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Abstract 16 

A noise model for the regional continuous GPS (cGPS) timeseries in East Africa 17 

(Ethiopia and Eritrea) was computed using the maximum likelihood estimation (MLE) 18 

method. Using this method and assigning different noise models for each cGPS site and 19 

each component (north, east and vertical) may bias the noise level of the velocity 20 

solutions due to the non-uniformity of the length of the timeseries. Within the whole 21 

regional network, the length of the timeseries varies from one to seven years. We 22 
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compute a preferred regional noise model for the whole data sets using a stacked 23 

maximum likelihood values for the different power – law indexes (between -2 and 0 with 24 

a time step of 0.1), presuming that there is only one noise model that exists in the 25 

regional cGPS timeseries. Therefore, a single power – law index (flicker plus white 26 

noise) was assigned for the whole regional network irrespective of the length of the 27 

timeseries. This approach is more robust and “realistic” to determine the noise 28 

characteristics of the regional GPS network. 29 

 30 

Keyword: timeseries, maximum likelihood, noise model, power – law index 31 

 32 

Introduction 33 

The noise characteristics of cGPS coordinate timeseries have been studied by 34 

various authors [e.g. Agnew, 1992; Mao et al., 1999; Williams et al., 2004; Hackl et al., 35 

2011] in different parts of the world, using different processing methods, from regional 36 

networks through to global solutions. It is a well-understood phenomenon that assigning 37 

white noise model for the cGPS timeseries will underestimate the noise uncertainty level 38 

in the final velocity solution [Mao et al., 1999] since it does not account for the 39 

contribution of time varying noises. Work done by these authors [Agnew, 1992; Zhang et 40 

al., 1997; Mao et al., 1999; Williams, 2003a; Williams et al., 2004] showed that the cGPS 41 

timeseries noise characteristics consists of a combination of white noise and other time-42 

correlated noise models. We used 16 cGPS sites in the northeast part of the East African 43 

Rift System (EARS) (Figure 1) and its surroundings, especially Ethiopia and Eritrea, to 44 
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study the noise characteristics of the whole regional network.  The cGPS sites have 45 

timeseries that span from early 2007 to 2014 as shown in figure 2. However, the 46 

timeseries are non-uniform over that period because of their deployment for various 47 

studies and contain discontinuities and gaps in the timeseries caused by various 48 

instrumental or logistical problems.  49 

In this study we discuss the noise level of the regional cGPS timeseries using the 50 

maximum likelihood estimation (MLE) technique and the time dependence of the noise 51 

characteristics as a function of the length of timeseries.  We compute a regional noise 52 

model for the entire network and compare velocity uncertainties derived from CATS and 53 

GLOBK which are based on different noise models. 54 

 55 

Methods 56 

 All the cGPS data were processed using GAMIT/GLOBK software [Herring et al., 57 

2010]. 15 International GNSS Service (IGS) sites closest to the study area were used as 58 

reference sites with one IGS site (ADIS) located within the study area (Figure 1), and 59 

included in this study. Using GAMIT, we applied double differencing on each daily 60 

phase observation in order to estimate station coordinates, phase ambiguities and satellite 61 

state vectors. At every station seven tropospheric delay and two tropospheric gradient 62 

parameters per day were estimated [Reilinger et al., 2006]. After applying double 63 

differencing to each daily phase observation, the daily solutions (h-files) of the cGPS data 64 

were combined with the daily global solutions (H-files) obtained from MIT, using the 65 

global kalman filter (GLOBK). The resulting daily timeseries were closely inspected for 66 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 4

quality check in order to remove outliers (above two-sigma threshold), and 67 

discontinuities caused by antenna changes, receiver changes or earthquakes, together with 68 

other time-dependent changes [Reilinger et al., 2006]. Before assigning a Gauss Markov 69 

noise model for our cGPS timeseries, the usual routine in GLOBK, we tested different 70 

stochastic noise models for each cGPS timeseries. The noise characteristics of the north, 71 

east, and up components were computed individually using the CATS GPS coordinate 72 

timeseries analysis software [Williams, 2005] that applies maximum likelihood to 73 

estimate the noise parameters. 74 

 The observed GPS motion at each site is a superposition of secular trend, a periodic 75 

component (mostly annual and semi-annual signal), offsets (discontinuities caused by 76 

tectonic and non-tectonic processes) and a noise component as shown in equation (1) 77 

[Williams, 2003b; Yuan et al., 2007]. 78 

 79 

�� = � + ��� +		�
�(�




��
−	�
) +		�� . sin(��� + ��)
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���
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 80 

Where the first term (a) is the site coordinate, the second term (bti) is the linear rate 81 

(Figure S1), the third term is made up of the Heaviside step function [H (tj - Tj)] and an 82 

offset amplitude (aj where tj = Tj) mostly caused by earthquakes, various tectonic 83 

processes and other phenomena like antenna or receiver change, and the fourth term 84 

consists of periodic components, mainly the annual and semi-annual signals (Figure S2) 85 
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where	�� = ��
� 	 �!/�#� . The final term is the noise component of the GPS timeseries. 86 

In this study we are interested to study the noise term. 87 

From equation (1) above, in order to study the various noise models of the cGPS 88 

timeseries the other terms have to be removed from the data. The data has to be 89 

detrended, offsets and seasonal variations must also be removed from the data (Figure 90 

S3). The correlation in cGPS timeseries may be approximated by a power law process 91 

[Agnew, 1992; Mao et al., 1999; Williams, 2003a and b; Williams et al, 2004]: 92 

 93 

   $(%) = 	$&(''()
)*																																																							(2)  94 

 95 

Where α is the spectral index (white noise has α = 0, flicker noise has α = 1 and random 96 

walk noise has a spectral index of 2), Po is a constant, f0 is a constant frequency and f is 97 

the frequency. 98 

We used the method described in CATS [Williams, 2005] in order to compute a 99 

“realistic” noise model for the GPS timeseries. The following steps were implemented in 100 

order to characterize the noise in the regional network.  101 

1. All the GPS data were detrended and the linear terms in the timeseries were 102 

removed using the weighted least squares fit.  103 

2. The detrended data were closely inspected and offsets caused by any tectonic or 104 

non-tectonic processes were removed using two-sigma significance level. Tsview 105 

software [Herring and McClusky, 2009] was used to inspect and remove the 106 
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outliers and offsets. Although some of the cGPS sites are located at a closer 107 

proximity to the EARS, we did not see any offsets which is caused by the local 108 

earthquakes. 109 

3. The annual and semi-annual terms in the data were removed using the fourth term 110 

in equation (1). Before removing the annual and semi-annual signals from the 111 

data a spectral analysis of the timeseries were computed using the Lomb-Scargle 112 

Algorithm [Press et al., 2001] as shown in (Figure S4). This method can help in 113 

identifying any   dominant periodic signal. We used the R function ‘lsp’ [R Core 114 

Team, 2013] that computes the Lomb-Scargle periodogram [Ruf, 1999; Press et 115 

al., 2001]. This algorithm is different from the Fast Fourier Transform because it 116 

can handle data sets that are not evenly spaced and does not require data that are a 117 

factor of 2 in length (or padded). Since some of our data sets have gaps due to 118 

receiver and/or antenna malfunctions or other issues the Lomb-Scargle method is 119 

appropriate for these datasets.  120 

4. The residual timeseries (called here the unfiltered timeseries), after the trend, 121 

offsets and seasonal signals were removed are then summed on a daily basis to 122 

produce mean values that are termed as a Common Mode Error (CME). The CME 123 

was then removed from each GPS timeseries to produce a filtered timeseries 124 

However since the trends are ultimately derived from the unfiltered series we use 125 

these for the MLE estimation of the noise rather than the filtered series.  126 

5. The CME is useful in explaining how spatially coherent the timeseries are. We 127 

use MLE estimation to compare different candidate noise models for each series 128 
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individually. We also use a method to produce a combined regional estimate of 129 

the noise in the timeseries. 130 

6. Finally, Principal Component Analysis (PCA) was applied as an alternate to the 131 

CME approach to the three individual components of the unfiltered timeseries in 132 

order to gauge the usefulness of each technique. 133 

 134 

Results 135 

In order to ascertain which noise model is the most realistic for the regional datasets, 136 

we look at the sum of the natural logarithm of the ML values for each noise model and 137 

each component for the whole data set. After that, the summed noise models were 138 

differenced from the ML estimate of the white noise model (the white noise model is 139 

used as a null hypothesis), and values greater than the white noise ML indicate that this 140 

model is more likely. The top rows of bar graphs in Figure 3 show the difference between 141 

the seven stochastic models (flicker noise (F), random walk noise (R), power-law (P), 142 

Gauss Markov noise (G), flicker plus white noise (F+W), random walk plus white noise 143 

(R+W) and Gauss Markov plus white noise (G+W)) with the null hypothesis (white noise 144 

(W)). All the models that include time correlated noise and white noise have larger 145 

collective MLs. In the plot the time-correlated noise (R and G) models have values 146 

generally smaller than the null hypothesis.  In the second row bar plots (Figure 3) instead 147 

of taking white noise as the null hypothesis, flicker plus white noise was used as a null 148 

hypothesis, and similar computation has been done as before. The result shows that 149 

power law, first order Markov noise plus white noise model have almost zero MLE 150 
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differences with flicker plus white noise, except the north component of the first order 151 

G+W noise model which has a higher MLE (Figure 3). The other noise models show a 152 

negative value with the null hypothesis (F+W) and therefore less likely to be the noise 153 

model candidates 154 

Unlike the above procedure i.e. computing the ML values for the known noise models 155 

(flicker, random walk, power-law, etc.) the spectral index of the cGPS timeseries was 156 

estimated from each components of the whole regional network. Dmetrieva et al., [2015] 157 

used a combination of Kalman filter and MLE to estimate a single noise model for a 158 

network of 15 sites in Eastern North America, instead of assigning an individual noise 159 

model for each site and component separately. We use a similar approach here and solve 160 

for the spectral index that maximizes the likelihood of the whole regional network. If we 161 

assume that the individual timeseries are not spatially correlated (or at least that the time 162 

and spatial correlations are orthogonal to one another) then the maximum likelihood of 163 

the network wide estimation of the spectral index would be the sum of the individual site 164 

MLs.  In order to estimate a regional noise model for the network the following 165 

procedures were implemented. First the ML values for a set of fixed spectral indices for 166 

each site and each component (north, east, and up) were computed for the unfiltered 167 

timeseries. The computed ML values for each spectral index (between -2 and 0 and time 168 

steps of 0.1) were summed in order to compute the ML for the whole network. Figure 6 169 

shows the network-wide ML as a function of spectral index for each component. Instead 170 

of using a maximization algorithm to find the spectral index that gives the largest 171 

network-wide ML, which could potentially be CPU intensive, we took the three largest 172 
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ML values for each component (based on the fixed spectral index values) and fitted a 173 

polynomial of degree 2 to those values. Using only the three largest values ensures we 174 

can find a maximum to the polynomial. We then solve the polynomial to find the spectral 175 

index which maximizes the fit. In Figure 4, the computed spectral index for each cGPS 176 

site and each component are compared against the length of the timeseries. The plot 177 

shows that, as the length of the timeseries increases, the estimated spectral index tends 178 

towards -1 (flicker noise) and when the length of the timeseries is short the estimated 179 

spectral index tends to zero (white noise). This is primarily a result of lack of data, 180 

biasing the results [Santamaria-Gomez et al., 2011].  181 

Principal Component Analysis (PCA) [Björnsson and Venegas, 1997] attempts to 182 

split time series up into several significant modes that are orthogonal to each other. The 183 

first mode is often very similar to the CME unless it has been prior to the PCA. The first 184 

three Eigenvectors for each component are plotted in Figure 5. In all components, there is 185 

a distinct change in the values for sites that started in 2012 onwards. The Eigenvectors 186 

are a lot more consistent with more variation in the older sites. This probably reflects that 187 

many of the major modes are reflecting the dual subspaces of the dataset, that is those 188 

sites containing data mainly prior to 2012 and those sites with data after 2012. In terms of 189 

the amount of variance explained the first mode accounts for 68%, 57% and 43% for the 190 

north, east and vertical components respectively. The second and third modes explain 191 

around 19% and 9%. 192 

 For the whole network approach the result showed that the three components have 193 

a power-law dependence with estimated spectral index between (-1 < spectral index < -194 
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0.85) for the north, east and up components. We then assign the index that maximizes the 195 

fit as the preferred noise model for the whole network. This computation is preferred over 196 

assigning different noise models for each component, and each site, as this uses the entire 197 

cGPS data sets as compared to using the individual timeseries. 198 

   199 

Discussion  200 

The preferred noise model was computed based on the above two methods: using 201 

the difference of the natural logarithm MLE values and the stacked MLE values and 202 

fitting a polynomial of degree 2 that maximizes the spectral index. The regional noise 203 

analysis that uses the stacked MLE values is a more appropriate way to assign a 204 

“realistic” noise model for the regional timeseries computation. For the entire cGPS 205 

network, we expected to have one type of noise in the timeseries and not different power-206 

law noises for each site and each component. Since our data sets have different timeseries 207 

length, assigning a different noise model for each component of the timeseries may bias 208 

the noise estimates (Figure 4).  The regional noise model analysis uses the whole data 209 

sets and assign a single spectral index for the entire network. This regional analysis is a 210 

more robust way of assigning a noise model.  211 

 212 

Conclusion 213 

The GLOBK realistic sigma estimation, that uses first order Gauss Markov noise, 214 

shows coherent sigma estimates with the CATS estimates, that we assign flicker plus 215 

white noise as a preferred noise model.  As shown in Figure S5 GLOBK and CATS 216 
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velocity noise analysis are most correlated when the timeseries are longer and least 217 

correlated when the timeseries are shorter. Shorter timeseries bias the noise estimates 218 

(Figure 4) and affect the velocity error estimates. In order to assign the optimal noise 219 

model for the entire cGPS network, for a non-uniform length of a cGPS timeseries, care 220 

has to be taken.  Therefore, in this study, we have assigned flicker plus white noise model 221 

as a preferred noise model for the whole regional network regardless of the length of the 222 

timeseries. 223 

 224 
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Figure captions 291 

Figure 1. Location of the cGPS sites overlain on the DEM map of the study area. Each 292 

triangle shows the location of the GPS sites with site names next to each triangle.   293 

 294 

Figure 2. The detrended cGPS displacement timeseries for each site and for the north, 295 

east and vertical components respectively. The y-values are scaled for plotting purpose 296 

only.  297 

 298 

Figure 3. Histogram of the log maximum likelihood values for the various noise models. 299 

The labels in the horizontal axis, W- white noise, F – flicker noise, R- random walk 300 

noise, P – power-law noise, G – first order Gauss Markov noise, F+W – flicker plus 301 

white noise, R+W – random walk plus white noise, and G+W – first order Gauss Markov 302 
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plus white noise model. The first row, three bar graphs are for the north, east and vertical 303 

components respectively. The first row three bar plots show white noise (W) as a null 304 

hypothesis and compared against the mean of the difference of the natural logarithm ML 305 

of white noise with other noise models. In the second row, the bar plots (for the north, 306 

east and vertical), the similar procedure was done and in this case flicker plus white noise 307 

(F+W) was taken as a null hypothesis.  308 

 309 

Figure 4. Time dependence of the estimated spectral index of the cGPS timeseries for the 310 

north south, east west and up components. The estimated spectral index is computed for 311 

the different duration of the timeseries (from one to seven years).   312 

 313 

Figure 5. The Principal Component Analysis (PCA) for the north, east and up 314 

components. The three colors (purple, blue and red) indicates the first, second and third 315 

principal component (pc) respectively for the north, east and vertical components. The 316 

cGPS site names are labeled below the horizontal axis.  317 

 318 

Figure 6. The first three plots show, the stacked ML values for a selected spectral index 319 

between -2 and 0 with an interval of 0.1. In the second three plots the three maximum-320 

stacked MLE values are selected and the associated polynomial fit of degree 2 was fitted 321 

to the values that maximizes the spectral index. The broken red vertical lines indicate the 322 

maximum of the fit (-0.89, -0.92 and -0.98) for the north, east and vertical respectively. 323 

 324 
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Figure S1 GPS time series of ADIS station. In this pot the linear trend, annual and 325 

semiannual terms are not removed. The dotted red line is the weighted least square fit for 326 

the north, east and up components. The north and east components show significant 327 

linear trend. 328 

 329 

Figure S2 The linear trend of the time series were removed and the red line is the annual 330 

and semiannual fit. The up component shows significant annual and semiannual 331 

component. 332 

 333 

FigureS3 Residual GPS time series where the linear, annual and semiannual terms were 334 

removed from the time series.  335 

 336 

Figure S4 Lomb – Scargle periodogram of the cGPS timeseries for north, east and up 337 

components with the corresponding site names on the left bottom corners of the plots. 338 

These are the selected periodogram that have longer timeseries and based on the 339 

geographic distribution. The blue plots are for the north, purple for the east and red for 340 

vertical components. The broken black lines in the plots show the annual frequency. The 341 

label in the bottom right corner indicates, slope of north component (slope_n), slope of 342 

east component (slope_e) and slope of up/vertical component (slope_u). 343 

 344 

Figure S5 Comparison of the north-south and east-west CATS velocity uncertainties 345 

(purple color), which uses flicker plus white noise as a preferred noise model, in this 346 
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study, and the GLOBK velocity uncertainties (blue color) based on Gauss Markov noise 347 

model.  The cGPS site names are labeled below the horizontal axis and the velocity 348 

uncertainties in the vertical axis.  349 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 18 

Figure 1 
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Figure 3 
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Figure S1 
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Figure S2 
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Figure S3 
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Figure S4 
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• 16 continuous GPS sites in Ethiopia and Eritrea have been used to compute the noise 

characteristics of the GPS velocity uncertainties. 

• The network wide regional noise analysis shows flicker plus white noise model is the 

“robust” noise model for the regional GPS velocity uncertainties. 

• The uncertainties of the GPS velocity estimates are biased due to the length of the 

GPS timeseries (we have used 1 to 7 years of GPS data).  

 

 


