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ABSTRACT4

The question of whether the coe�cient of di↵usivity of potential vorticity by mesoscale5

eddies is positive is studied for a zonally reentrant barotropic channel using the quasi-6

geostrophic approach. The topography is limited to the first mode in the meridional direction7

but is unlimited in the zonal direction. We derive an analytic solution for the stationary8

(time-independent) solution. New terms associated with parameterized eddy fluxes of po-9

tential vorticity appear both in the equations for the mean zonal momentum balance, and10

the kinetic energy balance. These terms are linked with the topographic form stress exerted11

by parameterized eddies. It is demonstrated that in regimes with zonal flow (analogous to12

the Antarctic Circumpolar Current), the coe�cient of eddy potential vorticity di↵usivity13

must be positive.14
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1. Introduction15

Mesoscale eddies are a very important element of the global ocean since they usually16

account for the main peak in the kinetic energy spectrum (Kamenkovich et al. 1986;17

McWilliams 2008; Wunsch and Stammer, 1995). This means that ocean models have to18

either resolve or parameterize them. To resolve the mesoscale, horizontal grids in mod-19

els must be much smaller than the internal Rossby radii of deformation. Improvements in20

computing capability (both memory and speed) allow us to run global models with high21

resolution. However weak stratification in the polar regions and the associated small in-22

ternal Rossby radii (2-3km) still preclude adequate resolution to explicitly resolve eddies in23

these areas. Another significant problem is the appearance of strong internal variability with24

increasing resolution. Small disturbances can results in energetic noise, which can only be25

removed by averaging over ensembles of numerical experiments; for example the UK Met26

O�ce routinely runs ensembles of 10 members for decadal predictions and 42 members for27

seasonal prediction (Smith et al. 2007). Rather than employing an ensemble of high reso-28

lution model simulations to realistically represent eddies and their e↵ects on the mean flow,29

another approach is to utilize lower resolution models and include a parameterization of the30

important e↵ects of the eddies on the large scale circulation. It is very likely that mesoscale31

eddy parameterization “will be needed for some decades into the future” (Bachman and32

Fox-Kemper 2013).33

Parameterization of mesoscale eddies is important not only for practical reasons (reduced34

computational expense), but also for theoretical reasons: a physically correct parameteriza-35

tion allows us to better understand the dynamics of eddy-eddy and eddy-mean flow interac-36

tions, i.e. fundamental parts of geophysical fluid dynamics. There have been many studies37

devoted to this problem, for example: Green (1970); Welander (1973); Marshall (1981);38

Ivchenko (1984), Gent and McWilliams (1990); Ivchenko et al. (1997); Killworth (1997);39

Treguier et al. (1997); Olbers et al. (2000); Wardle and Marshall (2000); Olbers (2005);40

Eden (2010); Marshall and Adcroft (2010); Ringler and Gent (2011); Marshall et al. (2012);41
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Ivchenko et al. (2013), (2014(a)), (2014(b)); and many others.42

The most popular approach to parameterization is use of the so-called di↵usive parame-43

terization, i.e proportionality of eddy fluxes of a property A to its mean gradient:44

hA0v0j i = �K
@hA i
@ xj

, (1)

where vj is the velocity component, xj is a spatial coordinate, the h . i denotes some averaging,45

and primes mark eddy components (deviations from that average). K is the coe�cient of46

transfer, in principle a tensor, but for simplicity here assumed to be a scalar. The di↵usive47

parameterization should only be applied for a conservative property.48

There has been much interest in applying a di↵usive parameterization to potential vor-49

ticity (PV) (Green 1970; Welander 1973; Marshall 1981). Importantly, if we use a di↵usive50

parameterization of potential vorticity we do not need to separately parameterize eddy mo-51

mentum and buoyancy fluxes, because they are already included in the eddy flux of potential52

vorticity. While the parameterization in terms of PV is well suited to approximations such53

as the quasigeostrophic formulation, primitive equation models widely used today are for-54

mulated in terms of the momentum equations and do not lend themselves as easily to a55

di↵usive parameterization of PV.56

Using a di↵usive closure of eddy PV fluxes requires an integral constraint for the mo-57

mentum budget known as the theorem of Bretherton to be introduced (Bretherton 1966;58

McWilliams et al. 1978; Marshall 1981) (see Section 3). Some studies (Marshall 1981;59

Ivchenko 1984; Ivchenko et al. 1997; 2013; 2014a,b; Olbers et al. 2000) satisfy the momen-60

tum constraint by a suitable choice of di↵usivity coe�cient, and others by inclusion of a61

so-called “gauge” term (Eden 2010).62

McWilliams et al.(1978) and McWilliams and Chow (1981) demonstrated sharpening of63

zonal flow by PV mixing in an eddy resolving quasigeostrophic zonal channel model. It64

was further demonstrated that using a di↵usive parameterization of quasigeostrophic PV65

(QGPV) in a zonal channel can result in sharper and stronger currents (Ivchenko 1984;66

Ivchenko et al. 1997; 2014b), provided a spatially variable positive di↵usion coe�cient is67
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specified, with local minima in regions occupied by jets. Dritschel and McIntyre (2008) and68

Wood and McIntyre (2010) also performed theoretical studies of sharpening of zonal flows69

by PV di↵usion.70

Application of a di↵usive parameterization of PV in a zonal reentrant channel (with71

application to the Antarctic Circumpolar Current, ACC) has been studied in many papers72

both for domains with a flat bottom and domains with bottom topography included, but73

only for the zonally averaged case (Marshall 1981; Ivchenko 1984; Ivchenko et al. 1997; 2013;74

2014a, b). Introduction of bottom topography creates a number of di�cult complications75

(see Constantinou and Young, 2017).76

There are two major questions associated with application of a di↵usive parameterization77

of PV in the presence of bottom topography:78

1) Is the eddy PV di↵usivity coe�cient K guaranteed to be positive? K varies in space79

and time. Probably its local value in some locations could occasionally be negative. How-80

ever, can we be sure that the mean (averaged) value of K is positive? Rhines and Young81

(1982) suggested that the eddy flux of PV is downgradient (i.e. positive eddy PV di↵usiv-82

ity) in an integral sense. There are not many analytical works that constrain the sign of83

PV di↵usion. Abernathey et al. (2013) made an analysis based on a primitive equation84

model for a circumpolar channel. However, following Treguier et al. (1997) they calculated85

certain quasigeostrophic quantities, such as QGPV flux, background QGPV gradient and86

corresponding di↵usivity, using zonal averaging. The QGPV di↵usivity is positive nearly87

everywhere, except near the surface, where the QG approximation is invalid. Birner et al.88

(2013), on the other hand, reveal a localized region of significant up-gradient eddy PV fluxes89

on the poleward side of the subtropical free atmospheric jet core during the winter and90

spring seasons of both hemispheres. However, Birner et al. (2013) have noted that the net91

PV fluxes are down-gradient when averaged over both the equatorward and poleward flanks92

of the jet.93

In this study an analytical solution is provided which supports PV di↵usivity being94
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positive (in a domain-averaged sense). The assumption of a spatially constant eddy PV95

di↵usivity is clearly unrealistic, however, it leads a mathematically tractable problem and96

the solution provides insights which will remain applicable in the more general case.97

2) How does one deal with the rotational (non divergent) part of eddy PV flux? Eddy98

fluxes of PV comprise a rotational component, and a divergent component: any vector E99

can be separated into divergent E

div

and rotational E

rot

parts (see next section).100

The rotational component of the eddy flux of potential vorticity is likely to be substantial101

for a zonal channel with bottom topography (Sinha 1993). However the rotational part does102

not directly influence the flow, because the divergence of the eddy flux appears in the PV103

equation and so the contribution of the rotational component is zero. The rotational part104

can, however, influence the flow by influencing the coe�cient K via the equation of eddy105

potential enstrophy (see Section 2).106

How can we determine the sign of K for eddy di↵usion of PV? One suggestion would107

be to use the results of eddy resolving experiments with oceanic GCMs. We can calculate108

hQ0v0j i (Q is PV), and @hQ i/@ xj directly from model simulations, and then determine109

K = �
hQ0v0j i

@<Q>
@ x

j

. (2)

However, as already noted, the rotational part of hQ0v0j i must be excluded from this cal-110

culation. A lack of inherited boundary condition makes separation of eddy fluxes of PV111

into divergent and rotational components for a finite domain with non-periodic boundary112

conditions non-unique, as shown by Fox-Kemper et al. (2003).113

Separation of the eddy PV flux into divergent and rotational components requires a spe-114

cific boundary condition. Maddison et al. (2015) defined the divergent component of the115

PV flux by introducing a streamfunction tendency (“force function”). This is equivalent to116

a zero tangential component boundary condition (zero normal flux), and hence is not com-117

pletely general. Mak et al. (2016) introduced a new method for diagnosing eddy di↵usivity118

in a gauge-invariant fashion, which is independent of rotational flux components. This was119

achieved by seeking to match diagnosed and parameterized eddy force functions through an120
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optimisation procedure. The method was applied to a multi-layer QG ocean gyre exper-121

iment and it was demonstrated that the mean PV di↵usivity over the horizontal domain122

is positive, however, robust locally negative di↵usivity takes place even in the absence of123

rotational fluxes.124

An alternative possibility is to determine the sign of the coe�cient theoretically. In this125

study we derive an analytical solution and construct an expression for kinetic energy, inte-126

grated over the whole domain and use physical constraints on kinetic energy to demonstrate127

that the sign of K, interpreted as a domain-averaged PV di↵usivity, must be positive. This128

is the first time that an analytical solution using a di↵usive parameterization of PV has been129

derived for a barotropic quasigeostrophic zonal channel flow above zonally varying bottom130

topography. It is not, however, our intention to compare the relative merits of alternative131

eddy parameterizations.132

The remainder of this paper is organised as follows. In Section 2 we present the basic133

equations for quasigeostrophic barotropic flow and equations for a zonal channel geometry134

with bottom topography. In Section 3 we formulate the generalized theorem of Bretherton.135

In Section 4 we demonstrate an analytical solution for zonal flow, construct an expression136

for kinetic energy and present results of our calculations for di↵erent types of topography.137

Section 5 consists of discussion and conclusions.138

2. Equations for zonal channel geometry including eddy139

parameterization140

The equation for barotropic quasigeostrophic vorticity can be written as:141

@ q

@ t
+ J( , q) = T + FB + FH , (3)

where q and  are the quasigeostrophic potential vorticity (QGPV) and streamfunction,142

respectively. Velocity v = (u, v) is related to the streamfunction by u = � @
@ y
 and v = @

@ x
 ,143
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where u and v are the velocity components in the zonal (x) and meridional (y) directions.144

J(A, B) is the Jacobian operator: J(A, B) = �@ A
@ y

@ B
@ x

+@ A
@ x

@ B
@ y

. T , FB, and FH are the145

external forcing (wind stress), bottom and horizontal friction, respectively.146

The QGPV, q, in barotropic flow represents the sum of relative vorticity, planetary147

vorticity and the topographic term given by:148

q = r2 + f +
f0

H
B , (4)

where Coriolis parameter f = f0 + � y. f0 and � denote its value at a reference latitude149

and its meridional gradient respectively. B is the deviation of bottom topography from a150

constant depth H.151

Bottom topography substantially complicates the dynamics. The streamfunction exhibits152

non-zonal meanders near topographic obstacles (McWilliams et al., 1978) and therefore it is153

necessary to perform spatial averaging not for the whole zonal length, but for only part of154

it. The averaged equations depend on both zonal and meridional directions, which creates155

much more mathematical complexity compared to the fully zonally averaged case, but they156

remain analytically tractable as we will demonstrate.157

In order to understand eddy dynamics it is important to consider the equation for quasi-158

geostrophic eddy potential enstrophy (QGEPE). To derive the QGEPE equation, we define159

a time- and partial zonal average of an arbitrary variable, denoted by an overbar, A and a160

deviation from this average, denoted by a superscript prime A0 = A� A:161

A(x, t) =
1

2�xT

Z t+T

t

Z x+�
x

x��
x

A(x0, t0)dx0 dt0 , (5)

where �x is the average scale for zonal coordinate, and T is the averaging time. Note, that162

the partial zonal and time average is a more appropriate type of average for the zonal channel163

domain with variable topography than a time only average, since bottom topography being164

time-independent cannot contribute to the eddy topographic form stress in the case of a165

time average (see Section 3).166
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We average equation (3), subtract the resulting equation from (3), multiply by q0 and167

average once again to obtain:168

1

2

@ q0 2

@ t
= 0 = �1

2
div(vq0 2)� v

0 q0 · rq � 1

2
div(v0 q0 2) + T 0 q0 + F 0

B q0 + F 0
H q0 . (6)

Equation (6) is a well known equation for quasigeostrophic eddy potential vorticity QGEPE169

(see e.g. Vallis 2006). The terms on the RHS of equation (6) represent redistribution by the170

mean flow, generation, redistribution by eddies, input from external sources and dissipation171

by bottom and horizontal friction, of QGEPE, respectively.172

If we now specify the domain as a zonal reentrant channel, and integrate (6) over the whole173

domain S, then the terms responsible for redistribution (i.e. the first and the third terms174

on the RHS) drop out because of boundary conditions on the solid walls and periodicity.175

A similar equation was derived by Constantinou and Young (2017). We assume that the176

external forcing is stationary (T 0 = 0), and therefore the 4th term on the RHS is zero, which177

leads to:178 Z

(S)

1

2

@ q0 2

@ t
dS = 0 = �

Z

(S)

v

0 q0 · rqdS +

Z

(S)

(F 0
B q0 + F 0

H q0)dS . (7)

Equation (7) represents the balance between the generation of the QGEPE (the first term on179

the RHS) and dissipation by bottom and horizontal friction. The dissipation terms measure180

the integral loss of enstrophy, therefore the integral of the generation should be positive.181

Numerical experiments with eddy resolving models demonstrate that the generation term182

locally takes both signs (Sinha 1993; J-O. Wol↵, personal communication). However the183

integral over the domain must be positive.184

The eddy flux v

0 q0 comprises two parts: the divergent flux E

div

and rotational flux E

rot

:185

v

0 q0 = E

div

+ E

rot

, (8)

where curlz(Ediv

)= 0, div(E
rot

)= 0, curlzEdiv = @E

div

|
y

@ x
� @E

div

|
x

@ y
.186

The traditional di↵usive parameterization of QGPV can be written as:187

v

0 q0 = �krq , (9)
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and the term representing generation of QGEPE in equations (6,7) is:188

v

0 q0 · rq = �k|rq|2 , (10)

where k is the coe�cient of eddy di↵usivity of QGPV.189

The equation for mean QGPV (3) for the stationary (time-independent case) takes the190

following form :191

u
@q

@ x
+ v

@q

@ y
+

@u0q0

@ x
+

@v0q0

@ y
=

1

H
curlz⌧ � ✏ curlzv . (11)

We specify QGPV input due to surface wind stress in the traditional manner: T = 1
H

curlz⌧ ,192

where ⌧ represents tangential wind stress divided by the water density, and FB = �✏ curlzv,193

bottom friction, where ✏ is a coe�cient of bottom friction. Horizontal friction is disregarded.194

Using (9), equation (11) becomes:195

u
@q

@ x
+ v

@q

@ y
� @

@ x
k

@q

@ x
� @

@ y
k

@q

@ y
=

1

H
curlz⌧ � ✏ curlzv . (12)

We proceed to solve (12) by expanding each of the variables into a Fourier series. We assume196

that the bottom topography has meridional length-scale comparable with the width of the197

channel L and retain only the first term in the Fourier decomposition of topography in the198

meridional direction. In the zonal direction we allow a variety of length-scales for bottom199

topography, both large and small scales and impose no limit to the number of terms in the200

Fourier series. Such detailed representation in the zonal direction is important for zonal201

flows, because it allows better representation of the non-viscous bottom form stress, which202

is important for balancing the external forcing (wind stress) and results in a substantial203

decrease of the zonal transport, compared with the flat bottom case (Munk and Palmen204

1951; McWilliams et al. 1978; Wol↵ et al. 1991).205

We assume no mass flux through the solid walls:206

v|y=0,L = 0 . (13)

We also assume no QGPV flux through the walls:207

v0q0|y=0,L = �k
@q

@ y
= 0 . (14)
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Condition (14) can only be satisfied if k is zero on the solid walls, because of the presence208

of the planetary vorticity gradient � in the expression for the meridional gradient of QGPV209

i.e. on the boundaries @q/@ y cannot be zero therefore k must be zero. Hence, we specify210

the following form of the coe�cient k:211

k = k0{1 + e(�L/�) � e(�y/�) � e(y�L)/�)} , (15)

where � ⌧ L and k0 is a constant. k is almost constant in the domain, but quickly drops212

to zero on the side walls (see Fig. 1). The di↵erence between k and k0 at any point of the213

domain will be small by choosing � to be small enough, except on the solid boundaries,214

where k = 0.215

3. Generalized theorem of Bretherton216

In a zonal channel with a flat bottom the total (domain averaged) meridional eddy fluxes217

of QGPV must be zero, to satisfy the mean zonal momentum budget (Bretherton 1966).218

This statement, known as the theorem of Bretherton (McWilliams, et al. 1978), provides an219

integral constraint for coe�cients of QGPV di↵usivity (Marshall 1981, Ivchenko 1984). In220

a zonal channel with variable bottom topography this statement can be generalized using221

zonal and time averaging (Ivchenko et al. 1987b; Ivchenko et al. 2013, 2014a), which allows222

us to include an important topographic form stress in the mean zonal momentum balance.223

In this study we find a solution depending on both meridional and zonal coordinates and224

therefore use partial zonal and time averages (5) . Let us first calculate the eddy QGPV flux225

by multiplying q (see (4)) by v0, taking an average and integrating over the whole basin:226

Z L

0

Z L
x

0

v0qdx dy =

Z L

0

Z L
x

0

{v0(@ v

@ x
� @ u

@ y
) + fv0 +

f0

H
v0B}dx dy , (16)

where Lx is the zonal length of the channel. The first term in the RHS of (16) can be227

transformed, using the continuity equation:228

Z L

0

Z L
x

0

v0(
@ v

@ x
� @ u

@ y
)dx dy =

Z L

0

Z L
x

0

(
1

2

@ v0 2

@ x
� @ u0 v0

@ y
� 1

2

@ u0 2

@ x
)dx dy . (17)
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The first and the third terms in the RHS of (17) drop to zero because of periodicity, and the229

second term drops to zero because there is no flux through the solid walls. It is obvious that230

the second term in the RHS of (16) is zero, so using v0q = v0q0 equation (16) can be written231

as:232

Z L

0

Z L
x

0

v0q0dx dy =

Z L

0

Z L
x

0

f0

H
v0B0dx dy . (18)

This means that redistribution of QGPV by eddies (LHS) is balanced by topographic form233

stress (RHS), exerted by eddies.234

If we introduce a di↵usive parameterization (9) together with the expression for k (15)235

into the LHS of (18) we obtain:236

Z L

0

Z L
x

0

v0q0dx dy = �� k0LxL{1 + e(�L/�) � 2�(1� e(�L/�))

L
} . (19)

The expression in curly brackets is close to unity. Therefore (18) becomes:237

�� k0 =
f0

H

1

LxL

Z L

0

Z L
x

0

v0B0dx dy . (20)

The � k0 term appeared in studies by Welander (1973), Killworth (1997), Eden (2010) and238

many others. Equation (20) provides a clear physical explanation of this term: eddy topo-239

graphic form stress is exerted by parameterized eddies. Note that using only time averaging240

without partial zonal averaging would lead to the eddy flux associated with the topographic241

part of the QGPV dropping to zero (bottom topography is time independent, hence the RHS242

of (20) is zero) and this would imply that the coe�cient k0 has to be zero.243

4. Analytical solution for zonal flow244

a. Model setup245

We now assume that the solution for equation (12) consists of a constant zonal flow with246

(unknown) velocity U and streamfunction � multiplied by the first meridional Fourier mode:247

 = �Uy + �(x) sin(⇡ y/L) . (21)
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We follow Charney et al. (1981) who used a similar technique for an atmospheric flow in248

a zonal channel. We represent the topographic term B in the form:249

B = h(x) sin(⇡ y/L) . (22)

The net zonal transport across the channel depends only on U , because �(x) sin(⇡ y
L

)250

does not a↵ect the net transport, although it does a↵ect the zonal velocity locally because251

of topography and di↵usion of the QGPV. We specify the surface windstress, ⌧ = (⌧x, ⌧y),252

with ⌧y = 0, and let the zonal component of wind stress be proportional to the sine of253

latitude with the maximum value in the centre of the channel and zero on the walls, i.e.254

⌧x = ⌧0 sin(⇡ y
L

).255

Using (21-22) the velocity and the gradient of potential vorticity can be easily calculated.256

So, equation (12) after transformation can be rewritten in this form:257

sin(⇡ y/L){U�xxx � U
⇡2

L2
�x + ��x +

f0

H
Uhx

258

�k�xxxx + k
⇡2

L2
�xx � k

f0

H
hxx} +

@

@ y
(v0 q0)

259

+ sin(⇡ y/L) cos(⇡ y/L){�⇡

L
��xxx � (

⇡

L
)
f0

H
(�hx � �x h)

260

+
⇡

L
�x�xx} = � ⌧0⇡

HL
cos(⇡ y/L)� sin(⇡ y/L)[✏�xx � ✏ (

⇡

L
)2�] . (23)

Subscripts x (�x, hx and so on) mark zonal derivatives, and the number of subscripts corre-261

spond to the derivative order: �x= @ �/@ x , �xx= @2�/@ x2, and so on. In equation (23)262

the term of meridional gradient of the meridional flux of eddy QGPV is retained without263

transformation since it simplifies after a meridional integration which we carry out in Section264

4b.265
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b. Momentum balance266

In order to simplify the QGPV equation and remove the y-dependence we integrate (23)267

meridionally between 0 and L, resulting in268

U(�xxx �
⇡2

L2
�x) + U

f0

H
hx + �x� � k0[�xxxx �

⇡2

L2
�xx +

f0

H
hxx]

269

{1� ⇡2�2(1 + e(�L/�))

(L2 + ⇡2�2)
} + ✏�xx � ✏(

⇡

L
)2� = 0 . (24)

To derive this equation we assume that the eddy flux through the solid walls is zero v0 q0 = 0270

(boundary condition (14)). We also make use of the property that terms proportional to271

sin(⇡ y
L

) cos(⇡ y
L

) integrate to zero.272

We can obtain a further useful relationship by returning to (23), multiplying by cos(⇡ y
L

)273

and integrating meridionally between the solid boundaries. There is an important term274

R L

0 cos(⇡ y/L) @
@ y

(v0 q0)dy, which after substitution of (9) and (15), becomes:275

Z L

0

cos(⇡ y/L)
@

@ y
k

@q

@ y
dy = 2� k0{1 + e(�L/�) � ⇡2�2(1 + e(�L/�))

(L2 + ⇡2�2)
} . (25)

So equation (23) multiplied by cos(⇡ y
L

) and integrated meridionally yields:276

��xxx � �x�xx +
f0

H
(�hx � �x h) + 3� k0{1 + e(�L/�)

277

�⇡2�2(1 + e(�L/�))

(L2 + ⇡2�2)
} =

3⌧0⇡

4H
. (26)

Note that because � ⌧ L the expressions in the curly brackets in (24-26) are very close to278

unity, so we approximate them as unity with negligible error.279

We integrate (26) with respect to x between 0 and Lx to eliminate the zonal dependence280

and elucidate the zonal momentum balance:281

Z L
x

0

{��xxx � �x�xx +
f0

H
(�hx � �x h)}dx + 3� k0Lx =

3Lx⌧0⇡

4H
. (27)

It is easy to show that282

Z L
x

0

(��xxx � �x�xx)dx = 0 , (28)
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because of the periodicity of the channel. Also,283

Z L
x

0

(�hx)dx = �
Z L

x

0

(�x h)dx . (29)

Thus equation (27) can be rewritten as:284

3Lx⌧0⇡

8
= f0

Z L
x

0

(�hx)dx +
3� k0LxH

2
. (30)

Equation (30) describes the stationary momentum balance. On the LHS there is a contri-285

bution from wind stress. The first term on the RHS, i.e. f0

R L
x

0 �hx dx is the topographic286

form stress exerted by the mean flow, since it is an integral of the product of a pressure287

(equal to streamfunction times Coriolis parameter f0) and the zonal gradient of bottom to-288

pography. The second term on the RHS is a topographic form stress exerted by unresolved289

parameterized eddies on the bottom topography (see (20)).290

c. Energy balance291

We form the energy power integral by multiplying the y-integrated QGPV equation (24)292

with �(x) and integrate over x. After some manipulation we obtain:293

U
f0

H

Z L
x

0

(�hx)dx� k0

Z L
x

0

(�xx)
2dx� k0

⇡2

L2

Z L
x

0

(�x)
2dx + k0

f0

H

Z L
x

0

�xhx dx

294

�✏

Z L
x

0

(�x)
2dx� ✏

⇡2

L2

Z L
x

0

(�)2dx = 0 . (31)

Substitution of (30) into (31) after transformation yields an equation of balance of kinetic295

energy of the “perturbed” flow E = EU + EV , where296

EU =
1

LxL

Z L
x

0

Z L

0

(u� U)2

2
dxdy , (32)

297

EV =
1

LxL

Z L
x

0

Z L

0

v2

2
dxdy . (33)
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For a steady-state, the kinetic energy balance equation of the perturbed flow can be298

written as:299

{E, ⌧} = {E, k} + {E, h} + {E, ✏} + {E,�} . (34)

The terms in (34) are as follows:300

{E, ⌧} =
3⇡

8H
U⌧0 (35)

represents generation of kinetic energy by wind stress;301

{E, k} =
k0

Lx

Z L
x

0

[(�xx)
2 +

⇡2

L2
(�x)

2]dx > 0, (if k0 > 0) (36)

represents dissipation of energy by mixing of QGPV; and302

{E, h} = � k0

Lx

Z L
x

0

[
f0

H
�xhx]dx > 0 (37)

represents dissipation by QGPV mixing linked with bottom topography, and is positive303

because of conservation of QGPV. In the mainly eastward flow there is an equatorward (i.e.304

�x > 0) deflection if the motion is uphill ( hx > 0), and a poleward (i.e. �x < 0) deflection305

if the motion is downhill ( hx < 0). So, �f0

H

R L
x

0 �xhx dx > 0, since the Coriolis parameter306

is negative in the Southern Hemisphere. Note that the sign of this term is positive in the307

Northern Hemisphere as well, since not only is the Coriolis parameter of opposite sign, but308

the “equatorward/poleward” motions, are also reversed. The term309

{E, ✏} = +
✏

Lx

Z L
x

0

[(�x)
2 +

⇡2

L2
(�)2]dx > 0 (38)

represents dissipation by bottom friction. The last term,310

{E,�} =
3Uk0�

2
> 0(if k0 > 0), (39)

is proportional to U , k0 and �, and using (20) could be rewritten as311

{E,�} = �3

2
U

f0

H

1

LxL

Z L

0

Z L
x

0

v0B0dx dy , (40)
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and is a sink of kinetic energy due to topographic form stress exerted by parameterized312

eddies. A conceptually similar term was introduced by Carnevale and Frederiksen (1987) in313

their study of periodic flow on a �-plane. They consider how best to model the interaction314

of “small” scale (synoptic) flow features with large or basin scale features. Carnevale and315

Frederiksen (1987) emphasize the role of the integral invariants. They demonstrated that316

the rate of change of energy in the “small scales” is given by a term similar to the RHS of317

(40) (see the RHS of eq.(5.5) of the paper by Carnevale and Frederiksen 1987).318

The three terms {E, k}, {E, h} and {E,�} are proportional to k0 and represent dissipa-319

tion of energy only if k0 > 0. If k0 < 0 all these terms are physically incorrect.320

d. Analytical solution321

To obtain an analytical solution let us write �, and topography h(x) as Fourier series:322

� =
X

n

an cos(
2n⇡ x

Lx

) +
X

n

bn sin(
2n⇡ x

Lx

) , (41)

323

h =
X

n

cn cos(
2n⇡ x

Lx

) +
X

n

dn sin(
2n⇡ x

Lx

) , (42)

where an and bn are unknown constants, and cn and dn are constants relating to the pre-324

scribed topography. n is the index of each mode used in the Fourier expansion.325

Substituting (41) and (42) in the meridionally integrated QGPV equation (24) and equat-326

ing coe�cients of sin(2n⇡ x
L

x

) and cos(2n⇡ x
L

x

) results in two equations:327

an[UM (n) � �
2⇡

Lx

n]� bnN
(n) � cn U

f0

H

2⇡

Lx

n + dn k0
f0

H
(
2⇡

Lx

)2 n2 = 0 , (43)

328

�anN
(n) + bn[�UM (n) + �

2⇡

Lx

n] + cn k0
f0

H
(
2⇡

Lx

)2 n2 + dn U
f0

H

2⇡

Lx

n = 0 , (44)

where329

M (n) = (
2⇡

Lx

)3n3 +
2⇡3

L2Lx

n , (45)
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330

N (n) = k0(
2⇡

Lx

)4n4 + k0
4⇡4

L2L2
x

n2 + ✏ (
2⇡

Lx

)2n2 + ✏(
⇡

L
)2 . (46)

Solution of the two algebraic equations (43) and (44) yields:331

an =
S

(n)
0 + US

(n)
1 + U2S

(n)
2

R
(n)
0 + UR

(n)
1 + U2R

(n)
2

, (47)

332

bn =
1

N (n)
{UM (n)[S(n)

0 + US
(n)
1 + U2S

(n)
2 ]

R
(n)
0 + UR

(n)
1 + U2R

(n)
2

�
� 2⇡

L
x

n[S(n)
0 + US

(n)
1 + U2S

(n)
2 ]

R
(n)
0 + UR

(n)
1 + U2R

(n)
2

333

�Ucn
f0

H

2⇡

Lx

n + dn k0
f0

H
(
2⇡

Lx

)2 n2} . (48)

New parameters R
(n)
0 , R

(n)
1 , R

(n)
2 , S

(n)
0 , S

(n)
1 , S

(n)
2 , have been introduced. Their values can be334

seen in the Appendix.335

Coe�cients an and bn in expressions (47) and (48) still contain the unknown mean zonal336

velocity U . In order to find U we substitute Fourier series (41) and (42) in the zonal337

momentum balance equation (30). After some manipulation we obtain:338

⌧0 =
8f0

3Lx

X

n

n(andn � bncn) +
4� k0H

⇡
. (49)

The method of solution to obtain U is presented in the Appendix.339

The zonal flow is perturbed by the presence of topography and di↵usion of QGPV. In the340

case of a flat bottom, i.e. cn = dn = 0 the motion is unperturbed, since S
(n)
0 = S

(n)
1 = S

(n)
2 = 0341

(see (A4-A6)).342

This analytical solution is possible because only a single meridional component of the343

bottom topography B is retained. In the case of a more general expression of B it would be344

much more di�cult to obtain an analytical solution due to greatly increased mathematical345

complexity.346

The expressions for the unknowns an, bn and U in equations (47-49) constitute an ana-347

lytical solution for equation (23). There is no truncation error, since only the Fourier modes348
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represented in the bottom topography contribute. Note, that as long as the modulus of the349

amplitudes, cn, dn of the Fourier topographic modes are finite, then350

lim
n!1

an = lim
n!1

bn = 0 . (50)

We evaluate the solution for a number of cases with di↵erent topography and di↵erent351

k0 using parameter values relevant to the Southern Ocean: channel length Lx = 4 · 106m352

and width 106m; reference depth 5 · 103m; Coriolis parameter f0 = �10�4s�1 and �= 1.4 ·353

10�11m�1s�1; and ⌧0 = 10�4m2s�2. We illustrate the streamfunction for three cases: case354

1 specifies the topography as c3 = 300m; case 2 specifies c1 = 300m and d1 = 300m; case355

3 specifies c2 = 300m; d5 = 300m (see Figs. 2-4). Here and later the topographic Fourier356

coe�cients whose values are not explicitly stated are set to zero.357

All cases demonstrate eastward mean flow, with streamlines deflected by topographic358

features (see Figs. 2-4). In these cases the bottom topography and coe�cient k0 vary.359

Because they obstruct the flow, the topographic features (both the amplitude and length in360

the zonal direction) substantially a↵ect the net zonal volume transport (Figs. 5-7, upper361

panels). The streamfunctions for given topography look similar for di↵erent coe�cients,362

but not the total zonal transport, which decreases linearly from the case with k0 = 0 to the363

highest allowed coe�cient. As we demonstrate above, the coe�cient k0 must be positive and364

according to the kinetic energy balance (34) should be less than kmax= ⇡⌧0/(4� H), since365

{E, ⌧}� {E,�} > 0 . (51)

Under our selected parameters, ⇡⌧0/(4� H) = 1.12 · 103m2s�1. However, our solutions366

demonstrate that the actual maximum value keff
max is less than this, i.e.367

keff
max < kmax = ⇡⌧0/(4� H) (52)

(see the middle panels in each Fig. 5-7). This is because keff
max depends not only on (51) but368

on the other terms on the RHS of (34) as well.369
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Under prescribed topography the maximum transport corresponds to k0 = 0, which370

varies substantially (depending on topography). The highest transports are 300.5 Sv, 445.0371

Sv, and 115.0 Sv in cases 1-3, respectively.372

Being under the same external forcing (wind stress) the di↵erence in transport occurs373

because of di↵erent bottom topography in these cases. The main momentum sink is the374

topographic form stress. This term strongly depends on the amplitudes and wavenumbers375

of the non-zero Fourier modes making up the topography. In order to quantify this depen-376

dence we introduce a new integral measure D of the roughness of the topography (r.m.s. of377

(@ B/@ x)):378

D =

s
1

LLx

Z L

0

Z L
x

0

(
@ B

@ x
)2dxdy . (53)

Substituting (22) and (42) into (53) with an appropriate Fourier transformation we obtain:379

D =
⇡

Lx

sX

n

(n2(c2
n + d2

n)) . (54)

This integral scale of roughness is dimensionless and depends on the mode index n and the380

amplitude of the topography cn, dn. In Fig. 8 we plot points representing our calculations381

of transport for the same wind stress (⌧0 = 10�4m2/s2) and k0 = 0, but for the various382

realizations of bottom topography and a fitting curve which is seen to resemble a hyperbola.383

If D < 3 · 10�4 there is a large variation of transport for a small variation of D. Small values384

of D correspond to low amplitudes of topography together with small mode index n (i.e.385

smooth topography). When D > 3 · 10�4 there is an approximately linear relation between386

transport and D.387

All the terms on the RHS of equation (34) are positive (Figs. 5-7, middle panels) and388

contribute to balancing the source of kinetic energy ({E, ⌧}). When k0 = 0 there is a balance389

between generation of kinetic energy by wind stress and dissipation by bottom friction, i.e.390

{E, ⌧} = {E, ✏}.391

For small values of k0, the bottom friction dominates the other terms. However with392

increasing k0 the terms {E, h} and {E,�} increase, representing dissipation linked with393
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topography and the sink due to topographic form stress, respectively. These provide a394

substantial contribution to balancing the wind stress term. In all cases, the term {E, k},395

representing dissipation by QGPV mixing remains small. {E, k} is not directly linked with396

topography in contrast to {E, h}. The highest values of kinetic energy, E, and its components397

EU and EV occur when k0 = 0, and kinetic energy decreases with increasing k0 (see Figs.398

5-7, lower panels). The component EU may be higher than EV (cases 1 and 2) or lower (case399

3) depending on the details of the bottom topography.400

Increasing wind stress leads to increasing zonal transport (see Fig. 9). In case 3 for401

k0 = 0 a fivefold increase in wind stress amplitude ⌧0 = 5 · 10�4m2/s2 results in a factor402

3 increase in transport from 115.0 Sv to 338.3 Sv. Note however that the transport does403

not increase linearly with increasing wind stress: the sensitivity reduces by a factor 2 from404

⌧0 = 1.10�4m2/s2 to ⌧0 = 5.10�4m2/s2. Note, that this reducing sensitivity of the transport405

for high values of wind stress does not relate to eddy activity (recall we are considering the406

case k0 = 0). Constantinou and Young (2017) and Constantinou (2018) found barotropic407

eddy saturation, i.e. insensitivity of the transport to wind forcing in QG flow in a barotropic408

configuration. On the other hand Munday et al. (2013) demonstrated eddy saturation in a409

three dimensional baroclinic setting using an ocean-only general circulation model. It would410

be interesting to verify eddy saturation in our model with parameterized eddies. However411

the transport strongly depends on the value of k0 (Fig. 9). It would take additional e↵ort to412

find the best-fitting coe�cient k0 for each wind stress. One approach would be to perform413

eddy resolving GCM experiments with given wind stress. Based on values of transport taken414

from these eddy resolving experiments, we could use the relationship between transport and415

k0 (as in Fig. 9) to find the most realistic value of k0 for each wind stress and then verify416

eddy saturation in the parameterized model.417
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5. Discussion and Conclusions418

Mesoscale eddy parameterization is an important problem of physical oceanography help-419

ing to understand the dynamics of interactions of eddies with the mean flow. Moreover, even420

state of the art high resolution 1
12 degree global models do not resolve mesoscale eddies in421

high latitudes.422

There are various approaches to the problem of eddy parameterization. This study423

focuses on parameterization of eddy QGPV fluxes. PV and QGPV are conserved variables,424

which allows use of a di↵usion type of parameterization, contrary to momentum, which is425

not conserved and therefore a di↵usive parameterization is unsuitable in this case.426

Whether or not the e↵ective coe�cient of potential vorticity di↵usion is positive repre-427

sents the principal question in studies of mesoscale eddy parameterization (Welander 1973,428

Marshall 1981). If the coe�cient is of negative sign a di↵usive parameterization cannot be429

used, since it would be both mathematically and physically incorrect. The sign of this coe�-430

cient in a zonal barotropic channel is the topic of the present paper. We have demonstrated431

that if transient eddies are adequately described as e↵ective PV di↵usion, then the mean PV432

di↵usivity over the domain k0 must be positive in eastward flows. This result comes out of433

the balance of the zonal momentum and kinetic energy: because of the parameterization, a434

new term appears in these equations with the physical sense of a topographic form stress for435

unresolved scales. The main zonal momentum balance is between wind stress (the LHS in436

(30)), topographic form stress exerted by the mean flow, and topographic form stress exerted437

by parameterized eddies.438

The integral constraint on meridional fluxes of eddy QGPV known as the theorem of439

Bretherton in the case of a flat bottom channel is generalized for barotropic zonal flow under440

variable bottom relief. This expression allows us to provide a clear physical sense for the � k441

term, as a topographic form stress exerted by parameterized eddies.442

We introduce a new integral measure D of the roughness of the bottom topography,443

which is the r.m.s. of topographic slope. The best fitting curve representing the relationship444
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between zonal transport and D is of hyperbolic type with a large increase of the transport445

when D is small and decreasing, and a small decrease when D is large and increasing (Fig.446

8).447

In the kinetic energy balance, the only positive contribution comes from the wind stress448

{E, ⌧}, which is balanced by eddy di↵usion of potential vorticity {E, k}, eddy di↵usion of449

QGPV linked with topography {E, h}, bottom dissipation {E, ✏} and a sink of energy due450

to topographic form stress by parameterized eddies, i.e. {E,�}. This correctly explains the451

mechanism of flow deceleration by eddies associated with non zero bottom topography and it452

corresponds to downgradient QGPV eddy fluxes in eastward flow. Note that the topographic453

form stress is the main mechanism balancing the wind stress in the Antarctic Circumpolar454

Current (Munk and Palmen 1951; McWilliams, et al. 1978; Ivchenko et al. 1996; Stevens and455

Ivchenko 1997; Ivchenko et al. 2008). Provided the di↵usion parameterization of eddy PV456

fluxes holds (i.e. provided eq. (9) is valid) then the deceleration mechanism of topographic457

form stress ensures k0 > 0 for eastward (ACC-like) flows. Another result of our study is that458

k0 is also constrained to be less than kmax = (⇡⌧0/(4� H)), because {E, ⌧} � {E,�} must459

be positive (equation (51)). However, for any given choice of the prescribed wind stress and460

other geometrical and geophysical parameters k0 is further constrained (i.e. k0 < keff
max <461

kmax). In the cases considered we found kmax < ⇡⌧0/(4� H) = 1.12 ·103m2/s. The individual462

values of keff
max were 4.7 · 102m2/s, 8.5 · 102m2/s, and 2.1 · 102m2/s (for cases 1, 2 and 3),463

respectively (see middle panels of Figs. 5, 6 and 7).464

Only modes represented in the bottom topography contribute to the amplitude of the465

streamfunction an and bn (see (47)-(48)). Since the modulus of the amplitudes cn, dn of466

the Fourier topographic modes are finite, and limn!1 an = limn!1 bn = 0 one can inter-467

pret this as a diminishing contribution of high frequency modes in topography to mean468

flow and topographic form stress. This agrees with numerical experiments by Treguier and469

McWilliams (1990), where they demonstrated that an isolated bottom topography feature470

of large spatial scale in the path of the ACC generates form stress more e�ciently than ran-471
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domly distributed small-scale topography with the same r.m.s. height. They also noted that472

the domain-averaged topographic form stress is dominated by the contribution from large473

scale topography. The authors used a baroclinic QG model, however it is plausible that474

a barotropic model would produce qualitatively similar results regarding the influence of475

bottom topography. Note also, that the eddy field in our model would be damped (k0 ! 0)476

in the case where � ! 0, since kmax ! 0.477

Constantinou and Young (2017) demonstrated an “eddy saturation” regime, i.e. insen-478

sitivity of the zonal transport to large changes in the wind stress (provided the wind stress479

is over a threshold value), in a barotropic configuration. To study “eddy saturation” in our480

model we need to choose a value of k0 for each type of topography, since the zonal transport481

depends strongly on k0. In this context, the appropriate k0 could be estimated using eddy482

resolving GCM experiments. For a given wind stress eddy resolving model experiments can483

be used to evaluate the associated transport and the relationship between transport and k0484

(similar to Fig. 9) can then be used to obtain an appropriate k0. However this is beyond485

the scope of the present paper.486

In summary, our study demonstrates conclusively that if QGPV di↵usion is a good ap-487

proximation, then the mean QGPV di↵usivity must be positive. Our results will contribute488

to further understanding and parameterization of the e↵ects of mesoscale eddies in more489

realistic ocean and climate models in the future.490
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Appendix497

In developing solutions for an and bn (47-48) the new parameters introduced are listed498
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here:499

R
(n)
0 = �N (n) � 1

N (n)
� 2(

2⇡

Lx

)2n2 , (A1)

500

R
(n)
1 =

2

N (n)
M (n)� (

2⇡

Lx

)n , (A2)

501

R
(n)
2 = � 1

N (n)
M (n) 2 , (A3)

502

S
(n)
0 = � 1

N (n)
dn k0

f0

H
(
2⇡

Lx

)3n3� � cn k0
f0

H
(
2⇡

Lx

)2n2 , (A4)

503

S
(n)
1 =

1

N (n)
cn

f0

H
(
2⇡

Lx

)2� n2 +
1

N (n)
dn k0

f0

H
(
2⇡

Lx

)2M (n) n2 � dn
f0

H
(
2⇡

Lx

)n , (A5)

504

S
(n)
2 = � 1

N (n)
cn

f0

H
M (n)(

2⇡

Lx

)n .(A6)

Equations (47), (48) and (49) together constitute the desired analytic solution. However505

because of the mathematical complexity we are unable to obtain explicit solutions for U in506

terms of the external parameters. Instead we apply an inverse solution method. We seek507

values of U which are consistent with the specified windstress ⌧0 (for example 10�4m2/s2 in508

the standard case). We make an initial guess of U , substitute this in eq. (47) and (48) to509

give initial estimates of an and bn. These estimates are then substituted in eq. (49) to obtain510

a corresponding value of ⌧0. In general the initial guess does not yield the desired value of511

⌧0. We therefore increase/decrease the guessed value of U and repeat the procedure until512

we find the value of U which yields the desired value of ⌧0 (to within 0.1%) (see Fig. 10).513

In order to determine the relationship between k0 and U for a given windstress, the above514

procedure is repeated for a variety of choices of k0.515

516
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Fig. 2. Upper panel: Bottom topography (m) represented by c3 = 300m (case 1). Here and
in subsequent Figures the topographic Fourier coe�cients whose values are not explicitly
stated are set to zero. 2nd to 4th panels: streamfunction  , times reference depth H (Sv),
with k0 = 0, 200m2/s and 400m2/s, respectively.
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Fig. 3. Upper panel: Bottom topography (m) represented by c1 = 300m and d1 = 300m
(case 2). 2nd to 4th panels: streamfunction  , times reference depth H (Sv), with k0 =
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