nerc.ac.uk

Modelling study of soil C, N and pH response to air pollution and climate change using European LTER site observations

Holmberg, Maria; Aherne, Julian; Austnes, Kari; Beloica, Jelena; De Marco, Alessandra; Dirnböck, Thomas; Fornasier, Maria Francesca; Goergen, Klaus; Futter, Martyn; Lindroos, Antti-Jussi; Krám, Pavel; Neirynck, Johan; Nieminen, Tiina Maileena; Pecka, Tomasz; Posch, Maximilian; Pröll, Gisela; Rowe, Ed C.; Scheuschner, Thomas; Schlutow, Angela; Valinia, Salar; Forsius, Martin. 2018 Modelling study of soil C, N and pH response to air pollution and climate change using European LTER site observations. Science of the Total Environment, 640-641. 387-399. https://doi.org/10.1016/j.scitotenv.2018.05.299

Before downloading, please read NORA policies.
[img]
Preview
Text
N520198PP.pdf - Accepted Version

Download (3MB) | Preview

Abstract/Summary

Current climate warming is expected to continue in coming decades, whereas high N deposition may stabilize, in contrast to the clear decrease in S deposition. These pressures have distinctive regional patterns and their resulting impact on soil conditions is modified by local site characteristics. We have applied the VSD+ soil dynamic model to study impacts of deposition and climate change on soil properties, using MetHyd and GrowUp as pre-processors to provide input to VSD+. The single-layer soil model VSD+ accounts for processes of organic C and N turnover, as well as charge and mass balances of elements, cation exchange and base cation weathering. We calibrated VSD+ at 26 ecosystem study sites throughout Europe using observed conditions, and simulated key soil properties: soil solution pH (pH), soil base saturation (BS) and soil organic carbon and nitrogen ratio (C:N) under projected deposition of N and S, and climate warming until 2100. The sites are forested, located in the Mediterranean, forested alpine, Atlantic, continental and boreal regions. They represent the long-term ecological research (LTER) Europe network, including sites of the ICP Forests and ICP Integrated Monitoring (IM) programmes under the UNECE Convention on Long-range Transboundary Air Pollution (LRTAP), providing high quality long-term data on ecosystem response. Simulated future soil conditions improved under projected decrease in deposition and current climate conditions: higher pH, BS and C:N at 21, 16 and 12 of the sites, respectively. When climate change was included in the scenario analysis, the variability of the results increased. Climate warming resulted in higher simulated pH in most cases, and higher BS and C:N in roughly half of the cases. Especially the increase in C:N was more marked with climate warming. The study illustrates the value of LTER sites for applying models to predict soil responses to multiple environmental changes.

Item Type: Publication - Article
Digital Object Identifier (DOI): https://doi.org/10.1016/j.scitotenv.2018.05.299
UKCEH and CEH Sections/Science Areas: Soils and Land Use (Science Area 2017-)
ISSN: 0048-9697
Additional Keywords: dynamic model, soil chemistry, VSD+, deposition, climate warming, ecosystems
NORA Subject Terms: Agriculture and Soil Science
Date made live: 01 Jun 2018 13:09 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/520198

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...