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Abstract The transformations and transitions of organic matter into, through, and out of an ecosystem
must obey the second law of thermodynamics. This study considered the transition in the solid
components of the organic matter flux through an entire ecosystem. Organic matter samples were taken
from each organic matter reservoir and fluvial transfer pathway in a 100% peat-covered catchment (Moor
House National Nature Reserve, North Pennines, UK) and were analyzed by elemental analysis and bomb
calorimetry. The samples analyzed were as follows: bulk aboveground and belowground biomass; individual
plant functional types (heather, mosses, and sedges); plant litter layer; peat soil; and samples of particulate
and dissolved organic matter (POM and DOM). Samples were compared to standards of lignin, cellulose, and
plant protein. It was possible to calculate: enthalpy of formation (ΔHOM

f ); entropy of formation (ΔSOMf ); and
Gibbs free energy of formation (ΔGOM

f ) for each of the samples and standards. The increase (decreasing
negative values) in ΔGOM

f through the ecosystem mean that for all but litter production, the transformations
through the system must be balanced by production of low (large negative values) ΔGOM

f products, not
only CO2 or CH4 but also DOM. The change in ΔGOM

f down the peat profile shows that reaction of the soil
organic matter decreases or even ceases at depth and the majority of the reaction has occurred above 40 cm
below the surface. This approach represents a new objective way to test and trace organic matter
transformations in and through an ecosystem.

1. Introduction

Peatlands are the most important terrestrial carbon (C) store within the terrestrial biosphere. While they
occupy only a small percentage of the total land area (~3%, Rydin & Jeglum, 2013), peatlands store a dispro-
portionately large amount of carbon. It is estimated that 500 ± 100 GtC is stored in northern peatlands
(Gorham, 1991; Loisel et al., 2014; Yu et al., 2014), which is approximately equivalent to the total terrestrial
vegetation (Intergovernmental Panel on Climate Change, 2013).

The very existence of peatlands relies on the fate of organic matter, further that at least at some stage in the
past there has been a positive balance of carbon with respect to loss to atmosphere or the fluvial network,
which means organic matter has accumulated. Hence, the understanding of a peatland’s carbon budget is
a statement of the ecosystem’s very existence and future. The estimation of C budgets has been a common
research target. Initial approaches to C budgeting for peatlands were to measure the long-term accumulation
rate by dating the depth profile (e.g., Turetsky et al., 2004). Subsequent approaches then developed the bal-
ance of the contemporaneous gaseous fluxes—the net exchange of CO2 and the efflux of CH4 (e.g., Fleischer
et al., 2016, for earlier studies see compilation by Limpens et al., 2008) and then extended to include the flu-
vial losses of dissolved organic carbon (DOC), particulate organic carbon (POC), and dissolved carbon gases
such that complete contemporary carbon budgets of peatlands are now common (e.g., Billett et al., 2004;
Nilsson et al., 2008; Roulet et al., 2007; Worrall et al., 2003).

Approaches based on contemporary fluxes do consider the species of the carbon, nitrogen or oxygen entering
or leaving peat ecosystems and, although this can include the individual gaseous forms (e.g., N2O, CO2, or CH4),
it still means that certain carbon fluxes are not considered in any more detail than the lumped terms such as
DOC or POC without further characterization. The contemporary budgets that do exist consider different
types of peatland with different dominant vegetation types, different substrates (e.g., Leroy et al., 2017),
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and the impact of different physical and land management controls across a range of countries (e.g., United
Kingdom, Rowson et al., 2010; Germany, Tiemeyer et al., 2016; Sweden, Von Arnold et al., 2005; and Canada,
Nwaishi et al., 2016). However, even these detailed studies have dealt in lumped compositions (e.g., DOC or
DOM) or lumped controls, for example, change in water table or change in air temperature, but have not
considered the actual molecules transitioning into and through peatland, for example, CO2 is fixed as glucose
through photosynthesis, which is transformed into carbohydrates, lignin, etc.

The composition of organic macromolecules that would be present in peatland ecosystems (e.g., lignin) has
been considered by a number of approaches: coal petrology techniques such as rock-eval (e.g., Carrie et al.,
2012); colorimetric methods from UV/Vis spectroscopy (e.g., Blackford & Chambers, 1993); stable isotopes
(e.g., Jones et al., 2010); elemental ratios (e.g., C/N, Kuhry & Vitt, 1996); Fourier transform infrared spectro-
scopy (FTIR, e.g., Artz et al., 2008); and, pyrolysis gas chromatography mass spectrometry (Py GC-MS, e.g.,
Buurman et al., 2006). These approaches have commonly focused upon characterization of peat profiles
for the purpose of understanding humification (e.g., Zaccone et al., 2008) or paleo-historic reconstructions
(e.g., McClymont et al., 2011), but these studies were not used to understand the contemporary carbon
budget of a peatland. More recently. Moody et al. (2018) have used solid state 13C-NMR to give a molecular
budget for a peatland and so show that alkyl functional groups were selectively retained.

Penning de Vries et al. (1974) proposed that, on the basis of a study of biochemical pathways, it was possible
to understand and predict the energetic cost of biomass development from proximate analysis of the com-
position of that biomass, for example, given the proportion of macromolecules and biopolymers in a plant, it
would be possible to estimate the cost of production. Although the purpose of the approach proposed by
Penning de Vries et al. (1974) was to predict production values of biomass, it also meant that the amount
of CO2 produced during plant growth from, for example, root respiration, could be predicted. Proximate ana-
lysis requires a detailed compositional analysis of biomass and so McDermitt and Loomis (1981) provided an
alternative approach based upon elemental analysis of biomass. Williams et al. (1987) suggested that the ele-
mental analysis of McDermitt and Loomis (1981) was too costly or too difficult and proposed an approxima-
tion based upon the C/N ratio and the heat of combustion of the biomass. Subsequent advances in
technology mean that accurate characterization of the elemental composition of organic matter is now read-
ily available (e.g., Masiello et al., 2008). The proximate and elemental analytical approaches were only ever
applied to understand the development of biomass, but the stoichiometric and energetic constraints invoked
in these approaches apply to any biochemically mediated transition of organic matter. However, the ener-
getic constraint applied in these approaches have only considered enthalpy and not entropy.

Lovley and Goodwin (1988) used the calculation of Gibbs free energy (G) to constrain respiration pathways in
aquatic sediments. Beer and Blodau (2007) constrained the organic matter turnover in the catotelm of a peat
profile by considering the Gibbs free energy change (ΔG) of each possible anaerobic fermentation and
methanogenic reaction given the pore water conditions. Similarly, Boye et al. (2017) used the composition
of the soil pore water in floodplains to show that the system had become thermodynamically inhibited.
The approach of Beer and Blodau (2007), nor that of Boye et al. (2017), did not consider the stoichiometric
limits on any reaction and could work only because the catotelm was considered as a closed system with
respect to its pore water, which meant that only the aqueous equilibria could be considered. However,
changes in the solid components (e.g., soil organic matter), changes in the aerobic zone of peat, or changes
through the whole peat ecosystem were not considered, for example, the transfer of C from plant biomass
through litter to soil organic matter. Therefore, the aim of this study was to consider the change in Gibbs free
energy of formation (ΔGf) and of reaction (ΔGr), with the transfer of organic matter into and through a peat-
land, so as to understand the controls on organic matter accumulation.

2. Approach and Methodology

The approach taken in this study was to consider the change in Gibbs free energy with the fixation, transfor-
mation, and loss of carbon through a peatland. Beer and Blodau (2007), and later Boye et al. (2017), relied on
measuring the concentration of small organic acids in soil pore water and for these small organic acids (e.g.,
aminosugar) and the ΔGf of these small molecules calculated using standard results and the application of
the methods of LaRowe and Van Cappellen (2011). The approach of this study is to provide an alternative
approach by considering the solid phase, biomacromolecular components (e.g., plant organic matter) and
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assessing change between these components. The change in Gibbs free energy was considered by analyzing
the composition of the organic matter in a series of carbon pools and fluxes within the context of a known
carbon budget (Figure 1). The change in the Gibbs free energy was considered by the differences in the
Gibbs free energy of formation of each of the organic matters in reservoirs and fluxes in Figure 1. The

Gibbs free energy of formation (ΔGOM
f ) can be readily calculated from the difference between the enthalpy

and entropy of formation of the same organic matter:

ΔGOM
f ¼ ΔHOM

f � TΔSOMf (1)

where: ΔGOM
f = the Gibbs free energy of formation of organic matter (kJ/mol); ΔHOM

f = the standard enthalpy

of formation of organic matter (kJ/mol); ΔSOMf = the standard entropy of formation of organic matter (kJ/K/
mol); and T = absolute temperature of the reaction (K). In this study elemental analysis of carbon, hydrogen,
nitrogen, and oxygen of each pathway and flux in Figure 1 was used to calculate the entropy of formation of

the organic matter (ΔSOMf Þ. Bomb calorimetry was used to calculate the enthalpy of formation of the organic

matter (ΔHOM
f ) in each of the pathways and fluxes shown in Figure 1. The Gibbs free energy of formation was

then calculated using equation (1). The context for these thermodynamic parameters was then provided by
the carbon budget as measured by previous studies within the study catchment.

2.1. Study Site

The peatland ecosystem chosen for this study was the Trout Beck catchment, which is within the Moor House
National Nature Reserve, a terrestrial and freshwater site monitored as part of the UK Environmental Change
Network. The catchment has been well studied so this study could draw upon existing budgets for dry matter
(Forrest, 1971), carbon (Worrall et al., 2003, 2009), nitrogen (Worrall et al., 2012), phosphorus (Worrall et al.,
2016a), and energy (Worrall et al., 2015). The catchment is an 11.4 km2 blanket peat catchment in the head-
water of the River Tees (N54o41

0
18″W2o22

0
45″; Figure 2). The recent climate of the site has been summarized

by Holden and Rose (2011): between 1991 and 2006 the mean annual temperature was 5.8°C; air frosts were
recorded on 99 days in a year; the mean number of days with snow cover was 41, and the mean annual pre-
cipitation was 2,012 mm. The vegetation is dominated by Eriophorum sp. (cotton grass), Calluna vulgaris

Figure 1. Schematic diagram of organic matter pools and fluxes considered by this study, adapted from Worrall et al.
(2016b).

10.1029/2017JG003996Journal of Geophysical Research: Biogeosciences

WORRALL ET AL. 1865



(heather), and Sphagnum sp. (moss). This study considered the boundary of the processes and budgets to be
exported to the atmosphere and streams from the soils and biomass of the study catchment. For example,
DOM or POM export from the soil profile was included but not the further processing of that organic
matter within the receiving stream.

2.2. Sampling

Given the range of carbon pools and fluxes identified in Figure 1, the following sampling was carried out. The
peat profile was sampled at two locations roughly 10 m apart in active, deep peat within the Cottage Hill Sike
catchment; a peat core was taken to 1 m depth with a gouge auger at each location—this depth was chosen
to cover the entire depth of the acrotelm and into the catotelm at this site (Worrall et al., 2012). The collected
peat cores were sampled in 2-cm depth increments from 0 to 20-cm depth from the peat surface, then 5-cm
depth increments from 20-cm depth to 50 cm and then one sample taken between 95 and 100-cm depth.
Peat core samples were dried at 105°C overnight and checked for no further mass loss, and their bulk density
measured prior to further processing.

Vegetation samples were chosen to cover the three main plant functional groups—shrubs (dominantly C.
vulgaris, henceforward referred to as Calluna); grasses and sedges (dominantly Eriophorum spp., hencefor-
ward referred to as grass/sedge); and mosses (including Sphagnum spp., henceforward referred to as
mosses). The vegetation was collected from six quadrats (0.25 m2, 0.5 × 0.5 m) located in the Cottage Hill
Sike catchment. In three of the quadrats, the entire aboveground biomass was quantitatively recovered.
For the three other quadrats, the total aboveground biomass was collected but separated by functional
group. From within these quadrats, samples of litter and belowground biomass were recovered but not
quantitatively. To confirm the dry matter budget reported by Forrest (1971), quantitative biomass samples
were dried to 105°C and weighed so that an estimate of total aboveground biomass and the contribution
from the dominant functional plant groups could be estimated. Samples of the litter and belowground bio-
mass were not recovered quantitatively and were dried to 105°C. The dried samples were then homogenized
and powdered as described below. In this way we were able to consider bulk measures of the vegetation car-
bon pool (aboveground and belowground biomass) and assess the contribution of its components (plant
functional types—Calluna, grasses/sedge, and mosses). It would be expected that the aboveground biomass
would be a weighted average of its components.

Figure 2. Location of the study site used in this study.
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For dissolved organic matter (DOM) large-volume water samples (at least 25 L) were collected monthly from
the Cottage Hill Sike from October 2011 to December 2014—except for months where winter conditions pre-
cluded taking flowing water samples; 35 samples were collected over 38 months. On return to the laboratory,
the samples were allowed to settle with water tapped off from above the sediment layer and evaporated to
dryness to estimate the total dissolved solids concentration. By using settling as means of separation, no arbi-
trary filtration cutoff was applied; rather, this study defined DOM as being that component which was either
colloidal or truly dissolved.

From June 2013 to December 2014 the settled sediment from the same large volume samples used for
extraction of DOM samples was recovered as a sample of the particulate organic matter (POM). The sediment
was dried to 105°C (overnight and checked for no further mass loss) and retained for subsequent analysis.

Four standard materials were included in the analysis: lignin (Aldrich, CAS 8068–05-1), humic acid (Alfa-Aesar,
CAS 1415–93-6), cellulose (Whatman, CAS 9004–36-4), and protein (Sigma, CAS 100684–25-1). The lignin,
cellulose (taken as representative of polysaccharides, including hemicellulose), and protein comprise the
three largest components of plants found in a peatland system (McDermitt & Loomis, 1981).

The ash content of the samples was analyzed. A subsample of the biomass, litter, peat, DOM, and POM
collected was ashed at 550°C and the residual mass recorded. All subsequent analysis of peat, DOM, and
POM were corrected so that all elemental analysis are quoted on an ash-free basis.

2.3. The Enthalpy of Formation ΔHOM
f

� �
The enthalpy of formation was calculated from the measured heat of combustion using Hess’s law which
states

ΔHOM
f ¼ ΔHCO2

f þ ΔHH2O
f � ΔHOM

c (2)

where ΔHx
y = the standard enthalpy of y for compound x with y as either f for formation or c for combustion

and with x as OM for the organic matter and CO2 for carbon dioxide and H2O for water. Equation (2) follows
given the combustion reaction:

CαHβNOγ þ O2→αCO2 þ β
2
H2Oþ N2 (3)

where: α, β, and γ are stoichiometric constants given the formula for organic matter (OM) has been normal-
ized to the N content. The ΔHCO2

f = �393.5 kJ/mol and ΔHH2O
f = �285.8 kJ/mol, while ΔHfof O2 and

N2 = 0 kJ/mol (National Institute of Standards and Technology (NIST), 2017).

The ΔHOM
c was measured on the collected samples and standards using bomb calorimetry and the stoichio-

metry in equation (3) was derived from the elemental analysis of the collected samples. Alternative
approaches (Battley, 1999) were considered based upon Thornton’s rule (Thornton, 1917), which is a simple

correlation between ΔHOM
f and ΔHOM

c based upon correlations from simple organic compounds. However,
Thornton’s rule was only developed because elemental analysis of naturally occurring organic macromole-
cules, such as those of concern to this study, was not possible at the time.
2.3.1. Bomb Calorimetry
The gross heat value of the sampled organic matter was measured on a Parr 6200 bomb calorimeter. A sub-
sample of known mass, typically 1 g, had its moisture content raised back to approximately 4% by weight
before being combusted in the bomb calorimeter. The 4% moisture does not detract from the calorific value
but does aid the combustion process in the bomb and helps prevent sputtering of the sample during the
ignition process. The bomb calorimeter was calibrated and standardized on each run of samples using ben-
zoic acid. For the samples of DOM for which less than 0.5 g of sample was available, the sample was doped
with a known amount of the benzoic acid standard so that a complete combustion was achieved. For both
soil and vegetation samples the calorific value was measured in at least triplicate and adjustment made for
the measured ash content of the organic matter sample; in this manner the gross heat value as measured

by the bomb calorimeter is equal to the heat of combustion of the substance (ΔHOM
c ).

2.3.2. Elemental Analysis
Triplicate samples of all the collected samples (aboveground and belowground vegetation, litter, peat soil,
DOM, and POM), once dried to 105°C, were milled to a submillimeter powder using a Spex 6770 Freezer
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Mill. For the samples of DOM and POM, cryomilling was not necessary. The ground samples were then subject
to carbon, hydrogen, nitrogen (CHN), and separately to oxygen (O) analysis on a Costech ECS 4010 Elemental
combustion system with pneumatic autosampler. Computer software used was EAS Clarity (DataApex Ltd,
Prague, Czech Republic). For both CHN setup and the separate O setup, calibration curves of r2 > 0.999 were
created using acetanilide as the standard. Samples of acetanilide were included within each run as unknown
samples to act as internal quality control checks. Each sample was analyzed in triplicate, that is, 3 times for
CHN and a further 3 times for O, and a mean calculated for C, H, N, and O. All samples were corrected for their
measured ash content. The stoichiometry of the organic matter was expressed as molar fraction relative to N
as this was always the least abundant element.

2.4. The Entropy of Formation ΔSOMf
� �

The values ΔSOMf were calculated based upon measured elemental compositions. The approach of

Vodyanitskii (2000) uses the elemental composition of the organic matter to estimate ΔSOMf :

ΔSOMf ¼ SϕOM �
Xi

i1

Sϕi (4)

where: Sϕy = absolute entropy of y with y as the OM or element i (J/K/mol). The absolute entropy of the ele-
ments are 5.5, 130.5, 205, and 191.5 J/K/mol for C, H, O, and N respectively (NIST, 2017). The standard absolute
entropy of the organic matter (SϕOM) was estimated, still based on Vodyanitskii (2000), as

SϕOM ¼ 1:03þ 0:039 7þ ΔSOMf
� �

(5)

Further, an estimate of the absolute entropy can be estimated from the heat capacity (Cϕ
OM):

SϕOM ¼ 1:1Cϕ
OM (6)

In turn the absolute heat capacity of OM (Cϕ
OM) can be calculated as

Cϕ
OM ¼

Xi

i1

Cϕ
i ni (7)

where Cϕ
i = the atomic heat capacity and ni = number of atoms of element i in the stoichiometric formula of

OM. The atomic heat capacity (Cϕ
i ) of C, H, N, and O are: 7.53, 9.62, 11.3, and 16.74 J/K/mol, respectively (NIST,

2017). The stoichiometry was derived from elemental analysis.

Equations (4) and (7) were solved iteratively with initial estimate of SϕOM found from equation (6) based on

equation (7) and the initial value of ΔSOMf calculated from equation (4). Then estimates of SϕOM and ΔSOMf were
then improved with the iterative application of equations (4) and (5). Equations (4) and (5) required typically

three iterations before the value of ΔSOMf agreed within two decimal places.

The elemental analysis as described above was used to derive the elemental composition of each of the stan-
dards and collected samples

2.5. The Gibbs Free Energy of Formation ΔGOM
f

� �
Given the estimates of ΔHOM

f and ΔSOMf above, then ΔGOM
f can be readily calculated from equation (1). The

ΔGOM
f is then calculated for each of the sampled organic matter pools and the average absolute temperature

of the study site. Any pressure dependency was assumed to be negligible in common with the approach of
Beer and Blodau (2007) based upon Benjamin (2002).

It follows from Hess’s law that

ΔGOM
r ¼

Xi

1

ΔGOM
i �

Xj

1

ΔGOM
j (8)

where
Xi

1

ΔGOM
i = the sum of theΔGOM

f of the products and
Xj

1

ΔGOM
j = the sum of theΔGOM

f of the reactants.

It is then possible to consider the ΔGOM
r for each transformation and pathway [equation (8)]. All the
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transformations considered in Figure 1 are known to occur in peatlands and therefore ΔGOM
r < 0; this means

that the transformations may need to include the release of other components to meet the requirement that

ΔGOM
r < 0 for that transformation.

LaRowe and Van Cappellen (2011) have suggested a different approach to the estimation of the Gibbs free
energy of reaction by correlating ΔG for the half reactions of the oxidation of well-known, but naturally occur-
ring organic compounds (e.g., amino acids) with their nominal oxidation state of carbon (NOSC, equivalent to
Cox; Masiello et al., 2008; Worrall et al., 2013). The correlation between the known ΔG and NOSC was extrapo-
lated tomore complex macromolecules such as cell membranes. The value of NOSC (or Cox) can be estimated
from elemental analysis. It should be noted that this approach considers only half reactions and would have
to be combined with data from the half reaction of an appropriate terminal electron acceptor (TEA, e.g., sul-
fate). Further, it is important to note that this approach was to study the change in the soil organic matter and
not the changes in aqueous solution of the peat pore water: Beer and Blodau (2007) considered the thermo-

dynamic limitations in the pore water solution. In effect our approach reconstructs theΔGOM
f through and into

a peat profile in order to understand the amount of energy that is available or must be transferred to explain
the accumulation.

3. Results

The results of the analysis are detailed in Table 1. Equation (2) implies that there would be a negative correla-

tion betweenΔHOM
f and theΔHOM

c (Figure 3), andΔHOM
c has been negatively correlated with the carbon oxida-

tion state (Cox) of naturally occurring organic matter (Masiello et al., 2008), that is, it would be expected that

higher, less negative ΔHOM
f would be estimated for more reduced organic matter.

ΔHOM
f ¼ �18:3� 0:64ΔHOM

c n ¼ 79; r2 ¼ 0:74; p < 0:05 0:7ð Þ 0:04ð Þ (9)

The values in the brackets refer to the standard error in the regression coefficient or constant term. The values

of ΔHOM
f for the combined aboveground biomass was consistent with it being a mixture of the functional

groups of vegetation sampled (aboveground biomass was composed of 78% Calluna, 17% grasses and
sedges, and 5% mosses) (Table 1, Figure 4a). The values for litter are within those for the vegetation, but

the top of the soil profile does have some values of ΔHOM
f that are lower (i.e., more negative) than those

observed for either the vegetation or the litter. Similarly, the range of ΔHOM
f for the DOM and POM extended

to lower, more negative values than observed for any other of the sampled organic matter (ΔHOM
f for DOM

between �7.3 and �17.5 kJ/g organic matter, for POM between �5.6 and �19.1 kJ/g of organic matter,
Figure 4a). The DOM from this study catchment has been shown to have a statistically significantly higher oxi-
dation state than the other types of organic matter also included in this study (Worrall et al., 2016b) unlike the

Table 1
The Median Composition of the Carbon Pools Considered by the Study

Mr ΔHf ΔGf ΔSf ΔHf ΔGf ΔSf ΔHf ΔGf ΔSf

(kJ/mol) (J/K/mol) (kJ/g OM) (J/K/g OM) (kJ/g C) (J/kg C)

DOM C31H38NO24 732 �7.24 �6.37 �8.14 �21.69 �19.86 �25.28 �10.43 �9.04 �26.29
POM C22H35NO14 462 �5.63 �8.06 �6.28 �24.94 �50.90 �27.85 �12.35 �24.82 �27.85
Aboveground biomass C57H86NO35 1344 �9.78 �2.78 �17.78 �13.21 �4.07 �25.97 �6.72 �2.07 �13.12
Belowground biomass C49H73NO29 1140 �7.54 �2.68 �15.03 �12.76 �4.54 �25.14 �6.61 �2.35 �25.43
Grass and sedge C33H52NO21 801 �5.47 �2.87 �10.75 �13.80 �7.14 �27.13 �6.82 �9.05 �27.12
Mosses C95H145NO56 1343 �9.98 �3.44 �17.98 �15.06 �5.19 �27.13 �7.43 �2.55 �27.13
Calluna C55H86NO46 2194 �12.98 �1.92 �29.32 �11.39 �1.70 �25.74 �5.91 �0.88 �25.74
Litter C25H35NO15 587 �7.58 �2.39 �7.58 �8.37 �5.29 �17.67 �6.19 �3.86 �17.68
Peat soil C43H62NO26 1115 �6.60 �2.04 �14.79 �7.91 �2.49 �17.74 �6.04 �1.86 �17.74
Lignin C87H103NO31 1658 �6.83 �0.60 �19.58 �6.51 �0.57 �18.68 �4.12 �0.36 �18.88
Cellulose CH2O 146 �0.40 �0.75 �1.70 �6.62 �12.49 �28.35 �2.72 �5.13 �28.35
Protein C5H5NO 101 �0.46 �0.29 �1.46 �9.68 �6.10 �30.42 �4.58 �2.89 �30.42

Note. Median stoichiometry is expressed relative to N content except for cellulose which is expressed relative to C. Mr = the relative molecular mass of the given
molecular formula.
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Figure 3. Comparison of ΔHOM
f and the ΔHOM

c for the all the samples measured in the study.

Figure 4. TheΔHOM
f (a); Cox (b);ΔSOMf (c); andΔGOM

f (d) of the peat soil, DOM, POM, vegetation, and litter samples considered in this study. The samples of DOM and
POM are given a nominal depth of 10 cm in the peat profile. The values shown for the peat soil are the average for each sampled depth while for samples
of litter, vegetation, POM, and DOM the range and median is shown at the nominal depth relative to the surface.

10.1029/2017JG003996Journal of Geophysical Research: Biogeosciences

WORRALL ET AL. 1870



study of Boye et al. (2017), which proposed that the DOM was more reduced; however, this study considered
DOM samples from first-order peat-hosted streams and not the soil pore water itself. In the same study POM
was shown to have a composition and oxidation state compatible with it being an admixture of litter and
peat soil but did not have a distinct oxidation state from either. Although the lower, more negative values

of ΔHOM
f for POM (Figure 4a) are consistent with erosion from the peat profile (e.g., via bank erosion of the

catchment streams), the median and upper values are not, and it is possible that the POM samples for this

study included material very similar to the DOM. The ΔHOM
f of the peat organic matter increases with depth

through the soil profile (Figure 4a). Vodyanitskii (2000) gave values for extracted humic and fulvic acids from

Russian soils of between 3.15 and 8.72 kJ/g. Battley (1998, 1999) used Thornton’s rule to assess the ΔHOM
f of

the dry matter of a whole cell of Saccharomyces cerevisiae as 11.1 kJ/mol. Schaul et al. (1997) based on

measured properties of amino acids gave values of measured values of ΔHOM
f of between 4.3 kJ/mol for

microflora to 19.35 kJ/mol for humin—note that it is not always possible to compare reported values as
molecular masses are not given.

The values of ΔHOM
f can be compared to the Cox values for the same samples (Figure 4b). The DOM are the

most oxic samples and distinct from the rest of the samples examined. The vegetation, peat, and below-
ground biomass samples are reduced relative to DOM and reduced relative to glucose fixed in photosynth-
esis (Cox(glucose) = 0). The Cox for this site has been examined by Worrall et al. (2016b), and there is no
significant change in Cox down the peat profile.

The values of ΔSOMf follow the pattern as seen for ΔHOM
f although there was no significant link between the

two sets of values (Figure 4b). Vodyanitskii (2000) gave values for extracted humic and fulvic acids from

Russian soils of between 3.36 and 6.12 J/g. Battley (1999) used Thornton’s rule to calculate ΔSOMf of the dry

matter of a whole cell of S. cerevisiae and found ΔSOMf as 15.5 J/mol.

The values of ΔGOM
f do show some differences from the patterns observed for ΔHOM

f and ΔSOMf (Figure 4c).

Tardy et al. (1997) estimate ΔGOM
f by analogy with estimation methods developed for clay minerals and give

values of ΔGOM
f as �3.24 kJ/mol (microflora); �7.42 kJ/mol (humic acid); �12.14 kJ/mol (fulvic acid);

�14.31 kJ/mol (plant biomass); and�27.37 kJ/mol (humin). LaRowe and Van Cappellen (2011) provide values
for the half reactions of oxidation, and ΔG values were expressed per electron transfer, hence their values

are not directly comparable with those of this study. The litter samples have values of ΔGOM
f lower, that is,

more negative, than that of the vegetation samples which was not the case for either ΔHOM
f or ΔSOMf .

The ΔGOM
f of the surface peats are very close in value to those of the litter samples suggesting a very similar

composition and supports the obvious idea that peat soil forms in the continuum from fresh litter. The peat

soils samples show an increase ΔGOM
f with depth down the profile, that is, values of ΔGOM

f become less

negative. The valuesΔGOM
f of DOM and POM spread across a considerable range from very similar to the peat

and litter samples to considerably lower, that is, more negative, values of ΔGOM
f . The peat soil samples when

plotted against depth in the profile showed a significant increase (probability of being different from zero of

95%) in the ΔGOM
f with depth:

ΔGOM
f ¼ �4:22z�0:279 n ¼ 20; r2 ¼ 0:32 1:42ð Þ 0:096ð Þ (10)

where z = depth into the peat profile (cm—with more positive values indicating deeper depths). The values
in the brackets are the standard error in the coefficients.

Coupled with the proposed diagram of flows within this ecosystem (Figure 1) and equation (8), it is possible
to argue that we would expect the spontaneous production of litter from vegetation, and the spontaneous

production of DOM from all other organic matter. However, for other transitions, the change inΔGOM
f implies

that the transition would have to be accompanied by emission of low ΔGOM
f compounds (i.e., CO2, CH4, or

DOM which have more negative values of ΔGOM
f than the solid organic matter types considered).

Differentiating equation (10) gives the profile of the change in ΔGOM
f or the ΔGOM

r that would have to be
balanced by the production of CO2, DOM, or CH4. Given the fit of equation (10), the differentiation was
performed numerically within 95% confidence interval defined by the fit of equation (17) and the best fit
equation was
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dΔGom
f

dz
¼ 1:18z�1:279n ¼ 16; r2 ¼ 0:98; p < 0:05 0:75ð Þ 0:032ð Þ (11)

The values in brackets are the standard error in the coefficient and exponent. Although the form of the best fit
equation [equation (11), Figure 5] cannot by mathematical definition equal zero. A one-way analysis of var-

iance (ANOVA) of the valuesΔGOM
r (equation (8) of the peat soil samples judged across each of the measured

depth ranges, using the depth range as the one factor, showed that there was a significant change in the

change in ΔGOM
r . Post hoc testing, using the Tukey test, ΔGOM

r was not significantly different from zero after

the sample in the depth range 40 to 45 cm depth in the soil profile. The fact that ΔGOM
r is close to zero

implies very little (if any) reaction of peat at depth.

The variation in the ΔGDOM
f could imply that there is a variation in the maturity of the DOM and as such DOM

might itself react to release of CO2. Taking the highest value of ΔGDOM
f (i.e., least negative value �3.3 KJ/gC;

Figure 4c) as the most reacted or mature DOM and that other measured DOM composition would react to
that composition and that the reaction is balanced by the loss of CO2. The assumption that the DOM with

the highest value ofΔGDOM
f is the most reacted or mature matches the pattern assumed for the peat soils that

the most reacted peat soil has the highest values of ΔGOM
f . Given this assumption then it is possible to esti-

mate the amount of CO2 released from processing of DOM—based upon equation (3). The proportion of
CO2 that would have to be released per 1 g of C as DOM for each of the measured DOM compositions to

transform it to the DOM composition with the highestΔGDOM
f varied from 0.0 to 0.57 with an arithmetic mean

of 0.30. The value of 0.0 represents the sample assumed to be the most mature and the arithmetic means
represents that 30% of DOM is turned over to CO2 prior to loss to the stream network. Moody and Worrall
(2016) measured an average DOC loss rate in the light of 64% over a 70-hr period but found an average of
6% DOC loss over 70 hr when the sample was kept in the dark.

4. Discussion

Given that this study could calculate the ΔGOM
f for each of the substances and reservoir as illustrated in

Figure 1, it was then possible to at least consider the ΔGOM
r for each transformation and pathway and thus

we have shown which can occur spontaneously and which transformations require the production of low

(i.e., more negative) ΔGOM
f products such as CH4, CO2, or indeed, given the results of this study, DOM. For

the release of CO2, in the sense of LaRowe and Van Cappellen (2011), oxygen is acting as the terminal electron
acceptor and the other half reaction. For the formations of plant components (lignin, cellulose, and protein)

Figure 5. The 95% confidence interval on the change inΔGOM
f of the peat soil with depth. Depth is expressed in centimeter

below the soil surface as negative.
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and the biomass (aboveground and belowground biomass as well as the plant functional types), the reactant

was taken as glucose (ΔGglucose
f =�910 kJ/mol; NIST, 2017) produced directly from photosynthesis. The trans-

formations of glucose to plant components, the plant components to litter, and litter to the surface peat are

all assumed to have occurred in oxic conditions and will react to release CO2. TheΔGCO2
f =�394 kJ/mol (NIST,

2017) and the amount of CO2 can be used to balance out the transformation, for example, the transformation
from glucose:

ΔC6H12O6→εCwHxNyOz þ ϵCO2 (12)

In equation (12), although δ, ε, and ∈ are stoichiometric constants; ∈ represents the amount of a carbon that
has to be lost (e.g., emitted to the atmosphere as CO2), while ε represents the amount of carbon passed
through into the peatland. If the values in equation (12) are expressed per mole of C and then per unit mass
of carbon, the stoichiometry of equation (12) is simplified and each of the reactions can be considered as the
fate of 1 g of C of reactant organic matter (i.e., δ = 1). Then only the following equations need to be satisfied:

1 ¼ εþ ϵ (13)

ΔGOM
r ¼

Xi

1

ΔGOM
i �

Xj

1

ΔGOM
j < 0 (14)

Equations (13) and (14) can be solved iteratively for the transformation. Even though a reaction will occur in

favor of products when ΔGOM
r < 0 kJ/mol, or to completion with ΔGOM

r < �60 kJ/mol, there is a thermody-
namic threshold after which it has been observed that biological systems cannot effectively obtain sufficient

free energy for the reaction to occur, that is,ΔGOM
r < 0 kJ/mol is not the effective limit of spontaneous reaction

in biological systems. Schink (1997) propose a theoretical value of the thermodynamic threshold for biologi-

cal systems as ΔGOM
r < �20 kJ/mol, but other studies have suggested values for this thermodynamic thresh-

old as high as �15 kJ/mol. This thermodynamic threshold for biological systems has been equated to
the energy required to produce one quarter mole of ATP.

Furthermore, it is not possible to transfer 100% of the energy content of any substrate even after the thresh-
old described above has been accounted for, and it matters by which biochemical pathway the oxidation and
energy transfer occurs. Lafitte and Loomis (1988) showed that the efficiency in plant processes varied
between 0.84 and 0.89. That range was used here and as such ε and ϵ were recalculated using an effective
value of ΔGf for CO2:

eff
OMΔG

co2
f ¼ φΔGco2

f (15)

Where: eff
OMΔG

co2
f ¼ the effective value of ΔGf for CO2 after allowing for the efficiency of energy transfer

(Kj/mol); φ = the energy transfer efficiency, taken as between 0.84 and 0.89. The energy transfer efficiency
can be considered as equivalent to a thermodynamic efficiency factor as used by Hoehler (2004).

It was assumed that no other elements (e.g., N) in equation (12) were limiting and so equation (12) was

balanced only with respect to C. Further, it was assumed that the contribution of the ΔGOM
f of other compo-

nents required to balance equation (12), for example, nitrate, was minimal because their stoichiometric frac-
tion was small. Equally, we admit that naturally occurring organic matter in a peatland will contain elements
not included in equation (12) such as S and P, but we would argue that they are present in quantities even
less than that of N. Worrall et al. (2016a) showed that the lowest value of C:P in this ecosystem was 769 for
the C. vulgaris biomass. It is possible to solve equations (13) and (14) then 1 g of C fixed as glucose by
photosynthesis would result in 0.68 g C as biomass and 0.32 g C as CO2.

For the transformation into and through the peat profile it is less likely that oxygen can be the terminal elec-
tron acceptor and the transformation to CO2 is only one possible option and this study has shown that other

low (high negative)ΔGOM
f species could act to balance increases inΔGOM

f in the soil profile. The production of
dissolved organic matter (DOM) or methane (CH4) would be possible act as other electron accepters but
other terminal electron acceptors may be available. Perhaps the most important would be the role of sulfate
at depth in the peat. Several studies have shown that the utilization of sulfate and methanogenesis cannot
account for the rate of anaerobic CO2 production in ombotrophic peatlands (e.g., Vile et al., 2003); this is
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even the case with the recycling of sulfate (e.g., Weider et al., 1990).
Long-term monitoring of shallow (10-cm depth) and deep (50 cm) soil
water by the Environmental Change Networkmonitoring at the site can
be summarized (Table 2) to show that nitrate is absent from the soil
pore water. Furthermore, the long-term monitoring of the soil water
at the site also shows that there was little sulfate present and the
change in sulfate concentration is small in comparison to concentra-
tion and change in DOC. Lovley et al. (1996) have shown that DOM
can act as a terminal electron acceptor and divert energy from metha-
nogenesis. Furthermore, Minderlein and Blodau (2010) suggested that
there was a toxic effect of intensely humified DOM on both methano-
genesis and sulfate-reducing bacteria but not on fermenting microbes.
Bauer et al. (2007) showed that DOM could act as redox buffer as its

polyfunctionality means that it has groups that act across redox potentials from�0.9 to 1.0 V, and indeed that

is shown to be possible in this study by consideration of the ΔGOM
f that DOM could be a TEA. Equally, micro-

environments can always exist which could make redox environments distinct from the bulk environment of
the peat soil (Wachinger et al., 2000). Keiluweit et al. (2016) have shown that the free energy available from
terminal electron acceptors other than O2 follows a succession not only of decreasing available ΔG but also
the available ΔG decreases with the decreasing oxidation state (Cox) of the organic matter substrate with
which the particular electron acceptor is reacting. However, for the study site Worrall et al. (2016b) have
shown that there is no significant change in Cox with depth in to the peat profile and indeed for eight peat-
lands across the United Kingdon, not including this study site, Clay and Worrall (2015) found a mixture of sig-
nificant increases, significant decreases, and lack of significant change in Cox down peat profiles.

The study has taken this approach without reference to the stoichiometry of the reactions. This study has
made a series of simplifying assumptions: that there is steady state production (i.e., that interannual variation
can be ignored on the timescales of the peat profile accumulation); that all other elements, in whatever the
appropriate form, were available; and that their requirement was insufficient to alter the Gibbs free energy
balance. An alternative approach would be to consider the stoichiometry: Penning de Vries et al. (1974) con-
sidered such an approach to calculate the amount of glucose that would be required to produce biomass
and, as a consequence, the amount of CO2 produced and sequestered by biomass production. McDermitt
and Loomis (1981) provided an alternative approach based upon elemental analysis of biomass and the
energy constraints of the redox processes involved. Both approaches only considered the development of
biomass and not its subsequent degradation or storage of organic matter as would be the case in a peat eco-
system such as that studied here. Therefore, there is a need for a stoichiometric approach that considers all
the available elements and goes beyond just the production of biomass but also considers the transfer of lit-
ter into the soil with the production of deep humified peat including losses of DOM and POM. Such an
approach could be and is based upon balancing elemental composition and redox state to understand
and constrain organic matter processing and carbon release from ecosystems, especially in organic matter-
dominated environments such as peatlands.

This present study would suggest that peat humic matter accumulates because the available Gibbs free

energy (ΔGOM
r ) from soil is no longer sufficient for reaction to occur. Beer and Blodau (2007) suggested that

organic matter turnover in deep peat profiles is limited because the pore water becomes a closed system and
so reaches an equilibrium. The argument of Beer and Blodau (2007) is important for this study for two rea-
sons. First, this study would suggest that indeed reactions at depth in peat are thermodynamically limited,
but in the case of this study it is the solid component and not the dissolved components that cannot react.
Second, this study has not considered the dissolved component, and therefore ongoing reaction at depth
could be reaction of the dissolved and not the solid component. Production of CO2 and CH4 at depth could
be due to the supply of labile DOM from surface peat layers. Unfortunately, this study did not examine the
composition of DOM from the pore water but rather sampled fresh DOM from a first-order stream assuming
it was a reasonable approximation to the pore water DOM—based upon studies of the source of mixing and
water in this catchment (Worrall et al., 2006), but the potential for turnover to CO2 within the profile was esti-

mated by comparison between the most and least evolved DOM (as assessed by their comparative ΔGOM
f ).

Table 2
Twenty-Year Averages of the Concentrations of Redox Active Species in the Soil
Water of the Study Site

Mean concentration

Shallow (10 cm) Deep (50 cm)

Sulfate (mg S/l) 0.11 0.02
Nitrate (mg N/l) 0.01 0.01
Ammonium (mg N/l) 0.06 0.42
Iron (mg Fe/l) 0.17 0.21
DOC (mg C/l) 21.3 17.5
Conductivity (μS/cm) 39.1 31.4
pH 4.3 4.6
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The indication here that reaction has ceased at depth is only based upon the compositional change within
the substrate, but this does not mean that there is not a continuing reaction in the pore water. Chaser
et al. (2000) showed that the radiocarbon age of DOC at depth in peat soil pore water in a peat profile was
younger than the surrounding peat soil organic matter, for example, at 80 cm depth the age of the peat soil
organic matter was 800 years B.P., while that of the CH4 was 135 years B.P., and the DOC age was 123 years B.
P. Similarly, Charman et al. (1994) dated CO2 and CH4 samples collected from depth show that both gases
were between 500 and 2000 years younger than the adjacent peat.

It is difficult to know whether the change or lack of change of ΔGOM
f is the cause or the effect of what is con-

straining the transfer of organic matter into and through a peat profile—as half-reaction it would not happen
spontaneously without the other half reaction. This study has suggested why organic matter accumulates in

peatlands. The profile as measured shows that the change inΔGOM
f declines or becomes zero, but this cannot

provide information as to why this would occur. Freeman et al. (2001) have shown that hydrolase enzymes in
peat bogs are inhibited by the presence of phenolic compounds, which can build up in peat because the
activity of phenol oxidase is severely restricted in the absence of oxygen. Therefore, the organic matter
can accumulate because of restriction of a key enzyme in the degradation process. If the water table in peat
bogs falls, the phenyl oxidase activity increases and oxygen ingress increases, destroying the phenolic com-
pounds that repress the hydrolase activity. A loss of phenolic compounds means that decomposition can
continue even after the water table rises again. This process has been referred to as an “enzyme latch”
mechanism. This enzyme latch production does not immediately cease once the water tables have been
restored, and the additional turnover of organic matter such as DOC production can continue for long peri-
ods. The changes in DOC concentration and flux in the runoff from peatlands has been taken as evidence of
the enzyme latch process. The deepest water table depth recorded for this site was 42 cm below the surface,
that is, the maximum depth of the oxygen ingress in this catchment closely coincides with the depth at which
decomposition ceases as predicted by this study. The thermodynamic approach of Beer and Blodau (2007)
would argue that organic matter accumulates because the pore water components cease to react as the pore
water system becomes closed, and therefore, there ceases to be a thermodynamic driver for the solid organic
matter to react further and to release components into solution. Therefore, rather like the “enzymic-latch”
mechanism the thermodynamic explanation does not prohibit further reaction of the organic matter if con-
ditions change, for example, if a closed pore system became open again.

The study here has shown that processing of organic matter would have a 5% chance of having ceased by 40
to 45 cm depth, and this can be considered the depth below which further reaction has been thermodyna-
mically inhibited (LaRowe & Van Cappellen, 2011). Note that for pore water reactions Beer and Blodau (2007)
suggested that thermodynamic inhibition did not occur until approximately 2-m depth; although at a very
different site from the one in this study, it therefore illustrates that there may be a zone where the solid
organic matter substrate is no longer being processed but that pore water constituents are. However, in such
a zone the pore water components would have to originate in overlying peat layers. Above a zone of thermo-
dynamic inhibition, the available energy release diminishes rapidly and the available energy has been related
to the kinetics of turnover processes (e.g., Dale et al., 2006; Jin & Bethke, 2002), where the rate of the redox
reaction:

r ¼ μmaxBFKFT (16)

where μmax = maximum rate for the reaction per unit biomass; B = available biomass; FK = kinetic function;
and FT = thermodynamic function. The kinetic function (FK) and thermodynamic function (FT) are defined
on the scale of 0 to 1 and Jin and Bethke (2005) define FT as

FT ¼ 1� exp
ΔGr þmΔGATP

r

χRT

� �
(17)

whereΔGATP
r = the Gibbs free energy required for synthesis of ATP; m and χ = stoichiometric constants for the

reaction with ATP. Thus, as the ATP threshold is approached, the rate of reaction will slow. Therefore, we may
consider that the rates of processing of organic matter slow dramatically from the surface to the depth and so
Figure 5 can be viewed as an analog of the kinetic profile. It should be noted that Figure 5 represents the
change in theΔGom

r ;and so it must always be balanced by production of highly negativeΔGom
r products such

as CO2. Alternatively, the kinetic limitation in this case may simply be a diffusive one whereby the source of
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the reactive products is in the upper layers of the peat and the reaction is limited by their diffusion down the
peat profile. The approach of Jin and Bethke (2005, equations (15) and (17)) is the same approach used by
Keiluweit et al. (2016) to explain the preservation of organic matter in soils.

The approach outlined here in this study provides a framework by which we can consider the stability of

organic matter in soil and in the natural environment more generally. By being able to calculate the ΔGOM
f

and then calculate the ΔGOM
r to assess whether reactions could occur and, if so, how fast. Comparing profiles

ΔGOM
f in a range of peat profiles could define the stability of peat soils and their resistance to long-term

degradation.

5. Conclusions

This study has estimated the changes in ΔGOM
f across a peatland and considered the changes which would

have to be balanced by production of CO2, DOM, or CH4. Estimation of ΔGOM
f and the ΔGOM

r profile provides
an alternative and objective method of assessing the degree of decomposition in peat. The study has found
the following:

1. All the transformations considered, except for the production of litter from biomass, would have to occur
through the loss or emissions of the low (i.e., more negative) ΔGOM

f product such as CO2, DOM, or CH4.
2. Most of the CO2 lost in the transfer of organic matter was lost in the production of biomass rather than the

decay of litter or soil organic matter.
3. The change in ΔGOM

f of the peat soil would suggest that further reaction becomes thermodynamically
inhibited after depths of approximately 40 cm. The study shows that organic matter accumulation in peat
profiles could be explained by the lack of change inΔGOM

f and that this could be predicted simply from the
elemental composition.
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