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Abstract

Between the de-orbiting of CHAMP in September 2010 and the launch of Swarm

in November 2013, there was a lack of satellite vector magnetic field data to

use for main field modelling. During this period the difference between field

models derived at the time and retrospective analysis (using data both before

and after the vector gap) rose to around 20 nT root-mean-square (RMS). We

use ensemble Kalman Filtering (EnKF) to combine models of steady flow at

the outer core surface with magnetic field models derived from the period when

no vector satellite data were available. Since we find that the field models

produced during periods without vector satellite data are just as good as the

annual predictions from a flow model, there appears, at present, to be no overall

benefit to using EnKF to improve field forecasting. This will remain the case

until flow modelling can better forecast secular variation.

Keywords: Ensemble Kalman filtering, magnetic field modelling, core flows,

satellite vector data

1. Introduction

Since the launch of the Ørsted satellite (Olsen et al., 2000) in 1999, vector

magnetic data from dedicated magnetic field missions have greatly improved

models of the geomagnetic field and with it, our understanding of the behaviour
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of the various physical sources. A number of groups have produced main field5

models of the field generated by the internal sources (typically consisting of

core, crust, (quasi-)steady ocean flow and the induced part from the ionosphere

and magnetosphere) including the CHAOS (Olsen et al., 2006, 2009), GRIMM

(Lesur et al., 2008, 2010) and MEME (Thomson et al., 2010; Hamilton et al.,

2010) series of models. In addition, the quinquennial releases of the Inter-10

national Geomagnetic Reference Field (IGRF) (Finlay et al., 2010b; Thébault

et al., 2015b) and World Magnetic Model (WMM) (Maus et al., 2010; Chulliat

et al., 2015) benefited from the voluminous satellite dataset and the ground

observatory network (Macmillan and Olsen, 2013), as well as advances in theo-

retical and numerical techniques.15

After almost a decade in low-Earth orbit, the CHAMP mission (Reigber

et al., 2002) ended in September 2010 when the satellite de-orbited at an alti-

tude of around 290km. In November 2013, the ESA Swarm mission launched

and began providing global vector data by December 2013 (Olsen et al., 2015).

Thus, for approximately three years, there was a ‘gap’ or lack of satellite vector20

measurements for making high-quality models of the main field. During this

period, the lack of uniformly distributed global vector data led to poor spatial

resolution of main field models and other problems such as the Backus effect

near the magnetic equator (Backus, 1970). In addition, other effects from the

spatially-biased distribution of ground magnetometer data, such as a lack of25

data in polar regions, arose. While the Ørsted mission, at a higher altitude of

around 850 km, provided a small amount of scalar data during the intervening

period, main field models had to rely on vector data solely from ground ob-

servatories. Despite these issues, several main field models in the MEME and

CHAOS series were produced during the CHAMP-Swarm gap (e.g. Olsen et al.,30

2014). Subsequently, the flow of vector data from the Swarm mission has al-

lowed the next generation of field models to be constructed (e.g. Finlay et al.,

2016).

In this study we examine two issues. First, we assess the quality of models

covering the period of the vector satellite data gap which we regard as instructive35
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for determining some of the errors implicit in main field models. We compare

models computed at the time with later main field models that include data

from both sides of the gap and employ temporal smoothing in the form of

continuous splines to estimate the field where there are missing data. Secondly,

we investigate whether it is possible to improve the estimate of the main field40

during the CHAMP-Swarm hiatus by using secular variation (SV) forecasts

from core flow models. To do this we use Ensemble Kalman Filtering (EnKF)

(Beggan and Whaler, 2009) to assimilate forecasts of SV from core surface flow

models (Whaler and Beggan, 2015) with annual updates from a main field model

generated using the data available during the hiatus.45

In Section 2 we describe the contemporary field models and their differences

from the ‘true’ field in a retrospective analysis, while in Section 3 we examine the

ability of core flow models to capture SV. Section 4 outlines the framework for

the EnKF, while Section 5 describes the results of the assimilation. We finally

discuss the limitiations of modelling and assumptions in light of the results.50

2. Main field modelling errors

Magnetic main field models consist of a set of time-dependent Gauss (or

spherical harmonic) coefficients. Spatial values are computed from the scalar

magnetic potential expanded in spherical harmonics using the Gauss coefficients

up to a particular degree and order. This type of spherical harmonic representa-55

tion compactly describes the main field in a physically meaningful manner and

allows upward and downward continuation from the Earth’s surface to the mag-

netopause and the core-mantle boundary, respectively. The longest wavelengths

– to degree and order 14 (around 2900 km on the Earth’s surface) – capture

the core field; above degree 14 the crustal field dominates the power spectrum.60

Recent main field models using Swarm data are moving toward degree and order

20 (e.g. Rother et al., 2013).

Although the spherical harmonic representation has many advantages, one

of the more obvious disadvantages is the difficulty in confidently placing errors
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bounds on individual coefficients (Lowes and Olsen, 2004). While it is possible65

to account for some of the error associated within the commissioning of the

individual models (Finlay et al., 2010a) and the omission of the various sources

which contribute to the measured field (Chulliat et al., 2010), there are also

differences that arise between the modelling approaches of individual research

groups as data selection, noise suppression and temporal and spatial damping70

will not be the same in each case.

2.1. Differences between DGRF/IGRF candidates

The variation between individual modelling groups can be quantified directly

by examining the IGRF series of models, which are formed from a joint inter-

national effort, updated on a five-year cycle. Each final IGRF release is created75

from up to nine independent candidate models submitted to the IAGA Divi-

sion V Modelling Working Group. The candidates are evaluated against each

other and the final model (c.f. Thébault et al., 2015a). The IGRF-12 candidate

models benefitted from the timely launch of the Swarm mission, so all included

vector satellite as well as observatory data.80

The RMS global difference (
√
dP , in nT) between two field models, mod1

and mod2, at the Earth’s surface can be calculated by (Lowes, 1966):

dP =

lmax∑
l=1

l∑
m=0

(l + 1)([(gml )mod1 − (gml )mod2]2 + [(hml )mod1 − (hml )mod2]2), (1)

where the Gauss coefficients (gml , h
m
l ) of degree (l) and order (m) to maximum

degree lmax are arranged in a vector g. This difference (to degree and order 13)

for the Definitive Geomagnetic Reference Field (DGRF) between candidates for85

2010.0 was ∼3 nT on average but varied from 1.7 to 6 nT. As the DGRF-2010

is a retrospective analysis of the field, this is indicative of variations in the data

selection and modelling approaches of the teams.

The IGRF-2015 model is slightly different in that each team was asked to

project the magnetic field ahead of time from the submission deadline in Septem-90

ber to the beginning of the following January when the new IGRF model became
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effective. The variation thus is larger with the mean difference between the can-

didates and final model of 7.5 nT and a wider spread of 4.2 to 12.9 nT, reflecting

the manner in which the field is forecast. Another factor is the end-effect on

models from the use of temporal splines which are forced to reduce acceleration95

or some higher-order term to zero at the end knot points. With hindsight, it

appears that the IGRF-2015 candidates were also affected by the emergence of

a geomagnetic jerk in early 2014 which was not recognised until after the final

release (Torta et al., 2015).

2.2. Differences between MEME and CHAOS models100

For the period between September 2010 and November 2013, main field mod-

els generated at the time relied primarily on ground observatory and sporadic

scalar field data from the Ørsted satellite at an altitude of around 850 km.

The models thus suffer from a bias of data in the northern hemisphere, and a

lack of vector data around the magnetic equator, as well as a globally uneven105

distribution in local time. The British Geological Survey (BGS) produces an

annual update to MEME around the beginning of each year, using data coverage

from the CHAMP era to the then-present time. There was one version of the

CHAOS model produced in 2013.5 (version 4, though with occasional updates

until Swarm launch). After the launch of the Swarm mission, later versions of110

these models were built which used the vector magnetic data either side of the

gap to temporally constrain the Gauss coefficients via B-splines. Hence in these

retrospective models, the magnetic field within the gap between missions has

been conditioned by satellite vector data from both sides.

By comparing contemporary with retrospective models, we can investigate115

the errors which arise when there are few vector data available and the models

are only well constrained in the early (prior to September 2010) portions of their

validity. For main field models, we use five annual updates from the BGS MEME

created with the magnetic global data available at the time in 2010, 2011 etc.

up to 2014, which are compared to MEME2015. Note the modelling method120

changed in 2015 from piecewise linear to a smooth order-6 spline representation.
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The MEME models are computed each year in March with the coefficients given

for the start of that year. Figure 1 shows the RMS differences between MEME-

201X and MEME-2015, to degree and order 14. Figure 1 also shows the CHAOS-

3, -4 and -5 field models, with release dates close to 2010.0, 2013.5 and 2015.0125

respectively, compared to CHAOS-6, again to degree and order 14. MEME-

2015 and CHAOS-5/6 use both CHAMP and Swarm data while CHAOS-3/4

and MEME-2010/11/12/13 use CHAMP and observatory vector data, and some

Ørsted scalar data. MEME-2014 also includes some initial Swarm data.

Figure 1 suggests that the global model errors become larger over time, with130

the RMS difference by 2013 being around 20 nT. A per-coefficient analysis (not

shown) suggests that degrees 1 and 5 accumulate the largest differences for the

MEME models but it is degrees 1 and 2 that show the largest differences for

the CHAOS models. A comparison of CHAOS-6 and MEME2015 gives an RMS

difference of around 3.5 nT, on average, across the 2010-2015 period, which is135

in agreement with variation of DGRF-2010 candidate models.

3. Forecasting with core flows

On short time-scales of less than a decade, the SV can be ascribed mainly to

the advective motion of the liquid iron core carrying an embedded magnetic field

(Kahle et al., 1967). Although this is incorrect for longer periods (c.f. Holme,140

2015), the SV can be inverted for the advective core surface flow that captures

short-term variation (Schaeffer et al., 2016).

Whaler and Beggan (2015) showed their core flow models consisting of the

first two terms of a Taylor expansion of the flow with time, which we refer to

as steady flow and steady acceleration models, performed best at predicting145

the SV over five year periods when using a magnetic field model based on data

selected from less than three years prior to the forecast. Over the past three

quinquennial cycles of the IGRF and WMM series, their core flow models were

better at predicting SV than the IGRF or WMM forecasts (Whaler and Beggan,

2015).150
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SV can be inverted for the flow expressed in its toroidal and poloidal com-

ponents using the linear relationship between its spherical harmonic coefficients

(ġ = [ġml ; ḣml ]) and those of the toroidal and poloidal scalars of the flow. This

involves the Gaunt/Elsasser matrix (H) whose elements depend on the Gauss

coefficients (Whaler, 1986). Here, the main field, SV and flow potential ex-155

pansions are truncated at degree and order lmax = 14. It is also possible to

incorporate magnetic secular acceleration (SA) (g̈) into the inversion to allow

estimation of flow acceleration. In this study, acceleration is included up to

degree and order lmax = 8.

Following the approach of Whaler and Beggan (2015), we used two different160

sets of magnetic field data covering the period 2000–2010 to generate SV and SA

estimates. The first was vector monthly mean values based on night-time data

from up to 160 global magnetic observatories. As this network is very unevenly

spatially distributed, we also used satellite data to provide global coverage. We

calculated ‘virtual observatory’ (VO) (Mandea and Olsen, 2006) monthly field165

component time series from CHAMP vector data (version 51) on a grid of 648

points at equal latitude and longitude spacings of 10◦ in colatitude and longi-

tude. Each VO was located at a nominal altitude of 400 km and encompassed

satellite data within a 400 km radius from the centre point.

Annual first differences of main field and SV values provided SV and SA170

estimates, respectively, at both ground observatories and VOs. The difference

between month n+12 and month n was designated to be the value at month

n+6, giving time series of SV and SA. From the VO method, the variance of

each monthly solution for the individual magnetic field components (and hence

the variances of the SV and SA values derived from them) can be computed.175

The uncertainties of the ground observatory SV and SA data are unknown but

assumed to be small (c.f. Lesur et al., 2017). We assigned them arbitrary values

of 1 nT/yr and 1 nT/yr2 in each component.

We seek flows (m̂) which can be obtained from the SV and SA using the

standard L2 least-squares minimisation norm with strong spatial regularisation180

(Gubbins, 1983; Bloxham, 1988). We then apply an additional step using an
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iterative L1 norm minimisation technique as described by Beggan and Whaler

(2008). This will account for an incorrect guess of the observatory SV and SA

uncertainties, and improves the fit to the data. The magnetic field SV and SA

have been inverted using two types of assumption about the flow:185

• SF SV only: using magnetic SV data for a steady flow only

• SF/SA: using magnetic SV and SA data to invert for both a steady flow

and steady acceleration

We also inverted SV and SA data from different periods and lengths of

time: 2001–2010, 2001-2007, 2005–2010 and 2007–2010. The main features of190

the steady part of the flow are common to all the models, but the acceleration

changes markedly depending on how many and which years are included in the

inversion.

To forecast the change of the magnetic field, Gauss coefficients from the

CHAOS-6 model for 2010.0 were used as the starting field model. The field was195

advected forward on a monthly timestep (k) for five years using the equation:

gk+1 = gk + (Hkm̂)/12 (2)

where the Gaunt/Elsasser matrix, Hk, is updated at every timestep using the

main field coefficients forecast from the previous time step. To evaluate the

validity of this forecast, in Figure 2, we show the forecasts of magnetic field

change from 2010.0 using different core flow models, relative to CHAOS-6. The200

different colours in the figure show the span of magnetic field data used for each

flow. The upper panel shows the steady flows inverted with SV only and the

lower panel gives the steady flow with steady acceleration (labelled SF/SA).

By inspection, it can be seen that the prediction based on the SF/SA flow

using data spanning 2007–2010 gives the lowest RMS difference from CHAOS-6205

at 2015.0 of 73 nT. This compares to a total SV change over the 2010–2015

period of 440 nT, and thus the flow captures over 83% of the variation. Table 1

gives the numerical differences for the models in Figure 2, as well as the IGRF
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and WMM values. We conclude that the best forecast model is derived from

satellite and ground magnetic SV and SA data spanning 2007–2010.210

4. Ensemble Kalman Filtering

Ensemble Kalman Filtering (EnKF) is a method for optimally combining

models of observational information with a physical model of the process us-

ing the statistical representation of their associated uncertainties (c.f. Evensen,

2003). It is used extensively to improve the accuracy of weather forecasts by215

exploring the sensitivity of systems to minor perturbations or initial conditions.

Its use in data assimilation within geomagnetism has increased over the past

decade, particularly for forcing geodynamo models to behave in a more Earth-

like manner (e.g. Aubert, 2013; Tangborn and Kuang, 2015; Barrois et al., 2017).

In EnKF, the state of a dynamic process at any particular time can be repre-220

sented as a vector in n-dimensional space, where n is the number of parameters

in the system. The uncertainty of the process is represented by perturbing the

inputs randomly by a known variance (with zero-mean) to produce an ensemble

of states. The evolution of the states through time is controlled by propagating

the ensemble forward using model equations of the system behaviour. When225

an observation is available, it can be optimally assimilated into the ensemble

by applying the standard Kalman Filter equations. With a sufficiently large

ensemble, the mean state represents the most likely value for the process at the

time. The evolution of the ensemble can be explored by examining the spread

of the states about the mean.230

A traditional Kalman Filter is implemented in two steps: (1) prediction of

the evolution of the model state by dynamic equations believed to represent

the system adequately and (2) assimilation of a measurement to correct any

accumulated error in the model. At time k, the optimal blending of a forecast

state (xf
k) and measurement (zk) to generate the assimilated state vector, xa

k,235

is through the so-called Kalman gain matrix (Kk):

xa
k = xf

k + Kk(zk − xf
k) (3)
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with

Kk = Pf
k(Pf

k + Q)−1 (4)

where Pf
k is the covariance of the model and Q is the covariance of the data

measurement. The balance between the model (in this case our gk) and mea-

surement error controls the assimilation step and it is these values that we seek240

to extract from the analyses in the previous two sections.

We follow the methodology of Beggan and Whaler (2009) with an EnKF of

1000 members, progressing in two stages: (i) a forecast step based upon the flow

model and (ii) an assimilation step to infuse the coefficients of a contemporary

field model into the system in order to update and correct the trajectory. We245

use the flow models inverted from the 2007-2010 magnetic field data to drive

the EnKF in forecast mode for one year (Eq. 2) and the Gauss coefficients of

the MEME-201X field models computed from the data available at the time for

the annual assimilation (Eq. 3). We compare the results to the forecast from

the 2007-2010 model to see if there are improvements beyond this.250

To initialise the system, we start at 2009.0 and specify the (assumed di-

agonal) covariance matrix elements as follows for the P and Q matrices. To

estimate the model error (P) generated by a flow model, we use the per co-

efficient differences (in nT/yr) between a flow forecast and the true SV field

coefficients after one year. For the magnetic field (measurement error, Q), the255

differences are between the MEME2014 and MEME2015 field models at 2014.0.

These errors are shown in Figure 3, with degree 1 showing the largest difference.

The forecast (prediction) of the field is driven forwards by the summation of

the field coefficients and the monthly SV from the flow model which is perturbed

by a random matrix with zero mean and standard deviation computed from the260

variance of the flow over time. In addition, at each time step, model noise

is added to simulate the variance of the ensemble, forcing it to grow at each

forecast iteration. The model noise is controlled by the size of the time-step

(one month) in the advection (Eq. 2) , the standard deviation of the SV from

the previous iteration, and a fixed parameter (ρ = 0.009) which can be used to265
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control the time correlation of the noise, as required (Evensen, 2003).

As time progresses, the forecast field model will begin to diverge from the

actual field. Measured (or modelled) values can be input into the ensemble

to update (and correct) it. The measured data have associated errors which

are used to generate a perturbed ensemble of measurements, whose mean is270

equal to the input data. The perturbed measurements are assimilated into the

overall ensemble using the Kalman Filter algorithm. The forecast process is

repeated each month until a measurement becomes available for assimilation

into the ensemble. By changing the weighting of P and Q in the EnKF we can

investigate strategies for improving the overall forecast of the SV.275

In our first experiment, we assume that the errors models have the weighting

ascribed in Figure 3. In this case, the flow model errors are smaller than the field

model and so the forecast state (xf ) is more highly weighted in the assimilation

step in Equation (3). Figure 4 shows the outcome of this ensemble forecast using

a SF/SA model. The RMS differences are with respect to CHAOS-6 magnetic280

field model to degree 14. The individual members are in green (1000 of them),

the ensemble mean is in black with the ±1σ values of the ensemble in red. Note

that at the time of each measurement assimilation, the ensemble collapses back

to this point.The gray line is the forecast from the 2007–2010 model (light blue

line shown in Figure 2 (lower panel)) that produced the best forecast of the flow285

models tested. As can be seen, compared to the best performing simple forecast

flow model, there is not much improvement in the forecasting ability; after five

years, the reduction is less than 3 nT. This suggests that there is little benefit

in assimilating a field model at the beginning of each year when it does not have

much weight in the Kalman gain matrix (K). We applied the same process to290

the steady flow only (SV only) model and found very similar results.

For the second experiment, we assumed that the errors allocated to the

field model are too pessimistic. In this case, we simply divided the individual

measurement errors by some factor (e.g. 5, 10, 20, 50 or 100) to make them pro-

gressively smaller. The Q is now small in Equation (4) and so the measurement295

(z) is essentially error-free. Figure 5 shows the outcome of this assumption for
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a factor of 50 (again for the SF/SA flow model).

The forecast driven by the flow model drifts further away from the true field

over the year but responds strongly when the field models are assimilated each

year. For the first two years, the assimilation step improves the forecast, but300

in 2012 it actually makes it worse. This may be related to the geomagnetic

jerk in 2011 (Chulliat and Maus, 2014) which was not well captured within the

then-contemporary field model. Following this, assimilation starts to improve

the forecast again, and in 2015 it reduces the RMS error sharply to values of

around 5 nT. The RMS difference remains below 31 nT throughout the period305

of 2010-2015. This is better than the flow model forecast of Figure 2.

Figure 6 illustrates the spatial effect of the field assimilation into the forecast

using the noise-free main field (from Figure 5). The residuals to each of the three

magnetic field components are shown just before and after an assimilation step,

which occurs at the start of each year. The first assimilation in 2010.0 has310

a modest impact on the differences, but by 2015.0 the assimilation produces

a strong reduction, particularly in the Z-component. The reduction is also

more pronounced in the Southern hemisphere, suggesting that the flow model

captures the changes there less well than in the Northern hemisphere. The

larger residuals in the Southern hemisphere both before and after assimilation315

may also reflect the data distribution used to construct the main field model.

In another experiment (not shown) the flow model error was divided by 50

to make P dominant in Eq. (4). In this scenario, the forecast then tends toward

the simple flow forecast (gray line). As noted we varied the amount by which

we reduced the field model errors (e.g. 5, 10, 20, 100) but found that above 50320

(for which the results are shown in Figure 5) there was no discernible change in

the forecasts.

Finally, we examined the use of an error model based on the expected co-

variances of the main field coefficients themselves. Based on a suggestion by one

of the reviewers, we used equation (6.1) of Lowes and Olsen (2004) to build a325

relative covariance matrix to represent realistic correlation between the Gauss

coefficients of a satellite-derived field model. We use the unscaled Lowes and
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Olsen correction factor (their equation (6.1)) for each Gauss coefficient:

σ2
l,m = 0.27 + (1.81 + 13.18/l) exp(

−(l −m)

4.49
) + (1.62 + 9.83/l) exp(

−m
1.09

) (5)

to create a covariance matrix for the field model. Lowes and Olsen stated the

values for g01 and g03 should be twice as big as in equation (6.1) and note that the330

formula predicts the g11 and h11 values are about a factor 2 too large. These were

manually adjusted in the covariance matrix. We point out this equation was

based on an analysis of an Ørsted main field model (OSFM4), which had a dense

coverage of vector data. Hence, we should expect errors in the OSFM4 model

coefficients to be smaller than for the MEME201X models during 2011-2014.335

The full covariance matrix enters the ensemble via the Q matrix where

it acts to simulate the measurement error (see equation (13) of Beggan and

Whaler (2009)). However, the magnitudes of the estimated variances of the

Gauss coefficients determined by Lowes and Olsen (2004) are relatively small.

They suggest that Gauss coefficients up to degree 14 have variances less than340

10−2 nT2, which is well below values we used in this study. This suggests we are

already being pessimistic about the variance of the model coefficients, even if

we do randomly allocate them. Experiments with the more realistic covariance

matrix (not shown) suggested it has little to no effect on the overall performance

of the ensemble, as the relative size of random numbers in the present ensemble345

are two or more orders of magnitude larger.

5. Discussion

The aim of this study was two-fold. Firstly, we looked at the use of core flow

forecasts to improve field modelling during gaps in vector data from satellite

missions. The second aim was to determine the best balance between the errors350

assigned to the flow and field to produce an optimal forecast with the benefit of

retrospective field models available for re-analysis.

In general, the flow model type and length of magnetic field data inverted

to create the flow strongly influences the fidelity of the forecast. Whaler and
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Beggan (2015) showed that a hindcast flow can recreate the magnetic field over355

the time era it covers to within 10 nT over 5 years. However large-scale steady

flows do not capture more rapid dynamic changes such as jerks and presently

ignore the effects of diffusion. They also do not contain small scales (above

degree 14), which Barrois et al. (2017) point out are important in fully describing

the field change even over five year periods.360

We also note that the use of relatively simple covariance matrices in the

ensemble calculations implies the matrices P and Q are not fully exploited.

Though we examined the use of a realistic covariance model from Lowes and

Olsen (2004), it was found that introducing additional complexity, for example

to compensate for limitations due to polar data gaps, did not alter the results365

significantly. Although other methods can be envisaged for choosing more realis-

tic covariance matrices e.g. that reflect the unequal distribution of observatories

in the individual years of the MEM201X models, it is unlikely they would have

a strong influence on the overall forecast accuracy.

By using the EnKF to combine forecasts from a SF/SA core flow models cov-370

ering 2007–2010 with those from main field models built without vector satellite

data during the CHAMP-Swarm gap, we attempted to deduce the optimal bal-

ance between realistic flow and field model errors. The RMS differences in the

forecasts in Figure 4 show that, if we ascribe unscaled weights to the error mod-

els of the flow and main field (Figure 3), the forecasts are similar to using the375

flows by themselves.

On the other hand, if we essentially assume the field model predictions are

error-free in the assimilation step (Figure 5), the forecast is much better. In

particular, assimilations later in the forecast period when the errors have become

significant, especially in the Southern hemisphere Z-component, produce spatial380

distributions and typical values of residuals similar to those of earlier epochs

(Figure 6). However, we can only reduce the RMS difference to that of the field

model itself (c.f. Figure 1). In some circumstances, assimilating a contemporary

field model can make the forecast worse, as in 2012. Hence, we can only do as

well as the ‘better’ part of models in the EnKF system. Given that the field385
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models produced during periods of no-vector satellite data are just as good as

the annual predictions from a flow model, there appears at present to be no

overall benefit to using EnKF. We suggest that this will remain the case until

flow inversion (or geodynamo) models can predict the SV better (c.f. Baerenzung

et al., 2016).390

6. Conclusions

We examined the use of core flow forecasts to improve field modelling during

periods where vector magnetic data from satellite missions were unavailable. We

sought to determine the best balance between the errors assigned to the flow

and field models in order to produce an optimal forecast of the magnetic field395

using an Ensemble Kalman Filter.

We find that by assuming the field models are error-free in the ensemble

assimilation the forecast is much better than using realistic errors from a flow

model. However, we can only improve the foreast performance to the ‘better’

part of models used in the EnKF. Hence the overall forecast of field change is not400

significantly improved by using an EnKF approach. At present, there appears

to be no strong benefit to using EnKF in this manner. We suggest that this

will remain the case until flow models can better predict the secular variation

of the magnetic field.
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Figure 1: Comparison of root-mean-square (RMS) differences (in nT) of MEME-201X with

MEME-2015 and CHAOS-X with CHAOS-6. Differences are to degree and order 14. Model

release dates are shown in the legend.
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Figure 2: Root-mean-square (RMS) differences over 2010–2015 between CHAOS-6 and pre-

dictions based on core surface flow models derived assuming: (upper) SV magnetic data only

with no flow acceleration; (lower) SV and SA magnetic data and including flow acceleration.

Different time periods of magnetic data prior to the forecast are used to compute the flows.
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Figure 3: Root-mean-square (RMS) differences per degree of the secular variation between the

MEME2014 and MEME2015 field models for 2014–2015 (blue line) and the RMS difference

between a flow model forecast and the true SV field (red line) after one year. See text for

details.
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Figure 4: Comparison of root-mean-square (RMS) differences (in nT) over 2009-2015 assuming

that the errors of the flow model and field model have equal weighting (based on their assumed

uncertainties) in the EnKF assimilation step. Individual members are in green, the ensemble

mean is in black with the ±1σ of the ensemble in red. The gray line is the forecast from the

2007–2010 SF/SA model shown in Figure 2. Differences are relative to CHAOS-6 to degree

and order 14.
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Figure 5: Comparison of root-mean-square (RMS) differences (in nT) over 2009-2015 assuming

that the field model errors are reduced by a factor 50 in the EnKF assimilation step. The

individual members are in green, the ensemble mean is in black with the ±1σ of the ensemble

in red. The gray line is the forecast from the 2007–2010 model shown in Figure 2. Differences

are relative to CHAOS-6 to degree and order 14.
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Figure 6: Differences in the X, Y and Z components between the forecast model prior to

(2009.9 and 2014.9) and after assimilation (2010.0 and 2015.0) of the then-available main field

model. Left panels: The first assimilation in 2010.0; Right panels: The final assimilation in

2015.0. Central meridian is 90◦E. The Greenwich meridian is shown as a black line.
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