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Abstract The Atlantic Meridional Overturning Circulation (AMOC) is a key component of the global
climate system through its transport of heat and freshwater. The subpolar North Atlantic (SPNA) is a
region where the AMOC is actively developed and shaped thoughmixing andwater mass transformation and
where large amounts of heat are released to the atmosphere. Two hydrographic transbasin sections
in the summers of 2014 and 2016 provide highly spatially resolved views of the SPNA velocity and property
fields on a line from Canada to Greenland to Scotland. Estimates of the AMOC, isopycnal (gyre-scale)
transport, and heat and freshwater transport are derived from the observations. The overturning circulation,
the maximum in northward transport integrated from the surface to seafloor and computed in density
space, has a high range, with 20.6 ± 4.7 Sv in June–July 2014 and 10.6 ± 4.3 Sv in May–August 2016. In
contrast, the isopycnal (gyre-scale) circulation was lowest in summer 2014: 41.3 ± 8.2 Sv compared to
58.6 ± 7.4 Sv in 2016. The heat transport (0.39 ± 0.08 PW in summer 2014, positive is northward) was highest
for the section with the highest AMOC, and the freshwater transport was largest in summer 2016
when the isopycnal circulation was high (�0.25 ± 0.08 Sv). Up to 65% of the heat and freshwater transport
was carried by the isopycnal circulation, with isopycnal property transport highest in the western
Labrador Sea and the eastern basins (Iceland Basin to Scotland).

1. Introduction

The Atlantic Meridional Overturning Circulation (AMOC) is a key component of the global climate system
through its transport of heat and freshwater. The subpolar North Atlantic (SPNA) is a region where the
AMOC is actively developed and shaped though mixing and water mass transformation. It is a region where
large amounts of heat transported northward by the ocean are released to the atmosphere, thereby
modifying the climate of northwest Europe. Changes in SPNA heat content and surface temperature are
significant for many climate and weather phenomenon including rainfall in the African Sahel, Amazon,
western Europe, and parts of the United States (Duchez et al., 2016; Dunstone et al., 2011; Knight et al.,
2006; Sutton & Dong, 2012; Sutton & Hodson, 2005; Zhang & Delworth, 2006).

The SPNA has complex topography with a series of basins (Figure 1) in which the large-scale circulation is
characterized by cyclonic boundary currents and interior recirculation. The North Atlantic Current (NAC)
develops out of the Gulf Stream extension and turns eastward, crossing the Atlantic in a wide band between
about 45°N and 55°N (Figure 1a). There are several branches of the NAC, and they flow into an eastern
intergyre region in the Bay of Biscay, the Rockall Trough, the Iceland Basin, and the Irminger Sea. Part of
the NAC flows into the Norwegian Sea, and some recirculates within the boundary currents of the subpolar
gyre (e.g., Hansen & Østerhus, 2000).

The upper layer in the eastern basins contains a variety of Subpolar Mode Waters (SPMW) carried between
fronts associated with the NAC branches (Brambilla & Talley, 2008). The Rockall Trough contains SPMW from
a major southern NAC branch and also Eastern North Atlantic Water from the Biscay intergyre regions
(Figure 1a); this basin contains the highest influence of subtropical water of the Overturning in the
Subpolar North Atlantic Program (OSNAP) section (Holliday et al., 2015). The Iceland Basin contains two
NAC branches, and in its western side there is a southward flow along the east flank of the mid-Atlantic ridge
(the East Reykjanes Ridge Current, ERRC; after Treguier et al., 2005), which is recirculating and modified NAC
water (Figure 1a). The Irminger Current on the west flank of the Reykjanes Ridge is mainly recirculating ERRC
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Key Points:
• The subpolar North Atlantic
Meridional Overturning Circulation
was 20.6 ± 4.7 Sv in summer 2014 and
10.6 ± 4.3 Sv in summer 2016

• The isopycnal circulation was
41.4 ± 8.2 Sv in 2014 and 58.6 ± 7.4 Sv
in 2016, carrying up to 65% of the total
heat and freshwater transport

• Heat transport increased with
overturning circulation (maximum
0.39 PW), freshwater transport
increased with isopycnal circulation
(maximum -0.25 Sv)
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that has turned north having crossed the Ridge, and is also fed in part by a minor northern branch of the NAC
(e.g., Daniault et al., 2016). The various NAC branches carry the SPMW cyclonically around the area, with
ongoing air-sea interaction cooling and freshening the SPMW, especially in winter when mixing can be up
to 800–1,300 m in the basins east of Greenland (e.g., Brambilla & Talley, 2008; Piron et al., 2017).

The west Irminger Sea is dominated by the southward flowing East Greenland Current (EGC, Figure 1a)
that has an offshore component formed by the recirculating Irminger Current and at the shelf break a

Figure 1. Regional circulation of the subpolar North Atlantic and location of the data used in the study. (a) Schematic circulation of the upper layer (solid arrows) and
overflows (dashed arrows), superimposed by the location of the OSNAP section and array, and the OVIDE section (adapted from Daniault et al., 2016).
(b) Location of conductivity-temperature-depth/lowered Acoustic Doppler current profiler stations taken on JR302 in June–July 2014 (OS2014); c) Location of
conductivity-temperature-depth/lowered Acoustic Doppler current profiler stations taken in May–August 2016 on cruises MSM54, DY054, DY053, and DY052
(OS2016). See Table 1 for more information about the cruises. OSNAP = Overturning in the Subpolar North Atlantic Program; LC = Labrador Current; EGC = East
Greenland Current; WGC = West Greenland Current; NAC = North Atlantic Current; ERRC = East Reykjanes Ridge Current; IC = Irminger Current.
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component that flows south through the Denmark Strait (Sutherland & Pickart, 2008). The EGC follows the
bathymetry around Cape Farewell (Holliday et al., 2009) and becomes the West Greenland Current (WGC),
which overall traces a path around the rim of the Labrador Sea at the continental shelf break (Figure 1a),
eventually becoming part of the outer, largely barotropic component of the Labrador Current in the western
Labrador Sea (Hall et al., 2013). Within the center of the Irminger and Labrador Seas, away from the relatively
saline boundary currents, the upper layers contains fresh, stratified sub-Arctic surface water. This water type
becomes subducted as Subarctic Intermediate Water (SAIW) within the NAC zone and forms part of the
deeper, permanent thermocline of the basins east of the Reykjanes Ridge (Arhan, 1990; Harvey, 1982).

Around the rims of the western SPNA, two shallow, fresh and buoyant currents advect cold water southward
from the Arctic and Nordic Seas. In the Irminger Sea the East Greenland Coastal Current (EGCC) flows
southward to Cape Farewell (Bacon et al., 2002; Sutherland & Pickart, 2008), follows the topography around
Cape Farewell, after which it becomes known as the West Greenland Coastal Current. On the Labrador and
Newfoundland coasts the Labrador Current has a cold, fresh baroclinic component sitting over the shelf
break (Lazier & Wright, 1993).

The intermediate layer of the SPNA is filled with Labrador SeaWater (LSW), formedmainly in the Labrador Sea
and also in the Irminger Sea, from where it spreads into the eastern basins and becomes warmer and saltier
throughmixing with surrounding water masses (Kieke & Yashayaev, 2015; Yashayaev et al., 2007). The interior
Labrador and Irminger Seas both contain recirculation features especially evident at middepths (Lavender
et al., 2005). At depth sit the dense northern overflow waters, the Iceland-Scotland Overflow Water (ISOW)
that enters the subpolar basins in the east, and the Denmark Strait Overflow Water (DSOW) in the west
(Dickson & Brown, 1994). Both overflow water types flow cyclonically in deep western boundary currents
(DWBCs; Figure 1a) and are continuously modified by mixing before they leave the region.

In its simplest form, the concept of the AMOC is a northward flow of warm salty water in the upper layers of
the ocean balanced by a return flow of denser cold, fresh water in intermediate and deep layers, withmuch of
this transformation of surface to deep water taking place in the SPNA and the Nordic Seas. In the subtropical
Atlantic Ocean the AMOC is commonly defined as the total northward transport of the zonally integrated
meridional flow (usually the maximum of the overturning stream function, AMOCz), where the subscript z
indicates that the zonal integral is taken in depth space (e.g., McCarthy et al., 2015). In the subpolar North
Atlantic, the prevalence of diapycnal mixing and the region-wide sloping of isopycnals means that the
subpolar AMOC is more appropriately considered in density coordinates (AMOCσ; Li et al., 2017; Mercier
et al., 2015; Xu et al., 2016). The residuals from the mean transport profile in density coordinates describe
the gyre-scale or isopycnal circulation (Mercier et al., 2015).

A recent international observational program, OSNAP, was designed to study the subpolar AMOC and gyre
circulation (www.o-snap.org; Li et al., 2017; Lozier et al., 2017). The OSNAP array was deployed in the summer
of 2014 for the purpose of recording continuous transbasin observations of volume, heat, and freshwater
transport in the region. The array uses moored instruments, gliders, and floats (RAFOS and Argo) to measure
velocity, temperature, and salinity along a section from Canada to Greenland to Scotland. The moorings are
located in the boundary currents of the four major basins of the subpolar region (the Labrador Sea, Irminger
Sea, Iceland Basin, and Rockall Trough, Figure 1), and the gliders and floats provide additional information in
the regions between. The array will provide monthly estimates of the overturning circulation, heat, and fresh-
water transport, along with the velocity field at low spatial resolution (see Lozier et al., 2017, for more details).

The OSNAP array builds on the knowledge gained from previous and ongoing SPNAmeasurement programs,
including the following. The 53°N Labrador Sea moored array forms the western end of the OSNAP array and
measures the DWBC (Zantopp et al., 2017). The Extended Ellett Line annual repeat hydrography program
occupied since 1975 forms the eastern end of the OSNAP array in the Rockall Trough (Figure 1; Holliday et al.,
2015). The OVIDE biennial repeat hydrography program observes the Meridional Overturning Circulation
(MOC) in the eastern SPNA (Figure 1a; Daniault et al., 2016; Mercier et al., 2015). The AR7W section in the
Labrador Sea is an annual repeat hydrography section that lies just to the north of the OSNAP line (Hall
et al., 2013; Yashayaev & Loder, 2016). The AR7E/60°N repeat hydrography program east of Greenland has
provided estimates of mean MOC and heat flux in the summer of the 2000s (Sarafanov et al., 2012). Ship-
of-opportunity measurement of upper ocean currents and surface properties at ~60°N has been analyzed
for more recent estimates of MOC and property fluxes east of Greenland (Rossby et al., 2017). The OSNAP
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array also enhances measurements made by moored arrays at the Greenland to Scotland sill (Hansen et al.,
2017; Harden et al., 2016) and by high precision pressure sensors at 47°N (Roessler et al., 2015). Uniquely,
the OSNAP array measures the circulation over the full depth and full width of the SPNA, including
Labrador Sea and east of Greenland, on monthly timescales.

In this study we present detailed views of the full-depth temperature, salinity, density, and velocity fields from
high spatial resolution hydrographic sections along the OSNAP line taken at the start of the program in June–
July 2014 and during mooring turnaround cruises in May–August 2016 (Figure 1). These sections provide
detailed, fine structure observations of temperature, salinity, and velocity that will provide independent cali-
bration points for the OSNAP array, which is more limited spatially and vertically. No previous study has pre-
sented estimates of circulation and volume and property transport from a section that is well resolved
spatially and covers both the Labrador Sea and the eastern SPNA. Here we derive estimates of the Atlantic
Meridional Overturning Circulation (AMOCσ), the isopycnal (gyre-scale) circulation, and their components
of net heat and freshwater transport and identify the key parts of the section for heat and freshwater trans-
port. We describe the character of the SPNA AMOC, which is complicated by the presence of the cold and
fresh shallow boundary currents (LC, EGC, EGCC, WGC, and West Greenland Coastal Current). We examine
the consistency and differences between the two sections, and finally, we discuss our results in the context
of existing estimates.

2. Data

Details of the cruise data used in this analysis are given in Table 1. The uncertainty from using a collection of
cruises to construct the 2016 section is discussed in section 7. We refer to the two OSNAP sections as OS2014
and OS2016 to emphasize that the transport estimates and properties refer to the period of time during
which the sections were completed. Stations were occupied with horizontal resolution of 30 km or less (closer
over rapidly changing bathymetry; Figure 1), with a full suite of conductivity-temperature-depth (CTD) sensor
measurements (pressure, temperature, conductivity, and dissolved oxygen concentration) and water sam-
ples for conductivity calibration (Figure 1). CTD data were calibrated with Standard Sea Water samples and
laboratory calibrations to GO-SHIP standards (salinity 0.002, pressure 1 dbar, and temperature 0.002 °C,
www.go-ship.org). See Table 1 for cruise reports.

Lowered (L-) Acoustic Doppler current profilers (LADCPs) measured full-depth currents at each cast except for
a small number of very shallow stations. LADCP data on the UK cruises (JR302, DY052, and DY054; Table 1)
were processed using the Lamont Doherty Earth Observatory IX software v8 (www.ldeo.columbia.edu/
~ant/LADCP) and the GEOMAR LADCP processing software V10.12 on the German cruise (MSM54; Table 1).
LADCP absolute velocities from these processing methods have an estimated uncertainty of 0.02–0.03 m/s
(Holliday et al., 2009; Thurnherr, 2010). The presence of high numbers of scatterers throughout the water

Table 1
Details of Cruise Data Sets Used in the Analysis

Cruise Dates Principal scientist Location
Number of

stations Cruise report and data

OS2014
JR302 6 Jun to 21 Jul B. King and N. P.

Holliday, UK
Canada to Greenland
to Scotland

146 www.bodc.ac.uk/resources/inventories/cruise_inventory/report/
15037/

OS2016
MSM54 13 May to 7 Jun J. Karstensen,

Germany
Labrador Sea 38 www.pangaea.de/expeditions/cr.php/Merian

DY054 27 Jul to 17 Aug N. P. Holliday, UK Irminger Sea 34 www.bodc.ac.uk/resources/inventories/cruise_inventory/report/
16034/

DY053 29 Jun to 23 Jul S. Cunningham, UK Iceland Basin and
Hatton-Rockall Basin

38 www.bodc.ac.uk/resources/inventories/cruise_inventory/report/
16033/

DY052 7 to 24 June S. Gary, UK Rockall Trough 34 www.bodc.ac.uk/resources/inventories/cruise_inventory/report/
16032/

Note. The number of stations refers to those on the OSNAP section that were used in this analysis; more stations were taken on each cruise. See Figure 1 for station
positions.
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column means that good velocity data were returned at all depths. Shipboard (S-) ADCP (SADCP) data on UK
cruises were processed using the University of Hawaii’s Common Ocean Data Access System, using the head-
ing information from the ship’s Global Positioning System data stream and calibrated transducer heading
misalignment (for more details see King & Holliday, 2015). The barotropic tides at the time of each cast were
obtained from the Oregon State University Tidal Prediction software (volkov.oce.orst.edu/tides/otps.html),
and once de-tided, the u and v components were rotated to provide the velocity normal to the section,
vLADCP (positive values to the north of the section).

CTD and LADCP data were interpolated onto a vertical grid with 20-dbar intervals. For velocity, transport, and
flux calculations we retain the original horizontal station spacing. For examining the difference in properties
between the two sections, we interpolated the data to a horizontal grid with 10-km spacing. Salinity is
reported on the practical salinity scale, and potential density is referenced to the surface.

3. Methods
3.1. Derivation of the Total Velocity Field

Vertical geostrophic shear is derived from the density gradient between CTD stations, and further sources of
information are needed to obtain the total, absolute velocity field. We compute geostrophic shear from the
density field, add an observed reference velocity, add Ekman velocity computed from wind stress, and then
apply an adjustment to meet specified volume transport constraints.

We derive the initial observed cross-section velocity field vobs as follows:

vobs x; zð Þ ¼ vg x; zð Þ þ vref xð Þ þ vek x; zð Þ (1)

where vg is geostrophic velocity, vref, is reference velocity, vek is Ekman velocity, x is the along-track direction,
and z is depth. vg is computed from the temperature and salinity profile for each station pair, with an initial
level of no motion at the seafloor (giving one profile per station pair). We obtain the reference velocity from
LADCP data (vref) and given by the following:

vref xð Þ ¼ vladcp x; zð Þ � vg x; zð Þ (2)

where vladcp is the cross-track component of the station pair mean LADCP velocity profile (i.e., the average of
the two de-tided casts). The overbar represents the average over all depths below 250 m (in order to
exclude surface motions, which are dominated by ageostrophic transient currents). SADCP data are used
for a small number of shallow stations with no LADCP data. Acoustic Doppler current profiler (ADCP)-derived
reference velocities are particularly valuable in the DWBCs of the Labrador and Irminger Seas and in the
Iceland Basin where there is strong vertical shear. Additionally, they provide high horizontal resolution in
narrow boundary currents, which can be underestimated and underresolved by altimeter-derived surface
reference velocities (e.g., Gourcuff et al., 2011; Sherwin et al., 2015). In the Labrador Sea and Irminger
Seas the LADCP reference value adds up to 5 Sv to the transport within the DWBCs over that estimated
when using reference velocities from altimeter-derived surface geostrophic velocity (the latter reported
for JR302 [Table 1] in Johnson et al., 2015).

In the bottom triangles (the area of water below the deepest common level of a station pair where we have
neither station pair mean LADCP nor geostrophic velocity) we assume a constant velocity equal to that at the
deepest common level (after Holliday et al., 2009). The transport in the bottom triangles accounts for 1.1 Sv
accumulated along the OS2014 section and �0.17 Sv accumulated along the OS2016 section.

Wind data for the time period of the cruise were obtained from European Centre for Medium-Range Weather
Forecasts (http://apps.ecmwf.int/datasets/data/interim-full-daily/). Ekman transport was then computed
from ERA Interim winds, following the method described in McCarthy et al. (2015). Zonal and meridional
10-m wind data at grid points matching the cruise track were extracted and rotated to compute cross-track
wind stress and Ekman transport. We use the reanalysis product rather than the in situ wind data because the
ship measurements are affected by airflow distortion. Ekman velocity is added to the top 55 m and is
obtained by dividing the transport by the cross-sectional area (distance × depth). The net Ekman transport
is near zero at this latitude: 0.04 Sv integrated across OS2014 and 0.02 Sv integrated across OS2016.
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The volume transport normal to the section was computed from the velocity field and cross-sectional area
(A, m2) as follows:

Tobs ¼
Xxe

xw

Xzmin

zmax
vobs x; zð Þ·A x; zð Þ (3)

and is reported in units of Sv (1 Sv = 106 m3 s�1). We derive total volume transport, Ttotal (and therefore total
velocity, vtotal), by adding a uniformly distributed adjustment (Tadj) to meet volume transport constraints from
the literature.

T total ¼ Tobs þ Tadj; (4)

vtotal x; zð Þ ¼ vobs x; zð Þ þ vadj x; zð Þ: (5)

Long-term observations show that there is a mean throughflow of 0.8 ± 0.1 Sv through the Bering Straits into
the Arctic Ocean (Woodgate & Aagaard, 2005). Since the Arctic basin is open only to the Pacific through the
Bering Strait and to the SPNA through a series of openings to the north of the OSNAP section, to conserve
mass between the Bering Strait and OSNAP section, there must also be a mean throughflow of order
�0.8 Sv across the OSNAP section, that is, Ttotal =�0.8 Sv. We refine this geographically: Long-term measure-
ments though the Davis Strait into the Labrador Sea have a mean transport of �1.6 ± 0.5 Sv (Curry et al.,
2014), and the OVIDE program estimates a long-term mean of 1.0 ± 0.9 Sv between Greenland and
Portugal (Mercier et al., 2015). We compute vadj separately for OSNAP-W and OSNAP-E to satisfy our con-
straints of Ttotal = �0.8 Sv: Ttotal (OSNAP-W) = �1.6 Sv and Ttotal (OSNAP-E) = 0.8 Sv. The adjustment velocities
are applied uniformly across each subsection: �0.002 m/s for OSNAP-W and �0.003 m/s for OSNAP-E in
OS2014 and 0.007m/s for OSNAP-W and 0.001m/s for OSNAP-E in OS2016. The final velocity field vtotal is sub-
sequently used for all the volume and property transport estimates as we describe next.

3.2. Overturning Circulation, Throughflow, and Isopycnal Transport

The isopycnals of the SPNA slope down from west to east (Figures 2 and 3), and their gradients change across
individual basins and with depth. Any chosen depth range on the OSNAP section thus contains water masses
with a wide range of densities and will include currents flowing in different directions that are not part of the
same recirculation features. For this reasonwe compute transports and circulationmetrics in density coordinates,
therebymore appropriately describing the subpolar circulation (Mercier et al., 2015; Xu et al., 2016).We regrid our
velocity (vtotal) and property fields (θ, S) from depth (z) to potential density (σ) at a resolution of 0.01 kg/m2.

According to Bryden and Imawaki (2001) and adapted by Mercier et al. (2015), the volume transport across a
(near) zonal coast-to-coast section can be decomposed into the net throughflow (the barotropic component,
v), a closed vertical cell (the zonally averagedmeridional component, hvi), and a closed horizontal or isopycnal
circulation cell (the deviations from the zonal average, v0), where

vtotal x; σð Þ ¼ v þ vh i σð Þ þ v0 x; σð Þ: (6)

Similarly, the potential temperature and salinity fields can be decomposed into components associated with
the throughflow, the meridional overturning (diapycnal) circulation and the gyre-scale (isopycnal) circulation:

θ x; σð Þ ¼ θ þ θh i σð Þ þ θ
0
x; σð Þ: (7)

S x; σð Þ ¼ Sþ Sh i σð Þ þ S
0
x; σð Þ: (8)

The volume transport profiles associated with the meridional overturning (Tamoc) and isopycnal circulation
(Tgyre) are defined as

Tamoc σð Þ ¼
Xxe

xw
A x; σð Þ· vh i σð Þ (9)

Tgyre xð Þ ¼
Xσmin

σmax
A x; σð Þ·v0

x; σð Þ (10)

In section 1 we note that the concept of the AMOC with a northward flowing upper limb and a southward
flowing deeper limb is prevalent but that the complexity of the circulation in the SPNA means that the
AMOC has at least two potential definitions, resulting in two views of its mean and variability. We present
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two definitions of AMOCσ which we discuss later; the first is the maximum value of the overturning stream
function (Tamoc accumulated from low to high density, AMOCσ-max adapted from Mercier et al., 2015) and
the second is the sum of all the northward transport in the upper layer (lighter than density at the
maximum value of the overturning stream function) of Tamoc (AMOCσ-n adapted from Li et al., 2017). The
maximum value of Tgyre accumulated from west to east gives a section estimate of the isopycnal transport.

3.3. Heat and Freshwater Transport

The section temperature transport (HT) and heat transport associated with the closed overturning (HTamoc)
and isopycnal (HTgyre) circulation cells are defined as follows and given in units of petawatts:

HT ¼ ∬ρCpvtotalθ dxdσ (11)

HTmoc ¼ ∬ρCp vh i θh i dxdσ (12)

HTgyre ¼ ∬ρCpv
0θ0 dxdσ (13)

where ρ is seawater density and Cp is specific heat capacity of seawater.

Figure 2. The June–July 2014 (OS2014) section. Potential temperature °C (top panel), salinity (middle panel), and velocity orthogonal to the section (bottom panel,
positive is to the north of the section). Black lines are contours of potential density (sigma0) at intervals of 0.050 for <27.800 kg/m3 and intervals of 0.025 for
denser water. Major water masses are labeled: Labrador SeaWater (LSW), North East Atlantic DeepWater (NEADW), Denmark Strait OverflowWater (DSOW), Subpolar
Mode Water (SPMW), Subarctic Intermediate Water (SAIW), Iceland-Scotland Overflow Water (ISOW), and Eastern North Atlantic Water (ENAW). Major current
systems are labeled: Labrador Current (LC), West Greenland Current (WGC), East Greenland Current (EGC, including the East Greenland Coastal Current), Irminger
current (IC), East Reykjavik Ridge Current (ERRC), North Atlantic Current (NAC), and Atlantic Current (AC).

10.1029/2018JC013841Journal of Geophysical Research: Oceans

HOLLIDAY ET AL. 4544



Rather than simply computing the salt transport at the OSNAP section, we want to use the salinity and velo-
city information to quantify the more climate-relevant freshwater transport. That is usefully approached by
considering a closed ocean basin (the wider Arctic, bounded by the Bering Strait and the OSNAP section)
as described by Bacon et al. (2015). Large amounts of freshwater are added to the ocean, while salt is con-
served in this bounded Arctic region; this, along with mixing and cooling, is the process by which the warm,
saline, northbound surface waters are transformed into colder and fresher returning layers. The boundary
approach allows us to compute the freshwater added to the ocean between the Bering Strait and the
OSNAP section without invoking a reference salinity (which is subjective) and without needing to know
the throughflow transport (which we have set to historical values). The mathematical derivation of the
approach is explained and tested in Bacon et al. (2015), and freshwater flux though the boundary (FA) is
defined as

FA ¼ �∬
SAf g vAf g
SA

dxdσ (14)

where subscript A indicates the extended Arctic boundary consisting of the OSNAP section and the Bering
Strait, overbar indicates the boundary area mean, and curly brackets indicate anomalies with respect to
the mean. FA is the equivalent of the freshwater divergence described by McDonagh et al. (2015).

Figure 3. TheMay–August 2016 (OS2016) section. Potential temperature °C (top panel), salinity (middle panel), and velocity orthogonal to the section (bottom panel,
positive is to the north of the section). Black lines are contours of potential density (sigma0) at intervals of 0.050 for <27.800 kg/m3 and intervals of 0.025
for denser water. Major water masses and current systems are labeled as for Figure 2.
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We use climatological means for the Bering Strait (transport 0.8 Sv and salinity 32.50; Woodgate et al., 2005,
2006), together with the measured salinity and velocity from the OSNAP section to construct the Arctic
boundary velocity and salinity fields (34.269 for OS2014 and 34.876 for OS2016). The freshwater transport
at the OSNAP section (FT) is FA minus the freshwater transport at the Bering Strait.

The freshwater fluxes associated with the overturning circulation, FTamoc, and isopycnal circulation, FTgyre, at
the OSNAP section are defined as follows:

FTamoc ¼ �∫
Sh i � SA
SA

vh idσ (15)

FTgyre ¼ �∬
S
0 � SA
SA

v0dxdσ: (16)

3.4. Uncertainty Estimates

For estimating the uncertainty in top-to-bottom transport we combine errors from sources assumed to be
independent: the LADCP measurements, the mass balance constraints (Bering Strait and Davis Strait), the
presence of internal waves causing isopycnal heave, and bottom triangles. For the mass constraint uncer-
tainty we use 2 standard deviations of the long-term measurements: 0.2 Sv at Bering Strait (Woodgate &
Aagaard, 2005) and 1.0 Sv at Davis Strait (Curry et al., 2014). The combined instrument and processing uncer-
tainty from each individual LADCP velocity profile is estimated as 0.02 m/s (Hall et al., 2013; Holliday et al.,
2009; Thurnherr, 2010), and taking this to be consistent in the vertical and random, we compute an uncer-
tainty from the reference velocity for each part of the section (Figures 4 and 5 and Table 2). For the top-to-
bottom transport, the reference velocity uncertainty is equivalent to 12.0 Sv for OS2014 (section area
7.2 × 109 m2, number of stations 145) and 11.4 Sv for OS2016 (section area 6.8 × 109 m2, number of stations
144). Bottom triangle errors are estimated at 0.03 m/s (after Holliday et al., 2009), giving a small additional
uncertainty of 0.3 Sv for both sections. Ganachaud (2003) estimated that uncertainty from isopycnal heave
as a result of the presence of internal waves could add an uncertainty of ±3.3 Sv to a section and we adopt
that estimate here. Together, these give an RMS (root-mean-square) uncertainty of 12.4 Sv in the top-to-
bottom transport in OS2014 and 11.9 Sv in OS2016.

Figure 4. The June–July 2014 (OS2014) section velocity (m/s) and transport (Sv). Top panel is velocity orthogonal to the section (as shown in Figure 2), overlaid with
volume transport in segments separated geographically (vertical lines) and by isopycnals 27.50, 27.70, and 27.80 kg/m3 (black lines, see Figure 2). See Table 2 for
uncertainty estimates. Bottom panel is top-to-bottom accumulated transport (west to east). Positive is to the north of the section; uncertainties are estimated
from lowered Acoustic Doppler current profiler measurements. Major current systems are labeled as for Figure 2. RT is Rockall Trough.
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For the AMOC we compute the RMS uncertainty in the layer lighter than the maximum of the overturning
stream function, giving 4.7 Sv for OS2014 and 4.3 Sv for OS2016. For isopycnal circulation uncertainty we
compute the RMS uncertainty for top-to-bottom transport in the eastern gyre area between Scotland and
the location of the maximum of the isopycnal circulation in the Irminger Sea, giving 8.2 Sv for OS2014 and
7.4 Sv for OS2016. Since volume transport is the most important factor in determining the property fluxes
(e.g., Rossby et al., 2017), the heat and freshwater flux uncertainties are estimated as proportional to the
volume transport uncertainty.

Figure 5. The May–August 2016 (OS2016) section velocity (m/s) and transport (Sv). Top panel is velocity orthogonal to the section (as shown in Figure 3), overlaid
with volume transport in segments separated geographically (vertical lines) and by isopycnals 27.50, 27.70, and 27.80 kg/m3 (black lines; see Figure 3). See Table 2
for uncertainty estimates. Bottom panel is top-to-bottom accumulated transport (west to east). Positive is to the north of the section; uncertainties are estimated
from lowered Acoustic Doppler current profiler measurements. Major current systems are labeled as for Figure 2. RT is Rockall Trough.

Table 2
Volume Transport in Hydrographic Features and Layers (Units Are Sv)

Feature Year
Upper Ocean
(<27.50 kg/m3)

Thermocline and SAIW
(27.50–27.70 kg/m3)

Labrador Sea water
(27.70–27.80 kg/m3)

Overflow layer
(>27.80 kg/m3) Full depth

Labrador Current 2014 �3.7 ± 0.3 �3.9 ± 0.2 �19.1 ± 0.8 �15.1 ± 0.5 �41.9 ± 1.8
2016 �4.4 ± 0.1 �1.4 ± 0.2 �12.5 ± 1.3 �12.5 ± 1.0 �30.8 ± 2.5

Labrador Sea Interior 2014 0.1 ± 0.1 0.2 ± 1.0 �0.2 ± 6.2 2.0 ± 5.6 1.9 ± 13.0
2016 0.1 ± 0.1 0.8 ± 0.7 2.5 ± 5.8 2.2 ± 5.4 5.7 ± 12.0

West Greenland Current 2014 4.4 ± 0.1 8.4 ± 0.4 11.0 ± 1.3 14.5 ± 1.0 38.4 ± 2.8
2016 0.8 ± 0.0 3.6 ± 0.2 8.2 ± 2.3 10.9 ± 1.6 23.5 ± 4.3

East Greenland Current 2014 �2.3 ± 0.1 �9.6 ± 0.4 �8.2 ± 1.2 �6.9 ± 0.9 �27.0 ± 2.7
2016 �1.8 ± 0.1 �4.4 ± 0.2 �8.5 ± 1.8 �8.7 ± 1.1 �23.5 ± 3.2

Irminger Current 2014 2.8 ± 0.3 7.4 ± 1.0 3.0 ± 2.3 0.2 ± 1.9 13.6 ± 5.5
2016 1.3 ± 0.1 3.1 ± 0.5 4.6 ± 2.5 3.0 ± 1.3 12.0 ± 4.5

West Iceland Basin 2014 �3.2 ± 0.9 �2.6 ± 0.9 �4.0 ± 1.7 �6.3 ± 1.3 �16.0 ± 4.8
(East Reykjanes Ridge Current 2016 �1.1 ± 0.6 �2.5 ± 1.0 �3.0 ± 1.7 �4.2 ± 1.0 �10.8 ± 4.3
Central Iceland Basin 2014 4.0 ± 1.1 1.9 ± 0.8 3.3 ± 1.8 3.4 ± 1.4 12.7 ± 5.2
(North Atlantic Current) 2016 4.5 ± 1.0 3.3 ± 0.8 5.6 ± 1.8 4.3 ± 1.4 17.8 ± 5.1
East Iceland Basin 2014 6.4 ± 1.4 1.0 ± 0.5 1.4 ± 0.1 not present 8.7 ± 2.1
(North Atlantic Current) 2016 5.5 ± 1.4 1.8 ± 0.3 0.7 ± 0.2 negligible 8.1 ± 2.0
Rockall Trough 2014 7.3 ± 0.8 0.3 ± 0.2 1.1 ± 0.3 0.1 ± 0.0 8.7 ± 1.4
(North Atlantic Current) 2016 0.2 ± 0.7 �0.9 ± 0.2 �2.1 ± 0.3 negligible �2.8 ± 1.2

Note. Density ranges are the following: upper ocean<27.50 kg/m3; thermocline and Subarctic Intermediate Water 27.50–27.70 kg/m3; Labrador Sea Water 27.70–
27.80 kg/m3; overflows, including Iceland-Scotland Overflow Water and Denmark Strait Overflow Water, >27.80 kg/m3. Northward transports are positive and
error bars give uncertainty (see section 3).
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4. Properties and Circulation in Summer 2014 and Summer 2016

We first describe the properties, circulation, and transport observed in the two sections, highlighting the
consistencies and differences between the two occupations. We approach this by dividing the sections
geographically and quasi-vertically into major currents, water masses, and basins (Figures 2–5 and
Table 2). We divide the water column into four main density layers: the upper ocean (<27.50 kg/m3), which
includes a shallow seasonally stratified layer; a shallow to middepth layer (27.50–27.70 kg/m3); the LSW layer
(27.70–27.80 kg/m3); and the overflow layer (>27.80 kg/m3). We delineate the major currents geographically
by choosing a location nearest to a zero isotach (Figures 4 and 5). The estimated transport in currents adja-
cent to major recirculation features or eddies can be sensitive to this location, and we highlight the cases
where the apparent synoptic transport may be affected by recirculation or an eddy. In the following text
and figures the sign convention for velocity and transport is such that the positive direction is always toward
the north of the section.

4.1. Rockall Trough

This easternmost basin contains the warmest (>9.0 °C) and most saline (>35.20) upper ocean and thermo-
cline waters (Figures 2 and 3). In both sections a strong northward jet west of midbasin Anton Dohrn sea-
mount is observed in the middepth and upper layer (<27.70 kg/m3), but the presence of a southward flow
east of the seamount in 2016 means that the net transport of upper ocean and thermocline has a very high
range, with 7.6 ± 1.0 Sv in OS2014 and�0.7 ± 0.9 Sv in OS2016 (Figures 4 and 5 and Table 2). There is a core of
high salinity water adjacent to the continental shelf break, which is usually associated with a shelf-edge cur-
rent (Holliday et al., 2015), but neither section has a clear northward current there. Below the seasonally stra-
tified layer, the upper 1,000 m of the Rockall Trough is cooler, fresher, and less dense in OS2016 (Figure 6).

Figure 6. Property differences between the two sections (OS2016 minus OS2014). Top panel is potential temperature (°C),
middle panel is salinity, and bottom panel is potential density (kg/m3). Isopycnals 27.50, 27.70, and 27.80 kg/m3

overlain in magenta (OS2014) and black (OS2016).
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The intermediate and deepest layers of the Rockall Trough contain modified LSW (Holliday et al., 2000) with
low velocity and a small net transport (1.1 ± 0.3 Sv in OS2014 and � 2.1 ± 0.3 Sv in OS2016).

4.2. Iceland Basin and Hatton-Rockall Basin

There is notable eddy activity in the Iceland Basin, but the two NAC jets are observed in consistent locations
and with similar transports in both years (Figures 2 and 3). The NAC jet in the central Iceland Basin carried
5.9 ± 1.9 Sv in OS2014 and 7.8 ± 1.7 Sv in OS2016, and the jet in the east Iceland Basin (on the flank of the
Hatton Bank) transported 7.4 ± 1.9 Sv in OS2014 and 7.3 ± 1.7 Sv in OS2016 (Figures 4 and 5). Our transport
totals for the east jet include a small amount of recirculation within the shallow Hatton-Rockall Basin where
velocities are very low.

Our estimates of the transport of the ERRC are more variable than the NAC jets because of transport intro-
duced by eddies and the sensitivity of the estimates to the location of the boundary. In OS2014 the net trans-
port of the upper ocean and thermocline within the ERRC and eddies west of the central NAC jet was
estimated at �5.8 ± 1.8 Sv, and in OS2016 it was �3.6 ± 1.6 Sv (Figures 4 and 5).

The upper ocean and thermocline of the Iceland Basin show a notable cooling and freshening between
OS2014 and OS2016, with the largest changes and greatest increase in density associated with the three
major currents in the upper 500 m (the ERRC and two NAC jets; Figure 6). The cooling and freshening extends
into the thermocline layer, which contains SPMW carried by the NAC currents, and SAIW that has origins in
the central subpolar gyre. Properties below the thermocline did not change much between the two sections.

In the LSW layer the Iceland Basin has low velocities in both sections, with broadly cyclonic flow (Figures 4
and 5). In OS2014 the net transport through the Iceland Basin below the permanent thermocline was esti-
mated at�2.2 ± 6.3 Sv with�2.9 Sv in the overflow layer, and in OS2016 it was estimated at 3.3 ± 6.3 Sv with
0.1 Sv in the overflow layer.

4.3. Irminger Sea

In contrast with the Iceland Basin, the velocity field in the Irminger Sea shows circulation features that are
deep reaching (surface to seafloor), though velocities decrease in magnitude in the intermediate layer, and
in the deepest layers in the east of the basin (Figures 2 and 3).

We estimate the Irminger Current system (the main current plus the associated eddies and including the
upper ocean and thermocline) as transporting 10.2 ± 1.3 Sv in OS2014 and 4.4 ± 0.6 Sv in OS2016
(Figures 4 and 5). Interestingly though, unlike the NAC branches in the Iceland Basin, the properties of the
Irminger Current are relatively unchanged between OS2014 and OS2016, except in the seasonally stratified
layer (here <27.50 kg/m3; Figure 6).

The intermediate layer of the Irminger Sea is filled with LSW and consistent with evidence for local deep con-
vection into the LSW density range in the winter of 2014/2015 (de Jong & de Steur, 2016; Piron et al., 2017).
The LSW was 0.5 °C cooler in OS2016, though only the LSW below 1,000 m was notably fresher (�0.04;
Figure 6). The net transport within the LSW layer in the Irminger Sea as a whole was �5.1 ± 3.5 Sv in
OS2014 and �3.9 Sv ± 4.2 Sv in OS2016 (Figures 4 and 5). The net transport though the basin in waters in
the overflow layer (denser than 27.80 kg/m3) was �6.7 ± 2.8 Sv in OS2014 and � 5.7 ± 2.4 Sv in OS2016
(Figures 4 and 5).

The western boundary current, formed of the EGCC and the EGC, is deep reaching, but in both sections there
is evidence of reduced velocity around ~2,000 m (the base of the LSW; Figures 4 and 5). Above the LSW, the
transport within the EGC/EGCC was�11.1 ± 0.5 Sv in OS2014 and� 6.2 ± 0.3 Sv in OS2016. For the full-depth
western boundary current the transport was �27.0 ± 2.7 Sv in OS2014 and �23.5 ± 4.3 Sv in OS2016. Note
that these estimates are sensitive to the location of the boundary between the EGC and Irminger Current
and the uncertainty estimates indicate no significant change observed from OS2014 to OS2016. In contrast
to the NAC water in the Iceland Basin, the EGC/EGCC waters were warmer (+2.0 °C) and more saline (+0.6)
in OS2016.

4.4. Labrador Sea

The Labrador Sea is dominated by the fast, deep reaching boundary currents: the WGC and Labrador Current
systems and a strong midbasin recirculation feature. In OS2014 the WGC system had a top-to-bottom
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transport of 38.4 ± 2.8 Sv (Figure 4), while in OS2016 it was estimated as much less (23.5 ± 4.3 Sv) because it
includes large recirculation (strong southward velocity adjacent to the northward current, Figure 5). The full-
depth boundary current in the western Labrador Sea transported �41.9 ± 1.8 Sv in OS2014 and
�30.8 ± 2.5 Sv in OS2016, with uncertainty in all of these estimates introduced by the interior recirculation
and the lack of clarity over the lateral extent of the boundary currents.

Similar to the upstream EGC/EGCC, the shallow part of the WGC (shelf and shelf break) was warmer (+2.0 °C),
more saline (+0.6), and more dense in OS2016 (Figure 6). In contrast, the shallow Labrador Current on west
side of the basin was lighter, fresher, and colder in OS2016 (Figure 6). Below the seasonally stratified surface
layer, the upper ocean of the Labrador Sea (the upper 300–500 m) was also cooler and fresher in OS2016. The
large body of relatively fresh LSW was slightly cooler (�0.25 to �0.5 °C) and notably fresher in the deepest
layer (�0.04 centered on 1,500 m), which, as we saw in the Irminger Sea, is presumably the signature of dee-
per winter convective mixing after OS2014. In the Labrador Sea we observe a net southward transport of LSW
in OS2014 (�8.3 ± 9.3 Sv) and less in OS2016 (�1.8 ± 9.4 Sv) although the difference lies within our uncer-
tainty range and is not significant.

The overflow layer is thicker in the deep Labrador Sea than anywhere else in the section, from around 2,000
to the seafloor at ~3,800 m. Here the property changes from OS2014 to OS2016 are positive but very small
(<0.25 °C and<0.02 in salinity; Figure 6). The circulation is cyclonic, and, as expected, the layer had near-zero
net transport in both years (1.4 ± 7.1 Sv in OS2014 and 0.5 ± 8.0 Sv in OS2016; Figures 4 and 5).

5. MOC and Fluxes

Profiles of transport integrated across the sections in density space are shown in Figure 7, with the accumu-
lated profiles showing data from 27.10 to 28.00 kg/m3 (lighter water not shown). As expected, the majority
of the northward transport is in the layer lighter than ~27.70 kg/m3, which contains the warm and saline
NAC upper ocean and thermocline waters in the eastern basins. In OS2014 most of that northward transport
is found in the density range 27.25–27.50 kg/m3, with transport maxima in layers associated with bodies of
SPMW, for example, 27.45 kg/m3, which is the mode water east of the Irminger Current. In OS2016 the trans-
port in the upper ocean is markedly reduced in total and shifted to slightly less dense layers (27.20–

Figure 7. Volume and property transport profiles in potential density space for OS2014 (blue) and OS2016 (black; see
section 3 for definitions and methods). Variables are accumulated from low to high density. Key isopycnals marked with
dashed lines.
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27.35 kg/m3) associated with the cooler and fresher NAC waters described
earlier. The lightest layer (<27.1 kg/m3, not shown) includes some
southward transport in both sections: This is the cold, fresh, Arctic-origin
waters of the Greenland and Labrador Shelf currents. The density range
27.50–27.70 kg/m3 (Figure 7) includes thermocline waters of the eastern
basins (east of the Reykjanes Ridge), which are part of the NAC system
(Figures 2 and 3). West of the ridge, however, this layer consists of the
fresh and stratified near-surface layers in the Irminger Sea and Labrador
Sea and has a net southward transport.

Apart from a small southward transport in the very lightest waters, the
northward transport is mainly balanced by southward transport below
~27.70 kg/m3 in the LSW and overflows. Between OS2014 and OS2016
the transport in the LSW switched from lighter to denser layers presum-

ably associated with the deeper winter mixing observed in winter 2014/2015 in the Labrador and Irminger
Seas. The total LSW transport was also reduced in OS2016. In contrast, the total transport in the overflow
layers was markedly similar in both sections.

The reduced total transport in the warm, saline upper ocean of the eastern basins in OS2016 means that our
estimates of net overturning circulation also have a large difference between the two sections (Table 3). The
AMOCσ-max was 20.6 Sv ± 4.7 in OS2014 and 10.6 ± 4.3 Sv in OS2016. The AMOCσ-n estimates are higher than
AMOCσ-max; in OS2014 it was 23.3 ± 0.69 Sv and in OS2016 it was 13.0 ± 0.67 Sv. We discuss the meaning and
relevance of the AMOCσ-n in section 7.

The total heat and freshwater transport profiles in density space are also shown in Figure 7; these profiles are
the heat and freshwater transport in density bands accumulated from the lightest to most dense layers. The
net property transport or flux at the OSNAP section is the value reached at the deepest layer; in OS2014 the
heat and freshwater fluxes were 0.39 ± 0.08 PW and �0.21 ± 0.03 Sv, while in OS2016 they were
0.32 ± 0.13 PW and �0.25 ± 0.08 Sv, respectively. It is clear that the two sets of property transport profiles
have different vertical structures that reflect the differences in the transport profiles, and in the case of the
OS2016 freshwater transport, the salinity distribution, as follows. The upper layer in OS2016 has less
northward transport of volume and heat and less upper layer southward freshwater transport (Figure 7).
The smaller overall heat transport in OS2016 leads intuitively from the smaller overturning circulation;
however, the freshwater transport has a different vertical structure, with changes in both the upper and deep
layers. In OS2014 there was more southward transport of freshwater in the upper layer (<27.7 kg/m3) and
more northward freshwater transport in the deep layer (>27.7 kg/m3, right-hand panel Figure 7), though
the net transport was smaller than OS2016. In the next section we examine the distribution of volume, heat,
and freshwater transport against distance along the section in order to define the contribution of the
gyre-scale circulation to property transport.

6. Isopycnal Circulation and Fluxes

In section 3, we described how the velocity and transport fields can be decomposed into throughflow, over-
turning (diapycnal), and gyre-scale (isopycnal) circulation. By definition both the overturning and isopycnal
circulation sum to zero transport, but their associated heat and freshwater transport components do not
because of the temperature and salinity gradients. We find that the isopycnal transport (the maximum in
Tgyre accumulated from west to east) was �41.4 ± 8.2 Sv in OS2014 and �58.6 ± 7.4 Sv in OS2016 (Table 2
and Figures 8 and 9). In both sections the maximumwas located in the mid-Labrador Sea. The isopycnal heat
and freshwater transport estimates are 0.17 ± 0.03 PW and �0.10 ± 0.02 Sv for OS2014 and 0.21 ± 0.03 PW
and �0.16 ± 0.03 Sv for OS2016 (Table 2).

The west-east profiles of the isopycnal volume, heat, and freshwater transport (Figures 8 and 9) show that the
boundary currents especially in the Labrador Sea and the eastern Iceland Basin, Hatton-Rockall Basin, and the
Rockall Trough are where the isopycnal property transport is highest. This finding highlights the need for
observations in those locations: For example, we note that the OS2014 section has more stations close to
the coast at the western end of the section and that a large amount of freshwater transport was observed

Table 3
Estimates of Overturning Circulation, Isopycnal Circulation and Heat and
Freshwater Transport With Uncertainties (See Section 3)

Parameter OS2014 OS2016

AMOCσ-max 20.6 ± 4.7 Sv 10.6 ± 4.3 Sv
AMOCσ-n 23.3 ± 4.7 Sv 13.0 ± 4.3 Sv
Maximum isopycnal transport �41.4 ± 8.2 Sv �58.6 ± 7.4 Sv
Total heat flux (HT) 0.39 ± 0.08 PW 0.32 ± 0.13 PW
Isopycnal heat transport (HTgyre) 0.17 ± 0.02 PW 0.21 ± 0.02 PW
Total freshwater flux at
section (FT)

�0.21 ± 0.03 Sv �0.25 ± 0.08 Sv

Isopycnal freshwater
transport (FTgyre)

�0.10 ± 0.02 Sv �0.16 ± 0.03 Sv
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midshelf. These stations were not sampled in OS2016, and it is possible the net freshwater transport for that
section is underestimated as a result. It also highlights the importance of variability in the eastern basins to
the net property transports; the biggest difference between OS2014 and OS2016 isopycnal and diapycnal
heat and freshwater transport is found in the warmest and most saline upper waters of the eastern basins
(the blue lines in Figures 8 and 9) where mesoscale and temporal variability has been observed to be
highest (Holliday et al., 2015; Zhao et al., 2018).

Finally, we note that for OS2014 almost all of the isopycnal property transport was found in the upper layer
(<27.50 kg/m3), while for OS2016 after deep winter convection east of Greenland occurred, the intermediate
(thermocline/SAIW) layer also carried significant isopycnal heat and freshwater transport (Figures 8 and 9). It

Figure 8. Along-section profiles of isopycnal volume and property transport from OS2014 (see section 3 for definitions and
methods). Bars indicate total isopycnal transport at each station pair along the track. Curves represent transport
accumulated from west to east; solid black lines are surface to seafloor total, and colored lines indicated transport in
potential density ranges (color scale given in bottom panel).
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appears to be this extra heat and freshwater transport that leads to the significantly increased total isopycnal
heat and freshwater transport in OS2016.

7. Discussion

In this section we place our results into context by comparing them with findings from the literature, and we
discuss uncertainties in our estimates that are in addition to our quantified methodological uncertainties.

From two OSNAP hydrographic sections we have described the details of the velocity, density, temperature,
and salinity fields. We report estimates of the overturning circulation (AMOCσ-max) at the time of the sections
that span a large range: 20.6 ± 4.7 Sv for OS2014, and 10.6 ± 4.3 Sv for OS2016. To our knowledge there are no

Figure 9. Along-section profiles of isopycnal volume and property transport from OS2016 (see section 3 for definitions and
methods). Bars indicate total isopycnal transport at each station pair along the track. Curves represent transport
accumulated from west to east; solid black lines are surface to seafloor total, and colored lines indicated transport in
potential density ranges (color scale given in bottom panel).
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existing estimates of overturning circulation from an equivalent section that includes the Labrador Sea and
the eastern subpolar North Atlantic. However, our AMOC estimates are similar (within error bounds) to the
wide range of estimates reported from the OVIDE section (Greenland to Portugal). That line has been
repeated several times with similar measurements to the OSNAP hydrographic section and provides a mean
estimate of the subpolar AMOCσ of 16.0 Sv with a range of 11.4–18.5 Sv (Mercier et al., 2015). In the same ana-
lysis (Mercier et al., 2015), altimeter-based estimates of AMOCσ suggest a range of less than 15 to more than
25 Sv. The 2014 occupation of the OVIDE section, taken very close in time to the OS2014 section, gives an
AMOCσ of 18.7 ± 3.0 Sv (Zunino et al., 2017), slightly less than our estimate that includes the Labrador Sea.
The 2014 OVIDE estimate is closer to the findings of Rossby et al. (2017) that report an AMOCσ of
18.3 ± 3.4 Sv from repeated ADCP measurements at 60°N between Greenland and Scotland, and Sarafanov
et al. (2012) that report an AMOC of 16.5 ± 2.2 Sv from repeated hydrographic sections and altimetry also
at 60°N east of Greenland.

A second way to view diapycnal circulation is using AMOCσ-n, which is the sum of all the northward transport
in the upper layer (lighter than the density at the maximum value of the overturning stream function).
AMOCσ-n estimates are higher than AMOCσ-max because in the latter the net transport of the upper limb
includes (is reduced by) the southward transport of very light and shallow waters of the EGC and Labrador
Current systems. AMOCσ-n represents the total volume of northward flowing warm saline upper ocean water
that is diapycnally transformed both into a returning (southward flowing) cold, denser layer and into a return-
ing (southward flowing) cold, fresher, and lighter layer. The lighter, fresher return flow layer has been trans-
formed in the Arctic region by mixing, air-sea fluxes, and melt water from land ice and sea ice. In contrast, the
AMOCσ-max only represents the volume of warm, saline upper layer that through diapycnal transformation
becomes a returning cold dense layer.

The OS2016 exhibits features that reflect the occurrence of deep convective mixing in the Labrador Sea and
the Irminger Sea in the winters following OS2014 (deepmixed layers, with cooling and freshening in the deep
LSW recently ventilated). We note, however, that despite the increased production of LSW in the winters of
2014/2015 and 2015/2016, the net export of the LSW layer from the full-width Labrador Sea in 2016 appeared
to be less during OS2016 (�1.8 ± 9.4 Sv) than during OS2014 (�8.3 ± 9.3 Sv), although the difference is not
significant because of the large uncertainty range.

There are two surprising aspects to the isopycnal heat and freshwater transport estimates; the first is that the
isopycnal property transports are up to 65% of the total property transport. This is higher than then 10% and
45% for horizontal heat and freshwater transport observed at 26°N and computed in depth space (McCarthy
et al., 2015; McDonagh et al., 2015). It is also contrasts with Mercier et al. (2015) who find that the isopycnal
heat transport is typically 10% of the total at the OVIDE section. Figures 8 and 9 show that the largest isopyc-
nal heat and freshwater transport is found in the west Labrador Sea, not sampled by OVIDE, and this is likely
the reason for the difference between these results and those of Mercier et al. (2015). The second surprising
aspect is the large range in these values from the two OSNAP sections, with higher isopycnal heat and fresh-
water transport observed in OS2016 when the overturning circulation was lower.

The AMOC estimate derived from OS2016 is lower than OS2014 but within the range observed by the OVIDE
program. However, there are questions about additional uncertainty associated with a section made up of
expeditions collecting data over a 3-month period. We consider two possible sources of additional
uncertainty: mismatches in the density field where the cruise data sets join and the seasonal cycle in proper-
ties and stratification, as follows. The OS2016 section is composed of data from four cruises (Table 1), with the
boundaries located at Greenland (i.e., land), the Reykjanes Ridge (1,100-m water depth), and Rockall (100-m
water depth). Potentially erroneous extra transport could result from a significant change in the density struc-
ture in the time between the two stations. The choice of Greenland and Rockall Island as two boundary points
excludes the possibility of a spurious density gradient at those locations. At the Reykjanes Ridge the two 2016
stations were taken 6 weeks apart, and there was very little change in density structure of those and their
immediate neighbor stations, and close to zero transport was observed between them in OS2016 and
between the equivalent stations in OS2014 (Figures 4 and 5). All four cruises took place in the summer
months of May–August, but there exists the potential for a seasonal cycle in circulation and properties to
cause some uncertainty in our results. Information on the seasonal variability in circulation and property
transport in this region is sparse because most measurements take place in spring-summer. Rossby et al.
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(2017) find no significant changes in the transport in the May–August period in all the major currents
between Greenland and Scotland, except the EGC, which has higher transport in May. Mercier et al. (2015)
find from altimetry data that while the AMOCσ has a seasonal cycle, the annual minimum takes place during
the months of May to August. Gary et al. (2018) show that an expected wind-driven seasonal cycle in trans-
port in the eastern basins is not detectable above the high mesoscale and submesoscale variability there.
From these results we conclude that there is no evidence to suggest that the use of OS2016 sampled
between May and August introduced an unreasonable uncertainty due to appending four cruises, or to
undersampling the seasonal cycle in transport.

As far as we are aware there have been no previous observation-based estimates of the role of the gyre-scale
isopycnal circulation in the transport of heat and freshwater through the full width of the subpolar North
Atlantic, including the Labrador Sea. Our finding that isopycnal heat and freshwater transport is high is sig-
nificantly different from the negligible isopycnal property transport found at this section in a high-resolution
oceanmodel (Xu et al., 2016) and at the OVIDE section (Mercier et al., 2015). Similar to our wide range of over-
turning circulation estimates, we note a wide range of isopycnal circulation from our two sections. While we
observe that higher heat flux during OS2014 is associated with higher overturning transport and higher
freshwater flux during OS2016 is associated with the higher isopycnal transport (Table 3), we cannot say with
any certainty whether those relationships persist over other time periods.

A key finding is that the magnitude of property transport by the isopycnal circulation is sensitive to the geo-
graphic extent of the observations, because the highest property fluxes are found in the narrow boundary
currents of the Labrador Sea and the basins east of the mid-Iceland Basin. There is some debate in the litera-
ture as to whether the eastern boundary currents are part of the subpolar gyre or not. In basin-integrated stu-
dies the entire region is often called the subpolar gyre, but other studies seek a boundary of the gyre in order
to investigate changes in gyre dynamics. The eastern subpolar gyre boundary is often defined as a
density/salinity front in the east Iceland Basin (the Subpolar Front, e.g., Bersch et al., 2007; Lozier & Stewart,
2008; Zunino et al., 2017), or recently by closed contours of sea surface height (Foukal & Lozier, 2017). The
latter definition excludes the shallowest parts of the western boundary currents and all of the eastern basins,
that is, the parts of the isopycnal circulation where our results show that most of the property transport takes
place. Our definition of isopycnal circulation includes the central gyre and also allows for a wider regional cir-
culation of the warm, saline eastern waters and returning fresher and cooler western waters.

Our two sections add further synoptic views of the transport in the principal circulation features of the region,
which we next compare to the literature. The comparison serves the purpose of understanding the context
and representativeness of our sections and estimates, without attempting to infer any insight into change
over time. The transport in the Rockall Trough has a very high range, which hints at the difficulty of measuring
transport in a region of energetic mesoscale and submesoscale recirculation. Although the range of our two
estimates of transport in the upper layer is high (<27.50 kg m3, �0.7 ± 0.9 Sv, and 7.6 ± 1.0 Sv; Table 2), they
lie within the range estimated from four decades of historical temperature and salinity data in the same loca-
tion (Holliday et al., 2015, 2000). A study of direct observations from SADCPs (Rossby et al., 2017) shows a simi-
lar wide range in directly measured velocity north of the Rockall Trough, which the authors suggest may be
related to circulation around seamounts. We cannot yet explain the large range of transports in this eastern
basin, and further insight will come from the continuous records from the OSNAP moorings located here.
However, our results do show that this is also a key region for heat and freshwater transport because they
are very warm and salty, and since transport dominates those terms, it is important that we resolve these
variations adequately.

In the Iceland Basin the two NAC jets are unusual in their consistency of location and transport in the two sec-
tions (6.9–7.9 and 7.3–7.5 Sv, combined upper and thermocline layers <27.70, see Table 2). The NAC total of
14.2–15.4 ± 4.8 Sv is very close to an estimate of 15.0 ± 0.8 Sv at 60°N (Sarafanov et al., 2012) and close to the
range of the means for these two NAC branches from OVIDE NAC (11.4 ± 5.1 Sv, Daniault et al. (2016)).

The upper ocean and thermocline of the Iceland Basin, Hatton-Rockall Basin, and the Rockall Trough all show
notable cooling and freshening between the sections, with largest changes evident in the NAC jets. The
source of the freshening is an ongoing research topic, and we make no attempt to explain it here: Instead,
we note that there has been evidence of a decadal-scale decline in eastern subpolar North Atlantic salinity
since ~2008 (e.g., Holliday et al., 2015), which may be related to long-term changes in freshwater transport
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convergence by the overturning circulation (e.g., Robson et al., 2016), potentially reinforced by shorter term
air-sea flux anomalies (e.g., Zunino et al., 2017), or related to gyre changes throughmechanisms described by
Hátún et al. (2005). Meanwhile, we note that in contrast to the fresher eastern basins in OS2016, the
Greenland boundary currents (the inshore EGC/EGCC and the inshore WGC) are warmer and more saline in
OS2016 than in OS2014. It is not clear whether this is a consequence of undersampling of high-frequency
variability or represents a longer-term trend.

The boundary currents of the Irminger and Labrador Seas have deep reaching current systems with a strong
barotropic component. Our section estimates lie within the range of other similar hydrography-based esti-
mates, as follows. In the Irminger Sea the full-depth western boundary current system transported
�23.5 ± 3.2 to �27.0 ± 2.7 Sv, within the literature estimate range of �23.7 to �40.5 Sv (Daniault et al.,
2016; Holliday et al., 2009; Mercier et al., 2015; Sarafanov et al., 2012). In the Labrador Sea the western bound-
ary current system transported�30.8 ± 2.5 to�41.9 ± 1.8 Sv, while literature estimates range from�56 Sv for
the full gyre (Hall et al., 2013) to�30.2 ± 6.6 Sv (>400 m, Zantopp et al., 2017). However, we offer two caveats
for our new estimates. The first is to reinforce the point made earlier that the total transport in a current sys-
tem with a boundary in mid-ocean is highly dependent on the choice of location of the boundary, which can
be obscured by the presence of eddies or recirculation features. The second is that the method of data col-
lection (sequential stations over a number of days) undersamples high-frequency variability with the bound-
ary currents such as variability introduced by topographic waves (Fischer et al., 2015; Zantopp et al., 2017).

Finally, we consider transport in the overflow layers and how these compare to literature estimates. In the
OS2014 and OS2016 sections, the velocity in the dense overflow layer is rather different compared to the
overlying LSW, with narrow currents that are probably highly turbulent (e.g., Lauderdale et al., 2008) and that
do not seemwell resolved in either space or time by our sections. Along with the issue that measures of trans-
port within these two deep layers are sensitive to the horizontal and vertical (density-based) boundary defi-
nitions, our estimates clearly have some uncertainty. However, across the sections they describe a coherent
picture of a gradually increasing volume of overflowwaters (>27.80 kg/m3) as they circulate cyclonically from
the sills to the Labrador Sea. In the Iceland Basin the net overflow transport in OS2014 was �2.9 ± 2.7 Sv of
ISOW (though only 0.1 ± 2.4 Sv in OS2016), which is within the range of previous estimates of�2.1 to�3.9 Sv
(Daniault et al., 2016; Holliday et al., 2015; Kanzow & Zenk, 2014; Sarafanov et al., 2012). Our estimates of the
overflow layer in the Irminger Sea western boundary current (which includes modified ISOW and DSOW) of
�6.9 ± 0.9 to �8.7 ± 1.1 Sv are on the low side compared to equivalent literature estimates of �9.0 to
�12.3 Sv (Bacon & Saunders, 2010; Holliday et al., 2009; Lherminier et al., 2010; Sarafanov et al., 2012).
However, our estimates of the western Labrador Sea overflow layer (ISOW and DSOW) of �12.5 ± 1.0 to
�15.1 ± 0.5 Sv are consistent with the long-term mean transport in the overflow layer at the 53°N array
(�15.7 ± 2.7 Sv, Zantopp et al., 2017).

8. Summary

Two highly spatially resolved CTD/LADCP sections have been analyzed to estimate the total full-depth velo-
city field across the subpolar North Atlantic between Canada, Greenland, and Scotland. The velocity fields
show the expected cyclonic gyre-scale upper layer circulation and additionally provide accurate new insight
into transport and circulation within the intermediate and deep layers. We have computed volume transport
and decomposed it into the throughflow, overturning circulation, and gyre-scale isopycnal circulation and
estimated the associated components of heat and freshwater transport.

The two sections show a wide range in the estimates of the overturning circulation: the AMOCσ-max in
OS2014 was 20.6 ± 4.7 Sv and in OS2016 was 10.6 ± 4.3 Sv. For both sections the AMOCσ-n values were
~3 Sv higher: 23.3 ± 4.7 Sv in OS2014 and 13.0 ± 4.3 Sv in OS2016. We have found that the strength of the
overturning circulation is not an indicator of the strength of the gyre-scale isopycnal circulation; during
our two sections the isopycnal circulation was stronger when the overturning was weaker (�41.4 ± 8.2 Sv
in OS2014 and �58.6 ± 7.4 Sv in OS2016).

The total heat and freshwater fluxes were 0.39 ± 0.08 PW and �0.21 ± 0.03 Sv in OS2014 and 0.32 ± 0.13 PW
and�0.25 ± 0.08 Sv in OS2016. Thus, heat flux was higher when the MOCwas largest, but freshwater flux was
greater when the isopycnal circulation was increased. The isopycnal components of heat and freshwater
transport were major contributors to the total flux: up to 65%, and the majority of the heat and freshwater
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transport was found in the western Labrador Sea (where water is very cold and fresh) and the eastern basins
(east Iceland Basin, Rockall-Hatton Plateau, and Rockall Trough, where water is warm and salty).

The upper layer property fields changed between the two sections, with notably cooler and fresher conditions
in Iceland Basin and Rockall Trough in OS2016. The deepest layers of the Labrador Sea and Irminger Sea exhib-
ited cooling and freshening after deep winter convection after OS2014; interestingly the development of a
thicker layer of ventilated LSW did not result in higher export of LSW from the Labrador Sea in OS2016.
However, there wasmore isopycnal transport of freshwater and heat within the intermediate layer in OS2016.

The estimates of transports within major currents in our two sections are within the range of observations
from the literature. Uniquely, however, these two sections provide the first highly spatially resolved observa-
tions of the total velocity field in sections that traverse both the Labrador Sea and the eastern subpolar
North Atlantic.
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