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Abstract

A noise model for the regional continuous GPS (clGB®eseries in East Africa
(Ethiopia and Eritrea) was computed using the marimikelihood estimation (MLE)
method. Using this method and assigning differem$éey models for each cGPS site and
each component (north, east and vertical) may thasnoise level of the velocity
solutions due to the non-uniformity of the lengthtloe timeseries. Within the whole

regional network, the length of the timeseries amrfrom one to seven years. We
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compute a preferred regional noise model for thelevldata sets using a stacked
maximum likelihood values for the different powelaw indexes (between -2 and 0 with
a time step of 0.1), presuming that there is ontg moise model that exists in the
regional cGPS timeseries. Therefore, a single powéaw index (flicker plus white

noise) was assigned for the whole regional netwodspective of the length of the
timeseries. This approach is more robust and %tcli to determine the noise

characteristics of the regional GPS network.

Keyword: timeseries, maximum likelihood, noise model, powdaw index

Introduction

The noise characteristics of cGPS coordinate tinesdave been studied by
various authors [e.g. Agnew, 1992; Mao et al., 1988liams et al., 2004; Hackl et al.,
2011] in different parts of the world, using di#éat processing methods, from regional
networks through to global solutions. It is a watiderstood phenomenon that assigning
white noise model for the cGPS timeseries will urdBmate the noise uncertainty level
in the final velocity solution [Mao et al., 1999]nee it does not account for the
contribution of time varying noises. Work done hgse authors [Agnew, 1992; Zhang et
al., 1997; Mao et al., 1999; Williams, 2003a; Withs et al., 2004] showed that the cGPS
timeseries noise characteristics consists of a amatibn of white noise and other time-
correlated noise models. We used 16 cGPS sitdwindrtheast part of the East African

Rift System (EARS) (Figure 1) and its surroundingspecially Ethiopia and Eritrea, to
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study the noise characteristics of the whole regjioretwork. The cGPS sites have
timeseries that span from early 2007 to 2014 asvshm figure 2. However, the

timeseries are non-uniform over that period becafstheir deployment for various

studies and contain discontinuities and gaps in tiheeseries caused by various
instrumental or logistical problems.

In this study we discuss the noise level of theamg cGPS timeseries using the
maximum likelihood estimation (MLE) technique aret ttime dependence of the noise
characteristics as a function of the length of serees. We compute a regional noise
model for the entire network and compare velocitgartainties derived from CATS and

GLOBK which are based on different noise models.

M ethods

All the cGPS data were processed using GAMIT/GLC&Htware [Herring et al.,
2010]. 15 International GNSS Service (IGS) sitesest to the study area were used as
reference sites with one IGS site (ADIS) locatethimi the study area (Figure 1), and
included in this study. Using GAMIT, we applied dde differencing on each daily
phase observation in order to estimate stationdioates, phase ambiguities and satellite
state vectors. At every station seven troposphegiay and two tropospheric gradient
parameters per day were estimated [Reilinger et 24106]. After applying double
differencing to each daily phase observation, tig/dolutions (h-files) of the cGPS data
were combined with the daily global solutions (k4) obtained from MIT, using the

global kalman filter (GLOBK). The resulting dailyrteseries were closely inspected for
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quality check in order to remove outliers (aboveo-ssigma threshold), and
discontinuities caused by antenna changes, receligrges or earthquakes, together with
other time-dependent changes [Reilinger et al.6R@efore assigning a Gauss Markov
noise model for our cGPS timeseries, the usuaimeunh GLOBK, we tested different
stochastic noise models for each cGPS timesertes.nbise characteristics of the north,
east, and up components were computed individualigg the CATS GPS coordinate
timeseries analysis software [Williams, 2005] thaiplies maximum likelihood to
estimate the noise parameters.

The observed GPS motion at each site is a supagoosf secular trend, a periodic
component (mostly annual and semi-annual signéi3ets (discontinuities caused by
tectonic and non-tectonic processes) and a noisgaoent as shown in equation (1)

[Williams, 2003b; Yuan et al., 2007].

l m
yi =a+bt; + Z aH(tj— T;) + Z A, sin(w,t + @) + n; (D

j=1 n=1

Where the first term (a) is the site coordinates second term (Ptis the linear rate
(Figure S1), the third term is made up of the Hsiae step function [H (¢ T;)] and an
offset amplitude (awhere t = T;) mostly caused by earthquakes, various tectonic
processes and other phenomena like antenna owveeaghange, and the fourth term

consists of periodic components, mainly the anmamal semi-annual signals (Figure S2)
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wherew,, = 27” rad/year. The final term is the noise component of the GR@series.

In this study we are interested to study the ntasa.

From equation (1) above, in order to study theoweinoise models of the cGPS
timeseries the other terms have to be removed filmendata. The data has to be
detrended, offsets and seasonal variations mustbt@sremoved from the data (Figure
S3). The correlation in cGPS timeseries may be ;qmiated by a power law process

[Agnew, 1992; Mao et al., 1999; Williams, 2003a dmdVilliams et al, 2004]:
P(f) = R @

Wherea is the spectral index (white noise has 0, flicker noise haa = 1 and random
walk noise has a spectral index of 2), Po is atemst is a constant frequency and f is
the frequency.

We used the method described in CATS [Williams, 53300 order to compute a
“realistic” noise model for the GPS timeseries. Toléowing steps were implemented in
order to characterize the noise in the regionaloek.

1. All the GPS data were detrended and the linear germthe timeseries were

removed using the weighted least squares fit.

2. The detrended data were closely inspected andteftseised by any tectonic or

non-tectonic processes were removed using two-sgigmficance level. Tsview

software [Herring and McClusky, 2009] was used riepect and remove the
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outliers and offsets. Although some of the cGP8ssdre located at a closer
proximity to the EARS, we did not see any offsetsch is caused by the local

earthquakes.

. The annual and semi-annual terms in the data veeneved using the fourth term

in equation (1). Before removing the annual andisemual signals from the
data a spectral analysis of the timeseries wergyated using the Lomb-Scargle
Algorithm [Press et al., 2001] as shown in (Figé. This method can help in
identifying any dominant periodic signal. We ugbkd R function ‘Isp’ [R Core
Team, 2013] that computes the Lomb-Scargle peri@odRuf, 1999; Press et
al., 2001]. This algorithm is different from thedtdourier Transform because it
can handle data sets that are not evenly spaceda@sdnot require data that are a
factor of 2 in length (or padded). Since some of data sets have gaps due to
receiver and/or antenna malfunctions or other s$lie Lomb-Scargle method is

appropriate for these datasets.

. The residual timeseries (called here the unfiltetieteseries), after the trend,

offsets and seasonal signals were removed arestimmed on a daily basis to
produce mean values that are termed as a Commoe Ewodr (CME). The CME

was then removed from each GPS timeseries to peodufltered timeseries
However since the trends are ultimately derivednftbe unfiltered series we use

these for the MLE estimation of the noise rathantthe filtered series.

. The CME is useful in explaining how spatially codrar the timeseries are. We

use MLE estimation to compare different candidaiesen models for each series
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individually. We also use a method to produce aldoed regional estimate of
the noise in the timeseries.

6. Finally, Principal Component Analysis (PCA) was lagab as an alternate to the
CME approach to the three individual componentthefunfiltered timeseries in

order to gauge the usefulness of each technique.

Results

In order to ascertain which noise model is the mealistic for the regional datasets,
we look at the sum of the natural logarithm of Mk values for each noise model and
each component for the whole data set. After thia, summed noise models were
differenced from the ML estimate of the white noieedel (the white noise model is
used as a null hypothesis), and values greaterttiteawhite noise ML indicate that this
model is more likely. The top rows of bar graph&igure 3 show the difference between
the seven stochastic models (flicker noise (F)doam walk noise (R), power-law (P),
Gauss Markov noise (G), flicker plus white noise\(Fh, random walk plus white noise
(R+W) and Gauss Markov plus white noise (G+W)) witd null hypothesis (white noise
(W)). All the models that include time correlatedise and white noise have larger
collective MLs. In the plot the time-correlated s®i(R and G) models have values
generally smaller than the null hypothesis. Ingheond row bar plots (Figure 3) instead
of taking white noise as the null hypothesis, #clplus white noise was used as a null
hypothesis, and similar computation has been denéedore. The result shows that

power law, first order Markov noise plus white rimodel have almost zero MLE
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differences with flicker plus white noise, excepe tnorth component of the first order
G+W noise model which has a higher MLE (FigureT)e other noise models show a
negative value with the null hypothesis (F+W) ahdréfore less likely to be the noise
model candidates

Unlike the above procedure i.e. computing the Mluga for the known noise models
(flicker, random walk, power-law, etc.) the spekiralex of the cGPS timeseries was
estimated from each components of the whole regioetsavork. Dmetrieva et al., [2015]
used a combination of Kalman filter and MLE to estte a single noise model for a
network of 15 sites in Eastern North America, iagt@f assigning an individual noise
model for each site and component separately. Wesmilar approach here and solve
for the spectral index that maximizes the likelidlad the whole regional network. If we
assume that the individual timeseries are not afpatorrelated (or at least that the time
and spatial correlations are orthogonal to onetarpthen the maximum likelihood of
the network wide estimation of the spectral indeuld be the sum of the individual site
MLs. In order to estimate a regional noise modal the network the following
procedures were implemented. First the ML valuesafeet of fixed spectral indices for
each site and each component (north, east, andve® computed for the unfiltered
timeseries. The computed ML values for each speciiax (between -2 and 0 and time
steps of 0.1) were summed in order to compute thefdvithe whole network. Figure 6
shows the network-wide ML as a function of spedindex for each component. Instead
of using a maximization algorithm to find the spattindex that gives the largest

network-wide ML, which could potentially be CPU ensive, we took the three largest
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ML values for each component (based on the fixezttsal index values) and fitted a
polynomial of degree 2 to those values. Using dhby three largest values ensures we
can find a maximum to the polynomial. We then sahe polynomial to find the spectral
index which maximizes the fit. In Figure 4, the qarted spectral index for each cGPS
site and each component are compared against tiggh lef the timeseries. The plot
shows that, as the length of the timeseries inessabe estimated spectral index tends
towards -1 (flicker noise) and when the length lu# timeseries is short the estimated
spectral index tends to zero (white noise). Thigprsnarily a result of lack of data,
biasing the results [Santamaria-Gomez et al., 2011]

Principal Component Analysis (PCA) [Bjornsson anehi¥gas, 1997] attempts to
split time series up into several significant motlest are orthogonal to each other. The
first mode is often very similar to the CME unléiskas been prior to the PCA. The first
three Eigenvectors for each component are plottddgure 5. In all components, there is
a distinct change in the values for sites thattesam 2012 onwards. The Eigenvectors
are a lot more consistent with more variation i tfder sites. This probably reflects that
many of the major modes are reflecting the duakpabes of the dataset, that is those
sites containing data mainly prior to 2012 and ¢hsises with data after 2012. In terms of
the amount of variance explained the first modeants for 68%, 57% and 43% for the
north, east and vertical components respectiveliye Second and third modes explain
around 19% and 9%.

For the whole network approach the result showatthe three components have

a power-law dependence with estimated spectrakibééveen (-1 < spectral index < -
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0.85) for the north, east and up components. We aissign the index that maximizes the
fit as the preferred noise model for the whole mekwThis computation is preferred over
assigning different noise models for each compqraent each site, as this uses the entire

cGPS data sets as compared to using the indivithiaseries.

Discussion
The preferred noise model was computed based oabihvee two methods: using

the difference of the natural logarithm MLE valumsd the stacked MLE values and
fitting a polynomial of degree 2 that maximizes #pectral index. The regional noise
analysis that uses the stacked MLE values is a mappopriate way to assign a
“realistic” noise model for the regional timeseriesmputation. For the entire cGPS
network, we expected to have one type of noisertitneseries and not different power-
law noises for each site and each component. Simcdata sets have different timeseries
length, assigning a different noise model for eemimponent of the timeseries may bias
the noise estimates (Figure 4). The regional noisdel analysis uses the whole data
sets and assign a single spectral index for thieeemétwork. This regional analysis is a

more robust way of assigning a noise model.

Conclusion
The GLOBK realistic sigma estimation, that usestfarder Gauss Markov noise,
shows coherent sigma estimates with the CATS ewtsndhat we assign flicker plus

white noise as a preferred noise model. As shawhkigure S5 GLOBK and CATS

10
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velocity noise analysis are most correlated when ttmeseries are longer and least
correlated when the timeseries are shorter. Sharterseries bias the noise estimates
(Figure 4) and affect the velocity error estimatiesorder to assign the optimal noise
model for the entire cGPS network, for a non-umifdength of a cGPS timeseries, care
has to be taken. Therefore, in this study, we lzestgned flicker plus white noise model
as a preferred noise model for the whole regioravark regardless of the length of the

timeseries.
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Figure captions
Figure 1. Location of the cGPS sites overlain on the DEM roafhe study area. Each

triangle shows the location of the GPS sites wiihh rsames next to each triangle.

Figure 2. The detrended cGPS displacement timeseries fdr siée and for the north,
east and vertical components respectively. Thelyegaare scaled for plotting purpose

only.

Figure 3. Histogram of the log maximum likelihood values the various noise models.
The labels in the horizontal axis, W- white noiger- flicker noise, R- random walk
noise, P — power-law noise, G — first order Gausskav noise, F+W — flicker plus

white noise, R+W — random walk plus white noisej &+W — first order Gauss Markov

14
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321
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324

plus white noise model. The first row, three bapips are for the north, east and vertical
components respectively. The first row three batspkhow white noise (W) as a null
hypothesis and compared against the mean of tfexetitce of the natural logarithm ML
of white noise with other noise models. In the secoow, the bar plots (for the north,
east and vertical), the similar procedure was dortkin this case flicker plus white noise

(F+W) was taken as a null hypothesis.

Figure 4. Time dependence of the estimated spectral indéixeo€GPS timeseries for the
north south, east west and up components. The @&stinspectral index is computed for

the different duration of the timeseries (from doseven years).

Figure 5. The Principal Component Analysis (PCA) for the thpreast and up
components. The three colors (purple, blue and iretigates the first, second and third
principal component (pc) respectively for the npelst and vertical components. The

cGPS site names are labeled below the horizonisl ax

Figure 6. The first three plots show, the stacked ML valumsaf selected spectral index
between -2 and 0 with an interval of 0.1. In theosel three plots the three maximum-
stacked MLE values are selected and the assogatgdomial fit of degree 2 was fitted

to the values that maximizes the spectral index. Gitoken red vertical lines indicate the

maximum of the fit (-0.89, -0.92 and -0.98) for thath, east and vertical respectively.
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Figure S1 GPS time series of ADIS station. In this pot theeér trend, annual and
semiannual terms are not removed. The dotted mneddithe weighted least square fit for
the north, east and up components. The north ast aeaponents show significant

linear trend.

Figure S2 The linear trend of the time series were removetitha red line is the annual
and semiannual fit. The up component shows sigmficannual and semiannual

component.

FigureS3 Residual GPS time series whéhe linear, annual and semiannual terms were

removed from the time series.

Figure $4 Lomb — Scargle periodogram of the cGPS timesddesorth, east and up
components with the corresponding site names orefhdottom corners of the plots.
These are the selected periodogram that have lotigeseries and based on the
geographic distribution. The blue plots are for timeth, purple for the east and red for
vertical components. The broken black lines inpluts show the annual frequency. The
label in the bottom right corner indicates, slopenarth component (slope_n), slope of

east component (slope_e) and slope of up/vertamaponent (slope_u).

Figure S5 Comparison of the north-south and east-west CA&Bcity uncertainties

(purple color), which uses flicker plus white noiae a preferred noise model, in this

16



347  study, and the GLOBK velocity uncertainties (bludoc) based on Gauss Markov noise
348 model. The cGPS site names are labeled below dhieomtal axis and the velocity

349 uncertainties in the vertical axis.
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16 continuous GPS sites in Ethiopia and Eritreaetsaen used to compute the noise
characteristics of the GPS velocity uncertainties.

The network wide regional noise analysis show&diglus white noise model is the
“robust” noise model for the regional GPS velocitcertainties.

The uncertainties of the GPS velocity estimatedased due to the length of the

GPS timeseries (we have used 1 to 7 years of GR% da



