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ABSTRACT 

 

The surface geology of central England and Belgium obscures a large ‘basement’ massif with a complex 

history and stronger crust and lithosphere than surrounding regions. The nucleus was forged by 

subduction-related magmatism at the Gondwana margin in Ediacaran time, and partitioning into 

platform and basin was already evident in Cambrian/earliest Ordovician time. The accretion of the 

Monian Composite Terrane during the Penobscotian deformation phase preceded late Tremadocian 

rifting, and Floian separation, of the Avalonia Terrane from the Gondwana margin. Late Ordovician 

magmatism in a belt from the Lake District to Belgium records subduction beneath Avalonia of part of 

the Tornquist Sea. This ‘Western Pacific-style’ oceanic basin closed in latest Ordovician time, uniting 

Avalonia and Baltica. Closure of the Iapetus Ocean in early Silurian time was soon followed by closure 

of the Rheic Ocean, recorded by subduction along the southern margin of the massif. The causes of late 

Caledonian deformation are poorly understood and controversial. Partitioned behaviour of the massif 

persisted into late Palaeozoic time, when both late Devonian and Carboniferous sequences show strong 

onlap, and during the Variscan Orogeny, when a wedge-shaped mountain foreland uplift was driven by 

orogenic indentation. Permian to Mesozoic sequences persistently exhibit onlap onto the massif.   
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1. Introduction 

 

1.1 Location 

 

The Anglo-Brabant Massif (ABM) is a long-lived component of the crust of central England and 

Belgium (Fig. 1). This paper reviews the evolution of the ABM from Neoproterozoic times, to the 

Present. The massif has strongly influenced palaeogeography and patterns of sedimentary deposition 

since Devonian time. Its origins are far older however, and to understand the behaviour of this 

distinctive and enigmatic tectonic element it is necessary to look both farther back, to crustal genesis in 

late Neoproterozoic time and a complex early Palaeozoic history, and deeper, into the lithosphere that 

lies beneath. In determining the distribution of Carboniferous coalfields, and hence the location of heavy 

industry and conurbations in the Industrial Revolution, it has continued to exert an influence into the 

Anthropocene. For more detailed reviews of specific periods in its history, and particularly of Belgian 

geology, the reader will be referred elsewhere. 

Study of the massif is complicated by the following factors: 
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 Very limited outcrop of pre-Mesozoic formations, restricted to possibly unrepresentative 

structural highs 

 Old boreholes without geophysical logs provide a rather one-dimensional view 

 Contacts between lithostratigraphic units are rarely seen, so it is difficult to establish 

stratigraphic thicknesses. This is a problem even in Belgium, where exposure of the massif is 

better in major river valleys 

 Poor control from a very limited seismic reflection data 

The ABM is located in the south-central Midland and East Anglian regions of England, extending 

eastward beneath the southern North Sea to Belgium (Fig. 1). Its boundaries are most easily defined 

using the extensional fault systems along its western (Permo-Triassic Worcester Graben), northern 

(Mississippian basins of the Pennine basin complex) and southern (Jurassic to early Cretaceous Weald-

Wessex basin) boundaries. The Worcester Graben separates the ABM from the counterpart Welsh 

Massif, the two massifs exhibiting subtly different tectonic behaviour during post-Carboniferous time. 

All of these fault systems represent extensional reactivations of compressional faults formed in earlier 

tectonic regimes, respectively the Avalon, Caledonian and Variscan orogenies. In many places, the 

boundaries sharply defined by the extensional faults are obscured by transgressive sequences associated 

with post-rift thermal subsidence, respectively the late Triassic Mercia Mudstone Group, the late 

Carboniferous Pennine Coal Measures Supergroup and the late Cretaceous greensands. The marginal 

position of such post-extensional sequences naturally predisposed them to erosion in the next cycle of 

extension. Thus the subcrop patterns used to define the shape of the ABM vary considerably over time, 

as reflected in the numerous publications on this topic (e.g. see the various chapters in Cope et al., 

1992). In the south, the crust of the massif is truncated by the thrust-front of the thin-skinned Variscan 

Variscide parautochthonous thrust nappes and must extend a significant distance farther south 

(Chadwick et al., 1983). In the east, the circumstances are simpler; the massif skirts the southern margin 

of the North Sea (Fig. 1), NE of the Strait of Dover, and is contiguous with the Brabant Massif of 

Belgium. 

 

1.2 Previous work and terminology 

 

In Belgium, the Brabant Massif was recognised beneath a thin Cenozoic cover as far back as the 

middle of the 19th C (Dumont, 1847). In the UK, the palaeogeographical maps of Leonard Wills (1948, 

1951) contained many of the structural elements to be discussed here, because they integrated 

information derived from wartime strategic coal and oil exploration (e.g. Lees and Taitt, 1945), key 

boreholes (e.g. Bullard et al., 1940) and outcrop (Wills, 1948). Wills (1948, Fig. 4) and Wills (1951, 

Plate III Silurian) illustrates a triangular region labelled ‘Shelf Sea’ and ‘Midland Kratogenic Block’, 

corresponding to the Midland Platform or Microcraton of later authors. The ‘Welsh Geosyncline’ is 

shown to the NW of this region, and a conjectured geosynclinal trough to the NE. This hypothesis was 

developed further by Turner (1949) in his classic paper on the concealed Caledonides of northern and 

eastern England. In Plate IV (Caledonides), Wills (1951) recognised a little folded ‘kratogenic’ area 

and a syntaxis between ‘SW and SE Caledonides’. By early Carboniferous time (Plate VI), terrestrial 

massifs are recognised in Wales and the Irish Sea (‘St George’s Land’), and the English Midlands 

(‘Midland Barrier’), separated by a ‘strait’ in the south Midlands. It was already recognised that the 

Midland Barrier continued eastward into the Brabant Massif (Wills, 1951). . In late Namurian time, the 

terrestrial massifs had become amalgamated into the ‘Wales-Brabant Massif’ or island. By early 

Westphalian time, ‘cuvettes’ had developed in South Wales and Kent, along the southern margin of the 

Wales-Brabant Island, sourced from the ‘Armorican Mountain Front’ lying to the south. Careful study 

of clast composition in late Carboniferous sandstones and early Permian breccias revealed a complex 
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history of fault reversal and reactivation (Wills, 1948), and Variscan inversion, long before seismic data 

were available. Wills (1951) referred to the Permo-Triassic manifestation of the ABM as the ‘East 

Anglian Stable Massif’ or ‘Mercian Highlands’; and in Jurassic to Cretaceous time, as the ‘Anglo-

Belgian Island’. In generating these maps, Wills (1951) cited the work of numerous authors (W.J. 

Arkell, W.S. Bisat, F.W. Cope, A. Fowler, W. van der Gracht, D. Hill, R.G.S. Hudson, J.W. Jackson, 

P.E. Kent, W.B.R. King, A. Lamont, G.M. Lees, H.R. Lovely, L.R. Moore, F.J. North, D. Parkinson, 

D. Reynolds, D. Stamp, A.H. Taitt, A.E. Trueman, J.S. Turner, W.D. Ware and A. Wood), in particular 

authors of the Geological Survey Regional Handbooks. Neville George (1958) reviewed the early 

Carboniferous paleogeography of the British Isles, particularly focussing on St George’s Land (Welsh 

Massif) and dealing with the Mercian Highlands more superficially. Perhaps surprisingly, neither Wills 

nor George directly cited each other’s work, although George (e.g. 1970) was principal author of several 

of the regional guides on behalf of the Geological Survey. In the 1960’s, a considerable improvement 

in palaeogeographal knowledge resulted from coal and hydrocarbon exploration, particularly in the East 

Midlands (Kent, 1966; 1968), principally by ‘wildcat’ drilling with very limited geophysical guidance, 

e.g. from gravity surveys. A comprehensiove memoir on the Brabant Massif by Legrand (1968) also 

dates from this time. 

At about the same time, the seminal paper by Tuzo Wilson (1966) introduced the nascent science 

of global geodynamics to British historical geology by posing the question ‘Did the Atlantic close and 

then reopen?‘. Wilson’s hypothesis was that a proto-Atlantic or Iapetus Ocean had existed in the vicinity 

of the modern Atlantic. The hypothesis was further developed in the paratectonic (southern British and 

Irish) Caledonides by Dewey (1969). The initial plate models focussed on the relationship between just 

two palaeocontinents, Laurentia and Avalonia, separated by the Iapetus Ocean. This is reflected in the 

palaeogeographic reconstructions presented by Anderton et al. (1979) showing a Midland Shelf 

Platform in early Cambrian and Wenlock time, and a Midland Platform for the remainder of early 

Palaeozoic time, forming part of an Anglo-Baltic Shelf in Cambrian to Silurian time. These authors 

recognised the Wales-Brabant Landmass in the Westphalian, and the Wales-Brabant Massif in Triassic 

and Jurassic time.  

In the early 1980’s, onshore hydrocarbon exploration generated an extensive coverage of 2D 

seismic reflection data, allowing comprehensive mapping of the Permian and Mesozoic basins of 

southern Britain (Whittaker et al., 1985). Mapping of the Carboniferous basins of central and northern 

Britain and other structural analyses (e.g. Besly, 1988) helped define the northern and western margin 

of the ABM in greater detail (Fraser et al., 1990; Fraser and Gawthorpe, 2003; Smith et al., 2005; 

Pharaoh et al., 2011; Butler, in press) but as the ABM was regarded as unprospective, the seismic 

surveys do not extend far into its interior. In the late 1980’s, more sophisticated three plate models were 

developed for the Caledonides (Cocks and Fortey, 1982; Soper and Hutton, 1984; Pickering et al., 1988) 

soon supported by more detailed combined palaeomagnetic/faunal studies (Scotese and McKerrow, 

1990; Torsvik et al., 1992; Cocks and Torsvik, 1992). These models required the separation of an 

Avalonia microcontinent from Baltica for much of Ordovician time. That part of Avalonia involved in 

the northern Applalachians of Canada, west of the Atlantic ocean basin, has been referred to as Western 

Avalonia; that part to the east, as Eastern Avalonia (e.g. Soper et al., 1987; Pickering et al., 1988). 

Debate continues as to whether or not these two parts of Avalonia were originally a contiguous ribbon-

like microcontinent throughout the Caledonian orogenic cycle (e.g. Schofield et al., 2016); and whether 

crust in the southern North Sea belongs to Avalonia (see discussion in Pharaoh et al. (1999; 2006) and 

Winchester et al. (2002). Landing (2013) has objected to the use of the term ‘Midland Microcraton’ 

(e.g. Turner, 1949; Soper et al., 1987; Pharaoh et al., 1987) as true cratonic behaviour is not exhibited. 

However, the Midland Platform certainly exhibits the behaviour of a massif resistant to the effects of 

the Caledonian Orogeny, as does its descendent, the ABM, during the Variscan and Alpine orogenies. 

In recent years, there has been a tendency for authors on Mesozoic and Cenozoic palaeogeography to 
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refer to the massif as the London-Brabant Platform or High. To aid the reader, Fig. 2 summarises the 

terminology to be followed throughout this paper. 

The mutual interest of British and Belgian geoscientists in exploring the composition and geological 

history of the ABM led to a series of workshops and scientific meetings. The proceedings of a meeting 

held in Brussels, in September 1989, were published in the Annales de la Société Géologique de 

Belgique (André et al., 1991). The proceedings of a second meeting, held at BGS in Keyworth in 

September 1992, were issued in a Special Issue of Geological Magazine Volume 130, published in 

September 1993 (Pharaoh et al., 1993b). A further milestone was the publication of the Geological 

Society’s palaeogeographical atlas (Cope et al., 1992). Subsequently, studies of the ABM were 

facilitated by the various meetings of the Trans-European Suture Zone project of the ILP-sponsored 

EUROPROBE programme (Gee and Zeyen, 1996; Gee and Stephenson, 2006) and the PACE TMR 

Research Network, funded by the European Commission. The research collaborations established 

resulted in numerous further publications, including a special publication of the Geological Society 

(Winchester et al., 2002). One of the most significant results was the elucidation of the history of the 

Anglo-Brabant Deformation Belt (not to be confused with the ABM) which links the Caledonides of 

England and Belgium. Many of the same authors contributed to the Southern Permian Basin Atlas 

(SPBA) published by TNO and EAGE (Pharaoh et al., 2010; De Vos et al., 2010). 

 

2. Crustal and lithospheric structure 

 

The crustal structure of the ABM is less well known than that of surrounding regions, e.g. northern 

England and the region south of the Variscan Front. It was recognised from the exploration boreholes 

drilled in the pre-seismic era (1940s -1950s) that although coal-bearing basins are locally present on its 

northern margins, the massif is poorly prospective for oil and gas (Lees and Taitt, 1946; Falcon and 

Kent, 1960). Thus the dense networks of seismic reflection data acquired since 1970 in northern and 

southern England, which are so informative about the upper crustal and sedimentary basin structure in 

those areas (e.g. Whittaker, 1985; Kirby et al., 2000; Smith et al., 2005; Pharaoh et al., 2011) are largely 

absent over the massif. Significant coverage is only present in the NW (Staffordshire), the Worcester 

Graben and Oxfordshire Concealed Coalfield areas (Butler, in press). A small number of seismic 

reflection profiles, gathered by the British Geological Survey (Chadwick, 1985; Chadwick and Smith, 

1988) and academic institutions (e.g. Maguire, 1987) provide limited insights to crustal structure. The 

massif is crossed by only one long lithospheric-scale seismic refraction profile (Lithospheric Seismic 

Profile in Britain, LISPB) acquired in 1974 (Bamford et al., 1976). The GAMMA segment ends in 

Buxton, just beyond the northern edge of the massif (Barton, 1992). The DELTA segment extends from 

North Wales to the Isle of Portland and an interpretation was published by Maguire et al. (2011). The 

segment crosses the massif in its west central part, intersecting shorter refraction profiles in the Bristol 

Channel area (Mechie and Brooks, 1984).  Deep seismic reflection data, recorded to 12 or 15 s Two-

Way Travel Time (TWTT) by the British Institutions Reflection Profiling Syndicate (BIRPS), based at 

Cambridge University, cover only the offshore area (Klemperer and Hobbs, 1991). These profiles are 

nevertheless useful in assessing the tectonic milieu of the massif. Deep seismic reflection data from 

northern France (Cazes and Toreilles, 1988) and Belgium (Bouckaert et al., 1988; Meissner and 

Bortfeld, 1990) demonstrate a gently southward-dipping Variscan detachment, with the crust of the 

ABM forming a tapering wedge in the footwall (Blundell, 1993). The latter extends some 60 to 100 km 

south of the Variscan Front, and its nature is confirmed by the continuity of the South Central England 

Magnetic Anomaly beneath the Variscan nappes (Beamish et al., 2016).  Interpretations of crustal 

structure incorporating all of the available seismic data were integrated into maps of crustal structure 

by Chadwick et al. (1996), Ziegler and Dèzes (2006) and Kelly et al. (2007). Fig. 3 presents the results 

for Moho depth, Top crystalline basement and Thickness of crystalline crust from the analysis by 
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Chadwick et al. (1996). The distinctive properties of the crust of the in the British part of the ABM 

compared to the surrounding areas, in particular the greater depth to the Moho compared to the 

surrounding regions, is visible in all three maps.  

An integrated seismic velocity-gravity model for the LISP DELTA segment was presented by 

Maguire et al. (2011). The interpretation presented in Fig. 4a (from Maguire et al., op. cit.) is based on 

this model, but note that this diagram also incorporates features such as the Bala Fault, whose presence 

is inferred from other lines of evidence or otherwise hypothesised (Bristol Channel-Bray FZ). The 

Moho is recognised in all shot records. It is deepest (about 38 km) beneath North Wales and the Welsh 

(early Palaeozoic) Basin, and rises southward to about 31 km at the Bristol Channel and 28 km at the 

Dorset coast. These values are comparable to those inferred by Chadwick et al. (1996), Ziegler and 

Dèzes (2001) and Kelly et al. (2007). The lower crust is a fairly constant 12 km thick beneath the massif, 

but beneath Wales may be heavily injected or underplated by sills associated either with the Ordovician 

magmatic history, or with the Cenozoic magmatic history of the Irish Sea Basin (Brodie and White, 

1994; White et al., 2008). The combined middle-upper crust is thickest (25 km) beneath the massif and 

thins south of the Variscan Front where it is overlain by deep Mesozoic sedimentary basins. Its velocity 

structure suggests a largely Neoproterozoic crystalline crust (Vp 6.1 to 6.5 km s-1, density 2.90-3.15 Mg 

m-3) overlain by slightly slower (Vp 5.2 to 6.0 km s-1) and less dense (2.66 – 2.72 Mg m-3) low grade 

metamorphic (slate-schist) complexes. In Wales, the latter correspond to the 10-12 km deep Welsh 

Basin; in England, probably to low grade Avalonian metamorphic rocks with a cover of Old Red 

Sandstone up to 2.5 km thick. Modelling the lithostatic load suggests that the lithosphere is close to 

isostatic equilibrium at a depth of 60 km (the base of the model). Unfortunately the LISP data are not 

well located to answer the questions surrounding the permanency of the northern boundary of the ABM 

in the vicinity of The Wash. A new wide-angle seismic experiment is required there to resolve such 

matters. The ECORS (Cazes and Toreilles, 1988), BELCORP (Bouckaert et al., 1988) and DEKORP-

1N deep seismic reflection profiles show that the crust of the ABM is unreflective, and the Moho 

beneath unrecognisable (Blundell, 1993).  

Deep seismic lines in the southern North Sea provide evidence on the crustal structure of the ABM 

in this region. A consistent structural pattern is evident in two lines from the BIRPS dataset (MOBIL-6 

and -7), and the NOPEC/GECO line SNST 83-07 (England, 1995; SPBA, 2010), as summarised 

schematically in Fig. 4b. The lower crust of the ABM is poorly reflective, with the Moho inferred to lie 

at 9 s TWTT. The middle crust contains numerous inclined reflectors, mostly SW-dipping, and 

diffractions, indicating a complex structure (Reston, 1979: Reston and Blundell, 1987). Blundell (1993) 

and Lee et al. (1993) favoured genesis of these structures during Caledonian accretion. The lower crust 

of the southern North Sea is reflective down to a Moho at 12 s TWTT, SW of the deep reflector (1. on 

Fig. 4b). On the original seismic section the middle crust is non-reflective. The boundary between these 

two crustal types underlies the Dowsing-South Hewett Fault Zone (D-SHFZ). A prominent package of 

reflectors about 2.5 s thick (the X-reflector of Blundell  et al., 1991; ‘Mantle Event’ of England, 1995) 

dips SW from 12 to 15 s TWTT to the bottom of the section (c. 15 s TWTT) over a horizontal distance 

of 40 km.  Assuming a mantle velocity of 8 km s-1, this corresponds to a dip of about 17° to SW, beneath 

the ABM. The parallel trend of these mantle structures and potential field anomalies  (Lee et al., 1991), 

led Pharaoh et al. (1993; 1995) to propose that the lithospheric structure recorded subduction of 

Tornquist oceanic crust beneath Avalonia. The latter was invoked as the cause of mid- to late Ordovician 

volcanic and plutonic magmatism within the ABM and northern England (see Section 5 below for 

further discussion of this topic). This concept was subsequently endorsed by Van Staal et al. (2008). 

Unfortunately the nature of the linkage of the Mantle Event to the co-located D-SHFZ is not well imaged 

by the deep seismic data, and no wide-angle data are presently available to constrain the depth of these 

structures. The unexposed basement of the southern North Sea and northern Germany between the D-

SHFZ and the Thor-Tornquist sutures is only proved by a few deep boreholes on the Mid-North Sea 
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and Ringkøbing-Fyn highs (Frost et al., 1981; Berthelsen, 1998; Pharaoh et al., 1995; Lyngsie and 

Thybo, 2006). Some authors refer to this poorly known terrane as the ‘Far Eastern Avalonia’ (e.g. Unrug 

et al., 1999; Verniers et al., 2002; Winchester et al., 2002) although the term is not favoured by Torsvik 

and Cocks (2009). Potential field modelling (Williamson et al., 2002) suggests that the crust of this 

Southern North Sea Terrane (Franke, 1995; BGS, 1996) may include juvenile Caledonian-cycle 

accreted volcanic arc, marginal basins and granitic intrusions (Dutch offshore well A17-1) without 

ancient crustal inheritance (De Vos et al., 2010). This furtive terrane therefore appears to exhibit a 

juvenile, uncratonic character (Williamson et al., 2002), although a cratonic character is a requirement 

of some tectonic models (Sintubin and Everaerts, 2002; Debacker et al., 2005). The composition, 

structure and relationships of these crustal types are should be studied by future lithospheric-scale 

geophysical experiments in this region.  

Much use has been made of geophysical potential field data (gravity and magnetic fields) in the 

structural interpretation of the concealed Caledonide basement in the upper crust of the ABM and 

adjacent northern England (e.g. Lee et al., 1991; 1993; Chacksfield et al., 1993; Pharaoh et al., 1995; 

Williamson et al., 2002). Only a brief summary will therefore be presented below. Magnetic and gravity 

potential field data acquired by BGS provide a complete regional coverage. The results of interpretation 

of these data are presented in various BGS memoirs, sub-surface memoirs and geophysical CDs. More 

recently, Beamish et al. (2016) extended the analysis to the middle and lower crust of the ABM by 

applying spectral decomposition techniques to study the Total Magnetic Intensity (TMI) of the reduced 

to pole magnetic data. Key features of the interpretation are the presence of a prominent linear magnetic 

high in the upper crust extending from the Lake District to East Anglia, labelled ‘FINMA’ (Furness-

Ingleborough-Norfolk Magnetic Anomaly) in Fig. 5a. This has been interpreted as due to the presence 

of metamorphic rocks (Wills, 1978), magnetite-rich Cambrian strata (Lee et al., 1993) or a Caledonian 

magmatic arc (Pharaoh et al., 1993a; 1995; Pharaoh, 1999) in the upper crust. A second, more inboard 

but discontinuous anomaly, labelled ‘DSIMA’ (Derby-St Ives Magnetic Anomaly) in Fig. 5a, is 

certainly associated with a belt of dioritic intrusive bodies of presumed Ordovician age (Allsop, 1987; 

Cornwell and Walker, 1989; Pharaoh et al., 1993a). Two further, more compact magnetic anomalies, 

‘BMA’ (Birmingham Magnetic Anomaly) and ‘CEMA’ (South Central England Magnetic Anomaly) 

have been attributed to the presence of shallow Neoproterozoic (Charnian) metavolcanic rocks (Lee et 

al., 1990; Busby et al., 1993). The TMI magnetic data reveal the deep edges of the ABM, and its 

extension at depth into Wales, eastern England and south of the Variscan Front (Beamish et al. 2016; 

Figure 8c). The high magnetic susceptibility of the Charnwood Terrane (and CEMA) suggest that the 

silicic volcanic and volcaniclastic rocks inferred in the upper crust are likely replaced by more 

intermediate, magnetite-rich plutonic magmatic rocks at greater depth The gravity anomaly map (Fig. 

5b) is dominated by the effect of sedimentary basins of Carboniferous age to north of the ABM, Permo-

Triassic age to the west (Worcester Graben) and Mesozoic age to the south (Weald-Wessex basins). 

Within the ABM, strong negative gravity anomalies have been attributed to the presence of granite 

intrusions in the vicinity of The Wash (Chroston et al., 1987), comparable in magnitude to those at 

Market Weighton (Bott et al., 1978) and on the Eastern England Shelf (Donato and Megson, 1990). 

Geophysical potential field data in Belgium, which are not displayed here, have been reviewed by 

Chacksfield (1993) and Mansy et al. (1999). The presence of a concealed granitic body on the southern 

margin of the massif in Belgium was postulated by De Vos (1997), although Mansy et al. (1999) and 

Sintubin and Everaerts (2002) prefer to interpret this as cratonic crust, the continuation of the Midlands 

Platform. 

Zhu et al. (2015) present a shear wave model (EU60) of the crust and mantle down to 800 km depth 

based on tomographic inversion of seismograph records. In such models, fast anomalies (positive) are 

found beneath major cratonic areas, e.g. the ancient crust of the Baltica continent, in Norway and 

Sweden and northern Poland, or associated with inferred subduction slabs; slow (negative) anomalies 
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are associated with zones of high heat flow/partial melt, such as the Iceland-Faeroe Ridge, Rhine 

Graben, Bohemian Massif and Pannotian Basin (Zhu et al., 2012). Fig. 6 presents four depth slices 

through this model at 60 km, 120 km, 180 km and 240 km depth. The mantle beneath the ABM shows 

fast shear wave anomalies through most of the depth range depicted. The ABM is revealed as a discrete 

feature, comparable in scale to, but independent from, similar fast shear wave anomalies in the Paris 

Basin, but closely associated with NW-SE trending linear fast anomalies in the southern and central 

North Sea. The latter are interpreted to represent subduction slab(s), relict from the closure of the 

Tornquist Sea between Avalonia and Baltica in Ordovician time, as proposed by Zhu et al. (2012). The 

cause of the fast anomaly beneath the ABM is less easily explained, but may be inherited from the time 

of crustal formation in Neoproterozoic time. It is also apparent that in contrast to the ABM, the Welsh 

Massif is underlain by slow mantle anomalies to 60 km depth, perhaps (but not necessarily) related to 

the lower crustal/mantle underplating postulated by Brodie and White (1994) and White et al. (2008).  

Compared to surrounding crustal regions, the ABM (and its continuation to south of the Variscan 

Front) is significantly less affected by natural seismicity (Chadwick and Pharaoh, 1996). The only 

exception concerns the cluster of historical and imprecisely located seismic events to north of the Dover 

Strait. Both the Carboniferous basins located on the Caledonian crust of northern Britain, and the 

Ediacaran crust in parts of the Welsh Massif and Irish Sea Landmass, display higher levels of seismic 

activity (Chadwick and Pharaoh, 1996). This characteristic also suggests that the crust of the ABM may 

be stronger and distinct from that of the surrounding regions. 

To summarise, the crust of the ABM is slightly thicker and stronger, and underlain by a lithosphere 

with positive shear–wave anomalies, compared to the surrounding lithosphere. The cause of the 

‘cratonic’ behaviour remains enigmatic, but the long history of the massif suggests that these 

characteristics were inherited early on, probably during Neoproterozoic crustal genesis, during 

subduction  magmatism and accretion to the crust of Gondwana (Chadwick et al., 1989; Blundell, 1993). 

 

3. Precambrian evolution 

 

3.1 Introduction 

 

The Neoproterozoic basement of the ABM has been divided into a number of lithotectonic terranes 

(Pharaoh et al., 1987b; Pharaoh and Carney, 2000). Most of the central part of the ABM is underlain by 

Ediacaran intermediate and felsic volcaniclastic rocks, comprising the Charnwood Terrane (Pharaoh 

and Carney, 2000). These crop out in Charnwood Forest, where they are located in a crustal duplex of 

probable Caledonian age at the NE margin of the Midlands Microcraton (Fig. 7); and in the Nuneaton 

area, where the Caldecote Volcanic Formation contains all the key Charnian components (Carney and 

Pharaoh, 1993; Bridge et al., 1998). The geochemical affinities of basement rocks proven by deep 

boreholes at Kempsey, in the Worcester Graben, and Withycombe Farm, in Oxfordshire (Fig. 7), also 

lie with the Charnian magma type (Pharaoh and Gibbons, 1994; Pharaoh and Carney, 2000). The eastern 

part of the ABM is underlain by the Fenland Terrane (Pharaoh and Carney, 2000) which comprises a 

basement of silicic ash-flow tuffs proved in just three boreholes (Glinton, Orton and Oxendon Hall). 

These show lithological similarity to the Padarn Tuff of the Cymru Terrane, the inferred basement to 

the early Palaeozoic Welsh Basin (Pharaoh and Carney, 2000). The Glinton occurrence is associated 

with a major thrust zone within the concealed Caledonides (Pharaoh, in Chadwick and Evans, 2005); 

the other occurrences lie close to the inferred eastern boundary of the Charnwood Terrane (Fig. 7). 

From the Malvern Hills westward through the Welsh Borderland, the eastern part of the Welsh Massif 

is inferred to be underlain by Ediacaran basement of the Wrekin Terrane (Pharaoh and Carney, 2000). 

A suture of late Ediacaran age is inferred to separate the Charnwood and Wrekin terranes along the 

eastern edge of the Malvern Hills (Pharaoh et al., 1987b). Reactivation of this Malvern Line has 
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controlled extension and inversion along the western edge of the Worcester Graben throughout 

Palaeozoic and Mesozoic time (Barclay et al., 1997). The above terranes were finally amalgamated into 

an Avalon Composite Terrane at the Amazonian margin of Gondwana, perhaps a little farther west than 

indicated on the reconstruction in Fig. 8a, during the Avalon Orogeny in latest Neoproterozoic time. 

Precambrian rocks are not exposed within the Brabant Massif, but the presence of underlying 

Neoproterozoic and older crust is inferred from its contribution to the petrogenesis of early Palaeozoic 

volcanic rocks and detritus in early Palaeozoic sediments (André, 1991; Verniers et al., 2002). 

 

3.2 Early calc-alkaline magmatism and metamorphism 

 

The oldest known magmatic rocks in England belong to the Stanner-Hanter Complex, a bimodal 

gabbro-granite complex, located on the Church Stretton Fault Zone, straddling the border with Wales 

(Fig. 7). Concordant zircons from a granophyric granite component have yielded a Weighted Mean U-

Pb age of 710.8 ± 1.5 Ma, interpreted as the crystallisation age of the complex (Schofield et al., 2010). 

Slightly younger U-Pb ages have been obtained from the Malverns Complex, involved in a 

transpressional flower structure of Variscan age on the western side of the Worcester Graben (Fig. 7). 

Granitoid components of the calc-alkaline intrusive complex have been reliably dated to 677 ± 2 Ma 

(Tucker and Pharaoh, 1991) using the U-Pb zircon method. A volumetrically smaller component of 

paragneiss, interpreted as a host to the plutonic rocks, yields zircons with core U-Pb ages as old as 

1965±7 Ma, with significant concentrations at 1.6 to 1.5 Ga, and 1.3 to 1.0 Ga (Strachan et al., 2007). 

The complex was subjected to metamorphism at greenschist and amphibolite facies between 670 and 

650 Ma (Strachan et al., 1996).  The presence of a Mesoproterozoic zircon inheritance in both Stanner-

Hanter and Malvern complexes (Tucker and Pharaoh, 1991; Schofield et al., 2010; Strachan et al., 

2007), supported by Sm-Nd model ages, favours an origin on the margin of Gondwana closest to the 

Amazon Craton and Mexico (Nance and Murphy, 1994; Murphy et al., 2000; Samson et al., 2005; 

Strachan et al., 2007; Nance et al., 2008) rather than the West African Craton, where such rocks are 

absent. Detrital zircon suites from early Cambrian quartzites also support this conclusion (Murphy et 

al., 2004).  

The Fenland Terrane is known from only 3 borehole provings as described above, and is believed 

to underlie the eastern part of the ABM (Fig. 7). Silicic ash-flow tuffs, petrographically and 

geochemically comparable to the Padarn Tuff of north Wales (Dearnley, 1966; Pharaoh and Carney, 

2000) have yielded U-Pb zircon ages of 612 ± 2 Ma and 616 ± 6 Ma (Noble et al., 1993) identical within 

the errors to the age (614 ± 2 Ma) of the Padarn Tuff (Tucker and Pharaoh, 1991). These ages are older 

than those obtained from the Charnwood Terrane (see below), and the strong lithological, geochemical 

contrast with the latter led Pharaoh and Carney (2000) to recognise a separate, Fenland Terrane. The 

boundary between the two terranes is not exposed and its precise course uncertain. It is considered to 

lie beyond the NE limit of Charnian outcrop/subcrop, and to run roughly parallel to the NE boundary 

of the Midland Microcraton (Fig. 7). The boundary depiocted on Fig. 7 is guided by the geophysical 

potential field data.  

  

3.3 Late rifting and marginal basin development 

 

The Charnian Supergroup comprises a thick (> 3 km) pile of deep-water volcaniclastic strata with 

minor synvolcanic intrusive bodies and a late plutonic suite of diorites.  The volcaniclastic strata host 

Ediacaran fossil assemblages, dated by the U-Pb zircon method at 569.1 ± 0.9 Ma (Noble et al., 2015), 

comparable to those found in Newfoundland and elsewhere. The youngest Charnian strata were 

deposited at c. 559 Ma (Compston et al., 2002), but also contain an inherited detrital population at c. 

604 Ma (Noble et al., 2015). The latter age is slightly younger than that of silicic tuffs (e.g. the Padarn 
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and Glinton tuffs) in the Cymru and Fenland terranes, and may have been reworked from them. It is 

also identical within the errors to the age of 603 ± 2 Ma obtained for a fraction of euhedral prismatic 

zircons separated from granophyric diorite of the South Charnwood Diorite Suite intruding the Charnian 

Supergroup at Nuneaton (Tucker and Pharaoh, 1991). This zircon fraction is now interpreted as 

xenocrystic, reworked from a basement type not exposed in the Charnwood Terrane, or inherited from 

such a source in the Fenland Terrane via a cycle of sedimentary reworking. Further indications of older 

inheritance come from volcaniclastic sandstones deeper in the sequence, yielding zircon cores dated at 

611.3±1.1 Ma, as well as Mesoproterozoic ages (Noble et al., 2015). The Brand Group, formerly 

included in the Charnian Supergroup (Moseley and Ford, 1985) is now excluded because it contains the 

trace fossil Teichichnus (Bland and Goldring, 1995) indicating an early Cambrian age and is likely 

unconformable upon the Charnian Supergroup (McIlroy et al., 1998). Other exposed components of the 

Wrekin Terrane include silicic, intermediate and basic tuffs and lavas of the Uriconian Group, dated at 

566 ± 2 Ma; and the sub-volcanic Ercall Granophyre, dated at 560 ± 1 Ma (Tucker and Pharaoh, 1991). 

The Longmyndian Supergroup is a 6500 m thick sequence of lithic sandstones and conglomerates, with 

a provenance including Uriconian volcanic rocks (Pauley, 1990). Thin ash (metabentonite) and tuff 

horizons, which have yielded SHRIMP U-Pb ages of 566 ± 2.9 Ma and 555.9 ± 3.5 Ma (Compston et 

al., 2002), reflect the waning phase of Uriconian magmatism (Greig et al., 1968). The severe inversion 

and sinistral transpression (Strachan, 2012) affecting the Longmyndian basin appears to have taken 

place rather abruptly, over a period of perhaps 5-10 Ma.  Lavas of the Warren House Formation form a 

small (<1 km2) outcrop on the eastern flank of the Malvern Hills (Penn and French, 1971; Thorpe, 

1974).  Altered basalt and basaltic andesite lavas, exhibiting small pillow structures occur with minor 

amounts of rhyolitic tuff, which have yielded concordant U-Pb zircon ages of 566 ± 2 Ma (Tucker and 

Pharaoh, 1991). Although identical in age to the Uriconian lavas, the geochemical composition of 

basaltic components differs. The Uriconian basalts have a significant subduction-related component; 

the Warren House basalts have a much smaller subduction component and are chemically most similar 

to primitive marginal basin basalts (Thorpe, 1974; Pharaoh et al., 1987b). 

 

3.4 The Avalon Orogeny 

 

The small marginal basins created in the period 570-555 Ma were closed and inverted by the short-

lived Avalon Orogeny, the terminal phase of Ediacaran crustal genesis and accretion on the Amazonian 

margin of Gondwana, at about 550-542 Ma.This tectono-magmatic event is part of the widespread ‘Pan-

African’ event, which consolidated juvenile crustal additions to Gondwana in late Neoproterozoic time, 

and which might therefore be more appropriately named the ‘Pan-Gondwanan Orogeny’. The orogenic 

event is comparable with, and contemporaneous to the Cadomian Orogeny (D’Lemos et al., 1990), 

although use of the latter term is generally restricted to the north-west African margin of Gondwana 

(and terranes derived there). The term ‘Avalonian Orogeny’ is widely used, but generally poorly defined 

(e.g. Keppie and Murphy, 1988; O’Brien et al., 1990) and ripe for confusion with the ‘Avalonia 

Terrane’, which came into existence some 60 Ma later. Here the term Avalon Orogeny is preferred, but 

confusion will probably remain until a completely new term is introduced. 

Despite their insignificant outcrop area, the Warren House Formation lavas provide important 

evidence for the tectonic history of the suture between the Wrekin Terrane, and the Charnwood Terrane, 

forming the exposed basement of the ABM to east of the Malverns.  The most obvious field expression 

of ‘soft collision’ during the Avalonian Orogeny is the isoclinal folding and cleavage development in 

the Longmyndian Supergroup (James, 1956; Toghill and Schell, 1984). Longmyndian slates have 

yielded whole rock 40Ar/39Ar total gas and fusion spot ages in the range 547-542.5 Ma, with 

retrogression down to 500 Ma (M. Pringle, pers. comm. 1998). Metamorphism of the more massive 

volcanic sequences is less obvious, but probably reflected in strong alteration and silicification. 
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Consolidation of the Neoproterozoic terranes described above into the Avalon Composite Terrane 

(ACT) or Avalon Superterrane (Gibbons, 1990; Pharaoh and Carney, 2000) at the Amazonian margin 

of Gondwana (Nance and Murphy, 1994; Murphy et al., 2000, 2004; Strachan, 2012) was completed 

shortly before the Precambrian-Cambrian boundary at 541 Ma.  

  

3.5 Comparison with the Avalon Peninsula and other Ediacaran sequences in the North Atlantic region 

 

Anglesey and the Lŷn Peninsula, lying north of the Menai Strait Fault System (MSFS), are occupied 

by the Monian Composite Terrane (MCT), an accretionary complex comprising imbricated lenses of 

Neoproterozoic (the Coedana, Aethwy terranes of McIlroy and Horak, 2006) and the Cambrian Monian 

Supergroup (South Stack, New Harbour and Gwna groups), bounded by ductile shear zones of 

Ordovician age (Gibbons, 1990; Gibbons and Horak, 1996). The Bwlch Gwyn Tuff of Anglesey is 

lithologically comparable to the Padarn Tuff, and is caught up in one of these zones. The Coedana 

Granite has yielded a U-Pb age of 614 ± 4 Ma (Tucker and Pharaoh, 1991), identical within errors to 

the age of the Padarn Tuff and the Glinton-Orton suite of the ABM (Noble et al., 1993). The Monian 

Supergroup was formerly thought to be of Precambrian age (Shackleton, 1975) but dating of detrital 

zircons from the South Stack Group indicates that the entire supergroup is no older than mid-Cambrian 

(see next section). The Monian rocks are unconformably overlain by cleaved strata of Arenig age. The 

accretion of the composite terrane to the margin of Gondwana, probably occurred in late Tremadocian 

time (see below). In SE Ireland, the Rosslare Complex forms the along strike continuation of the MCT, 

comprising elements of similar age. Schofield et al. (2016) recognise two major divisions within the 

Ediacaran terranes of southern Britain: The Monian Composite Terrane (and correlative Fenland 

Terrane) with abundant magmatism at about 615 Ma; and the more diverse assemblage represented by 

the Cymru, Wrekin and Charnwood terranes, with magmatism at around 580-560 Ma. Both have an 

ensialic setting and zircon provenance with greater affinity to West Gondwana and the terrane Ganderia, 

than to the magmatic rocks of West Avalonia.  

In Newfoundland, the Avalon Zone (O’Brien et al., 1993) extends east from the Dover Fault to the 

Grand Banks offshore. It comprises a fault-bounded collage of arc-related Neoproterozoic volcano-

sedimentary belts (O’Brien et al., 1996; Murphy et al., 1999; Pollock et al., 2009). Rift-related 

successions (Burin Group) as old as 760 Ma are known, but phases of arc-volcanism occurred at c. 730 

Ma and 675 Ma. The main phase of volcanism occurred at 635 to 570 Ma. A largely volcanic sequence 

> 8 km thick yields precise zircon U-Pb ages in the range 620-605 Ma (O’Brien et al., 1989; Mills, 

2016), and is unconformably overlain by the 50 m thick Gaskiers-Trinity glaciomarine diamictite, dated 

at about 579 Ma (Pu et al., 2016). In the intervening gap of about 25 Ma, the volcanics were deformed 

into an imbricate fold-thrust belt and extensionally faulted before deposition of the diamictite. This 

episode approximately correlates with the change from subduction arc to extension, recognised 

throughout the Avalon Peninsula (e.g. Nance and Murphy, 1996; Thompson et al., 2014). The Ediacaran 

biota of the c. 565 Ma Mistaken Point Formation (Benus, 1988) is virtually identical to that of the 

Charnian Supergroup (Ford, 1958; Boynton, 1978; Moseley and Ford, 1985; Wilby, this volume), and 

the hosting strata (volcaniclastic and lithic turbidites) are so similar they could have been deposited in 

neighbouring parts of the same sedimentary basin. As the base of the Charnian sequence is not exposed, 

and a Gaskiers equivalent horizon has not been reached, it is conceivable that the Charnian sequence 

could also be underlain by a silicicic volcanic sequence many (>8?) kms thick. Further northward-

directed thrusting and prehnite-pumpellyite to greenschist facies metamorphism (Papezik, 1974) post-

565 Ma is attributed to the Avalon Orogeny (Anderton et al., 1975), and preceded deposition of the 

Random Group (Cambrian to Tremadocian) shaly platform strata (Van Staal and Barr, 2012).  

Detrital zircon ages suggest the Gander Group of Newfoundland is underlain by a basement of 

Ediacaran to early Cambrian magmatic arc rocks (Dunning and O’Brien, 1989; O’Brien et al., 1991; 
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Van Staal and Barr, 2012). In New Hampshire and Massachusetts, e.g. the Bronson Hill Arc (Tucker 

and Robinson, 1990) and in New Brunswick and Newfoundland (Van Staal et al. 1996; 1998), zircon 

U-Pb ages of around 613 Ma are typical of the Ganderian basement (O’Brien et al., 1996; Van Staal et 

al., 1996), and are comparable to those obtained from the Coedana Granite and the Padarn Tuff (Tucker 

and Pharaoh, 1991; Schofield et al., 2016).  

 

 

4. Cambrian-Tremadocian platform and basinal sequences 

 

4.1 Introduction 

 

A short period of erosion of the juvenile Neoproterozoic crust preceded a significant marine 

transgression onto the margin of Gondwana  (Brasier, 1980), generally presumed to be by the Iapetus 

Ocean, which began opening in latest Neoproterozoic time, breaking up the supercontinent of Rodinia-

Pannotia (Dalziel, 1991; 1997). Most authors favour separation of Avalonia as a microcontinent from 

Gondwana in late Early Ordovician (Floian) time (Scotese and McKerrow, 1990; McKerrow et al., 

1992; Prigmore et al., 1997; Fortey and Cocks, 2003; Cocks and Torsvik, 2006; Woodcock, 2012a) 

although other authors have argued for late Cambrian (Van Staal et al., 2012) or even Ediacaran 

departure (e.g. Pillola, 1993; Landing, 1996; 2005; Landing et al., 2013). For example, Landing (op. 

cit.) emphasises the lithostratigraphic and biotic distinctiveness of Avalonia in the early Cambrian, a 

persistently cool-water, higher latitude microcontinent in contrast to the carbonate- and evaporite-

bearing, tropical and low latitude sequences in African Gondwana e.g. northern France and Iberia. 

Cocks and Torsvik (2009) argue strongly for a Gondwanan margin in Cambrian time with a strong 

latitudinal control of biostratigraphic associations and rifting of Avalonia from Gondwana only in late 

Early Ordovician time (Fig. 8). Woodcock (1991) recognised that the stratigraphic megasequences 

identified previously in Wales (Woodcock, 1990) could also be recognised in the Brabant Massif (Fig. 

9). The nomenclature applied by Verniers et al. (2002) is therefore applied to the same megasequences 

in the western part of the ABM. The reader is referred to this latter paper for a more detailed review of 

the early Palaeozoic evolution of the crust of the ABM, particularly in Belgium, than can be 

accomplished here. 

  

4.2 Platformal sequences of Megasequence 1 

 

That part of the Avalon Composite Terrane (Pharaoh and Carney, 2000) comprising the Wrekin 

and Charnwood terranes formed a shallow marine platform in early Cambrian time, referred to as the 

Midland Platform (e.g. Cope et al., 1992; Woodcock, 2012a). This platform received an overstepping 

cover sequence comprising thin (30-60 m) basal shoreface orthoquartzitic facies e.g. the Wrekin and 

Malvern quartzites (Fig. 9), passing up into 200-300 m thick nearshore clastics (Comley, Hollybush 

and Hartshill sandstone formations) (Brasier et al., 1978; Rushton, 2011; Woodcock, 2012a). These 

sequences locally contain ‘small shelly fossil’ horizons comprising hyoliths, primitive molluscs etc 

(Brasier, 1984) which can be precisely correlated with strata of the upper Terreneuvian Series in the 

Avalon Peninsula of SE Newfoundland (Brasier et al., 1992). The same assemblage is found overlying 

lavas with Charnian magmatic affinity in the Withycombe Farm Borehole (Rushton and Molyneux, 

1990; Pharaoh and Gibbons, 1994; Rushton, 2012). The oldest Cambrian (Fortunian) stage is missing, 

so a time gap of perhaps 15 Ma exists since the start of the period at 541 Ma. Overlying strata are mid 

to late Cambrian (International epochs 2, 3 and Furongian) mudstones with subordinate sandstones 

and/or limestones, deposited below wave-base on a gently subsiding shelf. A number of significant 

hiatuses and hardgrounds are present (Rushton, 1974; Landing, 1996). The Brand Group of Charnwood 
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Forest, formerly regarded as part of the Charnian Supergroup, is now referred to the Cambrian due to 

the occurrence of Cambrian-style trace fossils (McIlroy et al., 1998) including Teichichnus rectus 

(Bland and Goldring, 1995). The Swithland Formation comprises a sequence of lithic sandstones and 

mudstones, rather different in aspect to the other platformal successions, and presumably, deposited in 

deeper water. Numerous boreholes drilled for exploration of the concealed Warwickshire Coalfield 

(Worssam and Old et al., 1988; Bridge et al., 1998) terminate in Cambrian or earliest Ordovician 

(Tremadocian) strata. Older boreholes are listed in Cowie et al. (1972, Table 2). For clarity, not all are 

labelled in Fig. 10, which gives a general impression of their distribution. Most cores are of Furongian 

age (Rushton, 2011). The presence of dips up to 60° in many of these boreholes demonstrates that the 

sequence is strongly folded across a wide area. In quarries near Nuneaton, the upper Cambrian strata 

display chevron folds (Carney et al., 1992; Bridge et al., 1998) cross-cut by dykes of the Midlands 

Minor Intrusive Suite (see later section), indicating pre-Silurian deformation. The boreholes at Ticknall, 

proving Upper Cambrian (Carney and Ambrose, 2017), and Crown Hills (Le Bas, 1968) and Wyboston 

(Stubblefield, 1967), proving Tremadocian strata, lie just beyond the northern boundary of the 

microcraton, as defined in Fig. 10. The platform extended south of the Variscan Front (as shown by the 

Shrewton borehole, Fig. 10), the front being a tectonic boundary of later Palaeozoic age subsequently 

superimposed on the ABM.   

Smith and Rushton (1993) recognised that the Worcester Graben, presently filled with Permo-

Triassic strata, had an early Palaeozoic antecedent, referred to by them as the ‘Tremadoc Worcester 

Graben’, and here as the ‘Worcester Proto-graben’. This major N-S trending structure probably initiated 

as an ‘aulacogen’ (Hoffman et al., 1973), possibly the ‘failed arm’ of a continental margin rift prior to 

opening of the Rheic Ocean. The increasing width of the proto-graben to the south indicates that the 

margin lay in that direction. reflected in thickening of the Tremadocian strata (to > 2km) at crop in the 

Tortworth Inlier, and in boreholes at Cooles Farm, and at Yarnbury and Shrewton south of the Variscan 

Front (Smith and Rushton, 1993). Subsidence of the graben followed reactivation of the Neoproterozoic 

Malvern Line suture in extension. It is interpreted to anticipate the break-off of a microcontinent from 

the peri-Gondwana margin, subsequently known as Avalonia. Post-Tremadocian Ordovician strata are 

not preserved on the platform, so its subsequent subsidence history is not known, unlike the basin 

(Prigmore et al., 1997). Subsequently, a Silurian shelf sequence was deposited. Between the Malvern 

Line and the Welsh Borderland Fault System (WBFS), Silurian strata generally directly overlie a 

Precambrian basement, so that Cambrian-Tremadocian strata are absent (e.g. in the Heath Farm and 

Collington boreholes), but Upper Cambrian-Tremadocian strata are present in the Fownhope Borehole 

(Barron and Molyneux, 1992a, b) within the Woolhope Basin. East of the proto-graben, Cambrian-

Tremadocian strata are preserved beneath a patchy Silurian platform cover across a wide area of the 

south Midlands subsurface (Fig. 10), possibly reflecting asymmetry of the graben. Subsequently, the 

proto-graben received the attenuated late Palaeozoic sequence typical of a location within the ABM: 

thin onlapping sequences of upper Devonian, late Coal Measures and Warwickshire Group strata. The 

proto-graben apparently escaped inversion in the Acadian phase, but during late Carboniferous 

(?Stephanian time), it was inverted as a positive flower structure/horst (Chadwick and Smith, 1988), 

with thrusting westwards at the Malvern Line and eastwards into the Oxford Basin (Peace and Besly, 

1997). Neoproterozoic volcaniclastic rocks were unroofed in the northern, most squeezed part of the 

proto-graben (Kempsey borehole, Fig. 10).  

 

4.3 Basinal sequences of Megasequence 1  

 

Several deep boreholes in Northamptonshire, Huntingdonshire, Lincolnshire and northern Norfolk 

encountered moderately deformed, very hard unfossiliferous coarse clastics and phyllitic mudstones 

(Fig. 10), lying within the late Caledonian fold-thrust belt in the eastern part of the ABM. Cowie et al. 
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(1972), following Kent (1967), gave details for Bardney 1, Eakring 146 (Duke’s Wood), Nocton 1 and 

Stixwould 1 boreholes, accepting that Cambrian rocks might be represented. Brasier et al. (1992) 

concurred with this analysis. Since that time, several other exploration boreholes have encountered such 

strata. Further details of these are presented in Pharaoh and Gibbons (1994); Table 5 and Pharaoh et al. 

(2011). The following account is based on the examination of core, borehole records and geophysical 

log data in the National Geological Repository by the author. In addition to Nocton 1 mentioned above, 

pale green, brown and grey quartzites were proved by Galley Hill (NCB), Gas Huntingdon 1, South 

Creake 1, Spalding 1 (Texaco) and Wisbech 1 (Texaco) boreholes. Green chlorite-rich phyllites were 

proved by Foston 1 (D’Arcy), Grove 3 (BP), Sibsey 1 (Ball and Collins) and Welton 1 (BP) boreholes. 

The age of the strong tectonic foliation in these greenschist facies metapelites is unknown, and the 

hypothesis of Acadian (Pharaoh et al., 1987) or Brabantian (Carney et al., 2008; Woodcock, 2012a) age 

requires testing. The widespread occurrence of these chloritic metasedimentary rocks in the pre-

Carboniferous subcrop is reflected in the presence of chlorite-rich basal Tournaisian strata (up to 50 m 

in the Grove 3 and Welton 1 boreholes in the East Midlands, and Wessenden 1 and Holme Chapel 1 in 

northern England (borehole completion reports).  The core at Stixwould 1 is a feldspathic sandstone, to 

which basement beds in Hunstanton 1 (uncored) may be similar. Bardney 1, Gas Stamford 2 

(Nassington), Gas Stamford 10 (Thornhaugh) and Wittering 1 proved dark grey-green massively 

bedded greywacke sandstones containing numerous intra-formational clasts of shale and siltstone. They 

appear more massive and less mud-rich than greywackes of probable Silurian age, in the Anglian Basin 

(Woodcock and Pharaoh, 1993). The undated provings occupy a NW-SE trending belt on Fig. 10, 

suggesting a tectonostratigraphic association, and were allocated to an ‘Undated quartzite-phyllite 

association’ by Pharaoh et al. (2011). They appear to represent deep water deposits perhaps formed on 

the continental margin/rise of Avalonia.  

In Belgium, the earliest megasequence recognised in the Welsh Basin by Woodcock (1990) is also 

recognised in the Brabant Massif, and in the Condroz Inlier (Fig. 9), its continuation within the 

Variscide parautochthon (Woodcock, 1991; Vanguestaine, 1992; Herbosch and Verniers, 2012; 

Verniers et al., 2002). The base of the sequence is not exposed but the presence of a Neoproterozoic 

basement is inferred (André, 1991). Cambrian strata are deployed in a complex anticlinorial structure 

(De Vos et al., 1993) forming the core of the Brabant Massif (Fig. 10). The megasequence begins with 

the 1.5 km thick Blanmont Formation (base not seen), comprising massive tourmaline-bearing 

sandstone and quartzite with slate intercalations, for which a rift environment is inferred (Debacker and 

Herbosch, 2011). The overlying Tubize Group, >2 km thick, comprises green slate and siltstone 

interpreted as basinal strata. High magnetite content gives a strong aeromagnetic signature (Chacksfield 

et al., 1993; Sintubin and Everaerts, 2002). Purple and green slates of the Oisquercq Formation are c. 

1.5 km thick. The above formations are dated (using Oldhamia and acritarchs) from the base of 

Cambrian Stage 3 to upper Stage 5 (c. 520 Ma to 506 Ma) (Vanguestaine, 1992; Herbosch and Verniers, 

2011). The overlying Jodoigne and Mousty formations (Fig. 9), >4 km thick, are a sequence of turbiditic 

sandstones, black quartzites and graphitic slates deposited in anoxic deep-sea environments (Debacker 

and Herbosch, 2011). Mn-enrichment indicates an episodic volcanic exhalative source. The Mousty 

Formation grades up into the grey Chevlipont Formation, both formations containing lower 

Tremadocian graptolites (Vanguestaine, 1992). The new thickness estimate (> 9 km) for the 

megasequence is much greater than previous estimates of > 3.7 km (e.g. Verniers et al., 2002) and is 

comparable to that estimated for Cambrian sequences in the Meguma Terrane (of Nova Scotia) and the 

Welsh Basin (Waldron et al., 2011). Detrital zircons from Megasequence 1 demonstrate that it is a 

typical peri-Gondwanan terrane with major Pan-African (Neoproterozoic), some Mesoproterozoic, 

Palaeoproterozoic and Archaean (mixed West African and Amazonian) sources (Linnemann et al., 

2012).  
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4.4 Comparison with Cambrian-Tremadocian sequences elsewhere in the Caledonides 

 

The Welsh early Palaeozoic Basin occupies the Welsh Massif between the WBFS and Menai Strait 

(MSFS) Fault System. Cambrian-Tremadocian strata are assigned to the Dyfed Megasequence 

(Woodcock, 1990), correlated with Megasequence 1 in the ABM (Woodcock, 1991; Verniers et al., 

2002). In early Cambrian time, initial shallow-water (delta/pro-delta) deposition soon gave way to deep 

marine and turbidite deposition in the rapidly subsiding basin (Woodcock, 2012b), so that >5000 m of 

Cambrian-Tremadocian strata were deposited, much more than on the platform (usually <2000 m). This 

is despite the presence of major discontinuities in the basinal succession (Fig. 9). In the south, the SW 

Dyfed succession, deposited at offshore shelf depths, is transitional in nature between basin and 

platform. In Tremadocian time, dramatic changes occurred in the Welsh Basin. A ‘soft’ accretionary 

tectonic event at the southern margin of the Irish Sea in late Tremadocian – early Floian time juxtaposed 

the Monian and Avalonian composite terranes along the margin of Gondwana (Gibbons, 1990; 

Schofield et al., 2008; Waldron et al., 2011). Van Staal et al. (1998) speculated that the MCT is a 

correlative of the Gander Terrane of Newfoundland and Maritime Canada, and that the accretion event 

is correlative to the Penobscotian Phase recognised in the Appalachians (see below). In both Wales and 

North America, a late Floian to early Darriwilian (mid to late Arenig) overlap sequence containing a 

‘Celtic’ fauna (Neuman, 1984) postdates terrane amalgamation. Deformation extended into the Welsh 

Basin too, and the early Floian Garth Grit (Fig. 9) is strongly transgressive above a regional 

unconformity (Rushton and Fortey, 2000). The calc-alkaline Treffgarne and Rhobell volcanic groups 

(probable late Tremadocian) record onset of subduction beneath Avalonia (Bevins et al., 1984; 

Kokelaar, 1986). 

In Anglesey, dating of detrital zircons from the South Stack Group indicates that the Monian 

Supergroup is no older than mid-Cambrian (Murphy et al., 2004). The accretion of the MCT to the 

margin of Gondwana, probably occurred in late Tremadocian time (as described above). The Rosslare 

Complex in SE Ireland, at the western end of the horst (Fig. 10) comprises similar elements to the MCT. 

North of the Wexford Boundary Fault System, in the Leinster Basin, deformed low-grade quartz- and 

chlorite-rich turbidites of the Cullenstown Formation (mid-Cambrian Cahore Group, Bennett et al., 

1989) probably correlate with lower parts of the South Stack Group (Tiezsch-Tyler and Phillips, 1989). 

In the Craven inliers of northern England, the deep water turbiditic strata of the Ingleton Group 

were isoclinally folded and cleaved (Soper and Dunning, 2005) prior to the deposition of the Dent 

Group (Katian-Hirnantian) and overlying parts of the Windermere Supergroup (Fig. 9). They have 

yielded a Cambrian Rb-Sr isotopic age (O’Nions et al., 1973). The Ingletonian strata differ in key 

aspects from the Skiddaw Group strata in the adjacent Lake District Block. There are some similarities 

to the massive turbidites in the eastern England subsurface, containing abundant clasts of shale e.g. 

Bardney borehole. Correlative strata to the Ingleton Group proved in the Beckermonds Scar borehole 

yielded blackened acritarchs indicating an early Ordovician age (Turner, in Wilson and Cornwell, 

1982). Although a Precambrian age for the Ingleton Group strata remains a possibility, their location 

close to the inferred continuation of the MCT into the UK onshore (Figs. 7, 11) suggests that a 

Penobscotian age for the deformation is also possible (Soper and Dunning, 2005). In this case, the age 

of the Ingleton Group may be slightly older (?late Cambrian or Tremadocian) and a Ganderian affinity 

likely. The map of Ordovician terrane elements presented here (Fig. 11) adopts this interpretation.  

In New England, Newfoundland, Nova Scotia and the Maritime Provinces of Canada, the Gander 

and Meguma terranes are interpreted as continental margin slope and rise prisms originating on either 

margin of Avalonia (Landing, 2005; Van Staal et al., 2012). The Gander Zone was originally defined 

by a distinct sequence of pre-Dapingian polydeformed psammitic and peltic rocks of continental 

derivation, known as the Gander Group in NE Newfoundland (Van Staal and Zagorevski, 2017) and 

extending from the Dover Fault to the terrane boundary with the Dunnage Zone, in the west. The group 
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fines upward from quartz-rich, commonly tourmaline-bearing psammite to predominantly black shale 

(O’Neill, 1991). Detrital zircon and titanite ages demonstrate that the psammites are younger than c. 

510 Ma (Willner et al., 2014), but older than granitoid intrusions dated at c. 474 Ma (Colman-Sadd et 

al., 1992). The presence of the graptolite Rhabdinopora demonstrates that the strata range up to the 

Tremadocian (White et al., 1994; Van Staal and Fyffe, 1995; Van Staal et al., 2003; Tucker et al., 2001; 

Fyffe et al., 2009). This distinct lithofacies can be traced into southern Newfoundland, Nova Scotia, 

New Brunswick and Maine (Van Staal et al., 1996). The Gander Group and correlatives are interpreted 

as a continental margin formed when the microcontinent Ganderia rifted off Amazonia at c. 505 Ma 

(mid Cambrian) with opening of the Rheic Ocean (Van Staal et al., 2012). The Penobscotian tectonic 

cycle is restricted to Ganderia and started while the latter was still attached to the NE edge of Amazonia, 

with initiation of the Penobscot Arc at c. 515 Ma (Colman-Sadd et al., 1992; Van Staal et al, 1996; 

2012). Extension in the arc resulted in formation of both a back-arc oceanic marginal basin (now 

preserved as the Penobscot ophiolites) and the Rheic Ocean Basin, opening of which separated Ganderia 

from Amazonia after c. 505 Ma (mid Cambrian) (Van Staal et al., 2012). The Penobscotian Deformation 

Phase, between 485 and 478 Ma (Tremadocian), is associated with obduction of the back-arc ophiolites 

onto the Gander margin of Avalonia (Colman-Sadd et al., 1992; Van Staal et al., 1994; Van Staal et al., 

2011) and inversion of the back-arc basin.  

Waldron et al. (2011) have commented on the gross similarity of the Cambrian sequence in the 

Welsh Basin to that of the Meguma Terrane in Nova Scotia, in terms of lithology, sedimentary facies 

and composition. Both comprise early Cambrian sandstone turbidites overlain by early to middle 

Cambrian mud-rich and sand-rich units with characteristic Mn mineralisation. A sandstone unit in 

Wales exhibits very similar zircon provenances (Neoproterozoic and Palaeoproterozoic) to 

penecontemporary strata of the Meguma Supergroup in Canada, suggesting proximity of both areas to 

the West African margin of Gondwana in early Cambrian time. Waldron et al. (2011) designated a new 

domain, ‘Megumia’, to include both regions, which were distinct from Avalonia until Early Ordovician 

time. Later Meguma strata are anoxic, organic-rich turbidites shallowing upward into bioturbated 

Tremadocian mudstones. Basinal sequences of Ganderian and Megumian type in Wales, Ireland and 

Newfoundland, interpreted as continental margin/slope deposits exhibit lithological similarity to the 

tourmaline- and magnetite-bearing deep water clastics of inferred Cambrian age in Eastern England and 

Belgium. All apparently predate the supposed time of separation of Avalonia, Ganderia and Megumia 

from the Gondwana margin (see next section), and must therefore have been deposited on the latter. It 

is currently unclear if the Penobscotian Phase significantly affected the ABM, but the strong folding of 

pre-Silurian age affecting Cambrian-Tremadocian strata in the Nuneaton district of the English 

Midlands, described above,  suggests that it did. It is also notable that a disconformity (Graulich, 1961; 

Vanguestaine, 1992; Verniers et al., 2002), representing a hiatus of about 14 Ma, separates the 

Chevlipont Formation (early Tremadocian) and Abbaye de Villars (upper Dapingian) formations in the 

Brabant Massif (Fig. 9). If this represents a significant unconformity related to regional tectonic 

deformation it might explain the apparent contrast in strain observed between the Cambrian-

Tremadocian and later Ordovician-Silurian sequences in Belgium (Sintubin, 1997).  

 

5. The history of the Avalonia Microcontinental Terrane 

 

5.1 Introduction 

 

As described earlier, the concensus view is that the faunally-defined Avalonia microcontinent rifted 

away from Gondwana at high southerly palaeolatitude in late Early Ordovician (Floian) time (Scotese 

and McKerrow, 1990; McKerrow et al., 1992; Fortey and Cocks. 1992; 2003; Prigmore et al., 1997; 

Cocks and Torsvik, 2006; Woodcock, 2012b). Contrary opinions (e.g. Landing, 1996; 2005; Landing 



16 
 

et al., 2013) were noted in the previous section. In Newfoundland, Van Staal et al. (2012) have presented 

evidence for a slightly earlier, late Cambrian, departure. Isotopic studies of detrital zircon populations 

from Cambrian clastic sequences suggest that the situation may be more complex, with different parts 

of Avalonia having different amounts of cratonic source components (Schofield et al., 2016). This might 

allow an archipelago of Avalonian fragments to drift diachronously away from Gondwana, allowing 

some compromise in this debate. 

Only the eastern part of this originally ribbon-like microcontinent (or archipelago)  is preserved as 

part of the ABM. The remainder lies west of the Atlantic Ocean, in Newfoundland, Nova Scotia and 

the Maritime Provinces of Canada and in the Appalachians. As the Avalonia Microcontinent drifted 

northward, a new (Rheic) ocean basin opened in its wake; and the old (Iapetus) ocean crust was 

destroyed by subduction zones on both its Laurentian and Avalonian margins. Part of this Iapetus 

Ocean, referred to as the Tornquist Sea by Cocks and Fortey (1982), lay between Avalonia and Baltica. 

Faunal contrast with Gondwana only became apparent in Darriwilian (late Llanvirn) time (Woodcock, 

2012b). On the Avalonian margin, the earliest subduction magmatism is of late Tremadocian age at 

Treffgarne and Rhobell in the Welsh Basin (Kokelaar, 1979; 1988; Bevins, 1982). Volcanic arcs 

developed elsewhere on the microcontinent through subsequent Ordovician time, and in Sandbian-

Katian time a short-lived magmatic arc extended from the Lake District to East Anglia and the Brabant 

Massif of Belgium (Pharaoh et al., 1991; 1993). This arc records the subduction of part of the Tornquist 

Sea basin beneath Avalonia (Pharaoh et al, 1993; 1995; Noble et al., 1993; Van Staal et al., 1998) (Fig. 

8). Geophysical evidence suggests that at least two subduction zones separated by juvenile accreted 

arc/marginal basin crust (Pharaoh, 1999; Williamson et al., 2002; Lyngsie and Thybo, 2006) were 

involved in this process.  The less significant one, beneath the D-SHFZ, was described in Section 2; the 

more significant zone, associated with the Thor-Tornquist Suture, is inferred to have generated the 

cryptic Southern North Sea Terrane (Williamson et al., 2002). Contemporaneous supra-subduction zone 

volcanism in Wales and SE Ireland, probably in an ensialic marginal basin (Kokelaar et al., 1984; 

McConnell et al., 1991; Winchester and Van Staal, 1995), is geometrically compatible with this 

hypothesis. Faunal contrasts with Baltica broke down in late Ordovician time (Woodcock, 2012b). 

There is little evidence for  ‘hard’ collision at this time, although Pharaoh et al. (1995) and Pharaoh 

(1999) speculated that dextral strike-slip and uplift on the Pontesford Lineament, attributed to the 

‘Shelveian Phase by Toghill (1992), and metamorphism at up to amphibolite facies on the Mid-North 

Sea High  (Frost et al., 1978) may reflect a ‘soft’ collisional event. The terrane map for the British and 

Irish Caledonides south of the Iapetus Suture (Fig. 11) is based on Bluck et al. (1992) and incorporates 

modifications by BGS (1996) following the work of Soper and Dunning (2005). In the ABM, 

Megasequence 2 of Verniers et al. (2002) is equivalent to the Gwyned Megasequence of Woodcock 

(1990) in the Welsh Basin (Fig. 9). 

 

5.2 Sedimentary history of Megasequence 2 

 

Sedimentary rocks of Ordovician age younger than Tremadocian are almost absent from the 

Midlands Microcraton (Molyneux, 1991). Rare exceptions include the isolated occurrence of the Lickey 

Quartzite, near Birmingham, formerly attributed (with doubt) to the Cambrian (Cowie et al., 1972), and 

now attributed to the Floian (Arenig) (Old et al., 1991; Rushton, 2000); and the transgressive Caradoc 

strata deposited on the NW edge of the microcraton (Fig. 9), adjacent to the WBFS (Woodcock, 2012b). 

The limited number of post-Tremadocian Ordovician provings (Figs. 12b, 13) means that knowledge 

of the Ordovician palaeogeography of the ABM is rather poor. Eyam, Great Paxton and Huntingdon 

boreholes encountered grey mudstones and siltstones containing shelly faunas (brachiopods, trilobites, 

orthocone nautiloids and other molluscs (Molyneux, 1991; Rushton, 2012), of Darriwilian (early 

Llanvirn) age. In the Eyam Borehole, just to north of the microcraton, the cleaved strata dip at 45-60° 
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(Dunham, 1973). Beyond the eastern edge of the microcraton, the strata are uncleaved and dip at 60-

70° to SE in Great Paxton Borehole, or are slightly cleaved (Huntingdon Borehole). Here graptolites 

are more common and with the Raphiophorid trilobite community (Rushton and Hughes, 1981), may 

reflect a deeper water, shelf-marginal environment. Intensely bioturbated early Ordovician strata proved 

by Ironville 5 Borehole (Molyneux, 2001; Pharaoh et al., 2011) and, less well dated, in Thorpe-By-

Water Borehole (Molyneux, 1991), may also sit on this shelf edge. The Eakring 146 (Dukes Wood) 

Borehole proved 84 m of grey phyllitic mudstones and subordinate sandstones, beneath coarse clastic 

strata of latest Devonian or earliest Carboniferous age (Edwards, 1967; Kent, 1967). Phosphatic 

fragments identified in thin section from 2200 m drilled depth, possibly derived from trilobites and an 

Acrotreta-like brachiopod, led C.J. Stubblefield (in Edwards, 1967) to infer a possible Cambrian age 

for these strata (Cowie et al., 1972). The available core, a small set of curated specimens, were re-

examined during the present study. This confirmed the presence of dark purple and grey shales, with a 

unit of strongly altered volcanic rock of andesitic composition, resting upon a massive quartzite. The 

core is affected by steep bedding dips, veining and slickensides. The shales are unlike any of the 

phyllitic mudstones within the undated ‘quartzite-phyllite association’ (section 4), although the 

quartzites show similarity. The metamorphic grade is high anchizone (Pharaoh et al., 1987a; Merriman 

et al., 1993), slightly lower than the epizonal grade of the phyllites. Two thin (< 10 m thick) flows of 

altered andesite and dacite occur at 2204 m and 2240 m depth, according to the driller’s log. A 

geochemical analysis presented by Pharaoh et al. (1991) is comparable in major and trace element 

composition to that of andesites proved by Woo Dale and Cox’s Walk boreholes, for which an 

Ordovician age is inferred. On balance, an Ordovician age for the Eakring proving is preferred (contrast 

with Cowie et al., 1972), and if this is correct, the lower quartzite could be of Floian age. In the vicinity 

of The Wash, the boreholes at Halton Holegate 1 and UK offshore well 47/29A-1 (Fig. 13) penetrated 

similar slates and greywackes. In the former, a poorly preserved acritarch flora including 

Acanthodiacrodium sp. indicates a tentative Early Ordovician age (S.G. Molyneux, written 

communication in Pharaoh et al., 2011) for this more basinal sequence. A slightly younger macrofauna 

of ?Sandbian/Katian (Caradoc) age has been reported from Bobbing Borehole in Kent (Lister et al., 

1969). Thus, unlike on the platform, a more complete Ordovician succession seems to be present in 

eastern England (although with very poor thickness control). 

In Belgium, a hiatus of about 14 Ma, from mid Tremadocian (c. 482 Ma) to upper Dapingian (c. 

468 Ma) (Herbosch and Verniers, 2014), is inferred to reflect rifting of Avalonia from Gondwana and 

opening of the Rheic Ocean (Verniers et al., 2001; 2002). However, the hiatus is comparable in age to 

the ‘Penobscotian’ Unconformity (Fig. 9) identified elsewhere in the Caledonides, and attributed to 

Ganderian/Avalonian collision (see below). 1.3 km of Ordovician strata (Servais et al., 1993; Herbosch 

and Verniers, 2013) were deposited during the northward independent drift of Avalonia towards Baltica. 

Dapingian to Darriwilian strata were deposited in outer to inner shelf, and eventually intratidal 

environments. Transgressive late Darriwilian to Sandbian strata were deposited during a regional 

flooding event (Paris et al., 2007). Late Sandbian to mid Katian formations, comprising distal turbidites 

and hemipelagites, deposited in deeper water, were affected by large slump sheets (Debacker et al., 

2001), as were Darriwilian strata. Late Katian strata contain shelly facies. Isolated from Amazonian 

sources by the opening of the Rheic Ocean, the Mesoproterozoic zircon provenance vanished 

(Linnemann et al., 2012). In the Condroz Inlier, trilobite assemblages show typical Northern 

Gondwana/Avalonian affinity up to the Sandbian, but evidence for increasing Baltican proximity in the 

Katian (Verniers et al., 2002); chitinozoans show a Baltoscandian influence from early Sandbian time 

(Samuelsson and Verniers, 2000; Verniers, 2005).   

 

5.3 Volcanic arc magmatism during Megasequence 2  
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Numerous boreholes in the concealed Caledonides of eastern England penetrate deformed volcanic 

rocks. In the north, these are generally encountered beneath a cover of Carboniferous age; farther south, 

beneath a Mesozoic cover sequence. A comprehensive review of the available isotopic and geochemical 

data available was presented by Pharaoh et al. (1991). Six boreholes (Woo Dale, Eakring 146, Cox’s 

Walk, Great Osgrove Wood, Sproxton 1, Upwood) lie in a NW-SE trending belt about 150 km long, 

extending from the south Pennines to Cambridgeshire, on the western side of the Eakring-Glinton 

Lineament (Figs. 12, 13). The volcanic belt is coincident with prominent linear magnetic anomalies 

(Allsop et al., 1987; Pharaoh et al., 1993a; 1995; Kirby et al., 2000) described in Section 2, although a 

contribution from magnetic Cambrian rocks remains a possibility (Lee et al., 1993). 

Andesitic lavas were proved in Cox’s Walk and Eakring 146 boreholes, as described above, and 

intermediate tuff and agglomerate in Woo Dale, Hollowell and Upwood boreholes (Figs. 13, 14). 

Basaltic compositions are uncommon, and reported only from coarse agglomerate at Upwood (Webb 

and Brown, 1989). Silicic lavas, principally dacite and rhyodacite, were proved by Woo Dale, Cox’s 

Walk and Great Osgrove Wood boreholes. Only the North Creake crystal-lithic tuff occurrence has 

been reliably dated using the U-Pb technique, yielding a zircon age of 449 ± 13 Ma (Noble et al., 1993) 

(Katian). Cox’s Walk Borehole on the Foston High proved 243 m of andesite, dacite and rhyolite lavas. 

Despite strong alteration, primary igneous textures such as amygdales, flowage texture and zoning in 

plagioclase, are well preserved (Berridge et al., 1999) and a Rb-Sr whole rock isochron age of 466 ± 11 

Ma (Darriwillian) is interpreted as close to the likely age of eruption (Pharaoh et al., 1987a; Pharaoh et 

al., 1991). The Rb-Sr whole rock isochron age of 399 ± 9 Ma obtained for the Wood Dale lava (Pharaoh 

et al., 1987a) by contrast reflects late Caledonian metamorphic resetting (Pharaoh et al., 1991; Noble et 

al., 1993). Both of these Rb-Sr ages can only be regarded as minimum estimates for the true age of 

eruption. Clearly, further studies using U-Pb zircon are required to establish both the contemporaneity 

of all components, as well as the duration of eruption. If contemporaneity is assumed, the suite defines 

a well developed calc-alkaline trend involving basaltic, andesitic, dacitic, rhyodacitic and rhyolitic 

compositions. Strong enrichment of large ion lithophile elements (LILE) such as Ba and Th, light rare 

earth elements (REE) and relative depletion of Ti and Nb reflects a strong subduction magmatic 

component in geochemical patterns normalised to mid-ocean ridge basalt (MORB) values (Pharaoh et 

al., 1991). ɛNd isotopic data, ranging from about +2 to -4, indicate limited involvement of much older 

crust, unlike the Ediacaran Glinton-Orton volcanics (-6 to -8) (Pharaoh et al., 1991; Noble et al., 1993). 

Interbedded with the Sandbian and Katian strata in Belgium, and sometimes intimately mixed with 

them, are pyroclastic rocks of dacitic and rhyolitic composition (André et al., 1986; 1991; Verniers et 

al., 2002). Volcanic activity lasted from 486 to 433 Ma reaching a peak in late Katian time, but 

continued with decreasing intensity until end Telychian (early Silurian), later than in the English ABM 

(Linnemann et al., 2012). A number of silicic sub-volcanic plugs and sill complexes are also present, 

aligned in a belt straddling the WNW-ESE trending Nieuwport-Asquempont Fault Zone (NAFZ). Rb-

Sr isotope studies of the fabric within the fault zone indicate Givetian displacement (André and Deutsch, 

1985). The subduction-related origin of this magmatism has been disputed by Linnemann et al. (2012), 

who invoke an intra-plate magmatic origin, for the following reasons:  

1). Arguments for S-dipping subduction based on the presence of calc-alkaline rocks in the north 

(Brabant) and tholetiitic rocks in the south (Ardennes) (e.g. Andre et al., 1986) are invalid due to the 

gross age difference. This is almost certainly correct, but the argument for such a polarity (in England) 

made by Pharaoh et al. (1991, 1993, 1995, 1999) was based on other, more robust criteria, specifically 

geophysical evidence from deep seismic reflection data for a crustal suture beneath the DSHFZ, 80-150 

km outboard of the calc-alkaline arc in England, as described in Section 2. 

2). Brabant magmatic rocks exhibit high-K calc-alkaline to alkali-calcic composition, uncommon 

in subduction settings and more typical of post-collisional and intracontinental settings. 

Notwithstanding the fact that the Alkali-Lime Index (Linnemann et al., 2012, Figure 7A) is based on 
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major elements all notoriously subject to mobility during alteration and metamorphism, the MORB -

normalised profiles of the Brabant rocks (Linnemann et al., 2012, Figure 7G) exhibit strong enrichment 

in LILE (e.g. Th), light REE (Ce, Nd), Hf and Zr, and depletion of Nb, P and Ti, characteristic of high-

K calc-alkaline suites, and comparable to those of the English ABM (Pharaoh et al., 1991) reviewed 

above. The shoshonitic affinity of the Brabant magmatism confirmed by Figure 7B of Linnemann et al. 

(2012) is here considered to reflect a higher degree of partial-melting at greater than ‘usual’ depth in 

the subduction zone, because of the thicker crust and lithosphere beneath the ABM (Section 2).  

3). The Brabant Massif was a passive margin setting in Ordovician time. This statement is here 

considered unproven, as both in Belgium and England, Megasequence II strata are characterised by 

increasing depth of deposition with time, and abundant tectonic instability (e.g. the Asquempont and 

Buttermere Formation detachments, described below), reflecting volcanic marginal basin development. 

4). No trench is available at a reasonable distance, the nearest being located several hundred km to 

the NE. Linnemann et al. (2012) appear unaware of the argument for the presence of at least two, SSW-

dipping subduction zones within the ‘Tornquist Basin’ sensu lato, one, probably short-lived, beneath 

the D-SHFZ (Pharaoh et al., 1995; Verniers et al., 2002, Fig. 8), 80-150 km outboard of the inferred 

arc; and another several hundred km farther NE, beneath the Elbe Lineament (Pharaoh, 1999; 

Williamson et al., 2002; Verniers et al., 2002, Fig. 8; Lyngsie and Thybo, 2006).  

In our present understanding, the lithosphere of the Tornquist Sea may have included oceanic 

marginal-basins of various sizes (now subducted), and juvenile accreted arc components (Williamson 

et al., 2002), ascribed to a Southern North Sea Terrane (Franke, 1995; BGS, 1996; Pharaoh, 1999) or 

‘Far Eastern Avalonia Terrane’ (Winchester et al., 2002; Verniers et al., 2002). The latter could equally 

comprise, older Ganderian, or younger, entirely Ordovician, accreted arc, recording destruction of the 

larger Tornquist ocean basin. Before its closure, the Tornquist Sea therefore had greater resemblance to 

the western margin of the present Pacific Ocean, e.g. the Japan and Philippine seas, than the E Pacific 

margin. 

Calc-alkaline volcanic centres in Eastern Avalonia have subsequently been invoked as the source 

of bentonite (volcanic ash) horizons, representing fall-out from Plinian eruption columns, in both 

Baltica (Torsvik and Rehnström, 2003) and the Małopolska Terrane in SW Poland (Trela et al., 2017). 

The thickest of these bentonites (140 cm thick) at Kinnekulle in SW Sweden, has been dated at 457 ± 

2 Ma (U-Pb zircon age cited in Tucker and McKerrow, 1995) and 455 ± 2 Ma (40Ar/39Ar biotite age, 

Min et al., 2001) (Sandbian). With a calculated eruptive volume of 1000 km3 (Huff et al., 1996) this is 

one of the largest known Plinian eruptions in the geological record. The age of the Kinnekulle eruption 

is identical within errors to the dates of magmatism within the ABM (and Wales and the Lake District), 

and it will be interesting to see if increasing precision of the dating technique is eventually able to 

identify the actual ‘smoking caldera’.   

 

5.4 Arc-related plutonism 

 

Plutonic and hypabyssal magmatic rocks of the Caledonian orogenic cycle are highlighted as red 

coloured patches in the English part of Fig. 13. Only the composite Lake District batholith, Shap granite, 

Mountsorrel and South Leicestershire intrusions crop out. The calc-alkaline affinities of the 

Leicestershire intrusions were described by Le Bas (1972; 1982), and he encouraged the author to 

research their possible relationship with volcanic rocks in Belgium described by Luc André and 

colleagues (1986, 1991). Other plutonic rocks are proven by deep boreholes at Weardale, Wensleydale, 

Rempstone, Warboys, Moorby (Millward, 2006), and most of these bodies have now been dated 

radiometrically.  The presence of several other plutonic and hypabyssal intrusions is inferred from 

geophysical evidence, including possible granitic bodies at Market Weighton (Bott et al., 1978) and the 

adjacent offshore Eastern England Shelf (Donato and Megson, 1983). Two phases of plutonic 
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magmatism are recognised in the English Caledonides. The first, in mid Ordovician time (c. 460 Ma) 

is penecontemporaneous and comagmatic with the subduction-related volcanic arc magmatism 

described above. The second phase, emplaced in early Devonian time (c. 395 Ma) and syn- to late-

collisional in nature, is contemporaneous with the eruption of Lower Old Red Sandstone volcanic rocks, 

e.g. in the Cheviot. As the ABM does not appear to contain any intrusions of the second phase, these 

will not be further considered here. 

At least two NW-SE trending belts of intrusions are present within the Caledonide fold-thrust belt 

lying to north of the Midlands Microcraton. The southern belt of intrusions includes the calc-alkaline 

diorite-granodiorite-tonalite association cropping out in Leicestershire at Mountsorrel, Croft and 

Enderby (Le Bas, 1972; 1982) but also proved in the sub-surface by boreholes at Rempstone, Kirby 

Lane and Warboys (all so far undated). The U-Pb age for the Mountsorrel Granodiorite presented by 

Pidgeon and Aftalion (1978) was recalculated with slightly larger errors to 452 ± 10 Ma (early Katian) 

by Noble et al. (1993). The northern belt of intrusions includes the sodic Wensleydale Granite (Dunham, 

1974) and the plutonic bodies inferred to underlie the Market Weighton Platform (Bott et al., 1978) and 

The Wash (Chroston et al., 1987; Allsop and Evans, 1988). Pharaoh et al. (1997) speculated that the 

sodic Moorby Microgranite, penetrated by the Claxby Borehole a little north of The Wash (Fig. 13), 

and dated at 457 ± 20 Ma, might be a sub-volcanic representative of this same suite. Comparable sodic 

granites at crop in the Lake District Massif (Ennerdale Granophyre, Eskdale Granite) have yielded 

precise U-Pb ages of 452 ± 4 and 450 ± 3 Ma (Katian) respectively (Hughes et al., 1996). An ɛNd (t) 

value of -1.74 for the Moorby intrusion indicates the involvement of a small amount of pre-existing 

crust in its petrogenesis (Noble et al., 1993). Although the northern belt of intrusions is presently poorly 

characterised, they are considered to have played a significant structural role in the behaviour of the 

crust of northern England in post-Caledonian time. Thus the Wensleydale Granite underpinned the 

Akrigg Block of the northern Pennines in Carboniferous and later time, imparting a buoyancy and 

rigidity which caused subsequent Variscan inversion structures to be deflected at the southern margin 

of the block (Kirby et al., 2000, their Figure 4). The inferred Market Weighton Granite underpinning 

the Hornsea High has exerted a persistently buoyant influence throughout the Mesozoic, as expressed 

in the sedimentary record (e.g. Kent, 1968; Bott et al., 1978); and the putative Wash Batholith may have 

played a role in controlling the tectonic behaviour of the northern margin of the ABM, particularly in 

Carboniferous time. Both the Wensleydale and Moorby bodies have yielded whole rock Rb-Sr isochron 

ages of c. 400 Ma (early Devonian) (Dunham, 1974; Rundle, 1979; 1992). These ages are however 

discordant to the U-Pb zircon ages, and must reflect pervasive hydrothermal alteration and spaced 

crenulation cleavage development during late Caledonian deformation (Pharaoh et al., 1987).  

 

5.5 Minor intrusive suite and subduction shutdown 

 

In addition to the large plutonic bodies described above, numerous smaller bodies belonging to the 

lamprophyric-microdioritic Midlands Minor Intrusive Suite (Carney et al., 1992; Carney and Pharaoh, 

1993; Pharaoh et al., 1993a; Henney et al., 1993) and of spessartitic affinity (Rock, 1984) are 

encountered in exposed Cambrian-Tremadocian strata (e.g. Wrekin, Nuneaton, Rubery, Malverns) and 

numerous boreholes throughout the microcraton. They are not observed to intrude Silurian strata 

however, as noted by Wills (1948, Fig. 3). These geological observations are compatible with the U-Pb 

baddeleyite age of 442 ± 3 Ma (earliest Silurian or latest Ordovician) for pegmatoid facies of a 

differentiated sill belonging to this suite, in the Mancetter area near Nuneaton (Noble et al., 1993). Field 

observations indicate that the minor intrusions were emplaced in a number of co-magmatic pulses 

(Eastwood et al., 1923; Le Bas, 1968; Thorpe et al., 1993). In some places, dykes cut the axial planes 

of chevron folds of bedding in Cambrian-Tremadocian strata . A post-Tremadocian/pre-Silurian age is 

therefore inferred for this deformation (Carney et al., 1992; Bridge et al., 1998), for which a 
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Penobscotian cause is therefore conceivable. The mineralogical and geochemical composition of these 

minor intrusions indicates formation by small degrees of partial melting of lithospheric mantle with 

subduction enrichment of volatiles, LILE and light REE. A within-plate mantle source also provided a 

contribution. The Midlands Minor Intrusive suite and comparable lavas in North Wales (see below) 

have been interpreted to reflect the shutdown of volcanism (and subduction) at the northern edge of 

Avalonia (Woodcock, 2012b). 

In Brabant, magmatism continued until 433 Ma (end Telychian, early Silurian), significantly later 

than in the English ABM (Linnemann et al., 2012). This is possibly a consequence of oblique closure 

of the Tornquist Sea basin (Pharaoh et al., 1995); or even more speculatively, with a polarity switch of 

subduction, with Rheic oceanic lithosphere being subducted to the north (as in southern England at this 

time, Section 6.2).   

 

5.6 Comparison with post-Tremadocian Ordovician sequences elsewhere in the Caledonides 

 

In Wales, the basal Arenig (Floian) quartzite oversteps from the Welsh Basin onto the Irish Sea 

Horst. The quartzite is significantly thicker (>1000 m) in the vicinity of the WBFS and MSFS 

(Brenchley et al., 2006), suggesting extensional reactivation of both lineaments following the earlier 

Penobscotian accretionary tectonism. Volcanism resumed in Dapingian time following a significant 

break (?8 Ma) in Floian time. Dapingian to Katian mudstone sequences, intercalated with the volcanic 

units, were deposited in a number of fault-controlled basins (Woodcock, 2012b), in water of shelf depth. 

Some of the volcanic centres emerged above sea level (Kokelaar et al., 1984; Howells et al., 1990). The 

volcanics comprise bimodal basalt-rhyolite suites with an asthenospheric mantle source, reflecting 

transition of the Welsh Basin to a back-arc setting. The youngest volcanics (c.454 Ma) have an ocean 

island basalt signature, reflecting the shutdown of subduction beneath North Wales (Leat et al., 1986; 

Leat and Thorpe, 1989). Woodcock (2012) has proposed that the distinctive chemical signature results 

from detachment of the leading half of the downgoing plate following subduction of the mid-Iapetus 

spreading ridge. In this way the asthenospheric mantle can be tapped through a window in the 

subducting slab, yielding the unusual compositions observed in the minor intrusive suite. The situation 

is analogous to that in the present day Gulf of California (Woodcock, 2012b). Following ridge 

subduction, the new plate boundary amalgamating Laurentia with Avalonia would have had a 

significant component of dextral strike-slip. The strands of the WBFS were reactivated in Hirnantian 

time during the so-called Shelveian deformation phase (Toghill, 1992), with dextral strike-slip (Lynas, 

1988; Woodcock, 1988). This deformation may also reflect intra-plate stress resulting from the soft 

docking of Avalonia with Baltica, following closure of the Tornquist Sea (Pharaoh, 1996; 1999; 

Woodcock, 2012b). 

In Leinster north of the Wexford Boundary Fault System, Cambrian and early Ordovician deep 

marine, turbidite-dominated strata crop out. Similar deep water strata in the Lake District and Isle of 

Man range down to the Tremadocian, but Cambrian strata are not yet proven (S.G. Molyneux, 

pers.comm.). Large synsedimentary slump sheets and debris flows testify to the instability of the 

continental margin (Webb and Cooper, 1988; Cooper et al., 1993). The deep water sequences of the 

Ribband, Manx and Skiddaw groups (Fig. 9) lack the prominent intra-Tremadocian unconformities 

visible in the Midland Platform and Welsh Basin (Woodcock, 2012b). They are therefore attributed to 

a distinct Leinster-Lakesman Terrane (Murphy et al., 1991; Bluck et al., 1992), which apparently 

occupied a more outboard position on the Avalonian margin (Fig. 11). An alternative view, preferred 

here, is that the Leinster-Lakesman volcanosedimentary package represents a juvenile addition to 

Avalonia, and is not therefore a separate terrane. The post-Tremadocian history in south Leinster is akin 

to that of the Welsh Basin, with subduction-related Tremadocian volcanism giving way to Darriwillian-

Katian back arc bimodal suites (Woodcock, 2012). In north Leinster and the Lake District, Sandbian 
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and Katian andesites (e.g. the Eycott and Borrowdale volcanic groups) are the submarine to sub-aerial 

eruption products of a continental arc, while overlying intermediate to silicic pyroclastic rocks up to 4 

km thick, infill at least 5 major calderas (Millward et al., 1978; Millward, 2002). Subduction-related 

volcanism waned and shut down in later Katian time, either because of docking with Baltica or because 

the Iapetus Ocean Ridge had been overrun (Woodcock, 2012b). The dissimilarity of the volcanic rocks 

in the Leinster-Lakesman Domain to those in Wales led Kokelaar (1998) to propose that the terranes 

were not adjacent in Ordovician time, but had been juxtaposed by sinistral strike-slip subsequently. In 

latest Ordovician time, the basins of the Leinster-Lakesman Domain were starved of clastic debris 

(Woodcock, 2012b); deposition of shelf limestones was interrupted by Hirnantian eustatic sea-level fall.  

The mid- to late Ordovician arc volcanic rocks in the Lake District have no obvious equivalents 

farther west in the northern Appalachians (Van Staal et al., 1998). The Floian-Dapingian Popelogan-

Victoria Arc developed on the leading edge of Ganderia following renewed southward subduction in 

late Ordovician time, colliding with the Red Indian Lake Arc of composite Laurentian margin in the 

final phase of Taconic deformation, at about 455 Ma (Van Staal et al., 2009). The Tetagouche-Exploits 

ensialic back-arc complex of New Brunswick and Newfoundland developed on a Ganderian substrate 

and with SE-directed subduction resembles the situation in the Welsh Basin. Faunal provinciality broke 

down in late Ordovician time when Scoto-Appalachian faunas replaced peri-Gondwana faunas in the 

Exploits Subzone (Van Staal et al. 1998), much earlier than in Eastern Avalonia.  

In conclusion, the concealed eastern part of the ABM apparently contains a more complete post-

Tremadocian succession than the platform to the west, where strata of this age are almost completely 

absent. The post-Tremadocian Ordovician strata of the eastern ABM appear more comparable to those 

of the Brabant Massif than the Lakesman-Leinster Domain or Welsh Basin. The subduction history in 

eastern England and Belgium is significantly different to that of the Newfoundland, Maritime and New 

England Caledonides, reflecting likely spatial variation in arc polarity and diachroneity of 

trench/volcanic arc development and ocean-ridge/trench collision throughout the length of the Iapetus 

Ocean (Van Staal and Winchester, 2017).  

 

6. Silurian successor basins and Rheic-related volcanism  

 

6.1 Introduction 

 

Following the shutdown of subduction, and a brief period of erosion during the Hirnantian (latest 

Ordovician) glacial-eustatic sea level lowstand, the lithosphere of Avalonia cooled and subsided. 

Avalonia now lay at a palaeolatitude of about 30°S, with Baltica juxtaposed to NE (in present day 

reference frame), and a rapidly closing Iapetus Ocean (transforming to a strike-slip margin) to the NW 

(Fig. 8). In Silurian time, a eustatic sea-level rise following the Hirnantian lowstand flooded the 

platform. A major transgressive system tract of early Llandovery age defines the base of Megasequence 

3, equivalent to the Powys Megasequence (Fig. 9) recognised in the Welsh Basin by Woodcock (1990; 

1991). Impingement of Eastern Avalonia with Laurentia resulted in the development of a series of 

successor, foreland basins receiving immature detritus from the evolving orogenic belt (Woodcock, 

2012c).  

 

6.2 Platformal sequences of Megasequence 3 

 

On the Midland Platform, the Hirnantian Unconformity is overlain by transgressive sandstones and 

shallow marine mudstones deposited in a series of pulses until latest Llandovery time. In the adjacent 

Welsh Massif, up to 3000 m of Llandovery strata were deposited in the rapidly subsiding Woolhope 

and Usk basins (Butler et al., 1997). Shales with a shelly fauna of Llandovery age, were encountered in 
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Batsford and Shalford boreholes, and Wenlock shales in Cliffe and Ware boreholes (Bassett, 1974; 

Bassett et al., 1992).  The occurrences are key data points for defining the edge of the Midland platform 

(Fig. 15). Brabourne Borehole, in Kent, containing dark shales (Lamplugh and Kitchin, 1911), with rare 

brachiopod and trilobite fragments of probable late Llandovery or earliest Wenlock age (Molyneux, 

1991), probably lies on the shelf edge. The early Llandovery strata of the Brabant Massif were also 

deposited on a shelf, before the basin deepened from late Telychian time on (Fig. 9).  

 

6.3 Magmatism during Megasequence 3 

 

Silurian strata contain interstratified volcanic sequences reflecting renewed subduction, but not on 

the old Iapetus-Tornquist template. Volcanic centres at outcrop include Skomer in SW Wales (mid-

Llandovery), Tortworth, in Gloucestershire (upper Llandovery), and the Mendips (mid-Wenlock) (Van 

de Kamp, 1969; Thorpe et al., 1989); lavas of Llandovery age are also encountered in boreholes at 

Maesteg in south Wales, Netherton (Harrison, 1974) and Bicester (Pharaoh et al., 1991, Fig. 14). The 

lavas form a reflective marker horizon on reflection seismic lines and can be mapped between the 

borehole provings. All of the volcanic centres are located within about 50 km of the Variscan Front, 

anticipating the subsequent development of the Variscides (Turner, 1935; Pharaoh et al., 1991; 1993; 

Fortey et al., 1996). In addition, thin ash (bentonite) horizons are more widely distributed both spatially 

and temporally (Fortey et al., 1996), but may not necessarily have been derived from the same volcanic 

centres (Woodcock, 2012c). The chemical composition of the lavas varies from basalt through basaltic 

andesite to minor amounts of rhyolite, with both within-plate and subduction magmatic signatures 

(Thorpe et al., 1989; Pharaoh et al., 1991). Distinct peralkaline and ocean island basalt series are 

recognised at Skomer (Thorpe et al., 1989), while the Mendips and Tortworth occurrences have calc-

alkaline affinities (Van der Kamp, 1969). This could either reflect development of an extensional rift 

zone on the northern margin of the Rheic Ocean, with a lithosphere previously contaminated by 

(Avalonian or Iapetan) subduction (Pharaoh et al., 1991); or subduction of the Rheic Ocean northward 

under the Avalonia plate (Fortey et al. 1996; Woodcock, 2012c), following a polarity switch. Given the 

faunal evidence which appears to favour opening of the Rheic Ocean from Floian time (perhaps earlier) 

onwards (Scotese and McKerrow, 1991; McKerrow et al., 1991; Cocks and Fortey, 1992), some 30 to 

40 Ma earlier than the Skomer volcanism, the latter hypothesis presently looks the most reasonable. As 

noted above, in Brabant, magmatism continuing until 433 Ma (early Silurian time) (Linnemann et al., 

2012) might also be associated with a polarity switch to northward subduction of the Rheic Ocean.  

  

6.4 Basinal sequences of Megasequence 3 

 

The strong contrast in character and composition of the Caledonian basement in the eastern part of 

the ABM compared to the platform to the west has been known since the 1940’s (Bullard et al., 1940; 

Wills, 1948). The chains of plutonic and volcanic bodies inferred to be present in the subcrop to NW 

terminate close to Cambridge. Silurian biostratigraphic ages have been confirmed for metasedimentary 

rocks proved by nine boreholes in East Anglia and Kent (Molyneux, 1991; Bassett et al., 1992): 

Brabourne, Chilham, Clare, Cliffe, Lowestoft, Soham, Stow Langtoft, Stutton and Weeley (Figs. 12b, 

13). UK offshore well 53/16-1 (Cameron et al., 1992) and Dutch offshore well O18-1 (De Vos et al., 

2010) provide a link to the continuation of the basin into the Brabant Massif. In addition, boreholes at 

Culford, East Ruston, Harwich, Herne, Isle of Grain, Saxthorpe, Sheerness, Somerton and Reculver 

(Fig. 15) are thought to have penetrated Silurian rocks (Cocks et al., 1971; Wills, 1978) but this has still 

to be confirmed. Ellingham, Eriswell and Rocklands boreholes reached early Palaeozoic strata, possibly 

Silurian, although the borehole records are rather poor. The basinal subcrop defined by these boreholes 

is considered to define the limits of the Anglian Basin (Woodcock and Pharaoh, 1993), the counterpart 
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of the Silurian Welsh Basin (Fig. 15). The boreholes at Cliffe and Ware are key data points defining the 

eastern edge of the platform (Fig. 15).  

To the NE, all boreholes prove basinal facies. Woodcock and Pharaoh (1993) recognised four 

sedimentary facies, two or three of which may be grouped into each of four facies associations. Facies 

Association A, unbioturbated mudstones, are most prevalent in boreholes proving Llandovery to 

Wenlock strata, e.g. at Weeley and possibly in the less well dated Harwich, Ellingham, Saxthorpe and 

Somerton provings. The facies association is comparable to the Wenlock ‘laminated hemipelagites’ of 

the Welsh Basin (Dimberline et al., 1990) and an outer shelf or marine basin slope environment is 

inferred (Woodcock and Pharaoh, 1993). Facies Association B, dominated by graded and bioturbated 

mudstone, becomes more prevalent in Ludlow and Přídolí provings (e.g. Stutton and Lowestoft), and 

was probably deposited in an oxygenated outer shelf environment. Facies Association C, comprising 

graded sandstones and mudstones, frequently bioturbated, is found in Přídolí age provings at Clare, 

Lakenheath and Soham. An oxygenated muddy outer shelf, like association B but with greater sand 

supply, and probably shallower water conditions, is proposed. Facies Association C passes up into 

Facies Association D (bioturbated sandstones) of Přídolí age at Lakenheath, Soham and Stow Langtoft, 

comprising about equal proportions of ungraded sandstone and graded mudstone. A storm-dominated 

inner shelf environment is proposed. Given the presently rather poor biostratigraphic age constraints, 

the variation of the facies associations can interpreted in terms of space or time. In the areal hypothesis, 

the Anglian Basin deepens away from the Midland Platform into oxygenated shelf and anoxic outermost 

shelf or basin slope, returning to shelf conditions in the NE e.g. in well 53/16-1. The temporal hypothesis 

for the facies distribution invokes a systematic change with time, from anoxic outer shelf/basin slope in 

Llandovery and Wenlock, greater oxygenation and increasing sand supply through Ludlow time, to 

progressive shallowing of the shelf and increasing influence of storm-dominated sedimentation, in 

Přídolí time. Without further detailed biostratigraphic studies of the borehole material, it is difficult to 

distinguish between these two end members for the variation of facies associations (Woodcock and 

Pharaoh, 1993). In contrast to the Welsh Basin (from late Llandovery time)  and the Lake District Basin 

(from late Wenlock time), no major influxes of sandy turbidity flows, ascribed to diachronous collision 

between the eastern part of Avalonia with Laurentia (Soper and Woodcock, 1990), have been 

recognised in the Anglian Basin. Much of central and northern Britain was emergent at this stage 

(Bassett et al., 1992). 

In Belgium, the base of Megasequence 3 is now defined at the base of the Madot Formation (upper 

Katian) (e.g. Verniers et al., 2002; Herbosch and Verniers, 2014). In the outcrop area, the megasequence 

comprises c. 3.4 km of latest Ordovician to early Devonian strata (Verniers et al., 2001; 2002). The base 

of the megasequence marks a sharp transition from deep sea to shallow shelf, accompanied by a volcanic 

event. Llandovery strata were initially deposited on a shelf, but upper Telychian to Gorstian strata are 

deep water turbidites, initially distal, becoming more proximal from the Sheinwoodian (J. Verniers, 

pers. comm.), reflecting the influx of detritus eroded from the Scandian orogenic welt to north and, 

significantly, from the Ardennes in the south, reflecting the onset of Brabantian tectonic inversion 

(Debacker et al., 2014). Mesoproterozoic zircons (from Baltica) reappear in the (Sheinwoodian) Corroy 

Formation (Linnemann et al., 2012).  

 

6.5 Comparison with Silurian sequences elsewhere in the Caledonides 

 

The Welsh Basin was sourced mainly from the west, probably from the collision zone between 

Western Avalonia and Laurentia, starting in late Llandovery time (Woodcock, 2012c). In late Ludlow 

and Přídolí time, the basin began to shallow and invert, sedimentation becoming terrestrial by 

Lochkovian time. River systems flowing southward of the developing mountain front were deposited 

as Lower Old Red strata in South Wales. In northern England, predominantly mud- and silt-dominated 
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sequences accumulated in late Llandovery and Wenlock time. Anoxic mudstones were deposited in 

marine basins with circulation increasingly restricted by oceanic closure. In early Wenlock time, the 

Leinster Basin received an influx of turbidite sandstones fed from Laurentia. In the Lake District, the 

turbidite influx arrived slightly later, in Ludlow time, and was sourced mainly from the north-east, 

probably from the Scandian collision zone between Baltica and Laurentia (Woodcock, 2012c). The 

Windermere Supergroup of the southern Lake District was deposited in a southward propagating 

foreland basin (Kneller, 1991; Millward et al., 2000), resulting from flexure of the lithosphere caused 

by the Laurentian upper plate overriding the Avalonia-Ganderia margin.  

In New England, Newfoundland and the Maritime provinces, faunal provinciality broke down in 

the late Ordovician, Scoto-Appalachian faunas replacing peri-Gondwana faunas in the Exploits 

Subzone (Van Staal et al., 1998), much earlier than in the eastern zone of Iapetus. Baltica (in the NE) 

and Western Avalonia (in the SW) were the first terranes to collide with Laurentia following subduction 

and closure of the Iapetus Ocean, resulting in the early Silurian Scandian and Salinic orogenic phases, 

respectively. The Salinic deformation reflects closure of the Tetagouche-Exploits back arc basin at 445-

425 Ma (late Ordovician-late Silurian). Parts of Ireland (Grangegeeth Terrane) may have collided with 

Laurentia earlier than the Bellewstown and Leinster-Lakesman terranes. The Grangegeeth Terrane, 

lying within splays of the Navan-Silvermines Fault (=Iapetus Suture) in eastern Ireland (Harper and 

Parkes, 1989), shows a similar early breakdown of faunal provinciality. These faunas are distinctly 

different to the Anglo-Welsh faunas of the Lake District and the Laurentian faunas of the Southern 

Uplands in the Caradoc. By contrast the adjacent Bellewstown Terrane contains volcanic rocks and 

Anglo-Welsh faunas most like those of the Welsh Basin (Winchester and Van Staal, 1995; Harper et 

al., 1990). Following the Salinic deformation, an extensive foreland basin formed on the Ganderian 

margin in early to late Silurian time. Strata of the Fredericton Trough in the northern Appalachians (Van 

Staal and de Roo, 1995) and the Badger Group of Newfoundland (Williams et al., 1975; Van Staal et 

al., 1998) are lithologically comparable to the Windermere Supergroup of the Lake District (Kneller, 

1991) and the Anglian Basin (Woodcock and Pharaoh, 1993).  In the Meguma Terrane, Silurian rift-

related volcanic and sedimentary rocks (White Rock formation) unconformably overlie the supergroup, 

and the post-Tremadocian Ordovician record is missing (Waldron et al., 2017). The Megumia, Avalonia 

and Ganderia terrane elements remained distinct until later in the Palaeozoic (e.g. Valverde-Vaquero et 

al., 2006; Van Staal et al., 2009). 

To conclude, the Silurian strata of the eastern ABM are comparable to those deposited in foreland 

basins following continental collision, throughout the Caledonides. More comprehensive comparison, 

particularly with the key Belgian exposed sequence, will only be possible following more detailed 

studies, including biostratigraphic zonation and detrital provenance of the English provings.   

 

7. Late Silurian to early Devonian (‘late Caledonian/Ligerian’) orogenic deformation 

 

7.1 Introduction 

 

All of the early Palaeozoic sedimentary and volcanic units of the ABM described above, and some 

of the plutonic bodies, were affected by deformation during late Silurian to early Devonian time. Since 

the 1980’s, this deformation has been attributed to the Acadian phase (e.g. McKerrow et al., 1985; Soper 

et al., 1987; Pharaoh et al., 1987), by analogy with the deformation in the ‘Acadian’ type area of the 

northern Appalachians, and the Maritime Provinces of Canada. The term was transferred to the British 

Caledonides in the last decades of the 20th C (e.g. McKerrow et al., 1985; Soper et al., 1987). Until 

recently, it was assumed that all components of the ‘slate belts’ of southern Britain were deformed 

during the Acadian deformation. The Acadian phase clearly postdates the collision of Laurentia with 

Avalonia by 15-20 Ma (Soper and Woodcock, 2003; Woodcock and Soper, 2006; Woodcock, 2012d), 



26 
 

so it has nothing to do with the closure of the Iapetus Ocean, and the term ‘proto-Variscan’ might 

actually be more appropriate (Woodcock et al., 2007), for reasons which will be outlined below. In the 

Brabant Massif, deformation of the Brabantian Phase started earlier (Verniers et al., 2002), and there is 

now increasing evidence that this earlier deformation also affected the eastern England sector of the 

ABM. Acadian deformation occurred within a regime of sinistral transpression (Dewey and Strachan, 

2003), followed by transtension in early Devonian time (Soper and Woodcock, 2003). The role of 

continental promontories and embayments in causing local variation in magnitude of strain and 

diachroneity of deformation within the Caledonides has been more widely recognised in recent years 

(Van Staal et al., 2009; Van Staal and Barr, 2012).  

 

7.2 Tectonic fabrics 

Soper et al. (1987) recognised that the pattern of deformation in the ‘slate belts’ of Wales and 

northern England was compatible with indentation by the Midlands Microcraton (Fig. 16), around 

which the Acadian cleavage appears to arc. The Acadian cleavage in the slate belts shows arcuate 

swings in trend and is usually non-axial planar. Clockwise transection of folds is common, and together 

with sinistral displacement on SW-NE striking fault zones, reflects a sinistrally transpressive regime in 

the Welsh and Cumbrian Caledonides (Soper et al., 1987; Woodcock, 2012c). The concealed 

Caledonides of eastern England, including deformed Silurian strata of the Anglian Basin as young as 

Přídolí in age (Molyneux, 1991) were considered to have been affected by the Acadian deformation 

(Pharaoh et al., 1987). The indentation tectonic model presented by Soper et al. (1987) viewed the 

Midlands Microcraton as a rigid ‘indenter’ surrounded by more strongly deformed ‘slate belts’. Within 

the southern British Caledonides, the intensity of tectonic fabrics is lowest in the Midlands Microcraton, 

where only a bedding planar fissility of diagenetic origin may be present (Pharaoh et al., 1987). 

However, even here, strong folding of Tremadocian sequences is inferred from borehole evidence, and 

observed in outcrop (Carney and Pharaoh, 1993) and could result from the Penobscotian Phase, as 

described earlier. The grade of metamorphism within the microcraton is low, typically diagenetic zone 

(Pharaoh et al., 1987; Merriman et al., 1993), with a temperature of about 200°C, although a NW-SE 

trending belt with slightly higher anchizone grade is observed to parallel the inferred NE margin of the 

microcraton (Fig. 17). To the NE, into the concealed Caledonides of eastern England, metamorphic 

grade rises to anchizone and epizone values (temperature exceeding about 300°C) in early Palaeozoic 

rocks encountered in deep boreholes. In general, the grade is higher in the ?Cambrian quartzites and 

phyllites (epizone, equivalent to greenschist facies) than in Ordovician and Silurian strata (typically 

anchizone). Unfortunately none of the cores from the rather old boreholes are orientated, and few have 

microresistivity logs, so the actual orientation of the fabrics is known in only a few cases.  Neither have 

the strong tectonic fabrics in these cores been dated by radiometric methods. Thus fabrics affecting the 

Silurian rocks are clearly of Brabantian or Acadian age (see below); those affecting the ?Cambrian 

quartzite/phyllite association might have been generated earlier, as in Anglesey (Schofield et al., 2008). 

These are important questions which should be addressed by drilling. In Belgium, there is evidence for 

only one axial planar cleavage (Sintubin, 1999; Verniers et al., 2002). 

 

7.3 Age of deformation 

 

In the best exposed areas of the British Caledonides south of the Iapetus Suture, the ‘slate belts’ of 

Wales, Cumbria and the Isle of Man, the age of terminal Caledonide deformation is constrained by 

major angular unconformity. The youngest pre-deformation sequences in the Welsh Borders and South 

Wales are of Emsian age (Woodcock, 2012d); Old Red Sandstone strata of likely Lochkovian age at 

Red Wharf Bay in Anglesey are cleaved. Radiometric ages on the cleavages in the slate belts range 

from 404 to 390 Ma (Emsian-early Eifelian). The most robust and precise age for the cleavage in Wales, 
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396.1 ± 1.4 Ma, was provided by a study of white mica in cleavage pressure fringes using 40Ar/39Ar 

laser microprobe analysis (Sherlock et al., 2003).  

A study of the tectonic fabrics in the Neoproterozoic-age Charnian Supergroup, metamorphosed at 

epizonal grade (= greenschist facies) (Pharaoh et al., 1987; Merriman et al., 1990; Merriman and Kemp, 

1997) and exposed in a structural high on the NE flank of the microcraton, revealed that the situation is 

more complex. The 40Ar/39Ar laser microprobe method yielded total fusion spot ages of c. 435 to 413 

Ma (late Silurian-earliest Devonian) for the penetrative cleavage and ductile shear zones associated with 

epizonal metamorphism of the Charnian sequence (Carney et al., 2008). Step-heating yielded slightly 

more precise ages in the range 418 to 415 Ma, considered the most likely age of deformation associated 

with dextral transpression along the NE flank of the microcraton (Carney et al., 2008). These ages are 

comparable to those of the youngest (Přídolí) strata in the Anglian Basin (Molyneux, 1991; Woodcock 

and Pharaoh, 1993). In Belgium, 40Ar/39Ar mica ages of 419-412 Ma in the Brabant Massif (Dewaele 

et al., 2002), are attributed to the Brabantian deformation phase (Debacker et al., 2005). The end of 

Brabantian deformation is stratigraphically constrained to the Givetian (c. 390 Ma), the age of the 

unconformably overlying Bois de Bordeaux Formation (Verniers and Van Grootel, 1991; Van Grootel 

et al., 1997). The 40Ar/39Ar ages (426 to 393 Ma) obtained for syn- to post-cleavage white mica grains 

place the end of the orogeny at 393 Ma (Debacker et al., 2005). This raises the possibility that the 

Caledonides of the Anglo-Brabant Deformation Belt (ABDB) (Pharaoh et al., 1993b; 1995; Van Grootel 

et al., 1997; Winchester et al., 2002) were deformed slightly earlier than those of northern and western 

Britain (Woodcock, 2012d). It is also interesting to note that this is the time of the Salinic deformation 

phase in Newfoundland (Van Staal and Zagorevski, 2017). Clearly, further studies are needed to 

confirm these results, in particular radiometric dating of pelitic lithologies within the concealed 

Caledonides. They nevertheless indicate that the late Silurian-early Devonian deformation and 

metamorphism was a protracted and complex event, and may have involved early deformation at 

orogenic promontories prior to the ‘terminal’ Acadian phase 

       

 

7.4 Terrane and intra-terrane rotations 

 

Several palaeomagnetic studies have provided evidence for significant rotation of Avalonia from 

late Ordovician to early Devonian time. Torsvik (1998) and Torsvik and Rehnstrom (2003) identified 

significant counterclockwise rotation of Baltica and Avalonia during their northward drift from 

moderate southerly palaeolatitudes in early Ordovician time to the Equator in middle Devonian time. 

This may account for the rotation of the Welsh Basin from arc to back-arc location during Ordovician 

time (Pharaoh, 1993; 1995), as inferred from the geochemical evidence (Kokelaar, 1988). Waldron et 

al. (2011), recognising the similarity of Cambrian deep water facies in the Welsh Basin to those of 

Megumia, advocated the possibility of significant post-Cambrian counterclockwise rotation of East 

Avalonia in one of their Cambrian plate reconstructions. 

Piper (1997) identified c. 55° of post-Katian/pre-Devonian intraplate counterclockwise rotation of 

the Lake District with respect to North Wales, of probable Acadian age. Verniers et al. (2002) suggested 

that this rotation may have contributed to the long-lasting (Wenlock-early Eifelian) Brabantian 

Deformation, during which the core of the Brabant Massif was uplifted. Vizan et al. (2003) identified 

an even larger (c. 165°) clockwise rotation of of the Midland Platform at Nuneaton. The rotation 

apparently has a post-Hirnantian, pre-Carboniferous age, again presumed to be Acadian. These latter 

observations are however difficult to reconcile with the inferred lack of rotation of the ABM with 

respect to putative subduction zones in the North Sea since the end of Ordovician time.  

 

7.5 Causes of late Caledonian orogenic deformation   
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Closure of the Rheic ocean basin, with impingement of the Armorican or Iberian microcontinents 

upon Avalonia, was invoked as the cause of the Acadian Orogeny by Soper et al. (1987). The Mid-

Devonian Acadian Phase is contemporaneous with the Ligerian or ‘Eo-Variscan’ Phase recognised 

throughout the Variscides (Ziegler, 1990; Matte, 2001). High pressure metamorphism of this age is 

identified in numerous Variscan Massifs e.g. NW Iberia, southern Armorica and Bohemia (Lardeaux et 

al., 2014) and reflects collision and obduction of continental terranes in an early (‘Eo-Variscan’) phase 

of the Variscan Orogeny. It seems likely that Avalonia was involved in these collisions, albeit 

peripherally. 

Some form of collision between Armorica and Cornubia (Variscide Rhenohercynian zone on the 

southern margin of Avalonia) in Devonian time is indicated by the presence of olistoliths embedded in 

a mid- or late Devonian olistostrome in south Cornwall (Barnes et al., 1979; Leveridge and Shail, 2011). 

The Roseland Breccia Formation (‘Gorran Quartzite’) contains trilobite-brachiopod fauna placed as late 

Darriwilian, comparable to that of the Grès de May (Armorican Quartzite) in Brittany. Some blocks are 

up to 1.5 km long. Dark blue limestone clasts contain orthocone nautiloids, brachiopods and bivalves 

of late Silurian to early Devonian age. However, actual evidence for Acadian compressional 

deformation is missing in Cornubia (Woodcock et al., 2007), as apparently is the early Devonian arc 

produced by northward subduction of Rheic Ocean lithosphere. The evidence for the presence of such 

an arc parallel to, and just north of the subsequent Variscan Front in Silurian time, was reviewed above. 

Instead, the ‘Lizard Ophiolite’ seems to indicate the presence of either a marginal basin or possibly a 

hyper-extended continental margin (Shail and  Leveridge, 2009) here in mid-Devonian time, rather than 

a compressional belt. An alternative explanation invokes subduction of a young buoyant segment of 

Rheic ocean ridge, resulting in ‘flat-slab subduction’ and a strong shear stress on the Avalonian 

lithosphere, sufficient to have driven the Acadian deformation (Woodcock et al., 2007; Woodcock, 

2012e). This should result in a hot thermal pulse, resulting in partial-melting (‘migmatisation’) of the 

continental crust. This is observed in western Newfoundland, where migmatitic leucosome in the large 

amphibolite-facies Meelpaeg Nappe has yielded a U-Pb zircon age of 418 ± 4 Ma (early Devonian) 

(Currie et al., 1991). This metamorphism, which mainly affects the Gander Zone east of the Red Indian 

Line (i.e. the Iapetus Suture), is at much higher grade than Acadian metamorphism in the UK however,  

which cannot be attributed to such a thermal pulse. 

To resolve these difficulties, Woodcock et al. (2007) and Woodcock (2012) envisaged displacement 

of the arc/forearc system on the northern Rheic margin by about 400 km of dextral shear along a putative 

Bristol Channel-Bray Fault Zone, the presence of which had already been advocated by Holder and 

Leveridge (1986). The hypothesis proposes that the crust of what is now Cornubia originated in what 

is now the western side of the Paris Basin, and was translated to its present position in post Acadian or 

early Variscan time, possibly during the late Carboniferous (Woodcock, 2012e; p207). The hypothesis 

is both elegant and attractive, and could explain the displacement of Acadian deformed crust farther 

west along the Variscan Orogen, for example to the allochthonous HP terranes of NW Iberia. The 

geophysical evidence for a major fault (possible suture) between the Isle of Wight and the Pays de Bray 

is convincing (Hamblin et al., 1992). However, it is the author’s view that there is no convincing 

evidence in any of the geophysical datasets reviewed in Section 2 for the direct continuation of the Bray 

Fault Zone from the Isle of Wight to the Bristol Channel, even though significant geophysical 

expression, including Moho offset, might be expected. This is not to say that individual fault segments 

e.g. the Bristol Channel faults (e.g. Miliorizos et al., 2004), the Watchet-Quantocks Fault System, the 

Cranborne-Fordingbridge faults (Whittaker, 1985) and the Wight-Bray Fault (Hamblin et al., 1992) do 

not exist; simply, that they do not appear to form a coherent linked system between the Bristol Channel 

and the Isle of Wight, as proposed by Holder and Leveridge (1986) and Woodcock (2012). The organic 

maturity of Devonian-Carboniferous strata of the Rhenohercynian Zone on either side of the putative 
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fault zone is comparable (Smith, 1993), suggesting no significant offset, although this should be 

confirmed by further studies of mica crystallinity and other low grade metamorphic indicators. Neither 

is any offset apparent in the magnetic potential field data (Fig. 5a). NW-SE trending, relatively straight 

faults such as the Watchet-Cothelstone and Lustleigh-Sticklepath zones are explicable in terms of late 

Variscan dextral strike-slip and Alpine reactivation under relatively brittle conditions.  

A further complication is a geodynamic one. As will be discussed in a later section (Variscan 

Orogeny), the North Armorican Domain appears to have been in close juxtaposition to Cornubia in late 

Devonian time, although neither may have been in their present location relative to Laurussia. However, 

if the interpretation of Variscan dynamics presented below is correct, the movement of the North 

Armorican promontory late in the orogeny was principally northward and orthogonal to the orogenic 

front, with only a limited strike-slip component. If the promontory was impinging on Cornubia as early 

as late Devonian time (Leveridge and Shail, 2011), the window of opportunity for Cornubia to disperse 

westward around the promontory against the regional orogenic dispersal direction would seem to be 

very short, restricted to about 11 Ma of mid-Devonian time. 

 It is the author’s view, as described earlier, that a magmatic arc related to Rheic subduction was 

present at the southern margin of Avalonia in Llandovery to Wenlock time. The remains of this 

presently lie close and parallel to the Variscan Front (Pharaoh et al., 1991; Fortey et al., 1996). No 

younger Silurian to early Devonian arc volcanics have been identified, perhaps because they were 

subsequently eroded. This interpretation is permissible given the position of the Devono-Carboniferous 

unconformity in the sub-surface. The detritus may have ended up in the Welsh Basin which received a 

significant amount of juvenile volcanic detritus in latest Přídolí time (Thorogood, 1990). Flat-slab 

subduction, pulling on the thickened crust of the Midlands Microcraton may have played a role too 

(Woodcock, 2012). The fore-arc basin would now have to lie concealed beneath early Devonian basins 

in Cornubia. Furthermore, prior to late, possibly significant low angle nappe translation during the later 

stages of the Variscan Orogeny, Cornubia lay on the southern margin of Avalonian crust (Cocks et al., 

1997), in a southward extension of the Midland Platform. At the time of Acadian deformation, the 

Avalonian crust beneath Cornubia may have been just as rigid as that beneath the Midland Platform 

(where Acadian deformation is slight). It may even have lain in a zone of lower strain in an orogenic 

embayment on the western flank of the North Armorican Promontory, as suggested by Fig. 28. The 

zone of high Acadian strain extended SW into the Celtic Sea and Western Approaches, where it 

presumably controls the geometry of subsequent Mesozoic extension (Gardiner and Sheridan, 1981); 

and the counterpart Brabantian zone of high strain (A-BDB) extends SE into Belgium.  

In conclusion, some combination of a ‘push from the south’ by the North Armorica Domain or 

related terranes and flat slab subduction of the Rheic Ocean is still favoured as the cause of late 

Caledonian deformation surrounding the ABM, although the significant problems with the hypothesis 

identified by Woodcock et al. (2007) and (Woodcock, 2012) are acknowledged. 

  

8. The Anglo-Brabant Massif comes of age in late Palaeozoic time 

 

8.1 Introduction 

 

By early Devonian time, the accretionary collage of the Caledonide Orogen had been welded into 

a mountain belt, part of the supercontinent known as ‘Laurussia’, or the ‘Old Red Continent’ (Ziegler, 

1990). This was a period of orogen-wide sinistral transtension (Dewey and Strachan, 2003; Soper and 

Woodcock, 2003), most obviously expressed in sinistral displacement on major fault zones such as the 

Great Glen and Highland Boundary fault systems, but also associated with voluminous granite 

magmatism, erosion of the Caledonide mountains and transport of the clastic detritus southward to 

basins of ‘Old Red Sandstone’ (ORS). Beyond the northern limits of the Midlands Microcraton, the 
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Lower ORS strata are only locally preserved, e.g. in isolated basins in Anglesey, in the Cheviot Massif 

and possibly, in the Isle of Man, where the N-S trending Peel Graben preserves redbed strata of probable 

Devonian age (although see Quirk and Kimbell, 1997). Soper and Woodcock (2003) have predicted 

that the orientation of such Lower ORS basins in northern Britain should reflect a W-E extensional 

element within the post-orogenic transtensional regime. On the southern limit of the microcraton in 

contrast, basins of mid to late Devonian age witness N-S compressional events reflecting closure of the 

Rheic Ocean (Leveridge and Shail, 2011). Subsequently, in Mississippian time (Fig. 18), a regime of 

north-south crustal extension became established, and may be associated with the opening of a relatively 

narrow and short-lived, Rhenohercynian ocean basin (Leeder, 1978; Franke et al., 2017).  

 

8.2 Devonian 

 

As noted above (section 5), the ABM appears to contain no granite intrusions of proven early 

Devonian age, unlike the Caledonides of northern England (Millward, 2006) and Scotland. Either the 

transtensional regime was insufficiently intense to permit decompression melting (Vaughan, 1996) and 

intrusion, or the tectonic and geothermal regime did not facilitate crustal melting, or both. Note that 

although the Moorby Microgranite has yielded a Rb/Sr isochron age of 400 ± 9 Ma (early Devonian), 

the U-Pb zircon age (Pharaoh et al., 1997) shows that this is a reset age, a phenomenon observed 

elsewhere in the British Caledonides (Evans, 1989). Considerable thicknesses (up to 2500 m) of early 

Devonian strata are preserved in South Wales and the Welsh Borders to west of the Malvern Line (Fig. 

19); and in a W-E orientated synclinal basin underlying the Thames Valley (Fig. 20) , extending from 

Gloucestershire to east Kent (Mortimer and Chaloner, 1972; Ellison et al., 2004). The strata are mainly 

fluviatile sequences deposited in extensive braidplains (Allen, 1974; 1979) fed by ephemeral streams 

into a foreland basin lying to south of the Caledonian Mountains. At this time the ABM does not appear 

to have had a significant topographic expression. Presumably the lithosphere was flexurally depressed 

by the orogenic massif to the north. Illite crystallinity data (Pharaoh et al., 1987a; Merriman et al., 1993) 

indicate that most of the ABM, characterised by diagenetic metamorphic grades, had only a thin cover 

of ORS, of perhaps only a few hundred metres. By contrast, the metamorphic grade in the ABDB, in 

greenschist facies, suggests the presence of an early Devonian cover perhaps 3 km thick (Merriman et 

al., 1993; Soper and Woodcock, 2003). Two provings (Rocklands, Eriswell boreholes) have incomplete 

records indicating the possible presence of thin Devonian strata overlying Přídolí strata in this district 

(Fig. 19). All other stratigraphic evidence for a thick Devonian cover has been removed by erosion. 

Early Devonian strata are notably absent beneath the Permo-Triassic Worcester Graben (Fig. 19). They 

were probably deposited, but eroded following severe Variscan inversion along the axis of the 

Tremadocian proto-graben. Strong cleavage in the Lower Old Red Sandstone of Anglesey, and 
40Ar/39Ar cleavage dates, indicate that orogenic compression within the Acadian Phase persisted until 

Emsian time (previous section). Middle Devonian strata are absent from the ABM, but are preserved 

on its southern margin, e.g. at crop in Cornwall and Devon and concealed beneath the Weald and 

Wessex basins (right hand edge of Fig. 19).  

Late Devonian strata onlap onto the southern margin of the ABM (Allen, 1979), forming the 

northward extension of the Rheic marine basin (Figs. 19, 20). They are also concealed by Mesozoic 

strata in Hampshire, Surrey and Kent (Allen, 1979). The end of orogenic compression allowed the 

depressed crust beneath the ABM to rebound, exerting a palaeotopographic influence for the first time. 

In addition, incipient N-S extension allowed the deposition of Upper Old Red Sandstone strata in 

shallow basins in the Midlands (Nuneaton, Eakring?) and on the Central Lancashire High (e.g. 

Boulsworth-1 and Roddlesworth-1 boreholes). These isolated occurrences are preserved beneath a more 

extensive cover of Carboniferous strata.  
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8.3 Carboniferous 

By early Carboniferous time, a N-S extensional regime had become established, possibly resulting 

from back-arc extension (Leeder, 1978; Franke et al., 2017) in the hinterland of volcanic arcs 

established on the southern margin of Laurussia. Three major pulses of rapid extension and subsidence 

have been observed in the Mississippian strata of the Carboniferous Limestone Supergroup deposited 

across a wide, equatorial platform in north Wales and northern England (Gawthorpe et al., 1989; Fraser 

et al., 1990). Major discontinuities in the sequence are recognised along the northern margin of the 

ABM. These range from hardgrounds, karstification surfaces and palaeosol horizons (Walkden, 1983; 

Bridges and Chapman, 1988), to strong angular unconformities. In the East Midlands e.g at Breedon 

(Ambrose and Carney, 1997), strong discordance between lower and upper Visean sequences may 

reflect footwall uplift following particularly intense episodes of extension (Fraser et al., 1990) affecting 

the marginal terraces of the main Carboniferous basins. The orientation of the latter is strongly 

controlled by the structural template of the underlying Caledonide basement. Hence SW-NE structural  

trends are dominant in North Wales and the western Pennines, NW-SE trends in the eastern Pennines 

(Fig. 21). Uppermost Mississippian (Serpukhovian) strata in England belong to the Bowland Shale and 

Millstone Grit groups (Fig. 18, Waters et al., 2013). Rejuvenation of the Caledonian mountains in 

Scotland, Greenland and Norway led to the development of major river systems over 1000 km long 

transporting coarse clastic detritus southward into the former area of carbonate deposition (Lancaster et 

al., 2017). Southward prograding deltaic systems are first recognised in Arundian time in the Scottish 

Borders (Fell Sandstone), and had reached the ABM by Arnsbergian time. Although the northern source 

was dominant, the ABM had sufficient topography to produce detritus now found in southerly-sourced 

turbidite units (Mixon-Morridge Formation) in Staffordshire, south Derbyshire and Nottinghamshire 

(Chisholm and Hallsworth, 2005; Hallsworth and Chisholm, 2017). The patterns of deposition are 

complicated, influenced by the residual (compaction) subsidence legacy of the earlier extensional 

basins, the positive buoyancy of the ABM and the effect of glacio-eustatic sea-level variation.  

The northern margin of the ABM is strongly indented (Fig. 22), as noted by Fulton and Williams 

(1988), and the position of the coastline would have shifted to and fro in response to global eustatic sea-

level change and more localised basin subsidence. The effects of the former were probably particularly 

significant in late Carboniferous-early Permian time due to (Dwyka) glaciation in the southern 

hemisphere. The eastern extremity of the ABM merges with the South Hewett Shelf in the southern 

North Sea, off The Wash (Fig. 22). Westwards into the onshore, the southern bounding fault of the 

Coningsby Half-graben (Pharaoh et al., 2011) defines a relatively sharp tectonic boundary, with granites 

of the inferred Wash Batholith (Figs. 5b, 10) lying in its footwall. Farther west, the southern margins 

of the Sleaford and Widmerpool half-graben are offset 15 km by the Denton Fault, a Carboniferous 

transfer fault representing reactivation of the more ancient Glinton-Eakring Lineament (Figs. 10, 22) 

(Pharaoh et al., 2011). The Widmerpool Half-graben extends for about 100 km in a WNW-ESE 

direction, gradually diverging from the northern edge of the ABM (Figs. 22, 23). In the eastern part of 

its southern margin, the Hathern Shelf is a marginal shelf between 5 and 10 km wide, with the Sileby 

Fault acting as the syndepositional controlling fault. Thick Tournaisian evaporitic strata (Hathern 1 

borehole) supports the contention of Fraser et al. (1990) that the Sileby Fault formed the southern limit 

of extension and subsidence at this time. The basement of the shelf is composed of cleaved Cambrian 

mudrocks (Carney and Ambrose, 2017) intruded by granodiorite bodies in at least two places 

(Rempstone 1, Kirby Lane Melton boreholes). As further pulses of extension and subsidence occurred 

through Mississippian time, the greatest downthrow (>4 km, Pharaoh et al. 2011) became localised on 

the more northerly Hoton, Normanton Hills and Mackworth faults, extending to the North Staffordshire 

Basin (Fig. 21). The presence of Ordovician granodiorite intrusions may have played a role in this 

basinward offset of the faulting, by welding and providing buoyant support to the Hathern Shelf. 

Divergence of the bounding fault system of the Widmerpool Half-graben, probably due to reactivation 
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of the Thringstone Lineament at the eastern edge of the Midlands Microcraton, led to the development 

of a platform with thin Carboniferous cover and mild faulting extending westwards from the Hathern 

Shelf into south Staffordshire (Fig. 22). The Ticknall Borehole (Carney and Ambrose, 2017) proved 82 

m of buff to grey/green fluvial sandstones and conglomerates, with interbedded red palaeosols of 

probable Holkerian age, overlain by a thin sequence of fully marine carbonates of the Peak Limestone 

Group (Asbian-Brigantian). The latter contain several karstic and calcrete horizons. Much thicker (>300 

m) and older sequences of Mississippian strata are exposed in the quarries at Breedon, just 4.5 km to 

the east, reflecting onlap onto the faulted northern edge of the ABM. The Redhouse Sandstone 

Formation proved by the Caldon Low Borehole (Chisholm et al., 1988) is another example of such sub-

aerial clastic strata, although these are preserved beneath Tournaisian carbonates; similar redbeds of 

probable early Carboniferous age are preserved elsewhere (e.g. Eakring 146 Borehole). Quarries in 

Brigantian-age limestones at Grace Dieu, south of Ticknall, formerly exposed conglomerate beds 

containing Charnian pebbles (Kent, 1968), indicating the persistence of the Charnwood Massif through 

Mississippian time. The southern onlap of the Carboniferous Limestone Supergroup onto the Welsh 

Massif is demonstrated by good exposure in south Wales and the Bristol Channel area, but is obscured 

on the southern margin of the ABM. Several deep hydrocarbon wells in the Weald Basin encounter 

such strata south of the Variscan Front; and a thin Visean sequence in the vicinity of Cambridge may 

record a localised marine incursion from the NW or south. 

Sediments derived from the ABM dominated deposition in the southern part of the Pennine Basin 

(Fig. 23) until late Kinderscoutian times when a northern source became dominant (Evans et al., 1968; 

Fraser and Gawthorpe, 2004; Chisholm and Hallsworth, 2005; 2017). In late Mississippian and early 

Pennsylvanian (Namurian) times, quartzose sandstones (Minn, Morridge, Ipstones Edge sandstones, 

and equivalents, Figs. 24, 25a) displaying palaeocurrents from the S, SW and W were deposited in the 

western part of the Widmerpool Half-graben, the North Staffordshire Basin (e.g. Evans et al., 1968; 

Ashton, 1974; Aitkenhead et al., 1985; Chisholm et al., 1988).  The age profiles of detrital zircon grains 

support derivation of the sands from a Devonian sandstone cover on the ABM (Hallsworth et al., 2009; 

Morton et al., 2015). The first feldspathic sandstones (‘Millstone Grit’) of undoubted northern 

provenance (Fig. 24) are of late Kinderscoutian age (Hallsworth and Chisholm, 2017), and entered the 

North Staffordshire Basin from N and NW (Ashton, 1974). A similar pattern is revealed by boreholes 

in the central part of the Widmerpool Half-graben (Duffield, Rempstone 1 boreholes) pre-Marsdenian 

sandstones being fine-grained and quartzose, with palaeocurrents from SE and SW (Morton et al., 2015: 

Hallsworth and Chisholm, 2017). Feldspathic sandstones were laid down across the region from mid-

Marsdenian times (Roaches and Ashover Grits, Figs. 24, 25b). Palaeocurrents from the SE have been 

interpreted to indicate that a major river system extended down the area now occupied by the North Sea 

and was deflected NW into the Widmerpool Half-graben as it encountered the ABM (Jones, 1980; 

Collinson, 1988; Chisholm and Hallsworth, 2005). By late Marsdenian time, the northerly derived 

feldspathic Chatsworth Grit (Figs. 24, 25c) was deposited across the entire region (Waters et al., 2008). 

The Rough Rock (Yeadonian) was transported by two fluvial systems, the main (feldspathic) from the 

NE, and a subsidiary (mixed ABM and northern sources) from the SE (Bristow, 1988; Hallsworth and 

Chisholm, 2008). Heavy mineral suites (e.g. zircon, monazite, chrome spinel, garnet, apatite, 

tourmaline, rutile) and their ratios, provide evidence in support of the above interpretation. The 

quartzose sandstones (derived from the ABM) have higher content of chrome spinel and low monazite 

content. Variation in the ratio of chrome-spinel to zircon suggest at least three separate lobes of sediment 

being fed from the ABM into the North Staffordshire Basin (Hallsworth and Chisholm, 2017). Garnets 

from these sandstones show similarities to spessartine-rich garnets from the Upper ORS at Merevale 

(Hallsworth et al., 2000) and it is likely that these strata acted as temporary storage for detritus derived 

by erosion of the Caledonide Orogen.  However, the borehole evidence indicates that most of the ORS 

was subsequently stripped from the ABM and reworked into Carboniferous strata. The feldspathic 
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sandstones (Millstone Grit, with a northern source) contain much more monazite, and pyrope-rich 

almandine garnets indicate a high grade metamorphic source (Evans et al., 2001: Chisholm and 

Hallsworth, 2005; Hallsworth and Chisholm, 2008; Hallsworth and Chisholm, 2017). Radiometric 

dating of zircons identified a likely source in the Greenland Caledonides (Morton and Whitham, 2002; 

Lancaster et al., 2017).  

Studies of Westphalian heavy mineral assemblages suggest that the same distinction between 

southern and northern provenances persisted into later Pennsylvanian time. Sediment from the 

developing Variscan Orogen in central Europe arrived from the SE in Yorkshire (Hallsworth and 

Chisholm, 2000; Hallsworth et al., 2000; Evans et al., 2001) in late Duckmantian time; in east 

Derbyshire in earliest Bolsovian time; but by direct routes across the ABM only at the start of 

Westphalian D time (Besly and Kelling, 1988; Glover and Powell, 1996; Hallsworth et al., 2000). This 

indicates reduction of the topography of the ABM by this time. Pennsylvanian strata onlapping across 

the Mississippian extensional fault basins described above, reflecting phases of thermal subsidence 

(Fraser et al., 1990). Early Westphalian strata overstep onto the Hathern Shelf, well beyond the erosional 

limit of Namurian strata (Pharaoh et al., 2011). They are preserved in several basins on the northern 

margin of the ABM in Shropshire, Staffordshire, Leicestershire and Warwickshire (Fig. 26), where they 

overlie strata ranging in age from Silurian to Devonian (Foster et al., 1989). The lower rate of 

subsidence here resulted in amalgamation of individual coal seams recognised in the basin to one ‘Thick 

Coal’ up to 9 m thick in the Dudley and Coventry areas (Wills, 1948; Fig. 12). Similar onlap occurred 

onto the southern margin of the ABM, in Gloucestershire and Kent, but it is uncertain if late 

Pennsylvanian strata completely covered the massif. Consequently, the ABM can be seen to have played 

a significant role in controlling the distribution of coalfields, and hence, industrial development, during 

the Anthropocene. In late Westphalian time, intra-plate stresses from the developing Variscan Orogen 

of central Europe began to impact the British area, reflected initially in minor sequence discordances, 

but eventually in the development of a mountain foreland basin complex along the southern margin of 

the ABM (Besly and Kelling, 1988). Flexural subsidence on a lithospheric scale resulted in 

downwarping of the crust in a foreland basin in southern Britain, allowing the accumulation of thick 

late Westphalian to earliest Stephanian ‘Barren’ and ‘Pennant’ Coal Measures in Kent, Oxfordshire-

Berkshire and South Wales (Figs. 26, 27), equivalent to the Warwickshire Group (Fig. 18). The 

lithosphere of the ABM occupying the peripheral bulge to north of the foreland basin would have 

experienced some degree of complementary upwarping.  

 

8.4 Variscan Orogeny 

 

The crust of the UK responded to Variscan orogenic compression in a strongly heterogeneous 

fashion (Corfield et al., 1996). To north of the ABM, the Mississippian basins responded to Variscan 

N-S-directed shortening by compressional reactivation of the original extensional faults. The 

Caledonide basement template in western Britain resulted in strongest compressional reactivation on 

SW-NE orientated faults, and on NW-SE orientated structures in eastern Britain (Fig. 27) (Corfield et 

al., 1996). In the immediate vicinity of the northern margin of the ABM, this included reverse movement 

on fault structures such as the Eakring-Glinton and Thringstone faults, together with the growth of 

major inversion anticlines (Eakring, Widmerpool anticlines). As described above, the southern margin 

of the ABM in South Wales, Oxfordshire, Berkshire and Kent (Figs. 26, 27) formed part of the 

peripheral flexural basin ahead of the Variscan thrust front, and Variscan compression further tightened 

and preserved these structures. To south of the ABM, the narrow Rhenohercynian Basin (Franke et al., 

2017) was closed and inverted, producing thin-skinned nappes containing Devono-Carboniferous strata 

underlying the Weald and Wessex basins in southern England (Butler, 2017, in press). Orthogonal 

closure of the Rhenohercynian Basin and crustal shortening brought the North Armorican promontory 
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of the Variscan internide zone, and intervening accreted crust of the Saxothuringian Zone underlying 

the English Channel, into closer juxtaposition with the ABM.  

In Figs. 26 and 27, the crust underlying the Permo-Jurassic Worcester Graben, and representing the 

inverted stump of the Worcester Proto-graben (Section 4) resembles a wedge driven into the Variscan 

foreland, separating the Welsh Massif in the west from the ABM. The crust in the region between the 

Malvern Line in the west, and Cerney Wick and Clopton faults in the east, appears to have behaved as 

a ‘mountain front uplift’ analogous to structures like the Wind River Uplift lying east of the Rocky 

Mountains in North America (Gries, 1983), as recognised by Smith (1993). Evidence for this 

‘Malvernian’ phase of uplift was however identified much earlier from studies of outcrop in the Malvern 

and Abberley Hills (e.g. Groom, 1902) and in the clast content of late Carboniferous and early Permian 

formations in the Midlands coalfields (Trueman, 1946; 1947; Wills, 1948, Fig. 12). The term ‘River 

Severn Uplift’ (e.g. Fig. 26) is introduced here for this Variscan frontal uplift structure, previously 

referred to as the Worcester High (Smith, 1993), to be redolent of the Rocky Mountain front structures. 

Strong uplift of the N-S trending axis of the Worcester Proto-graben resulted in removal of perhaps 3 

km of early Palaeozoic strata, together with any Devonian strata, and erosion down to the Precambrian 

level (Kempsey borehole). Strong inversion occurred on both flanks of the structure, directed westward 

on the Malvern Line (Chadwick, 1985) and eastward, in a fold-thrust belt on the edge of the concealed 

Oxfordshire-Berkshire Coalfield (Chadwick and Smith, 1988; Peace and Besly, 1997). This is reflected 

very clearly in the pattern of subcrop of the Somerset and Bristol Coalfield, to west of the Malvern Line, 

and the Oxfordshire-Berkshire Coalfield, east of the Clopton Fault (Fig. 26). In the reconstruction 

shown in Fig. 27, the River Severn Uplift is located immediately opposite the North Armorican 

promontory. It appears that the latter was perfectly positioned as an indenter during the later stages of 

the Variscan Orogeny, allowing focussed orogenic stress to exploit the ancient mechanical weakness of 

the Malvern Line, established as early as Ediacaran time. 

 

8.5 Permian 

 

The Clent Breccia of earliest Permian age (c. 298 Ma) has a highly variable clast composition, 

reflecting the local provenance of each debris cone (Wills, 1948); at Haffield and Abberley in the west, 

Malvernian detritus dominates; at Enville, Clent and Nechells, Uriconian; and Charnian at Hopwas and 

Moira. Clasts of Cambrian quartzite and Llandovery sandstone are present and record the rapid erosion 

of the River Severn Uplift down to its Precambrian core within perhaps 10 Ma. A major stratigraphic 

hiatus of c. 20 Ma is associated with the Saalian and Altmark unconformities recognised in central 

Europe (Fig. 29). In late Permian time (c.260 Ma) the ABM occupied an area of slightly elevated rock 

desert, to east of the rapidly subsiding Worcester Graben, and south of the low-lying plain in the region 

of the southern North Sea which would anticipate the Southern Permian Basin (Warrington and Ivimey-

Cook, 1992; Doornenbal and Stevenson, 2010). Its wind-blasted pediments may have formed the source 

of sand eventually deposited in aeolian dune sandstones in the late Permian Bridgnorth Sandstone 

(Wills, 1948) in basins on the NW flank of the ABM. The NE margin of the massif, corresponding to a 

W-E line linking from the west Midlands, via Nottingham to The Wash, persisted into late Permian 

time (c.254 Ma), and the Zechstein Sea was never able to flood onto the massif.  

 

9. The Mesozoic history of Anglo-Brabant Massif (London-Brabant Platform) 

 

9.1 Introduction 

  

The buoyant behaviour of the ABM continued into Mesozoic time, as reflected in the preserved 

onlap for formations of these ages (Fig. 29). The persistence of the ABM as a residual upland in Triassic 
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time (‘Mercian Highlands’) and as a succession of islands within the Jurassic epicontinental sea 

(‘Anglo-Belgian Island’) was recognised by Wills (1948), and confirmed by numerous subsequent 

studies, e.g. Cope et al. (1992). 

 

9.2 Triassic 

 

Thin preserved sequences (<1 km) of Permian and early Triassic strata are restricted to very small 

areas in NE Norfolk and in isolated basins (e.g. the Hinckley, Knowle, Needwood, Rugby basins) along 

the northern and western edge of the ABM (Fig. 29) (Whittaker, 1985; Smith, 1985; Newell, 2017, this 

volume). In early Triassic time (Scythian, c. 246 Ma), Britain was almost completely occupied by the 

deserts in which the ‘New Red Sandstones’ were deposited (Warrington and Ivimey-Cook, 1992). 

Dominantly fluviatile sandstones of the Sherwood Sandstone Group were deposited in a vast braided 

river system extending from Northern Armorica via a fairway through south and central England 

(Newell, 2017, this volume) to marine basins in the southern North Sea and Irish Sea (Fig. 29, line T2). 

This fairway was tectonically controlled by, and entrained within, the rapidly subsiding Worcester 

Graben, the latter forming by extensional reactivation of Variscan compressional faults at the margins 

of the River Severn Uplift. Late Triassic (Carnian, c. 230 Ma) strata of the Mercia Mudstone Group, 

mainly lacustrine mudstones, onlap farther onto the ABM (Fig. 29, line T3), and were deposited during 

a phase of regional thermal subsidence. Even the residual topography of the Mercian Highlands at 

Ashby-de-la-Zouche (Wills, 1948) and Charnwood (Worssam and Old, 1988) was eventually buried. 

Much greater thicknesses of Triassic strata (2-6 km) were deposited in the surrounding basins, in the 

southern North Sea, Irish Sea, Cheshire Basin and Worcester Graben, which form part of the Permo-

Triassic Central European Basin System (Scheck-Wenderoth et al., 2005), a N-S trending rift system 

reflecting W-E extension, which initiated the break-up of the Pangaea Supercontinent. Latest Triassic 

strata (Rhaetian, c. 207 Ma), represent a marine incursion penetrating even farther onto the massif.  

 

9.3 Jurassic 

 

In Jurassic time, extension reoriented to a N-S direction, associated with the rotation of Iberia and 

the opening of the Bay of Biscay (Chadwick et al., 1989), so that the favourably orientated Variscan 

compressional structures south of the Variscan Front in southern Britain were reactivated in extension. 

The ABM lacked internal structures of Variscan age and consequently suffered minimal Jurassic 

extension (Whittaker, 1985; Chadwick, 1986). Subcrop limits of the Mesozoic formations indicate that 

the most buoyant part of the ABM now lay farther east, contiguous with the Brabant Massif (Fig. 29). 

Many authors have used the term ‘London-Brabant Platform’ or ‘London-Brabant High’ to describe 

this part of the massif’s history. The main Jurassic subsidence trend is a thickening towards the 

Worcester Graben, as revealed at crop in the Cotswold region (Fig. 29), towards the Irish Sea, southern 

North Sea and Cleveland Basin of north Yorkshire. Jurassic sequences exhibit onlap onto the London-

Brabant Platform and a sequence stratigraphy strongly controlled by eustatic sea level control (Figs. 30, 

33). The shoreline in early Jurassic times (Hettangian, c. 204 Ma) had changed little since late Triassic 

time (Fig. 29, line J1); it occupied a similar position for much of Jurassic time (Fig. 29, line J3, J5, J9). 

In mid Jurassic time (Aalenian, c. 178 Ma), regional uplift associated with thermal doming in the North 

Sea Rift System (Bradshaw et al., 1992), led to a merger of the Welsh and Anglo-Brabant landmasses. 

A SW-NE trending seaway extending from the Wessex Basin via the Bristol Channel to the East 

Midlands Shelf (Fig. 29, line J4a), developed intermittently through mid-Jurassic time (Fig. 29, line J5, 

J7). Renewed subsidence related to extension in late Jurassic time (Whittaker, 1985) once more led to 

a clear separation of the ABM from the Welsh Landmass (Fig. 29, J9). The seaway reappeared again in 

latest Jurassic (Volgian, c. 138 Ma) time (Fig. 29, line J11a).  
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9.4 Cretaceous and Cenozoic 

 

Early Cretaceous strata are absent from the London-Brabant Platform, and a major unconformity 

(Late Cimmerian Unconformity) is present throughout the massif (Fig. 31), recording a sea-level 

lowstand as well as renewed uplift. Rising sea level in mid- to late Cretaceous time coupled with 

regional thermal subsidence allowed the Upper Greensand and Chalk groups to blanket the ABM and 

conceal its complex tectonic history and composition from direct surface observation.  

In early Cretaceous time (Ryazanian, c. 129 Ma) the ABM and Welsh landmasses were once again 

united during a sea-level lowstand (Hancock and Rawson, 1992), but rising sea-level through Aptian 

(c. 109 Ma) and Albian (c. 97 Ma) time led to renewed separation of the landmasses and an eastward 

retreat of the Brabant Landmass towards Belgium (Fig. 29, line K3). In late Cretaceous time 

(Campanian, c. 85 Ma), most of England had been submerged by the Chalk sea, leaving only landmasses 

in Wales and the Lake District. From this time on, the ABM was concealed from view beneath the 

blanketing Chalk (Figs. 31, 32). 

The Alpine Orogeny affected the ABM only slightly, with moderate inversion concentrated to the 

south, in the Weald and Wessex basins (Variscan Front), in the southern North Sea (Sole Pit Basin) and 

its margins (Cleveland Basin). The Welsh Massif, decoupled from the ABM by the Malvern 

Line/Worcester Graben, suffered intermittent uplift and erosion of its Mesozoic and Cenozoic cover, 

probably as a result of thermally induced uplift associated with plume magmatism (Brodie and White, 

1994) and opening of the North Atlantic during early Cenozoic time. Uplift in Belgium in Cenozoic 

time, perhaps related to Alpine inversion within the Netherlands and/or mantle diapirism beneath the 

Rhine Graben system (Doornenbal and Stevenson, 2010), led to erosion of the Chalk cover of the 

Brabant Massif before deposition of Cenozoic strata (Legrand, 1968).  

 

10. Conclusions 

 

The surface geology of the south and central Midlands of England, and Belgium, comprising 

Jurassic, Cretaceous and Cenozoic strata, obscures a ‘basement’ massif with a long and complex 

geological history. Various lines of geophysical evidence indicate that the ABM has a strong crust and 

lithosphere distinct from that of the surrounding geological provinces, although the cause remains 

uncertain. The crust of the ABM appears stronger and more resistant to deformation than the weaker 

crust surrounding it.  As such, it probably represents a more favourable location for long term deep 

storage (e.g. of radioactive wastes) than the remainder of southern Britain.  

The Precambrian history, locally revealed along major lineaments, is a story of Neoproterozoic 

calc-alkaline arc magmatism, during which the fundamental character of the massif’s crust was 

established. Comparison with Neoproterozoic terranes in Newfoundland suggests that silicic volcanic 

sequences may form a significant part of the massif’s crust, and may have influenced its subsequent 

behaviour. While granitic intrusions occur locally, e.g. in the vicinity of The Wash, the ABM is, in 

comparison to granite-underpinned ‘blocks’ within the Caledonides of northern England, 

volumetrically deficient in such bodies. Thus the Neoproterozoic silicic crust is inferred to make the 

greater contribution to the persistently buoyant behaviour of the massif, locally aided by Caledonian 

granite and granodiorite bodies.  

During early Palaeozoic time, strata of three megasequences, known only from deep boreholes in 

eastern England and limited outcrop in Belgium, exhibit a contrast between platform in the SW, and a 

basinal area, extending to Belgium, in the NE. The platform shows close lithological affinity to the 

Avalon Zone of Newfoundland. Undated basinal strata are lithologically comparable to those of 

Megasequence 1 (Cambrian-Tremadocian) in the Brabant Massif, and both have affinity with basinal 
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sequences of the Welsh Basin, and the Gander and Meguma terranes of the northern Appalachians, 

which represent continental margin/rise strata on the edges of the Avalonia Microcontinent/Terrane. 

The transition between these domains is obscured by later strata and it is unclear if a terrane boundary 

is present within the ABM; the presence of metasediments similar to those of the Mona Composite 

Terrane/Ingleton Group in eastern England, and of a prominent (?Penobscotian) unconformity of early 

Ordovician age in Belgium, suggest it may be. 

 In later Ordovician time, the contrast is between emergent back-arc and submarine volcanic arc 

basins. Sandbian-Katian magmatism is subduction-related (contrast with Linnemann et al., 2012) and 

extends in an arc from the Lake District through the ABM to Belgium. It is inferred to reflect short-

lived subduction of part of the Tornquist Basin beneath Avalonia. This hypothesis requires that the 

remainder (and largest part) of the basin was subducted beneath the largely hidden Southern North Sea 

Terrane, now juxtaposed between the Dowsing and Tornquist sutures. By contrast, contemporary 

volcanism in the Welsh Basin and Leinster occurred in back-arc environments. Comparable arc 

volcanism of this age is not recognised in North America, confiming the diachroneity of arc 

development and cessation throughout the Appalachians and Caledonides. In Silurian time, the contrast 

was between carbonate platform and deepwater basin filled by turbidites fed from the developing 

orogenic welt between Avalonia, Laurentia and Baltica, and from the Ardennes. This successor basin, 

which extends directly into the Brabant Massif, is comparable to Silurian successor basins postdating 

terrane collision throughout the Caledonides.  

The western part of the ABM (‘Midlands Microcraton’) apparently escaped the strong late 

Caledonian deformation exhibited in the adjacent ‘slate belts’ in Wales and northern England. 

Brabantian deformation in the eastern ABM, and in Belgium, began slightly earlier than Acadian 

deformation in the Caledonides elsewhere. There are still many controversial aspects about the causes 

of this deformation, which seems to be related to closure of the Rheic Ocean and continental collision 

in central Europe during the Ligerian or ‘Eo-Variscan’ orogenic phase.  

The part of the Welsh Massif comprising the western part of the Midland Platform/Microcraton 

exhibits strong contrasts with its counterpart in the ABM. Here strong early Ordovician (Penobscotian?) 

uplift and erosion led to the removal of virtually all Cambrian strata, except at the margins (Church 

Stretton Fault, Malvern Line). Consequently Silurian platform strata rest directly upon the Precambrian 

basement. In addition, the Silurian platform sequences are more tectonically influenced (e.g. Woolhope 

and Usk basins), depositionally thicker and better preserved than their counterparts in the ABM. A 

much thicker sequence of early Devonian (LORS) strata is preserved in the west too, although 

metamorphic evidence suggests the cover in the eastern ABM was at least as thick prior to erosion.  

In the UK, late Palaeozoic sequences onlap onto the ABM from its northern and southern margins. 

The elevation and subsidence of the western part of the ABM was controlled initially by regional post-

Caledonian sinistral transtension in early Devonian time, followed by relaxation in late Devonian time, 

extension in Mississippian time, and thermal subsidence in Pennsylvanian time. In latest Pennsylvanian 

time, the ABM was flexured in the peripheral forebulge of the Variscan Orogen, separating a strongly 

inverted southern foreland basin complex from less strongly inverted basins affected by far-field 

inversion effects. Indentation associated with the North Armorican Promontory of the Variscan 

Internide Zone exploited the ancient weakness at the Malvern Line and drove a wedge into the Variscan 

Foreland, further decoupling the crust of the ABM and the Welsh Massif. The River Severn Uplift is 

viewed as a classic ‘Rocky Mountain-style frontal uplift’ at the Variscan Front.  

Permian to Mesozoic sequences exhibit variable degree of onlap onto the ABM, which continued 

to express persistent buoyancy in the guise of the London-Brabant Platform. All Mesozoic sequences 

on the platform are significantly thinner than sequences deposited in the surrounding basins of the 

southern North Sea, southern England and the Worcester Graben. The development of all of these basins 

was strongly controlled by extensional reactivation of compressional structures in the subjacent 
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(Caledonian and Variscan) basement; reactivation which did not affect the heart of the massif. Jurassic 

sequences on the platform were strongly influenced by eustatic sea level change. Late Cretaceous strata 

deposited in a thermal subsidence regime and at a sea level highstand, finally drew a concealing cloak 

across the platform, but this is unlikely to be the last chapter in the history of the astonishingly persistent 

Anglo-Brabant Massif.  
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Figure List 

 

Fig. 1. The location of the Anglo-Brabant Massif, as defined by extensional fault systems of 

Carboniferous (blue), Permo-Triassic (red) and Mesozoic age (green) (after BGS, 1996). The location 

of the cross-sections Figs. 4a and 4b is shown. Caledonian terrane boundaries south of the Iapetus Suture 

are slightly modified after Bluck (1992) and BGS (1996). Boundary between Lakesman-Leinster 

Terrane and Wexford-Môn-Ingletonian Terrane (‘Irish Sea Horst’, and probable Ganderian correlative) 

following Soper and Dunning (2008). Key to faults and lineaments: AL, Askrigg Line; BAF, Bala Fault; 

BEF, Bryneglwys Fault; CHT, Carmel Head Thrust; CPFS, Causey Pike Fault System, CSF, Church 

Stretton Fault Zone; DL, Dent Line; D-SHL, Dowsing-South Hewett Lineament; EGL, Eakring-Glinton 

Lineament; EVF, Enville Fault; FHFZ, Vale of Pickering-Flamborough Head Fault Zone; GFM, Grande 

Faille du Midi, HSZ, Hollywood Shear Zone; IS, Iapetus Suture Zone; ISLS, Irish Sea Lineament (South); 

LEF, Lask Edge Fault; LLF, Lowther Lodge Fault; LSZ, Lŷn Shear Zone; MCEM?, Conjectured 

Microcraton Eastern Margin; MCFZ, Morley-Campsall Fault Zone; MCWM, Microcraton NW Margin; 

MDFB, Môn-Deemster Fold-Thrust Belt; ML, Malvern Line; MSFS, Menai Strait Fault System; N-AFZ, 

Nieuwpoort-Asquempont Fault Zone; NT, Niarbyl Thrust; P-S-W-BL, Perrenporth-Start-Wight-Bray 

Line; PA, Pennine Axis; PL, Pendle Lineament; PLL, Pontesford-Linley Fault; RFB, Ribblesdale Foldbelt, 

N margin; RRF, Red Rock Fault; SBL, Southern Borrowdale Lineament; SCF, South Craven Fault; ST, 

Skiddaw Thrust; SZ-NADB, Saxothuringian-North Armorican Domain boundary; TF, Thringstone Fault; 

UF, Unnamed Fault; VF, Variscan Front; WF, Wem Fault; WBFS, Welsh Borderland Fault System; WFZ, 

Wicklow Fault Zone. 

 

Fig. 2. Nomenclature: the changing faces of the Anglo-Brabant Massif, and the age limits of the 

incorporated terranes. 
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Fig. 3. Crustal structure of the ABM, whose outline is indicated. a. Moho depth (in km), b. Top 

Basement depth (in km), c. Thickness of crystalline crust (in km). After Chadwick et al. (1996) and 

Chadwick and Pharaoh (1998). 

 

Fig. 4. Crustal cross-sections across the Welsh and Anglo-Brabant massifs. Locations are shown on 

Fig. 1.  

a. Schematic N-S cross-section of interpreted crustal and upper mantle structure beneath LISPB-Delta 

seismic refraction profile largely across the Welsh Massif (reproduced, with permission, from Maguire 

et al., 2011). Key: BF, Bala Fault; BCFZ, Bristol Channel Fault Zone; CSF, Church Stretton Fault; 

SVD, Swansea Valley Disturbance; VF, Variscan Front. Labels indicate possible lithological 

interpretation of the seismic model layering. ‘Old Red Sandstone +’ is poorly defined. In addition to 

Devonian (ORS) lithologies, it also includes Triassic and Carboniferous either side of the Bristol 

Channel, as well as Silurian locally.  

b. Schematic SW-NE cross-section in eastern part of ABM, after Smith and Thomas (2015). Key: 

1. Seismically imaged deep reflector extending into the mantle and interpreted as a former (late 

Ordovician) subduction zone, now the suture between the Avalonia Terrane and the Southern North 

Sea Terrane. 

2. Deformed early Palaeozoic sedimentary and volcanic rocks with late Ordovician calc-alkaline 

plutons resulting from subduction of part of the Tornquist Sea beneath the Avalonia Terrane. 

3. Unknown, but possibly metamorphosed volcanic and plutonic rocks of Neoproterozoic age. 

4. Acadian (early-mid Devonian) unconformity developed on the eroded Anglo-Brabant Deformation 

Belt. 

5. Seismically imaged stack of mid-crustal reflectors, possibly the eastern imbricated edge of the 

Avalonia Terrane. 

6. Glinton Thrust, possibly developed as a back-thrust above the late Ordovician subduction zone and 

reactivated during late Caledonian deformation. 

7. Late Palaeozoic and Mesozoic fill of the Southern North Sea basin. 

8. Deformed and metamorphosed rocks of the Anglo-Brabant Deformation Belt.  

 

Fig. 5. A. Magnetic and B. Gravity potential fields. Bouguer anomaly onshore combined with free 

air anomaly offshore. Anomaly colour scales range from positive (red) to negative (blue). For key to 

major faults and lineaments see Fig. 1. Key to magnetic anomalies described in the text: BMA, 

Birmingham Magnetic Anomaly; DSIMA, Derby-St Ives Magnetic Anomaly; FINMA, Furness-

Ingleton-Norfolk Magnetic Anomaly (after Wills, 1978; Allsop et al., 1987; Cornwell and Walker, 

1989; Pharaoh et al., 1993a); CEMA (South Central England Magnetic Anomaly (after Lee et al., 1990; 

Busby et al., 1993); CCMA, Central Channel Magnetic anomalies; HMA, Harlech Magnetic Anomaly; 

MMA, Malvern Magnetic Anomaly; WBMA, Welsh Borderland Magnetic Anomaly. 

 

Fig. 6. Shear wave velocity anomalies from tomographic inversion of seismograph records: 

horizontal slices through the EU60 model of Zhu et al. (2015). The assistance of Geoff Kimbell in 

extracting the depth slices is gratefully acknowledged. 

 

Fig. 7. Tectonic boundaries of Neoproterozoic crust within the Avalon and Monian composite 

terranes (after Pharaoh and Carney, 2000). For key to major faults and lineaments see Fig. 1. Key: solid 

red ornament, outcrop; dots, borehole provings: BaH, Bardon Hill; BrT, Bryn Teg; Col, Collington 1; 

Edg, Edgmond 1; Fow, Fownhope 1; Gli, Glinton 1; HeF, Heath Farm 1; Kem, Kempsey 1; MoQ, 

Morley Quarry; Ort, Orton; OxH, Oxendon Hall; StB, Stretton Baskerville; WiF,Withycombe Farm; 

Wrb,Wrekin Buildings (Telford 2). 

 

Fig. 8.  Palaeogeographic location of the ABM and Avalonia Terrane (AV) through Palaeozoic time 

(after C. Scotese, as presented in Pharaoh et al. 2011). Location of the ABM shown with large red dot.  

 

Fig. 9. Synoptic stratigraphic chart for early Palaeozoic basement of the British, Irish and Belgian 

Caledonides south of the Iapetus Suture. System and stage names and ages from Gradstein et al. (2012).  
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Compiled from the following literature sources: Cambrian, Rushton et al. (2011), Herbosch and 

Verniers (2013). Ordovician, Fortey et al. (2000), Herbosch and Verniers (2014). Silurian, Cocks et al. 

(1992). General, Woodcock (1991), Woodcock (2012a, b, c, d).  Key to borehole codes: see key to Figs. 

10, 13 and 15. Key to abbreviations: DL, Dent Line; FM, Formation; GP, Group; IS, Iapetus Suture; 

ML, Malvern Line; MSFS, Menai Strait Fault System; PEM, Platform Eastern Margin; SGP, 

Supergroup; VF, Variscan Front; WBFS, Welsh Borderland Fault System. Key U-Pb ages (black dots 

with analytical errors) after Noble et al. (1993); Pharaoh et al. (1997) and Linnemann et al. (2012). Note 

the relatively large errors for the Anglian samples compared to Belgium.    N.B. two facing page spread 

 

Fig. 10. Cambrian-Tremadocian outcrop and borehole provings in southern Britain. Base map for 

UK modified from UCAL (Acadian Unconformity) Map by Nigel Smith (unpublished) and for 

Belgium, after De Vos et al. (1993). For key to major faults and lineaments see Fig. 1. Outcrop, solid 

ornament. Key to borehole provings. Early-middle Cambrian in black: Fob, Fobbing; SaF, Sapcote 

Freeholt (Elmesthorpe); Fow, Fownhope 1; Kin, Kineton; Me3, Merevale No. 3; MoF, Moor Farm; 

Rot, Rotherwood; Tic, Ticknall (Calke Abbey); WiF, Withycombe Farm. Possible Cambrian provings:  

Bay, Bardney 1; GH2, Ellington; Fos, Foston 1; GaH, Galley Hill; Gro, Grove 3; Hus, Hunstanton 1; 

Gh10, Huntingdon 10; GH5, Huntingdon 5; Lex, Lexham 1; Noc, Nocton 1; Sib, Sibsey 1; SCr, South 

Creake 1; Spa, Spalding 1; Stx, Stixwould 1; Wel, Welton 1; Wes, Wessenden 1; Wig, Wiggenhall 1; 

Wis, Wisbech 1; Cof,Cooles Farm 1 (Minety).  Tremadocian provings in red: Baf, Barford;  CaW, 

Calvert (West); Cof, Cooles Farm 1 (Minety); CrH, Crown Hills (Evington); Dad, Dadlington; EWh, 

East Worldham 1; Fow, Fownhope 1; GaF, Gables Farm; HoB, Hollies Barn; LFE, Leicester Forest 

East; LiL, Lillingstone Lovell; Me2, Merevale No. 2; Mer, Meriden; Ryt, Ryton No. 1; Shw, Shrewton; 

Tat, Tattenhoe; Tri, Tring (Superior); Tw4, Twyford 4; Wec, Westcott No. 1; Wyb, Wyboston; 

Yar,Yarnbury. 

 

Fig. 11. Post–Tremadocian Ordovician terrane elements. Caledonian terrane boundaries south of 

the Iapetus Suture are slightly modified after Bluck (1992) and BGS (1996). Boundary between 

Lakesman-Leinster Terrane and Wexford-Monian-Ingletonian Terrane (‘Irish Sea Horst’, and probable 

Ganderian correlative) following Soper and Dunning (2008). Ordovician outcrop, solid red ornament. 

For key to major faults and lineaments see Fig. 1.  

 

Fig. 12. A. Boreholes on the Midland Platform with biostratigraphically constrained basement beds, 

after Molyneux (1991). B. Boreholes in the Anglian Foldbelt with biostratigraphically constrained 

basement beds, after Molyneux (1991). 

 

Fig. 13. Post-Tremadocian Ordovician outcrop and borehole provings in southern Britain and key 

localities in Belgium. Base map for UK modified from UCAL (Acadian Unconformity) Map by Nigel 

Smith (unpublished) and for Belgium, after De Vos et al. (1993).  For key to major faults and lineaments 

see Fig. 1. Outcrop, solid ornament. Key to borehole provings. Tremadocian-Floian provings: Irv, 

Ironville 5; BeS, Beckermonds Scar; StA, Strat A-1; Wal, Walsall. Dapingian-Darriwillian Provings: 

Eym, Eyam; GrP, Great Paxton; Hun, Huntingdon (Hill Common); OS 47/29a-1. Sandbian-Katian 

Provings: Bob, Bobbing; Clx, Claxby 1; CoH, Cottage Homes (Countesthorpe); NCr, North Creake; 

Pre, Prees 1; StH, Stocks House (Desford). ?Ordovician Provings: BPF, Barron Park Farm; Byf, 

Byfield; CoW, Cox's Walk; Eak, Eakring 146; GOW, Great Osgrove Wood; HaH, Halton Holegate 1; 

Hol, Hollowell; HoC, Holme Chapel 1; Irv, Ironville 5; Mil, Milton; MiG, Milton Green 1; GST2, 

Nassington; SaW, Saffron Walden; Spr, Sproxton 1; GST10, Thornhaugh; TBW, Thorpe-By-Water; 

Upw, Upwood; Wal, Walsall;  Wit, Wittering 1. 

 

Fig. 14. Ordovician and Silurian volcanic sequences proved by boreholes in the British part of the 

ABM (modified after Pharaoh et al., 1991).  

 

Fig. 15. Silurian outcrop and borehole provings in the British part of the ABM. Base map for UK 

modified from UCAL (Acadian Unconformity) Map by Nigel Smith (unpublished) and for Belgium, 

after De Vos et al. (1993).  For key to major faults and lineaments see Fig. 1. Outcrop, solid ornament. 

Key to borehole provings.  Llandovery provings: Fow, Fownhope 1; Bat, Batsford (Lower Lemington); 
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Bra, Brabourne; Chi, Chilham; Hig, Highworth 1; Sil, Silverdale; StL, Stow Langtoft; Sha, Shalford 1; 

Shb, Shipbourne; Usk, Usk 1; Wal, Walsall; Som, Somerton 1; Stt, Stutton; Wee, Weeley. Wenlock 

provings: Bra, Brabourne; CS4, Church Stretton 4; ClM, Cliffe Marshes; Cod, Codsall 1; Sme, 

Smestow; Usk, Usk 1; Wal, Walsall; War,Ware. Ludlow provings: Cow, Colwall; Low, Lowestoft 

(Lake); Rec, Reculver. Přídoli provings: Clr, Clare; Lak, Lakenheath 1; LiM, Little Missenden; Silurian 

Provings: Bic, Bicester 1; Clv, Claverley; ElF, Ells Farm (Bloxham); Ham, Hamstead. ?Silurian 

provings: Net, Netherton 1; Bre, Breckles 1; CS2, Cominco S2; Cul, Culford; ERu, East Ruston; Erw, 

Eriswell 1; Haw, Harwich; IOG, Isle Of Grain; Sax, Saxthorpe 1; She, Sheerness. 

 

Fig. 16. Late Caledonian structure south of the Iapetus Suture superimposed on Acadian subcrop. 

Modified after Woodcock (2012d), following BGS (1996). 

 

Fig. 17. Caledonian metamorphic grade south of the Iapetus Suture. After Merriman et al. (1993), 

Merriman (2006) and Woodcock (2012d). 

 

Fig. 18. Late Palaeozoic stratigraphical chart for the northern edge of the Anglo-Brabant Massif 

(after Pharaoh et al., 2011). System and stage names and ages from the Gradstein et al. (2012). 

 

Fig. 19. Early Devonian outcrop and borehole provings in southern Britain. Base map for UK after 

UCAL (Acadian Unconformity) Map by Nigel Smith (unpublished) and for Belgium, after De Vos et 

al. (1993).  For key to major faults and lineaments see Fig. 1. Outcrop, solid ornament. Key to Early 

Devonian borehole provings. GuP, Guiting Power 1; LiC, Little Chishill; StA, Steeple Aston; Roc, 

Rocklands; Sta, Staverton 1; ApB, Apley Barn; BeG, Beckton Gasworks No. 4; CaI, Canvey Island; 

Elh, Ellingham 1; Far, Faringdon 1; SoE, Sonning Eye 1; Shb, Shipbourne. 

 

Fig. 20. Schematic illustration of Devonian onlap and overstep onto the Anglo-Brabant Massif. 

Modified from Woodcock (2012) following Allen (1979).  Key to boreholes shown  in figure and inset 

map: 1, Whittington Heath; 2,   Merevale No. 2; 3, Soham; 4, Wyboston; 5, Gayton; 6, Steeple Aston; 

7, Apley Barn; 8, Turnford; 9, Little Missenden; 10, Bushey; 11, Faringdon; 12, Willesden; 13, Canvey 

Island; 14, Southall; 15, Tatsfield; 16, Harmansole; 17, Bolney; 18, Brightling.  Boxes indicate 

stratigraphic range. 

 

Fig. 21. Early Carboniferous (Mississippian) structural and stratigraphic elements of the Anglo-

Brabant Massif.  Modified from Corfield et al. (1996), Glennie (2005), Waters and Davies (2006), and 

Davies et al. (2012). Key to abbreviated basin elements: BH, Bowland High; CPH, Central Pennine 

High; DP, Derbyshire Platform; EB, Edale Basin; GT, Gainsborough Trough; LFB, Lancaster Fells 

Basin; ML, Malvern Line; MWR, Manx-Whitehaven Ridge; MB, Munster Basin; NSB, North 

Staffordshire Basin; WG, Widmerpool Gulf; WB, Widnes Basin. 

 

Fig. 22. Early Mississipian (Tournaisian-Visean) structural and stratigraphic elements of the Anglo-

Brabant Massif in the East Midlands (after Pharaoh et al., 2011). 

 

Fig. 23. Latest Mississipian (Namurian) structural elements of central and northern England (after 

Smith et al., 2005). Sediment transport directions are generalised.  

 

Fig. 24. Schematic distribution of Visean-Namurian sandstones in central and northern England, 

modified after Hallsworth and Chisholm (2017) and published with permission. Protoquartzitic, 

southerly derived sandstones coloured blue; feldspathic, northerly derived sandstones, coloured pink. 

 

Fig. 25. Provenance and inferred palaeocurrent directions for Namurian sandstones at the northern 

margin of the ABM, modified from Hallsworth and Chisholm (2017) and published with permission. 

Protoquartzitic, southerly derived sandstones coloured blue; feldspathic, northerly derived sandstones, 

coloured pink. Outline of Widmerpool Half-graben shown by bold dashed line. a. Pendleian-

Arnsbergian time, b. Mid Marsdenian time, c. Late Marsdenian time.  
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Fig. 26. Distribution of Carboniferous basins at the northern and western margins of the ABM. 

Exposed geology after BGS 1:625 000 digital mapping; concealed basins after BGS (1999) and Pharaoh 

et al. (2011). Variscan structures after BGS (1996). For key to major faults and lineaments see Fig. 1. 

Key: UORS, Upper Old Red Sandstone (Upper Devonian); CL Sgp, Carboniferous Limestone 

Supergroup (Visean- Tournaisian); MG Gp, Millstone Grit Group (Namurian); L PCM Gp; Lower 

Pennine Coal Measures Group (Westphalian A); U PCM Gp; Upper Pennine Coal Measures Group 

(Westphalian B/C); W Gp, Warwickshire Group (Westphalian C/D). Concealed Carboniferous basins 

in shades of blue.  

 

Fig. 27. Variscan inversion structures surrounding the ABM. Key: Exposed geology after BGS 

1:625 000 digital mapping; concealed basins after BGS (1999) and Pharaoh et al. (2011). Variscan 

structures after BGS (1996). For key to major faults and lineaments see Fig. 1. Key: UORS, Upper Old 

Red Sandstone (Upper Devonian); CL Sgp, Carboniferous Limestone Supergroup (Visean-

Tournaisian); MG Gp, Millstone Grit Group (Namurian); L PCM Gp; Lower Pennine Coal Measures 

Group (Westphalian A); U PCM Gp; Upper Pennine Coal Measures Group (Westphalian B/C); W Gp, 

Warwickshire Group (Westphalian C/D). Concealed Carboniferous basins in shades of blue. 

 

Fig. 28. Permian-Mesozoic stratigraphic chart for the London Platform (after Pharaoh et al., 2011). 

System and stage names, and ages, from Gradstein et al. (2012). 

   

Fig. 29. Subcrop limits of key Permian-Mesozoic formations onto the London Platform. Redrawn 

after Warrington and Ivimey-Cook (1992), Bradshaw et al. (1992) and Hancock and Rawson (1992). 

Some locational uncertainty results from the variable amount of post-depositional erosion, 

schematically indicated by the grey arrows on Fig. 30. Key to codes: T2, Mid Triassic (latest Anisian); 

T3, Late Triassic (Early Rhaetian); J1, Early Jurassic (Early Hettangian); J3,  Early Jurassic (Mid 

Toarcian); J4a, Mid Jurassic (Early Aalenian); J5,  Mid Jurassic (Early Bajocian); J9, Late Jurassic (Mid 

Oxfordian); J11a, Late Jurassic (Early Portlandian); K2b, Early Cretaceous (Late Albian); K3, Early 

Cretaceous (latest Aptian). 

 

Fig. 30. Onlap and regression of Jurassic sequences onto the London Platform in East Anglia. After 

A.J.M. Barron in Lee et al. (2015). Arrows schematically indicate pre-erosional extent of formation. 

 

Fig. 31. Cross section N-S across the Wessex Basin, London-Brabant Platform and Eastern England 

Shelf showing relationship of major Permian-Mesozoic sequences onlapping onto the platform. 

Modified from Whittaker (1985). Location shown as section A on Inset Map. 

 

Fig. 32. Cross section N-S across the London-Brabant Platform, showing relationship of Triassic-

Jurassic sequences and overstep by the late Cretaceous. Location shown as section B in Inset Map of 

Fig. 31. 
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Fig. 9L (Left hand side of 2 page spread) 
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Fig. 9R (Right hand side of 2 page spread) 
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