviations from that average).

The K is the coefficient of transfer, in principle a tensor

but for simplicity here assumed to be a scalar. The dif-

fusive parameterization should only be applied for a

conservative property.

There has been much interest in applying a diffusive

parameterization to potential vorticity (PV) (Green

1970; Welander 1973; Marshall 1981). Importantly, if we

use a diffusive parameterization of potential vorticity we

do not need to separately parameterize eddy momen-

tum and buoyancy fluxes, because they are already in-

cluded in the eddy flux of potential vorticity. While the

parameterization in terms of PV is well suited to ap-

proximations such as the quasigeostrophic formulation,

primitive equation models widely used today are for-

mulated in terms of the momentum equations and do

not lend themselves as easily to a diffusive parameteri-

zation of PV.

Using a diffusive closure of eddy PV fluxes requires an

integral constraint for the momentum budget known as

the theorem of Bretherton to be introduced (Bretherton

1966; McWilliams et al. 1978; Marshall 1981) (see sec-

tion 3). Some studies (Marshall 1981; Ivchenko 1984;

Ivchenko et al. 1997, 2013, 2014a,b; Olbers et al. 2000)

satisfy the momentum constraint by a suitable choice

of diffusivity coefficient and others by inclusion of a

so-called gauge term (Eden 2010).

McWilliams et al. (1978) and McWilliams and Chow

(1981) demonstrated sharpening of zonal flow by PV

mixing in an eddy-resolving quasigeostrophic zonal

channel model. It was further demonstrated that

using a diffusive parameterization of quasigeostrophic

PV (QGPV) in a zonal channel can result in sharper

and stronger currents (Ivchenko 1984; Ivchenko et al.

1997, 2014b), provided a spatially variable positive

diffusion coefficient is specified, with local minima in

regions occupied by jets. Dritschel and McIntyre

(2008) and Wood and McIntyre (2010) also performed

theoretical studies of sharpening of zonal flows by PV

diffusion.

Application of a diffusive parameterization of PV in a

zonal reentrant channel [with application to the Ant-

arctic Circumpolar Current (ACC)] has been studied

in many papers both for domains with a flat bottom

and domains with bottom topography included, but

only for the zonally averaged case (Marshall 1981;

Ivchenko 1984; Ivchenko et al. 1997, 2013, 2014a,b).

Introduction of bottom topography creates a num-

ber of difficult complications (see Constantinou and

Young 2017).

There are two major questions associated with appli-

cation of a diffusive parameterization of PV in the

presence of bottom topography:

1) Is the eddy PV diffusivity coefficient K guaranteed

to be positive? The coefficientK varies in space and

time. Its local value in some locations probably

could occasionally be negative. However, can we be

sure that the mean (averaged) value of K is posi-

tive? Rhines and Young (1982) suggested that the

eddy flux of PV is downgradient (i.e., positive eddy

PV diffusivity) in an integral sense. There are not

many analytical works that constrain the sign of PV

diffusion. Abernathey et al. (2013) made an analysis

based on a primitive equation model for a circum-

polar channel. However, following Treguier et al.

(1997) they calculated certain quasigeostrophic

quantities, such as QGPV flux, background QGPV

gradient, and corresponding diffusivity, using zonal

averaging. The QGPV diffusivity is positive nearly

everywhere, except near the surface, where the QG

approximation is invalid. Birner et al. (2013), on the

other hand, reveal a localized region of significant

upgradient eddy PV fluxes on the poleward side of

the subtropical free atmospheric jet core during the

winter and spring seasons of both hemispheres.

However, Birner et al. (2013) have noted that the

net PV fluxes are downgradient when averaged

over both the equatorward and poleward flanks of

the jet.

In this study an analytical solution is provided that

supports PV diffusivity being positive (in a domain-

averaged sense). The assumption of a spatially

constant eddy PV diffusivity is clearly unrealistic;

however, it leads to a mathematically tractable

problem and the solution provides insights that will

remain applicable in the more general case.

2) How does one deal with the rotational (nondivergent)

part of eddy PV flux? Eddy fluxes of PV comprise a

rotational component and a divergent component: any
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vector E can be separated into divergent Ediv and

rotational Erot parts (see next section).

The rotational component of the eddy flux of potential

vorticity is likely to be substantial for a zonal channel

with bottom topography (Sinha 1993). However, the

rotational part does not directly influence the flow,

because the divergence of the eddy flux appears in the

PV equation and so the contribution of the rotational

component is zero. The rotational part can, how-

ever, influence the flow by influencing the coefficient

K via the equation of eddy potential enstrophy (see

section 2).

How canwe determine the sign ofK for eddy diffusion

of PV? One suggestion would be to use the results of

eddy-resolving experiments with oceanic GCMs. We

can calculate hQ0y0ji (Q is PV) and ›hQi/›xj directly from
model simulations, and then determine

K52
Q0y0j
D E
›hQi
›x

j

. (2)

However, as already noted, the rotational part of

hQ0y0ji must be excluded from this calculation. A lack

of inherited boundary condition makes separation of

eddy fluxes of PV into divergent and rotational com-

ponents for a finite domain with nonperiodic bound-

ary conditions nonunique, as shown by Fox-Kemper

et al. (2003).

Separation of the eddy PV flux into divergent and

rotational components requires a specific boundary con-

dition. Maddison et al. (2015) defined the divergent

component of the PV flux by introducing a stream-

function tendency (‘‘force function’’). This is equivalent

to a zero tangential component boundary condition (zero

normal flux) and hence is not completely general. Mak

et al. (2016) introduced a new method for diagnosing

eddy diffusivity in a gauge-invariant fashion, which is

independent of rotational flux components. This was

achieved by seeking to match diagnosed and parameter-

ized eddy force functions through an optimization pro-

cedure. The method was applied to a multilayer QG

ocean gyre experiment, and it was demonstrated that the

mean PV diffusivity over the horizontal domain is posi-

tive; however, robust locally negative diffusivity takes

place even in the absence of rotational fluxes.

An alternative possibility is to determine the sign of the

coefficient theoretically. In this study, we derive an ana-

lytical solution and construct an expression for kinetic

energy, integrated over the whole domain, and use

physical constraints on kinetic energy to demonstrate that

the sign of K, interpreted as a domain-averaged PV

diffusivity, must be positive. This is the first time that

an analytical solution using a diffusive parameteriza-

tion of PV has been derived for a barotropic quasi-

geostrophic zonal channel flow above zonally varying

bottom topography. It is not, however, our intention

to compare the relative merits of alternative eddy

parameterizations.

The remainder of this paper is organized as follows. In

section 2 we present the basic equations for quasigeo-

strophic barotropic flow and equations for a zonal

channel geometry with bottom topography. In section 3

we formulate the generalized theorem of Bretherton.

In section 4 we demonstrate an analytical solution for

zonal flow, construct an expression for kinetic energy,

and present results of our calculations for different

types of topography. Section 5 consists of discussion

and conclusions.

2. Equations for zonal channel geometry including
eddy parameterization

The equation for barotropic quasigeostrophic vortic-

ity can be written as follows:

›q

›t
1 J(C, q)5T1F

B
1F

H
, (3)

where q and C are the QGPV and streamfunction, re-

spectively. Velocity v 5 (u, y) is related to the stream-

function by u52(›/›y)C and y5 (›/›x)C, where u and

y are the velocity components in the zonal (x) and me-

ridional (y) directions. The J(A, B) is the Jacobian

operator: J(A, B)52(›A/›y)(›B/›x)1 (›A/›x)(›B/›y).

The T, FB, and FH are the external forcing (wind stress),

bottom friction, and horizontal friction, respectively.

The QGPV q in barotropic flow represents the sum of

relative vorticity, planetary vorticity, and the topographic

term, given by

q5=2C1 f 1
f
0

H
B , (4)

where Coriolis parameter f 5 f0 1 by. The f0 and b

denote its value at a reference latitude and its merid-

ional gradient, respectively. The B is the deviation of

bottom topography from a constant depth H.

Bottom topography substantially complicates the dy-

namics. The streamfunction exhibits nonzonal meanders

near topographic obstacles (McWilliams et al. 1978),

and therefore it is necessary to perform spatial averaging

not for thewhole zonal length, but for only part of it. The

averaged equations depend on both zonal and meridi-

onal directions, which creates much more mathematical

complexity compared to the fully zonally averaged
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case, but they remain analytically tractable as we will

demonstrate.

To understand eddy dynamics it is important to con-

sider the equation for quasigeostrophic eddy potential

enstrophy (QGEPE). To derive the QGEPE equation,

we define a time average and partial zonal average of an

arbitrary variable, denoted by an overbar, A, and a de-

viation from this average, denoted by a superscript

prime, A0 5A2A:

A(x, t)5
1

2d
x
T

ðt1T

t

ðx1dx

x2dx

A x0, t0ð Þ dx0 dt0 , (5)

where dx is the average scale for zonal coordinate andT is

the averaging time. Note that the partial zonal and time

average is a more appropriate type of average for the

zonal channel domain with variable topography than a

time-only average, since bottom topography being time

independent cannot contribute to the eddy topographic

form stress in the case of a time average (see section 3).

We average Eq. (3), subtract the resulting equation

from Eq. (3), multiply by q0, and average once again to

obtain the following:

1

2

›q02

›t
5 052

1

2
div vq02
� �

2 v0q0 � =q2 1

2
div v0q02
� �

1T 0q0 1F 0
Bq

0 1F 0
Hq

0 . (6)

Equation (6) is a well-known equation for quasigeo-

strophic eddy potential vorticity QGEPE (see, e.g.,

Vallis 2006). The terms on the RHS of Eq. (6) represent

redistribution by the mean flow, generation, re-

distribution by eddies, input from external sources,

and dissipation by bottom and horizontal friction of

QGEPE, respectively.

If we now specify the domain as a zonal reentrant

channel and integrate Eq. (6) over the whole domain S,

then the terms responsible for redistribution (i.e., the

first and the third terms on the RHS) drop out because

of boundary conditions on the solid walls and periodic-

ity. A similar equation was derived by Constantinou and

Young (2017). We assume that the external forcing is

stationary (T0 5 0), and therefore the fourth term on the

RHS is zero, which leads to

ð
(S)

1

2

›q02

›t
dS5 052

ð
(S)

v0 q0 � =q dS

1

ð
(S)

F 0
Bq

0 1F 0
Hq

0
� �

dS . (7)

Equation (7) represents the balance between the

generation of the QGEPE (the first term on the

RHS) and dissipation by bottom and horizontal

friction. The dissipation terms measure the inte-

gral loss of enstrophy, and therefore the integral of

the generation should be positive. Numerical ex-

periments with eddy-resolving models demonstrate

that the generation term locally takes both signs

(Sinha 1993; J.-O. Wolff 2017, personal communica-

tion). However, the integral over the domain must be

positive.

The eddy flux v0q0 comprises two parts, the divergent

flux Ediv and rotational flux Erot:

v0q0 5E
div

1E
rot

, (8)

where curlz(Ediv)5 0, div(Erot)5 0, and curlzEdiv 5
›Edivjy/›x 2 ›Edivjx/›y.
The traditional diffusive parameterization of QGPV

can be written as

v0q0 52k=q , (9)

and the term representing generation of QGEPE in

Eqs. (6) and (7) is

v0q0 � =q52kj=qj2 , (10)

where k is the coefficient of eddy diffusivity of QGPV.

The equation for mean QGPV [Eq. (3)] for the

stationary (time-independent case) takes the follow-

ing form:

u
›q

›x
1 y

›q

›y
1

›u0q0

›x
1

›y0q0

›y
5

1

H
curl

z
t2 � curl

z
v . (11)

We specify QGPV input due to surface wind stress in

the traditional manner: T5 (1/H)curlzt, where t rep-

resents tangential wind stress divided by the water

density, and FB 52� curlzv, bottom friction, where

� is a coefficient of bottom friction. Horizontal friction

is disregarded.

Using Eq. (9), Eq. (11) becomes

u
›q

›x
1 y

›q

›y
2

›

›x
k
›q

›x
2

›

›y
k
›q

›y

5
1

H
curl

z
t2 � curl

z
v . (12)

We proceed to solve Eq. (12) by expanding each of the

variables into a Fourier series. We assume that the bot-

tom topography has meridional length scale comparable

with the width of the channel L and retain only the first

term in the Fourier decomposition of topography in the

meridional direction. In the zonal direction we allow a

variety of length scales for bottom topography, both large
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and small scales, and impose no limit to the number of

terms in the Fourier series. Such detailed representa-

tion in the zonal direction is important for zonal

flows, because it allows better representation of the

nonviscous bottom form stress, which is important

for balancing the external forcing (wind stress) and

results in a substantial decrease of the zonal trans-

port, compared with the flat-bottom case (Munk

and Palmén 1951; McWilliams et al. 1978; Wolff

et al. 1991).

We assume no mass flux through the solid walls:

yj
y50,L

5 0 . (13)

We also assume no QGPV flux through the walls:

y0q0j
y50,L

52k
›q

›y
5 0 . (14)

The condition defined by Eq. (14) can only be satisfied

if k is zero on the solid walls, because of the presence

of the planetary vorticity gradient b in the expression

for the meridional gradient of QGPV; that is, on the

boundaries ›q/›y cannot be zero, and therefore k must

be zero. Hence, we specify the following form of the

coefficient k:

k5 k
0
11 e(2L/D) 2 e(2y/D) 2 e(y2L)/D)
h i

, (15)

where D � L and k0 is a constant. The k is almost con-

stant in the domain but quickly drops to zero on the

sidewalls (see Fig. 1). The difference between k and k0
at any point of the domain will be small by choosing D
to be small enough, except on the solid boundaries,

where k 5 0.

3. Generalized theorem of Bretherton

In a zonal channel with a flat bottom the total (domain

averaged) meridional eddy fluxes of QGPV must be

zero, to satisfy the mean zonal momentum budget

(Bretherton 1966). This statement, known as the the-

orem of Bretherton (McWilliams et al. 1978), provides

an integral constraint for coefficients of QGPV dif-

fusivity (Marshall 1981; Ivchenko 1984). In a zonal

channel with variable bottom topography this state-

ment can be generalized using zonal and time aver-

aging (Ivchenko 1987; Ivchenko et al. 2013, 2014a),

which allows us to include an important topographic

form stress in the mean zonal momentum balance. In

this study we find a solution depending on both me-

ridional and zonal coordinates and therefore use

partial zonal and time averages [Eq. (5)]. Let us

first calculate the eddy QGPV flux by multiplying

q [see Eq. (4)] by y0, taking an average and integrating

over the whole basin:

ðL
0

ðLx

0

y0q dx dy5
ðL
0

ðLx

0

"
y0
�
›y

›x
2

›u

›y

�

1 f y0 1
f
0

H
y0B

#
dx dy , (16)

where Lx is the zonal length of the channel. The first

term in the RHS of Eq. (16) can be transformed, using

the continuity equation:

ðL
0

ðLx

0

y0
�
›y

›x
2

›u

›y

�
dx dy

5

ðL
0

ðLx

0

 
1

2

›y02

›x
2
›u0y0

›y
2

1

2

›u02

›x

!
dx dy . (17)

The first and the third terms in the RHS of Eq. (17) drop

to zero because of periodicity, and the second term

drops to zero because there is no flux through the solid

walls. It is obvious that the second term in the RHS of

Eq. (16) is zero, so using y0q5 y0q0 [Eq. (16)] can be

written as follows:

FIG. 1. Meridional profile of the QGPV diffusion coefficient k

normalized by k0.
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ðL
0

ðLx

0

y0q0 dx dy5
ðL
0

ðLx

0

f
0

H
y0B0 dx dy . (18)

This means that redistribution of QGPV by eddies

(LHS) is balanced by topographic form stress (RHS),

exerted by eddies.

If we introduce a diffusive parameterization [Eq. (9)]

together with the expression for k [Eq. (15)] into the

LHS of Eq. (18) we obtain

ðL
0

ðLx

0

y0q0 dx dy52bk
0
L

x
L

�
11 e(2L/D)

2
2D 12 e(2L/D)
� �

L

	
. (19)

The expression in curly brackets is close to unity.

Therefore, Eq. (18) becomes

2bk
0
5

f
0

H

1

L
x
L

ðL
0

ðLx

0

y0B0 dx dy . (20)

The bk0 term appeared in studies by Welander (1973),

Killworth (1997), Eden (2010), and many others.

Equation (20) provides a clear physical explanation of

this term: eddy topographic form stress is exerted by

parameterized eddies. Note that using only time av-

eraging without partial zonal averaging would lead to

the eddy flux associated with the topographic part of

the QGPV dropping to zero [bottom topography is

time independent; hence the RHS of Eq. (20) is zero],

and this would imply that the coefficient k0 has to

be zero.

4. Analytical solution for zonal flow

a. Model setup

We now assume that the solution for Eq. (12) consists

of a constant zonal flow with (unknown) velocity U and

streamfunction F multiplied by the first meridional

Fourier mode:

C52Uy1F(x) sin(py/L) . (21)

We follow Charney et al. (1981), who used a similar

technique for an atmospheric flow in a zonal channel.

We represent the topographic term B in the following

form:

B5h(x) sin(py/L) . (22)

The net zonal transport across the channel depends

only on U, because F(x) sin[(py)/L] does not affect the

net transport, although it does affect the zonal velocity

locally because of topography and diffusion of the

QGPV. We specify the surface wind stress t 5 (tx, ty),

with ty 5 0, and let the zonal component of wind stress

be proportional to the sine of latitude with themaximum

value in the center of the channel and zero on the walls;

that is, tx 5 t0 sin[(py)/L].

Using Eqs. (21)–(22) the velocity and the gradient of

potential vorticity can be easily calculated. So, Eq. (12)

after transformation can be rewritten in this form:

sin(py/L)

�
UF

xxx
2U

p2

L2
F

x
1bF

x
1

f
0

H
Uh

x
2 kF

xxxx

1k
p2

L2
F

xx
2 k

f
0

H
h
xx

�
1 sin(py/L) cos(py/L)

3



2
p

L
FF

xxx
2
�p
L

� f
0

H
(Fh

x
2F

x
h)1

p

L
F

x
F

xx

�
.

(23)

Subscripts x (Fx, hx and so on) mark zonal de-

rivatives, and the number of subscripts correspond

to the derivative order: Fx 5 ›F/›x, Fxx 5 ›2F/›x2,

and so on. In Eq. (23) the term of meridional gra-

dient of the meridional flux of eddy QGPV is re-

tained without transformation since it simplifies

after a meridional integration, which we carry out in

section 4b.

b. Momentum balance

To simplify the QGPV equation and remove the y

dependence we integrate Eq. (23) meridionally between

0 and L, resulting in

U

�
F

xxx
2

p2

L2
F

x

�
1U

f
0

H
h
x
1F

x
b

2 k
0

�
F

xxxx
2

p2

L2
F

xx
1

f
0

H
h
xx

�(
12

p2D2[11 e(2L/D)]

(L2 1p2D2)

)

1 �F
xx
2 �
�p
L

�2
F5 0 . (24)

To derive this equation we assume that the eddy flux

through the solid walls is zero y0q0 5 0 [boundary condi-

tion in Eq. (14)]. We also make use of the property that

terms that are proportional to sin[(py)/L] cos[(py)/L]

integrate to zero.

We can obtain a further useful relationship by returning

to Eq. (23), multiplying by cos[(py)/L] and integrating

meridionally between the solid boundaries. There is an

important term
Ð L
0
cos(py/L)(›/›y)(y0q0) dy, which after

substitution of Eqs. (9) and (15), becomes
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ðL
0

cos[(py)/L]
›

›y
k
›q

›y
dy

5 2bk
0

(
11 e(2L/D) 2

p2D2 11 e(2L/D)
� �

L2 1p2D2
� 


)
. (25)

So Eq. (23) multiplied by cos[(py)/L] and integrated

meridionally yields

FF
xxx

2F
x
F

xx
1

f
0

H
Fh

x
2F

x
h

� 


1 3bk
0

(
11 e(2L/D) 2

p2D2 11 e(2L/D)
� �

L2 1p2D2
� 


)
5

3t
0
p

4H
.

(26)

Note that because D � L the expressions in the curly

brackets in Eqs. (24)–(26) are very close to unity, so we

approximate them as unity with negligible error.

We integrate Eq. (26) with respect to x between 0 and

Lx to eliminate the zonal dependence and elucidate the

zonal momentum balance:

ðLx

0



FF

xxx
2F

x
F

xx
1

f
0

H
Fh

x
2F

x
h

� 
�
dx1 3bk

0
L

x

5
3L

x
t
0
p

4H
. (27)

It is easy to show that

ðLx

0

FF
xxx

2F
x
F

xx

� 

dx5 0 , (28)

because of the periodicity of the channel. Also,

ðLx

0

Fh
x

� 

dx52

ðLx

0

F
x
h

� 

dx . (29)

Thus, Eq. (27) can be rewritten as follows:

3L
x
t
0
p

8
5 f

0

ðLx

0

Fh
x

� 

dx1

3bk
0
L

x
H

2
. (30)

Equation (30) describes the stationary momentum

balance. On the LHS there is a contribution from

wind stress. The first term on the RHS, that is,

f0
Ð Lx

0
Fhx dx, is the topographic form stress exerted

by the mean flow, since it is an integral of the prod-

uct of a pressure (equal to streamfunction times

Coriolis parameter f0) and the zonal gradient of

bottom topography. The second term on the RHS is a

topographic form stress exerted by unresolved pa-

rameterized eddies on the bottom topography [see

Eq. (20)].

c. Energy balance

We form the energy power integral by multiplying the

y-integrated QGPV [Eq. (24)] with F(x) and integrate

over x. After some manipulation we obtain

U
f
0

H

ðLx

0

(Fh
x
) dx2 k

0

ðLx

0

(F
xx
)2 dx

2 k
0

p2

L2

ðLx

0

(F
x
)2 dx1 k

0

f
0

H

ðLx

0

F
x
h
x
dx

2 �

ðLx

0

(F
x
)2 dx2 �

p2

L2

ðLx

0

(F)2 dx5 0 . (31)

Substitution of Eq. (30) into Eq. (31) after transforma-

tion yields an equation of balance of kinetic energy of

the ‘‘perturbed’’ flow E 5 EU 1 EV, where

E
U
5

1

L
x
L

ðLx

0

ðL
0

(u2U)2

2
dx dy , and (32)

E
V
5

1

L
x
L

ðLx

0

ðL
0

y2

2
dx dy . (33)

For a steady state, the kinetic energy balance equa-

tion of the perturbed flow can be written as

fE, tg5 fE,kg1 fE,hg1 fE, �g1 fE,bg. (34)

The terms in Eq. (34) are as follows:

fE, tg5 3p

8H
Ut

0
(35)

represents generation of kinetic energy by wind stress;

fE,kg5 k
0

L
x

ðLx

0



F

xx

� 
2
1

p2

L2
F

x

� 
2�
dx. 0, (if k

0
. 0)

(36)

represents dissipation of energy by mixing of

QGPV; and

fE, hg52
k
0

L
x

ðLx

0

�
f
0

H
F

x
h
x

�
dx. 0 (37)

represents dissipation by QGPV mixing linked with

bottom topography and is positive because of con-

servation of QGPV. In the mainly eastward flow there

is an equatorward (i.e., Fx . 0) deflection if the mo-

tion is uphill (hx . 0) and a poleward (i.e., Fx , 0)

deflection if the motion is downhill (hx , 0). So,

2(f0/H)
Ð Lx

0
Fxhx dx. 0, since the Coriolis parameter is

negative in the SouthernHemisphere. Note that the sign

of this term is positive in the Northern Hemisphere as
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well, since not only is the Coriolis parameter of opposite

sign, but the ‘‘equatorward/poleward’’ motions are also

reversed. The term

fE, �g51
�

L
x

ðLx

0



(F

x
)2 1

p2

L2
(F)2

�
dx. 0 (38)

represents dissipation by bottom friction. The last term,

fE,bg5 3Uk
0
b

2
. 0 (if k

0
. 0), (39)

is proportional to U, k0, and b, and using Eq. (20) could

be rewritten as

fE,bg52
3

2
U

f
0

H

1

L
x
L

ðL
0

ðLx

0

y0B0 dx dy , (40)

and is a sink of kinetic energy due to topographic form

stress exerted by parameterized eddies. A conceptu-

ally similar term was introduced by Carnevale and

Frederiksen (1987) in their study of periodic flow on a

b plane. They consider how best to model the in-

teraction of ‘‘small’’ scale (synoptic) flow features

with large- or basin-scale features. Carnevale and

Frederiksen (1987) emphasize the role of the integral

invariants. They demonstrated that the rate of change

of energy in the ‘‘small scales’’ is given by a term

similar to the RHS of Eq. (40) [see the RHS of Eq.

(5.5) of the paper by Carnevale and Frederiksen

(1987)].

The three terms {E, k}, {E, h}, and {E, b} are pro-

portional to k0 and represent dissipation of energy only

if k0 . 0. If k0 , 0 all these terms are physically

incorrect.

d. Analytical solution

To obtain an analytical solution let us write F and

topography h(x) as Fourier series:

F5�
n

a
n
cos

�
2np x

L
x

�
1�

n

b
n
sin

�
2np x

L
x

�
, and (41)

h5�
n

c
n
cos

�
2np x

L
x

�
1�

n

d
n
sin

�
2np x

L
x

�
, (42)

where an and bn are unknown constants, and cn and

dn are constants relating to the prescribed topography.

The n is the index of each mode used in the Fourier

expansion.

Substituting Eqs. (41) and (42) in the meridionally

integrated QGPV [Eq. (24)] and equating coefficients

of sin[(2np x)/Lx] and cos[(2np x)/Lx] results in two

equations:

a
n



UM(n) 2b

2p

L
x

n

�
2 b

n
N(n) 2 c

n
U

f
0

H

2p

L
x

n

1 d
n
k
0

f
0

H

�
2p

L
x

�2

n2 5 0 , and (43)

2a
n
N(n) 1 b

n



2UM(n) 1b

2p

L
x

n

�
1 c

n
k
0

f
0

H

�
2p

L
x

�2

n2

1 d
n
U

f
0

H

2p

L
x

n5 0 , (44)

where

M(n) 5

�
2p

L
x

�3

n3 1
2p3

L2L
x

n , and (45)

N(n) 5 k
0

�
2p

L
x

�4

n4 1 k
0

4p4

L2L2
x

n2 1 �

�
2p

L
x

�2

n2 1 �
�p
L

�2
.

(46)

Solution of the two algebraic equations [Eqs. (43) and

(44)] yields the following:

a
n
5

S
(n)
0 1US

(n)
1 1U2S

(n)
2

R
(n)
0 1UR

(n)
1 1U2R

(n)
2

, and (47)

b
n
5

1

N(n)

8<
:
UM(n) S

(n)
0 1US

(n)
1 1U2S

(n)
2

h i
R

(n)
0 1UR

(n)
1 1U2R

(n)
2

2

b
2p

L
x

n S
(n)
0 1US

(n)
1 1U2S

(n)
2

h i
R

(n)
0 1UR

(n)
1 1U2R

(n)
2

2Uc
n

f
0

H

2p

L
x

n1 d
n
k
0

f
0

H

�
2p

L
x

�2

n2

9=
; (48)

New parameters R
(n)
0 , R

(n)
1 , R

(n)
2 , S

(n)
0 , S

(n)
1 , and S

(n)
2 have

been introduced. Their values can be seen in the

appendix.

Coefficients an and bn in Eqs. (47) and (48) still con-

tain the unknown mean zonal velocity U. To find U we

substitute the Fourier series of Eqs. (41) and (42) in the

zonal momentum balance equation [Eq. (30)]. After

some manipulation we obtain

t
0
5

8f
0

3L
x

�
n

n a
n
d
n
2 b

n
c
n

� 

1

4bk
0
H

p
. (49)

The method of solution to obtain U is presented in the

appendix.

The zonal flow is perturbed by the presence of to-

pography and diffusion of QGPV. In the case of a flat

bottom (i.e., cn 5 dn 5 0) the motion is unperturbed,

since S
(n)
0 5 S

(n)
1 5 S

(n)
2 5 0 [see Eqs. (A4)–(A6)].
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This analytical solution is possible because only a sin-

gle meridional component of the bottom topography

B is retained. In the case of a more general expression of

B it would be much more difficult to obtain an analytical

solution because of greatly increased mathematical

complexity.

The expressions for the unknowns an, bn, and U in

Eqs. (47)–(49) constitute an analytical solution for

Eq. (23). There is no truncation error, since only the

Fourier modes represented in the bottom topography

contribute. Note that as long as the modulus of the

amplitudes cn and dn of the Fourier topographic modes

are finite, then

lim
n/‘

a
n
5 lim

n/‘
b
n
5 0 . (50)

We evaluate the solution for a number of cases with

different topography and different k0 using parame-

ter values relevant to the Southern Ocean: channel

length Lx 5 4 3 106m and width 106m; reference

depth 5 3 103m; Coriolis parameter f0 5 21024 s21

and b5 1.4 3 10211m21 s21; and t0 5 1024m2 s22. We

illustrate the streamfunction for three cases: case 1

specifies the topography as c3 5 300m; case 2 specifies

c1 5 300m and d1 5 300m; case 3 specifies c2 5 300m

and d5 5 300m (see Figs. 2–4). Here and later the to-

pographic Fourier coefficients whose values are not

explicitly stated are set to zero.

All cases demonstrate eastward mean flow, with

streamlines deflected by topographic features (see

Figs. 2–4). In these cases the bottom topography and

coefficient k0 vary. Because they obstruct the flow, the

topographic features (both the amplitude and length

in the zonal direction) substantially affect the net

zonal volume transport (Figs. 5–7, upper panels). The

streamfunctions for given topography look similar for

different coefficients, but not the total zonal transport,

which decreases linearly from the case with k05 0 to the

highest allowed coefficient. As we demonstrate above,

the coefficient k0 must be positive and according to the

kinetic energy balance in Eq. (34) should be less than

kmax 5 pt0/(4bH), since

fE, tg2 fE,bg. 0: (51)

Under our selected parameters, pt0/(4bH)5 1.12 3
103m2 s21. However, our solutions demonstrate that the

actual maximum value keff
max is less than this; that is,

keff
max , k

max
5pt

0
/(4bH) (52)

(see the middle panels in Figs. 5–7). This is because keff
max

depends not only on Eq. (51) but on the other terms on

the RHS of Eq. (34) as well.

Under prescribed topography the maximum transport

corresponds to k0 5 0, which varies substantially (de-

pending on topography). The highest transports are

300.5, 445.0, and 115.0 Sv (1 Sv [ 106m3 s21) in cases

1–3, respectively.

Being under the same external forcing (wind stress)

the difference in transport occurs because of different

bottom topography in these cases. The main momentum

sink is the topographic form stress. This term strongly

depends on the amplitudes and wavenumbers of the

nonzero Fourier modes making up the topography. To

quantify this dependence we introduce a new integral

measure D of the roughness of the topography [rms of

(›B/›x)]:

D5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

LL
x

ðL
0

ðLx

0

�
›B

›x

�2

dx dy

s
. (53)

Substituting Eqs. (22) and (42) into Eq. (53) with an

appropriate Fourier transformation we obtain

D5
p

L
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
n

n2 c2n 1 d2
n

� 
� �r
. (54)

This integral scale of roughness is dimensionless and

depends on the mode index n and the amplitude of the

topography cn, dn. In Fig. 8 we plot points representing

our calculations of transport for the same wind stress

(t0 5 1024 m2 s22) and k0 5 0, but for the various re-

alizations of bottom topography and a fitting curve

that is seen to resemble a hyperbola. If D , 3 3 1024

there is a large variation of transport for a small var-

iation of D. Small values of D correspond to low am-

plitudes of topography together with small mode

index n (i.e., smooth topography). WhenD. 33 1024

there is an approximately linear relation between

transport and D.

All the terms on the RHS of Eq. (34) are positive

(Figs. 5–7, middle panels) and contribute to balancing

the source of kinetic energy (fE, tg). When k05 0 there

is a balance between generation of kinetic energy by

wind stress and dissipation by bottom friction; that is,

fE, tg 5 fE, �g.
For small values of k0, the bottom friction dominates

the other terms. However, with increasing k0 the terms

fE, hg and fE, bg increase, representing dissipation

linked with topography and the sink due to topographic

form stress, respectively. These provide a substantial

contribution to balancing the wind stress term. In

all cases, the term fE, kg representing dissipation by

QGPV mixing remains small. The fE, kg is not directly

linked with topography in contrast to fE, hg. The

highest values of kinetic energy E and its components
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EU and EV occur when k0 5 0, and kinetic energy de-

creases with increasing k0 (see Figs. 5–7, lower panels).

The component EU may be higher than EV (cases 1 and

2) or lower (case 3) depending on the details of the

bottom topography.

Increasing wind stress leads to increasing zonal

transport (see Fig. 9). In case 3 for k0 5 0 a fivefold in-

crease in wind stress amplitude t0 5 5 3 1024m2 s22

results in a factor-3 increase in transport from 115.0 to

338.3 Sv. Note, however, that the transport does not in-

crease linearly with increasing wind stress: the sensitivity

reduces by a factor of 2 from t05 13 1024m2 s22 to t05
53 1024m2 s22. Note that this reducing sensitivity of the

transport for high values of wind stress does not relate to

eddy activity (recall we are considering the case k0 5 0).

Constantinou and Young (2017) and Constantinou

(2018) found barotropic eddy saturation, that is, in-

sensitivity of the transport to wind forcing in QG flow

in a barotropic configuration. On the other hand

Munday et al. (2013) demonstrated eddy saturation in a

three-dimensional baroclinic setting using an ocean-

only general circulation model. It would be interesting

to verify eddy saturation in our model with parameter-

ized eddies. However, the transport strongly depends on

the value of k0 (Fig. 9). It would take additional effort to

find the best-fitting coefficient k0 for each wind stress.

One approach would be to perform eddy-resolving

GCM experiments with given wind stress. Based on

FIG. 2. (top) Bottom topography (m) represented by c3 5 300m (case 1). Here and in

subsequent figures the topographic Fourier coefficients whose values are not explicitly stated

are set to zero. Streamfunction C, times reference depth H (Sv), with k0 5 (second row) 0,

(third row) 200, and (fourth row) 400m2 s21.
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values of transport taken from these eddy-resolving

experiments, we could use the relationship between

transport and k0 (as in Fig. 9) to find the most realistic

value of k0 for each wind stress and then verify eddy

saturation in the parameterized model.

5. Discussion and conclusions

Mesoscale eddy parameterization is an important

problem of physical oceanography helping to un-

derstand the dynamics of interactions of eddies with

the mean flow. Moreover, even state-of-the-art high-

resolution 1/128 global models do not resolve mesoscale

eddies in high latitudes.

There are various approaches to the problem of eddy

parameterization. This study focuses on parameterization

of eddy QGPV fluxes. PV and QGPV are conserved

variables, which allows use of a diffusion type of pa-

rameterization, contrary to momentum, which is not

conserved, and therefore a diffusive parameterization is

unsuitable in this case.

Whether the effective coefficient of potential vor-

ticity diffusion is positive represents the principal

question in studies of mesoscale eddy parameterization

(Welander 1973; Marshall 1981). If the coefficient is of

negative sign a diffusive parameterization cannot be

used, since it would be both mathematically and

physically incorrect. The sign of this coefficient in a

zonal barotropic channel is the topic of the present

paper. We have demonstrated that if transient eddies

are adequately described as effective PV diffusion,

then the mean PV diffusivity over the domain k0 must

FIG. 3. As in Fig. 2, but for (top) c1 5 300m and d15 300m (case 2) and k05 (second row) 0,

(third row) 400, and (fourth row) 800m2 s21.
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be positive in eastward flows. This result comes out of

the balance of the zonal momentum and kinetic energy:

because of the parameterization, a new term appears in

these equations with the physical sense of a topo-

graphic form stress for unresolved scales. The main

zonal momentum balance is between wind stress [the

LHS in Eq. (30)], topographic form stress exerted by

the mean flow, and topographic form stress exerted by

parameterized eddies.

The integral constraint on meridional fluxes of eddy

QGPV known as the theorem of Bretherton in the case

of a flat-bottom channel is generalized for barotropic

zonal flow under variable-bottom relief. This expres-

sion allows us to provide a clear physical sense for the

bk term, as a topographic form stress exerted by pa-

rameterized eddies.

We introduce a new integral measure D of the rough-

ness of the bottom topography, which is the rms of to-

pographic slope. The best-fitting curve representing the

relationship between zonal transport and D is of hyper-

bolic type with a large increase of the transport whenD is

small and decreasing and a small decreasewhenD is large

and increasing (Fig. 8).

In the kinetic energy balance, the only positive

contribution comes from the wind stress fE, tg, which
is balanced by eddy diffusion of potential vorticity

fE, kg, eddy diffusion of QGPV linked with topog-

raphy fE, hg, bottom dissipation fE, �g, and a sink

of energy due to topographic form stress by pa-

rameterized eddies fE, bg. This correctly explains

the mechanism of flow deceleration by eddies as-

sociated with nonzero bottom topography, and it

FIG. 4. As in Fig. 2, but for (top) c2 5 300m and d5 5 300m (case 3) and k0 5 (second row) 0,

(third row) 100, and (fourth row) 200m2 s21.
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corresponds to downgradient QGPV eddy fluxes in

eastward flow. Note that the topographic form stress is

the main mechanism balancing the wind stress in the

Antarctic Circumpolar Current (Munk and Palmén 1951;

McWilliams et al. 1978; Ivchenko et al. 1996; Stevens

and Ivchenko 1997; Ivchenko et al. 2008). Provided the

diffusion parameterization of eddy PV fluxes holds

[i.e., provided Eq. (9) is valid] then the deceleration

mechanism of topographic form stress ensures k0 . 0

for eastward (ACC like) flows. Another result of our

study is that k0 is also constrained to be less than

kmax 5 (pt0)/(4bH), because fE, tg2 fE, bg must be

positive [Eq. (51)]. However, for any given choice of

the prescribed wind stress and other geometrical

and geophysical parameters k0 is further constrained

(i.e., k0 , keff
max ,kmax). In the cases considered we

found kmax , (pt0)/(4bH) 5 1.12 3 103m2 s21. The

individual values of keff
max were 4.7 3 102, 8.5 3 102, and

FIG. 5. (top) Zonal transport (Sv) as a function of k0 (m
2 s21). (middle) Components of the

domain-averaged energy budget fE, tg, fE, bg, fE, kg, fE, hg and fE, �g (m2 s23) as functions

of k0 (m
2 s21). (bottom) Domain-averaged kinetic energy EU and EV (m2 s22) as functions of k0.

All panels represent case 1: bottom topography c3 5 300m.
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FIG. 6. As in Fig. 5, but for case 2: bottom topography c1 5 300m and d15 300m.
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FIG. 7. As in Fig. 5, but for case 3: bottom topography c2 5 300m and d5 5 300m.
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2.13 102m2 s21 (for cases 1, 2, and 3), respectively (see

middle panels of Figs. 5, 6, and 7).

Only modes represented in the bottom topography

contribute to the amplitude of the streamfunction an
and bn [see Eqs. (47) and (48)]. Since the modulus of

the amplitudes cn and dn of the Fourier topographic

modes are finite and limn/‘ an 5 limn/‘ bn 5 0, one

can interpret this as a diminishing contribution of

high-frequency modes in topography to mean flow

and topographic form stress. This agrees with nu-

merical experiments by Treguier and McWilliams

(1990), where they demonstrated that an isolated

bottom topography feature of large spatial scale in the

path of the ACC generates form stress more efficiently

than randomly distributed small-scale topography with

the same rms height. They also noted that the domain-

averaged topographic form stress is dominated by the

contribution from large-scale topography. The authors

used a baroclinic QG model; however, it is plausible

that a barotropic model would produce qualita-

tively similar results regarding the influence of bottom

topography. Note also that the eddy field in our model

would be damped (k0 / 0) in the case where b / 0,

since kmax / 0.

Constantinou and Young (2017) demonstrated an

‘‘eddy saturation’’ regime, that is, insensitivity of the

zonal transport to large changes in the wind stress

(provided the wind stress is over a threshold value),

in a barotropic configuration. To study eddy satura-

tion in our model we need to choose a value of k0 for

each type of topography, since the zonal transport

depends strongly on k0. In this context, the appropri-

ate k0 could be estimated using eddy-resolving GCM

experiments. For a given wind stress eddy-resolving

model experiments can be used to evaluate the asso-

ciated transport, and the relationship between trans-

port and k0 (similar to Fig. 9) can then be used to

obtain an appropriate k0. However, this is beyond the

scope of the present paper.

In summary, our study demonstrates conclusively

that if QGPV diffusion is a good approximation,

then the mean QGPV diffusivity must be positive.

Our results will contribute to further understand-

ing and parameterization of the effects of mesoscale

eddies in more realistic ocean and climate models in

the future.
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APPENDIX

Parameters and Further Details of the Solution
Method

In developing solutions for an and bn [Eqs. (47) and

(48)] the new parameters introduced are listed here:
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Equations (47), (48), and (49) together constitute the

desired analytic solution. However, because of the

mathematical complexity we are unable to obtain explicit

solutions for U in terms of the external parameters. In-

stead we apply an inverse solution method. We seek

values of U that are consistent with the specified wind

stress t0 (e.g., 10
24 m2/s2 in the standard case). We make

an initial guess of U and substitute this in Eqs. (47) and

(48) to give initial estimates of an and bn. These estimates

are then substituted in Eq. (49) to obtain a corresponding

value of t0. In general the initial guess does not yield the

desired value of t0. We therefore increase/decrease the

guessed value of U and repeat the procedure until we

find the value of U that yields the desired value of t0 (to

within 0.1%) (see Fig. A1). To determine the relationship

between k0 and U for a given wind stress, the above

procedure is repeated for a variety of choices of k0.
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