

Article (refereed) - postprint

Korhonen, Panu; Palosuo, Taru; Persson, Tomas; Höglind, Mats; Jégo, Guillaume; Van Oijen, Marcel; Gustavsson, Anne-Maj; Bélanger, Gilles; Virkajärvi, Perttu. 2018. **Modelling grass yields in northern climates – a comparison of three growth models for timothy**.

© 2018 Elsevier B.V. This manuscript version is made available under the CC-BY-NC-ND 4.0 license <u>http://creativecommons.org/licenses/by-nc-nd/4.0/</u>

This version available http://nora.nerc.ac.uk/520161/

NERC has developed NORA to enable users to access research outputs wholly or partially funded by NERC. Copyright and other rights for material on this site are retained by the rights owners. Users should read the terms and conditions of use of this material at <u>http://nora.nerc.ac.uk/policies.html#access</u>

NOTICE: this is the authors' version of a work that was accepted for publication in *Field Crops Research*. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in *Field Crops Research* (2018), 224. 37-47. <u>https://doi.org/10.1016/j.fcr.2018.04.014</u>

www.elsevier.com/

Contact CEH NORA team at <u>noraceh@ceh.ac.uk</u>

The NERC and CEH trademarks and logos ('the Trademarks') are registered trademarks of NERC in the UK and other countries, and may not be used without the prior written consent of the Trademark owner.

1	Modelling grass yields in northern climates - a comparison of three growth models for timothy
2	
3	Panu Korhonen ^{a*} , Taru Palosuo ^a , Tomas Persson ^b , Mats Höglind ^b , Guillaume Jégo ^c , Marcel Van
4	Oijen ^d , Anne-Maj Gustavsson ^e , Gilles Bélanger ^c , Perttu Virkajärvi ^a
5	
6	^a Natural Resources Institute Finland (Luke), Halolantie 31A, 71750, Kuopio, Finland
7	^b Norwegian Institute of Bioeconomy Research (NIBIO), Postvegen 213, 4353 Klepp Stasjon,
8	Norway
9	^c Agriculture and Agri-Food Canada (AAFC), 2560 Hochelaga Boulevard, Québec City, Québec, G1
10	V 2J3, Canada
11	^d Centre for Ecology and Hydrology (CEH), Bush Estate, Penicuik EH26 0QB, UK
12	^e Swedish University of Agricultural Sciences (SLU), SE-901 83 Umeå, Sweden
13	
14	*Corresponding author: panu.korhonen@luke.fi

15

ABSTRACT 16

17 During the past few years, several studies have compared the performance of crop simulation models 18 to assess the uncertainties in model-based climate change impact assessments and other modelling studies. Many of these studies have concentrated on cereal crops, while fewer model comparisons have 19 been conducted for grasses. We compared the predictions for timothy grass (Phleum pratense L.) yields 20 for first and second cuts along with the dynamics of above-ground biomass for the grass simulation 21 models BASGRA and CATIMO, and the crop model STICS. The models were calibrated and evaluated 22 23 using field data from seven sites across Northern Europe and Canada with different climates, soil conditions and management practices. Altogether the models were compared using data on timothy 24

25 grass from 33 combinations of sites, cultivars and management regimes. Model performances with two calibration approaches, cultivar-specific and generic calibrations, were compared. All the models 26 27 studied estimated the dynamics of above-ground biomass and the leaf area index satisfactorily, but tended to underestimate the first cut yield. Cultivar-specific calibration resulted in more accurate first 28 29 cut yield predictions than the generic calibration achieving root mean square errors approximately one third lower for the cultivar-specific calibration. For the second cut, the difference between the 30 calibration methods was small. The results indicate that detailed soil process descriptions improved the 31 overall model performance and the model responses to management, such as nitrogen applications. The 32 results also suggest that taking the genetic variability into account between cultivars of timothy grass 33 also improves the yield estimates. Calibrations using both spring and summer growth data 34 35 simultaneously revealed that processes determining the growth in these two periods require further 36 attention in model development.

37 Keywords

38 Forage grass, model comparison, timothy, uncertainty, yield

39 INTRODUCTION

Process-based crop simulation models that simulate crop growth, development, and yields, while taking 40 into account the interactions between the crop genotype, management and environmental factors are 41 42 increasingly used to support decision making and planning in agriculture, including aspects related to animal feed and forage production (Kipling et al., 2016). Several studies have recently been published 43 on the comparison of the performance of crop simulation models under different environmental 44 45 conditions in an effort to improve crop models and climate impact assessment projections and to gain an understanding of the uncertainties related to these assessments (see, e.g. Asseng et al., 2013, Asseng 46 et al. 2015, Bassu et al. 2014, Pirttioja et al. 2015). In addition, there have been model-based evaluations 47 48 of adaptation options to climate change (Ruiz-Ramos et al., 2017, Chenu et al. 2017).

49 To date, model comparisons and model ensemble studies have mostly focused on cereal crops and fewer 50 model comparisons have been published for perennial forage grasses. Still, many crop models or crop modules of farm system models, e.g. STICS (Jégo et al., 2013) and APSIM (Keating et al. 2003), can 51 52 also simulate forage grasses. There are also separate forage grass models (e.g. BASGRA, Höglind et 53 al., 2016; CATIMO, Bonesmo and Bélanger, 2002a) that have comparable process descriptions to those 54 in cereal crop models, such as radiation interception and use efficiency. Forage grass production 55 systems, however, have specific characteristics that should be taken into account in simulation models. Almost all above-ground biomass is harvested several times during growing seasons and consequently 56 57 the status of the plants after cuttings and regrowth are key issues for forage grass models (Jing et al. 2013). Another important aspect is the dynamically changing feed quality during forage development 58 (Bonesmo et al. 2002b; Gustavsson and Martinsson, 2001). Finally, grass levs are typically perennial, 59 which makes it essential to simulate the growth initiation in the spring (Bélanger et al. 2008) and thus, 60 61 makes it important to develop the models to simulate relevant processes related to over-wintering particularly for forage grasses at high latitudes, where there is virtually no cold-season growth (Höglind 62 et al. 2016). 63

64 To our knowledge, those forage grass model comparisons that have been conducted (e.g. Hurtado-Uria 65 et al., 2013) were restricted to regions with rather homogeneous climate conditions, without testing their performance and suitability over a wide range of climate conditions. Even though the forage grass 66 modules of current farm system models and the separate forage grass models that are referred to above 67 68 are considered process-based, they all include several empirically derived functions. Therefore, one 69 could assume that the predictability of such forage grass models or modules would vary with climatic 70 and other environmental conditions. Hence, a comparison of crop simulation models across a wide 71 range of conditions is a key to strengthening the understanding of the effects of different model process 72 descriptions, i.e. model structures, on yield and quality related output variables.

73 Moreover, varying the genetic variability and climate and soil conditions within the calibration and 74 evaluation datasets could provide knowledge about the calibration procedures as well as knowledge 75 about model application strategies. Persson et al. (2014) found that the observed dry matter yield for one variety (cv Grindstad) was more accurately predicted by LINGRA model (the predecessor of the 76 77 BASGRA model) when the parameters were calibrated against data from several locations within a region with heterogeneous climate and soil conditions than when the parameters were calibrated against 78 79 data from only one location. However, to the best of our knowledge no study has been published where 80 the effects varying the genetic variability in calibration datasets on grassland dry matter yield were evaluated. Such a study providing knowledge about model sensitivity to genetic variability could be 81 82 used to arrange field trial data for model calibration. It could also give useful information about how 83 calibrate and apply grassland models for genetically heterogeneous conditions, such as in estimations 84 of regional or national grassland productivity.

Timothy (Phleum pratense L.) is one of the most important forage grass species in the cold temperate climate zone of the northern hemisphere, including Canada and the Nordic countries in Europe. Management of timothy swards varies considerably according to the climate and soil conditions where it is grown and with its end use. Timothy is grown either in pure stands or mixed with other grasses or leguminous species for three years or longer before it is ploughed up and reseeded or rotated with an annual crop, usually a cereal crop. When used to feed dairy cows, timothy is often cut and harvested at

91 the mid-heading stage to optimize the nutritive value and yield. When used as feed for beef cattle and sheep, timothy is usually cut at later stages, which generally results in higher yields but a lower nutritive 92 value. The number of harvests per year usually varies from two to four depending on the cutting 93 strategy, the cultivar-specific characteristics such as the development rate and its effect on nutrient 94 95 composition, as well as the climate and weather conditions. In addition, plant characteristics, such as the maximum tiller height, pattern of development of vegetative and reproductive tillers and the 96 97 leaf/stem ratio, vary between cultivars, which have been bred to meet different regional climate 98 conditions and management practices (Virkajärvi et al., 2010). Considering the range of environmental 99 conditions, alternative management strategies and the genetic variability of timothy, a model 100 comparison with timothy data covering different environmental conditions, a wide set of different 101 cultivars and alternative management options would provide material for critical testing of crop 102 simulation models.

103 The overall aim of this study was to assess and compare the ability of simulation models to accurately simulate the growth and yield of the first and second annual cuts of timothy under different 104 environmental conditions. To this end, the performance of two grass simulation models, BASGRA and 105 106 CATIMO and the soil-crop model STICS were assessed with a comprehensive experimental dataset 107 collected from across Northern Europe and Canada with varying management practices. The three models were calibrated either specifically for each cultivar (cultivar-specific calibration) or for a 108 109 number of cultivars all together (generic calibrations) and the performance of the models with both 110 calibrations was tested.

111 MATERIALS AND METHODS

112 Models

113 The three models simulating the growth and development of timothy as a function of weather, soil and 114 crop management factors included in the comparison were: CATIMO (R-version 1.0; Bonesmo and 115 Bélanger, 2002a, b; Jing et al. 2012 and 2013), BASGRA (version 2014; Höglind et al., 2001; van Oijen 116 et al., 2005; Höglind et al., 2016) and STICS (v8.4; Brisson et al., 1998, 2008; Jégo et al., 2013; Jing et al., 2017). All three models use the radiation use efficiency (RUE) approach instead of calculating the 117 photosynthesis and respiration in detail and they use a simple leaf area index (LAI) to calculate light 118 interception (Table 1). They all cover soil water and N effects in the simulation of grass growth, but the 119 120 effect of excess water is only taken into account by the STICS model. The representation of soil processes differs considerably between the three models. While in the STICS model there are detailed 121 sub-routines for soil water and N balances, the CATIMO and BASGRA models are simpler with a 122 123 description of the root zone as one single homogenous layer. Tillering dynamics and vernalisation are 124 simulated only in BASGRA. The CATIMO model starts biomass accumulation in spring when the daily mean temperature exceeds the base temperature (default 5 °C) (Table 1). In this study, where over-125 wintering was not included, we initiated the spring growth in the BASGRA simulation the first time of 126 127 the year that the mean air temperature exceeded 5°C for five consecutive days or longer. In the STICS 128 simulation, biomass accumulation starts after model initialization as soon as the daily average air 129 temperature is above the minimum threshold temperature for net photosynthesis (parameter temin). In the case of multi-annual simulations, winter dormancy processes can also be simulated with STICS, but 130 they were not used in this study. 131

132

133 Table 1. Approaches used by the three models for the major processes determining crop growth and

134 development.

	Models		
Process	BASGRA	CATIMO	STICS
Leaf area development and light interception ^a	S	S	S
Light utilization ^b	RUE	RUE	RUE
Root distribution over depth ^c	-	-	Sig
Drought stress ^d	ETa/ETp	ETa/ETp	ETa/ETp
Water dynamics ^e	С	С	С
Evapo-transpiration ^f	PM	PM	Р
Effect of nitrogen ^g	NSNS	RNC	RNC
Tillering dynamics ^h	С	-	-
Vernalisation ⁱ	SV	-	-
Start of spring growth ^j	5D	5Drm	1D
Regrowth dynamics ^k	SSDG	RDG	RDG
Soil C/N model ¹	CN, P(3)	Ν	CN, P(3), B

135 ^aLeaf area development and light interception: S = simple approach (e.g. leaf area index (LAI))

^bLight utilization or biomass growth: RUE = simple (descriptive) radiation use efficiency approach

137 ^c Root distribution over depth: Sig = sigmoidal

^dDrought stress: ETa/ETp = actual to potential evapotranspiration ratio

^e Water dynamics approach: C = capacity approach

140 ^f Method to calculate evapotranspiration: P = Penman; PM = Penman–Monteith

141 ^gEffect of nitrogen: RNC = relative nitrogen concentration as the ratio of the actual N concentration to the critical N

142 concentration (Bélanger & Richards, 1997), NSNS = N source/N sink balance dependent growth

^hTillering dynamics: C = Three different tiller categories (dependent on internal as well as external factors)

¹44 ^IVernalisation: SV = simple approach (threshold temperature)

^j 5D = the first day of 5 consecutive days above base temperature, 5Drm = the first day when the running mean of a five-day

daily mean temperature is above base temperature; 1D = 1 day above base temperature (start defined by model user)

147 ^kRegrowth dynamics: RDG = reserve dependent growth, SSDG= source (LAI, reserves) and sink (tillers) dependent

148 regrowth

149 ¹Soil C/N model: CN = soil CN model, N = soil N model with only mineral N; P(x) = number of organic matter pools; B = rate of the source of th

150 microbial biomass pool

151 Experimental sites

- 152 For the model intercomparison, crop data were obtained from field experiments at sites across
- 153 Northern Europe and Canada with different cultivars (Table 2, Fig. 1).

154

155 **Fig. 1**. Locations of the experimental sites.

156

Together, these sites comprise a wide range of climate, soil and management practices that are associated with timothy production in its main production regions of Canada and Northern Europe. Data from two to three growing seasons per site were available and they covered altogether 33 different combinations of site, year, cultivar and management practices (below called treatments) (Table S1). The cultivars differed between the sites, except that the cultivar 'Champ' was used in both Fredericton and Québec (Table 2).

163

Location	Position lat/lon/alt (m.a.s.l)	Precipit ation (mm yr ⁻	Mean annual tempera ture (°C)	Data description	Period	Cultivar	Parallel treatments	Observed crop data*
Maaninka , Finland	63.14N / 27.32E / 90 m	560	4.2	Virkajärvi et al., 2012	2006- 2007	Tammis to II	-	DM, sward height, LAI
Rovaniem i, Finland	66.35N / 26.01E / 106 m	610	1.0	Nissinen et al., 2010	1999- 2001	Iki	two N applicatio n rates	DM, sward height, DM _{leaf} , DM _{stem}
Umeå, Sweden	63.45N / 20.17E / 12 m	595	3.3	Gustavsson and Martinsson 2001	1995- 1996	Jonatan	-	DM, sward height, DM _{leaf} , DM _{stem}
Særheim, Norway	58.36N / 5.39E / 90 m	1392	8.0	Höglind et al., 2005	2000- 2002	Grindsta d	early and late cutting regimes	DM, LAI, SLA, tiller density
Fredericto n, Canada	45.55N / 66.32W / 35 m	1108	5.7	Bélanger and Richards, 1997	1991- 1993	Champ	varying N applicatio n rates	DM, DM _{leaf} , DM _{stem} , LAI
Québec, Canada	46.47N / 71.07W / 75 m	1009	5.3	Bélanger et al., 2008	1999- 2001	Champ	three N applicatio n rates	DM
Lacombe, Canada	52.28N / 113.44W / 860 m	429	3.5	Jing et al., 2012; Jégo et al., 2013	2004- 2005	Climax	-	DM, LAI

Table 2. Characteristics of experimental sites and their climatic conditions for the study years.

165 *Abbreviations: DM = dry matter yield, $DM_{leaf} = dry$ matter yield of leaves, $DM_{stem} = dry$ matter yield of stems, LAI = leaf area index, SLA

```
166 = specific leaf area
```

167

168 Setup of model comparison

169 Information provided for model calibration and runs

Comprehensive data on crop performance and management, as well as soil and weather conditions were obtained from all sites in the study to allow for detailed model calibrations and evaluations. These were conducted for each model independently. We randomly selected one treatment for model evaluation from each treatment type from sites with more than two treatments or years, i.e. Rovaniemi, Særheim, Québec, and Fredericton (in total 9 treatments) and used the remaining 24 for model calibration (Table S1). This approach differs from previous model comparisons (Palosuo et al., 2011; Rötter et al., 2012;
Asseng et al. 2013) that applied a "blind test" approach, i.e. model users were not provided with the
observed data for crop yields, biomasses or other variables delivered as model results. Here instead, we
tried to comprehensively apply all the data available for calibration treatments.

The input data included observed daily weather (i.e. minimum and maximum temperature, precipitation, relative air humidity, wind speed and global radiation), sward and soil management (cut height, cutting and fertilisation dates and amounts) and basic information on soil properties (soil texture, hydraulic characteristics and the pH). Standard deviations (SD) were calculated for the Maaninka and Rovaniemi crop datasets based on original replicates. For other datasets, replicate data were not available and the SDs were calculated assuming a coefficient of variation with a value of 0.05 for the yield, 0.1 for LAI, and 0.5 for other observations.

186 <u>Simulation setup</u>

187 The models were run on an annual basis, starting simulations for each growing season in the spring. The starting dates for the simulations were determined with the typical criteria used with each model. 188 For the CATIMO model the start of simulations was determined by a threshold temperature for the 189 running mean of a five-day daily mean temperature (default 5 °C). For BASGRA, the simulations 190 191 started the first time of the year that there were at least five consecutive days with a mean daily air temperature above 5°C. For the STICS model, simulations were initialized on 15 April at all sites, 192 except Rovaniemi (10 May) to account for the very short growing season and at Særheim (1 March) to 193 account for the mild winter conditions prevailing on the south-west coast of Norway. Although timothy 194 swards are perennial, winter seasons were not simulated because not all of the compared models covered 195 196 the relevant winter processes, and the focus in this study was on comparing models for the growth estimates during the growing seasons. Simulations were carried out using a daily time step in all models 197 198 and they lasted until the last observation of summer growth in the observed data.

199 <u>Calibration of the models</u>

200 The models were calibrated by adjusting their parameters so that their output fitted the provided 201 observed data either: 1) separately for each cultivar (*cultivar-specific calibration*), or 2) using data for 202 all cultivars at all sites together (generic calibration). The BASGRA and CATIMO models were calibrated using Bayesian techniques. Both calibrations were performed by means of Markov Chain 203 204 Monte Carlo (MCMC) sampling using the Metropolis algorithm (Van Oijen et al., 2005). Beta distributions for all parameters under calibration were used. The chain length, i.e. the number of model 205 runs was 150,000 with BASGRA and varied from 150,000 to 200,000 with CATIMO. The prior ranges 206 and the maximum a posteriori (MAP) values of the parameters for BASGRA and CATIMO are listed 207 208 in Tables S2 and S3, respectively. 75 for BASGRA and 8 parameters for CATIMO were adjusted for 209 both cultivar-specific and generic calibrations. Parameters that were not included in the calibration and the prior probability distributions of calibrated parameters for CATIMO were taken from earlier 210 211 CATIMO studies (Bonesmo et al., 2002a, b; Jing et al., 2011 and 2012). The prior probability 212 distributions for BASGRA were based on common knowledge about the parameters and assumptions 213 taking into account results from previous model evaluations for the cultivar Grindstad under conditions 214 representing northern Europe (Persson et al., 2014).

The STICS model calibration was done using the STICS built-in optimization tool based on a simplex algorithm (Nelder and Mead, 1965). For the generic calibration, 17 parameters (Table S4) were simultaneously calibrated by minimizing the RMSE between simulated and measured biomass and the LAI. Values of other parameters were those used in Jégo et al. (2013). For the cultivar-specific calibration, a sub-selection of 6 parameters (identified as "cultivar parameters" in STICS) was calibrated, while for the other 11 parameters the same values as in the generic calibration were used.

221 Methods used for evaluating model performance

First, the model performances for the timothy growth were evaluated by comparing sequential aboveground biomass observations with the corresponding simulated values during growth (Fig. 2). This was done for spring growth (from the start of growth in spring to the first cut) and summer growth (from the first cut to the second cut) periods separately. Then, the model performance for the first and second cut 226 yields were assessed, i.e. the observed and simulated above-ground biomass for the latest observed data

227 point of spring and summer growths were compared.

Fig. 2. Simulated (cultivar-specific calibration) and observed (a) above-ground biomass (dry matter) and (b) leaf area index (LAI), using three timothy models at Særheim in 2001 (treatment 11). Error bars represent ± 1 standard deviation. The above-ground biomass dynamics for all sites are shown in Figure S1.

The models and the calibration methods were evaluated based on their prediction of above-ground biomass and LAI dynamics as well as first and second cut yields. Observed measurements were considered true values, though we acknowledge that there is always uncertainty in the measurements. The root mean square error (RMSE) was used to show the average difference between the model estimates and the measurements.

$$RMSE = \sqrt{N^{-1} \sum_{i=1}^{N} (P_i - O_i)^2}$$
(1)

where O_i is the observed value and P_i is the model prediction and N is the number of estimateobservation pairs. In addition, normalized RMSE values (RMSE%) were calculated by dividing RMSEs by the mean values of observations.

The relative mean bias error (rMBE) was used as an indicator to describe whether the model-predictions
were over- or underestimates and their relative magnitude.

$$rMBE = \frac{N^{-1} \sum_{i=1}^{N} (P_i - O_i)}{N^{-1} \sum_{i=1}^{N} (O_i)}$$
(2)

Simulated yield responses to spring N fertilisation were analysed using correlations between fertiliser
 application rates and simulated final spring growth yields for all experiments and by comparing these
 results to corresponding correlations for observed yields.

242 RESULTS

243 Dynamics of above-ground biomass and leaf area index

The start of spring growth varied between the models with STICS simulating a 21-day earlier start of spring growth on average than the other two models with the cultivar-specific calibration (Fig. S1). With the cultivar-specific calibration, the spring growth was simulated most accurately by STICS (rMBE = -0.01). BASGRA (rMBE = -0.12) and CATIMO (rMBE = -0.13) tended to underestimate the above-ground biomass (Fig. 3).

b)

Fig. 3. Relative mean bias error (rMBE) of the simulated above-ground biomass of three timothy models grouped in quantiles with overestimations shown in red shades and underestimations shown in blue shades (see colour scale) during the spring growth (Cut 1) and summer growth (Cut 2) for all 33 treatments simulated with (a) cultivar-specific calibration and (b) generic calibration.

249

The summer was best reproduced by the BASGRA model, albeit with an underestimation (rMBE = - 0.16), whereas STICS (rMBE = 0.22) and CATIMO (rMBE = 0.27) overestimated the above-ground

rMBE

biomass for first summer growth. In terms of RMSEs, the model performance for the spring growth for
the treatments used for model evaluation was best in the STICS model (Table 3). For the summer growth
and the resulting second cut, however, the RMSEs in the BASGRA and STICS models were similar but
fewer than in the CATIMO model (Table 3).

Table 3. The mean of site-specific root mean square errors (RMSE) for the simulated above-ground
 biomass (g DM m⁻²) from the calibration and model evaluations of three timothy models during the

spring and summer growth periods.

Model	BASGRA				CATIMO				STICS				
Calibration	cultivar	-specific	generic		cultivar	cultivar-specific		generic		cultivar-specific		generic	
	Spring growth	Summer growth	Spring growth	Summer growth	Spring growth	Summer growth	Spring growth	Summer growth	Spring growth	Summer growth	Spring growth	Summer growth	
Mean over all	120	73	178	87	113	190	168	142	87	92	126	104	
(n = 33)													
Mean over calibration	90	70	159	86	105	183	167	146	85	95	116	111	
treatments $(n = 24)$													
Mean over evaluation treatments	199	83	227	93	135	210	171	132	94	81	153	83	
(n = 9)													

²⁵⁹ 260

The accuracy of the simulated above-ground biomass dynamics for calibration treatments was better than that for the treatments used for evaluating model performance; the RMSEs for the spring growth were from 10% to 55% smaller for the calibration treatments than for the evaluation treatments depending on the model (Table 3).

For all three models, the cultivar-specific calibration resulted in greater simulation accuracy than the generic calibration for the spring growth (Fig. 3). The mean RMSEs of all treatments were smaller with the cultivar-specific calibration than with the generic calibration for BASGRA (-33%), CATIMO (-33%) and STICS (-31%) (Table 3). For the summer growth, the mean RMSEs for all treatments were smaller with the cultivar-specific calibration than with the generic calibration for BASGRA (-16%) and STICS (-12%), whereas for CATIMO the mean RMSEs were 34% higher with the cultivar-specific calibration than with the generic calibration (Table 3).

All three models performed relatively well in simulating LAI dynamics (Fig. S2). The RMSEs for calibration (altogether over 12 treatments at four sites) and evaluation (over two treatments in Særheim

274	and two in Fredericton) were 1.66 and 1.75 $m^2 m^{-2}$ for BASGRA, 1.72 and 1.57 $m^2 m^{-2}$ for CATIMO
275	and 1.25 and 1.69 $m^2 m^{-2}$ for STICS, respectively. The CATIMO model tended to simulate high LAI
276	values for the summer growth period when LAI data was not available for calibration (Fig. S2).

277 First and second cut yields

For both cultivar-specific and generic calibrations, the first cut yields were mostly underestimated by all models (Fig. 4). The estimates simulated by STICS were closer to the observed yield than those simulated by BASGRA and CATIMO. The first cut performance of all models for the model evaluation treatments was somewhat weaker than their performance for calibration treatments. For the second cut, STICS provided the most accurate yield estimates, while BASGRA somewhat underestimated the yields on average on all sites and CATIMO systematically overestimated the second cut yields in Québec (Fig. 4).

285

286 a)

292 Different study sites are depicted with different symbols. The 1:1 line represents perfect agreement

along with the normalized root mean square errors (RMSE%).

The ranges of the simulated estimates of first and second cut yields between the models were not affected by the calibration method used except for the second cut in Québec where the range clearly widened when the cultivar-specific calibration was used (Fig. 5). The ranges of both calibration methods (generic or cultivar-specific) were close to each other and no systematic differences were observed. In most treatments, the ranges of both calibration methods overlapped, at least partially. However, at some sites, the effect of the calibration methods was more noticeable. For example, in Québec the first cut

301 yield estimates with the generic calibration were clearly lower than the estimates with the cultivar-302 specific calibration. In Rovaniemi and Lacombe, on the other hand, the generic calibration provided 303 higher first cut yield estimates than the cultivar-specific calibration.

The observed first cut yield was within the simulated range for 18 treatments (Fig. 5). For the 15 remaining treatments, none of the models/calibrations could achieve the observed first cut yields, which indicates systematic under-prediction in the models. For the second cut, most of the observed yields were included in the simulated range except for one treatment in Særheim (model underprediction) and two treatments in Québec (model overprediction).

The yield estimates calculated as means and medians over the three models for first and second cuts using cultivar specific calibration were better in terms of the RMSEs for all sites, than the yield estimates of BASGRA or CATIMO (data not shown). The first cut yield estimates by the STICS model were more accurate or about same performance level than both the multi-model mean and median with both calibration methods.

314

294

315

316

Fig. 5. Yield ranges of observations and simulations by the three models for the first cut (above) and second cut (below) for all 33 treatments at the seven study sites. The evaluation treatments are marked in bold numbers on the x-axis. Observations are marked with black squares with the standard deviation as error bars. The simulation results with cultivar-specific (CS) and generic (GEN) calibrations are denoted by blue and grey bars, respectively. The site abbreviation Lac denotes the Lacombe study site.

Overall, the first cut yields correlated positively with nitrogen fertilisation in both the observed and simulated data over all studied sites and treatments (Fig. 6). The STICS model with more a detailed description of soil N mineralisation and water balance than the other two models managed to simulate yield responses to increasing N fertilisation more accurately than the BASGRA and CATIMO models, which both underestimated the N fertilisation response.

Fig. 6. Regression lines for observed and simulated first cut yields as a function of the N fertilisationrate in the spring.

330

327

331 DISCUSSION

332 Model performances

This study is, to our knowledge, the first comparison of yield simulations from models to simulate timothy, and it shows that the three models estimated the dynamics of above-ground biomass and LAI satisfactorily, although the estimated ranges of the simulation results between the models were quite wide. Despite several sequential observations of the above-ground biomass and LAI provided for model calibration, the model results for many treatments did not match the observed values. The simulated values for summer growth and the resulting yield for the second cut were generally very good, although one model (CATIMO) could not cover the obvious N limitation at one site (Québec).

340 The simulation accuracy of the three models was roughly the same as the model performances 341 documented in earlier studies of these three models (Jing et al., 2012; Jégo et al., 2013; Persson et al., 342 2014). The RMSE% for the yields of evaluation treatments with cultivar-specific calibration varied between 22% and 45% for the first cut and between 23% and 74% for the second cut (Fig. 4). In a 343 344 previous study, Jégo et al. (2013) found the STICS model simulated timothy above-ground biomass at 345 Canadian study sites used for model evaluation to an RMSE% of about 16% for spring growth and 89% 346 for summer growth. The reduction of the values for the optimum and maximum temperature for 347 photosynthesis (teoptbis and temax) compared to the previous calibration probably contributed to the 348 better simulation of the summer growth in the STICS model.

The CATIMO model, on the other hand, has been found to simulate the yield with an accuracy of 24% (RMSE%) for the first cut and 30% for the second cut (Jing et al., 2012), which are lower figures than those observed in this study. Summer growth dynamics and the second cuts yields were generally well covered in the CATIMO model, but it clearly overestimated the second cut yields in Québec. At that site, there were no N applications for summer growth and the crop growth was probably N-limited. The CATIMO model could not satisfactorily take this into account. The poor accuracy of the CATIMO model in simulating the summer growth, primarily with no applied N, at the Québec site has also been noted by Jing et al. (2012) and also the poor performance for the spring growth with no applied N has
been noted by Bonesmo et al. (2005) and Jing et al. (2011).

In an earlier study by Persson et al. (2014), the accuracy (RMSE%) of the LINGRA model, the 358 predecessor of BASGRA, was similar for the first cut yield (43%) and higher for the second cut yield 359 360 (46%) than was observed in this study. The BASGRA model underestimated the first cuts yields, which is in contrast with the overestimation of the first cut yield by the LINGRA model in a study by Persson 361 et al. (2014) where the model was calibrated for Særheim in Norway and validated for several locations 362 363 in the Nordic region of Europe. However, the generally higher observed yields used for calibration at Særheim than at the evaluation sites might explain some of the overestimation of the yields at the latter 364 sites. Moreover, the earlier version of the LINGRA model did not simulate nitrogen functions, which 365 may explain some of the differences between the two model evaluations. 366

367 The simulation accuracy for the timothy models tested here was somewhat lower than that observed for the cereal models in model intercomparison studies in Europe. Reported RMSE% of grain yield 368 369 estimates in those studies for winter wheat were 23-38 (Palosuo et al., 2011) and for spring barley 19-370 33 (Rötter et al., 2012). This is not surprising considering the challenges of modelling multi-year 371 timothy swards related, for example, to the status of the crop after the previous growing season(s) and 372 over-wintering, multiple cuttings and regrowth processes. Accurate simulation of crop carbon and nitrogen reserves plays an important role both for multi-annual simulations and regrowth. Additionally, 373 374 the establishment of the root system and root turnover, both of which are still poorly understood processes, are more important for perennial crops than for annual crops. 375

Precisely simulated start of growth could be of high importance for projections of soil water status and biomass development. It has particular importance in studies projecting the impacts of climate change, as the start of growing seasons is projected to change due to increasing temperatures (Ruosteenoja et al. 2015). Here, we found differences in the simulated start of the growth of up to 55 days. However, although the STICS model simulated the start of the spring growth earlier than BASGRA and CATIMO, the early biomass accumulation was simulated relatively similarly in all models Further model evaluations where more variable winter and spring precipitation, and soil water patterns are included
could reveal information about how general this insensitivity of biomass prediction to spring
initialization date is.

385 Model calibrations and input data

386 In contrast to the blind-test approach applied in some earlier crop model intercomparison studies (e.g. Palosuo et al., 2011; Rötter et al., 2012), here a detailed calibration of the models was allowed. 387 Calibration was considered particularly important as the study involved sites and cultivars from two 388 different continents including a large variation in conditions, such as the length of the growing season 389 390 and the winter period, air temperature and precipitation patterns, day length and soil type. The evaluation treatments from sites with more than two treatments were used as an independent test of the 391 model performance. Our hypothesis that cultivar-specific calibration would work better than generic 392 393 calibration was confirmed for the first cut, but for the second cut the results were not so clear. This 394 indicates that taking into account the genetic variability between cultivars could improve estimations of the production potential of this species, particularly for the first cut. Persson et al. (2014) showed that 395 site-specific calibration of the BASGRA model provided more precise results on the site level, whereas 396 for the whole Nordic region, wider calibration provided better results. In our case, for some sites, the 397 398 small quantity of observed data for calibration reduced the information available for cultivar-specific calibration so much that the generic calibration provided more stable results. For example, for Québec 399 there was only one DM observation for the summer growth period. 400

The calibration data used in our study were exceptionally comprehensive when compared to the calibration data used in recent crop model intercomparisons (e.g., Asseng et al., 2013). The data included several sequential data series for various treatments covering altogether more than 1,500 observations. The uncertainty of individual yield observations was assessed from replicates from Finnish sites (Maaninka and Rovaniemi) from where they were available. The standard deviation of those observations (27 g m⁻²) was relatively close to that reported in the literature for yields in field trials (e.g. 10.5 to 14.8 g m⁻² in Gustavsson et al. (2001)). We did not apply any weighting of the data even in the generic calibration, which means that sites with more observations had more weight than sites with fewer treatments and observations. In our case this meant, for example, that the Saerheim site in Norway got more weight in generic calibrations than other sites. However, a site by site analysis showed that no correlation was observed between model performance with generic calibration and the amount of observed data from the site used for calibration (Table S5). This result indicates that the simple approach used without weighting was reasonable.

The underestimation of the first cut yield and slight overestimation of the second cut yield may indicate that the growth descriptions of the models and the parameters related to them are too stiff when calibrated simultaneously using data from both the spring growth and the summer period. This might reflect a need for improved understanding of the processes determining timothy growth during different stages of the growing season. While using the current models for seasons with two or more cuts, it can also be hypothesized that calibrating the models with data including third and fourth cuts could lead to even higher compromise between the cuts.

421 Perspectives on model improvements

422 The STICS model gave the most accurate overall yield estimates over all treatments and this suggests that a detailed description of soil processes improves yield simulations over variable sites and growing 423 seasons. STICS also better captured the effects of different N fertilisation rates on the first cut yield 424 425 (Fig. 6), although the CATIMO model uses the same approach for simulating N effects. This result 426 could be a consequence of a better simulation of soil N mineralisation and water balance in STICS. Both of these processes affect the N availability for plants. Generally, the simulation of N cycling, 427 including residual N and mineralization, as well as N availability remains challenging for simulating 428 429 the growth of perennial forage grasses (Ehrhardt et al. 2018).

430 Our analysis only concentrated on the spring growth and the first summer growth. More complete 431 annual yield estimates would also require simulations of a second summer growth on sites and years 432 where more than two cuts are taken. This is particularly of relevance as the growing seasons in northern 433 latitudes are expected to get longer with changing climate (Ruosteenoja et al.2016). The proportion of leaves to stems is usually very high in the autumn when a third cut would be taken and the nutritivevalue seems to differ from that of the previous cuts.

Persson et al. (2014) noticed in their LINGRA model evaluation that the model performance also depended on the ley year, since the establishment method affected the DM accumulation in the first post-seeding ley year and these effects were not covered by the evaluated model. We observed a similar trend. The first cut yield simulation of all models improved with increasing ley years at the Québec site (Table S5). This indicates that processes affecting yield development, e.g., overwintering of plants, over the life cycle of timothy swards are not yet fully covered by the evaluated models.

Multi-year simulations for conditions where the winter conditions often play a major role in yield 442 443 formation require models able to simulate winter survival. The data used in this study were for hardy winter cultivars in the given regions and therefore winter survival was expected to play only a minor 444 role in yield development. For example, the winter damage sustained by the cultivar Tammisto II in 445 northernmost location of the study, Rovaniemi, was observed to be less than 6.5 % in the official variety 446 trials (Laine et al., 2016). Although the effect of winter conditions on plant density is not simulated in 447 448 STICS, Jing et al. (2017) showed that the model performed well in predicting harvested biomass, soil 449 moisture and soil mineral nitrogen of a timothy field for three consecutive years in Eastern Canada. Of 450 the models used in this study, the BASGRA model is able to predict the winter survival of timothy grass, but the winter module was not utilised in this study. 451

In addition to the yields, which were the focus of this study, nutritive value of forage crops is of importance for an integrated assessment of the effect of climate change on farming systems. Our next step will be to compare the performance of the three models for simulating the nutritive attributes of timothy grass.

456 CONCLUSIONS

457 A comparison of simulation results for timothy growth in this study, using comprehensive data and458 advanced calibration methods, revealed substantial differences in the responses of the compared models

459 to interannual climate and agro-management. Cultivar-specific calibration that was mostly done at site level yielded more accurate estimates of the first cut yields and preceding growth dynamics than the 460 generic calibration applying data from all sites. Still, there was a high degree of variation among the 461 simulated yield results and during some seasons at some sites, all three models systematically under- or 462 463 overestimated the growth. This suggests that the current process descriptions in the models were not flexible enough to allow for the observed range of growth dynamics and related variables. There are 464 465 obviously still needs for improvement in understanding the processes and their model descriptions, 466 particularly regarding the summer growth and responses to nitrogen applications. These improvements 467 are necessary to achieve reliable model applications across a wide range of current and future conditions. 468

469 ACKNOWLEDGEMENTS

470 Many thanks go to Vern Baron who kindly provided the data of the Lacombe site for the study. This work was conducted in the context of MACSUR (Modelling European Agriculture with Climate 471 472 Change for Food Security), a project launched by the Joint Research Programming Initiative (JPI) on 473 Agriculture, Food Security and Climate Change. The authors acknowledge financial support from the 474 following sources: the European Agricultural Fund for Rural Development (NuRa); the Ministry of Agriculture and Forestry (FACCE-MACSUR, MalliNurmi); the Academy of Finland (NORFASYS 475 (decision nos. 268277 and 292944), PLUMES (decision nos. 277403 and 292836) projects); A-base 476 funding of Agriculture and Agri-Food Canada; The Research Council of Norway and the Natural 477 Environment Research Council of the UK through the FACCE-JPI MACSUR knowledge hub. 478

479 **REFERENCES**

480	Asseng, S., Ewer	, F., M	Iartre, P.,	Rötter, R.P.	, Lobell, D.B.,	Cammarano, D.,	, Kimball, B.A.,	Ottman
-----	------------------	---------	-------------	--------------	-----------------	----------------	------------------	--------

481 M.J., Wall, G.W., White, J.W., Reynolds, M.P., Alderman, P.D., Prasad, P.V.V., Aggarwal, P.K.,

- 482 Anothai, J., Basso, B., Biernath, C., Challinor, A.J., De Sanctis, G., Doltra, J., Fereres, E., Garcia-
- 483 Vila, M., Gayler, S., Hoogenboom, G., Hunt, L.A., Izaurralde, R.C., Jabloun, M., Jones, C.D.,

- Kersebaum, K.C., Koehler, A.K., Müller, C., Naresh Kumar, S., Nendel, C., O'Leary, G., Olesen,
 J.E., Palosuo, T., Priesack, E., Eyshi Rezaei, E., Ruane, A.C., Semenov, M.A., Shcherbak,
 I., Stöckle, C., Stratonovitch, P., Streck, T., Supit, I., Tao, F., Thorburn, P., Waha, K., Wang, E.,
 Wallach, D., Wolf, J., Zhao, Z., Zhu, Y., 2015. Rising temperatures reduce global wheat
 production. Nat. Clim. Change. 5, 143–147.
- 489 Asseng S., Ewert, F., Rosenzweig C., Jones J.W. Hatfield, J. L., Ruane, A. C., Boote, K. J., Thorburn,
- 490 P. J., Rötter, R. P., Cammarano, D., Brisson, N., Basso, B., Martre, P., Aggarwal, P. K., Angulo,
- 491 C., Bertuzzi, P., Biernath, C., Challinor, A. J., Doltra, J., Gayler, S., Goldberg, R., Grant, R., Heng,
- 492 L., Hooker, J., Hunt, L. A., Ingwersen, J., Izaurralde, R. C., Kersebaum, K. C., Müller, C., Naresh
- 493 Kumar, S., Nendel, C., O'Leary, G., Olesen, J. E., Osborne, T. M., Palosuo, T., Priesack, E.,
- 494 Ripoche, D., Semenov, M. A., Shcherback, I., Steduto, P., Stöckle, C., Stratonovich, P., Streck,
- 495 T., Supit, I., Tao, F., Travasso, M., Waha, K., Wallach, D., White, J. W., Williams, J. R., Wolf, J.,
- 2013. Uncertainty in simulating wheat yields under climate change. Nat. Clim. Change 3 (9), 827832.
- Bassu, S. et al., 2014. How do various maize crop models vary in their responses to climate
 change factors? Glob. Change Biol., 20(7): 2301-2320.
- Bélanger, G., Tremblay, G. F., and Mongrain, D., 2008. Yield and nutritive value of the spring growth
 of an ageing timothy sward. Can. J. Plant Sci. 88(3), 457-464.
- 502 Bélanger, G. and Richards, J. E., 1997. Growth analysis of timothy grown with varying N nutrition.
 503 Can. J. Plant Sci. 77(3), 373–380.
- Bonesmo, H., and Bélanger, G., 2002a. Timothy yield and nutritive value by the CATIMO model. I.
 Growth and nitrogen. Agron. J. 94(2), 337-345.
- Bonesmo, H., and Bélanger, G., 2002b. Timothy yield and nutritive value by the CATIMO model. II.
 Digestibility and fiber. Agron. J. 94(2), 345-350.

508	Bonesmo, H., Bélanger, G., Charmley, E., Drapeau, R., McKenzie, D. B., Michaud, R., Tremblay, G.
509	F., 2005. Timothy Yield and Nutritive Value by the CATIMO Model. III. Validation for Eastern
510	Canada. Agron. J. 97(1), 32–40.

- 511 Brisson, N., Mary, B., Ripoche, D., Jeuffroy, M.H., Ruget, F., Nicoullaud, B., Gate, P., Devienne-
- 512 Barret, F., Antonioletti, R., Durr, C., Richard, G., Beaudoin, N., Recous, S., Tayot, X., Plenet, D.,
- 513 Cellier, P., Machet, J.-M., Meynard, J.M., Delécolle, R., 1998. STICS: A generic model for the
- simulation of crops and their water and nitrogen balances. I. Theory and parameterization applied
 to wheat and corn. Agronomie 18, 311–346.
- Brisson, N., Launay, M., Mary, B., Beaudoin, N., 2008. Conceptual basis, formalisations and
 parameterization of the STICS crop model. Éditions QUAE, Versailles, France.
- Chenu K., Porter J.R., Martre P., Basso B., Chapman S.C., Ewert F., Bindi M., Asseng S. 2017.
 Contribution of crop models to adaptation in wheat. Trends in Plant Science 22, 472–490.
- 520 Ehrhardt, F., J.-F. Soussana, G. Bellocchi, P. Grace, R. McAuliffe, S. Recous, R. Sándor, P. Smith, V.
- 521 Snow, M. De Antoni Migliorati, B. Basso, A. Bhatia, L. Brilli, J. Doltra, C. D. Dorich, N. Sciences,
- 522 L. Doro, N. Fitton, E. Sciences, S. Giacomini, B. Grant, M. Harrison, S. Jones, M. Kirschbaum,
- 523 K. Klumpp, P. Laville, J. leonard, M. Liebig, M. Lieffering, R. Martin, R. S. Massad, E. Meier, L.
- 524 Merbold, A. Moore, V. Myrgiotis, P. Newton, E. Pattey, S. Rolinski, J. Sharp, W. Smith, L. Wu
- and Q. Zhang, 2018: Assessing uncertainties in crop and pasture ensemble model simulations of
- 526 productivity and N2O emissions. Global Change Biology 24: 603-616.
- 527 Gustavsson, A.-M., and Martinsson, K., 2001. Analysis of growth and nutrition value in timothy using
 528 a dynamic model. Agr. Forest. Meteorol. 107(2), 83–101.
- Gustavsson, A-M. and Martinsson, K., 2004. Seasonal variation in biochemical composition of cell
 walls, digestibility, morphology, growth and phenology in timothy. Eur. J. Agron. 20(3), 293-312.

531	Höglind, M., Schapendonk, A., Van Oijen, M., 2001. Timothy growth in Scandinavia: Combining
532	quantitative information and simulation modelling. New Phytol. 151(2), 355-367.

- Höglind, M., Hanslin, H.M., Van Oijen, M., 2005. Timothy regrowth, tillering and leaf area dynamics
 following spring harvest at two growth stages. Field Crops Res. 93(1), 51-63.
- Höglind, M., Van Oijen, M., Cameron, D., and Persson, T. (2016). Process-based simulation of growth
 and overwintering of grassland using the BASGRA model. Ecol. Model. 335, 1-15.
- Hurtado-Uria, C., Hennessy, D., Shalloo, L., Schulte, R.P.O., Delaby, L., O'Connor, D., 2013.
 Evaluation of three grass growth models to predict grass growth in Ireland. J. Agric. Sci. 151, 91–
 104.
- Jégo, G., Bélanger, G., Tremblay, G.F., Jing, Q., Baron, V.S., 2013. Calibration and performance
 evaluation of the STICS crop model for simulating timothy growth and nutritive value. Field Crops
 Res. 151, 65–77.
- Jing, Q., Bélanger, G., Baron, V., Bonesmo, H., 2011. Modelling the biomass and harvest index
 dynamics of timothy. Agron. J. 103, 1397-1404.
- Jing, Q., Bélanger, G., Baron, V., Bonesmo, H., Virkajärvi, P., 2013. Simulating the nutritive value of
 timothy summer regrowth. Agron. J. 105(3), 563-572.
- Jing, Q., Bélanger, G., Baron, V., Bonesmo, H., Virkajärvi, P., Young, D., 2012. Regrowth simulation
 of the perennial grass timothy. Ecol. Model. 232, 64-77.
- Jing, Q., Jégo, G., Bélanger, G., Chantigny, M.H., Rochette, P., 2017. Simulation of water and nitrogen
 balances in a perennial forage system using the STICS model. Field Crops Res. 201, 10-18.
- 551 Keating, B.A, Carberry, P.S, Hammer, G.L, Probert, M.E, Robertson, M.J, Holzworth, D, Huth, N.I,
- 552 Hargreaves, J.N.G, Meinke, H, Hochman, Z, McLean, G, Verburg, Snow, K V, Dimes, J.P,
- 553 Silburn, M, Wang, E, Brown, S, Bristow, K.L, Asseng, S, Chapman, S, McCown, R.L, Freebairn,

D.M, Smith, C.J, 2003. An overview of APSIM, a model designed for farming systems simulation.
Eur. J. Agron., 18, 267-288

Kipling, R. P., Bannink, A., Bellocchi, G., Dalgaard, T., Fox, N. J., Hutchings, N. J., Kjeldsen, C.,
Lacetera, N., Sinabell, F., Topp, C. F., Van Oijen, M., Virkajärvi, P., Scollan, N., 2016. Modeling
European ruminant production systems: Facing the challenges of climate change. Agric. Syst. 147,
24-37.

- Kollas C., Kersebaum K.C., Nendel C., Manevski K., Müller C., Palosuo T., Armas-Herrera, C.M.,
 Beaudoin, N., Bindi, M., Charfeddine M., Conradt, T., Constantin J., Eitzinger J., Ewert F, Ferrise
 R., Gaiser T., Garcia de Contazar-Atauri, Giglio, L., Hlavinka P., Hoffman H., Launay M.,
 Manderscheid R., MaryB., Mirchel W., Moriondo, M., Olesen J.E., Öztürk I., Pacholski A.,
 Ripoche-Wachter D., Roggero P.P., Roncossek, S., Rötter R.P., Ruget, F., Sharif B., Trnka, M.,
 Ventrella D., Waha, K., Wegehenkel, M., Weigel, H.J., Wu, L., 2015. Crop rotation modelling—
 A European model intercomparison. Eur. J. Agron. 70, 98-111.
- Laine, A., Högnäsbacka, M., Kujala, M., Niskanen, M., Jauhiainen, L., Nikander, H., 2016. Results of
 the Official Variety Trials 2008-2015. (In Finnish) Luonnonvarakeskus (Luke). Luonnonvara- ja
 biotalouden tutkimus 3/2016. 239p. http://jukuri.luke.fi/bitstream/handle/10024/531720/lukeluobio_3_2016.pdf
- 571 Nelder, J.A., and Mead, R., 1965. A simplex method for function minimization. Comput. J. 7(4), 308–
 572 313.
- 573 Nissinen, O., Kalliainen, P., Jauhiainen, L., 2010. Development of yield and nutritive value of timothy
 574 in primary growth and regrowth in northern growing conditions. Agr. Food Sci. 19, 252–268.
- Palosuo, T., Kersebaum, K.C., Angulo, C., Hlavinka, P., Moriondo, M., Olesen, J.E., Patil, R.H., Ruget,
 F., Rumbaur, C., Takac, J., Trnka, M., Bindi, M., Caldag, B., Ewert, F., Ferrise, R., Mirschel, W.,
 Saylan, L., Siska, B., Rötter, R., 2011. Simulation of winter wheat yield and its variability in

- 578 different climates of Europe: a comparison of eight crop growth models. Eur. J. Agron. 35, 103–
 579 114.
- Persson, T., Höglind, M., Gustavsson, A., Halling, M., Jauhiainen, L., Niemeläinen, O., Thorvaldsson,
 G., Virkajärvi, P., 2014. Evaluation of the LINGRA timothy model under Nordic conditions. Field
 Crops Res. 161, 87-97.
- 583 Pirttioja, N., Carter, T.R., Fronzek, S., Bindi, M., Hoffmann, H., Palosuo, T., Ruiz-Ramos, M., Tao, F., 584 Trnka, M., Acutis, M., Asseng, S., Baranowski, P., Basso, B., Bodin, P., Buis, S., Cammarano, D., 585 Deligios, P., Destain, M.F., Dumont, B., Ewert, F., Ferrise, R., Francois, L., Gaiser, T., Hlavinka, P., Jacquemin, I., Kersebaum, K.C., Kollas, C., Krzyszczak, J., Lorite, I.J., Minet, J., Minguez, 586 M.I., Montesino, M., Moriondo, M., Müller, C., Nendel, C., Öztürk, I., Perego, A., Rodríguez, A., 587 Ruane, A.C., Ruget, F., Sanna, M., Semenov, M.A., Slawinski, C., Stratonovitch, P., Supit, I., 588 Waha, K., Wang, E., Wu, L., Zhao, Z., Rötter, R.P., 2015. Temperature and precipitation effects 589 590 on wheat yield across a European transect: a crop model ensemble analysis using impact response 591 surfaces. Clim. Res. 65, 87-105.
- Ruiz-Ramos, M., Ferrise, R., Rodríguez, A., Lorite, I.J., Bindi, M., Carter, T.R., Fronzek, S., Palosuo,
 T., Pirttioja, N., Baranowski, P., Buis, B., Cammarano, D., Chen, Y., Dumont, B., Ewert, F.,
 Gaiser, T., Hlavinka, P., Hoffmann, H., Höhn, J.G., Jurecka, F., Kersebaum, K.C., Krzyszczak, J.,
 Lana, M., Mechiche-Alami, A., Minet, J., Montesino, M., Nendel, C., Porter, J.R.,Ruget, F.,
 Semenov, M.A., Steinmetz, Z., Stratonovitch, P., Supit, I., Tao, F., Trnka, M., De Wit, A., Rötter,
 R.P. 2017. Adaptation response surfaces for managing wheat under perturbed climate and CO 2 in
 a Mediterranean environment. Agr. Syst 159: 260-274.
- Ruosteenoja, K., Räisänen, J., Venäläinen A., Kämäräinen, M., 2016. Projections for the duration and
 degree days of the thermal growing season in Europe derived from CMIP5 model output.
 Int.J.Climatol. 36(8): 2029-2055.

602	Rötter, R.P., Palosuo, T., Kersebaum, K.C., Angulo, C., Bindi, M., Ewert, F., Ferrise, R., Hlavinka, P.,
603	Moriondo, M., Nendel, C., Olesen, J.E., Patil, R.H., Ruget, F., Takác, J., Trnka, M.,
604	2012. Simulation of spring barley yield in different climatic zones of Northern and Central Europe:
605	a comparison of nine crop models. Field Crops Res. 133, 23–36.

- van Oijen, M., Höglind, M., Hanslin, H. M., Caldwell, N., 2005. Process-based modeling of timothy
 regrowth. Agron. J. 97(5), 1295-1303.
- 608 Virkajärvi, P., Pakarinen, K., Hyrkäs, M., Savolainen, J., Isolahti, M., Schnyder, H., Schellberg, J.
- 609 (2010). Does tiller type distribution explain the differences in yield and nutritive value of timothy
 610 genotypes. Grassland Sci. Eur. 15, 572-574.
- 611 Virkajärvi, P., Hyrkäs, M., Pakarinen, K., Rinne, M., 2012. Timotein ja ruokonadan erot
 612 sadontuottoprosessissa. In: Hyrkäs, M., and Virkajärvi, P. (Eds.) Nurmen kasvu- ja
 613 kehitysprosessit. MTT Report 56 (In Finnish), 22-46.

Supplementary Material

Table S1

Table S1. Treatments used for model calibration and evaluation (marked with asterisks) with their years, fertilisation regimes, and dates of first cut.

Treatment #	Location	Year	Fertilisation regime spring/after 1st cut kg N ha ⁻¹	Day number for first cut	Ley year
1	Maaninka	2006	90/90	167	1 st
2	Maaninka	2007	90/90	169	2nd
3	Rovaniemi	1999	80/80	179	1st
4	Rovaniemi	1999	100/100	179	1st
5*	Rovaniemi	2000	80/80	181	2nd
6*	Rovaniemi	2000	100/100	181	2nd
7	Rovaniemi	2001	80/80	177	3rd
8	Rovaniemi	2001	100/100	177	3rd
9	Særheim	2000	140/80	150	1st
10	Særheim	2000	140/80	173	1st
11*	Særheim	2001	140/80	164	1st
12*	Særheim	2001	140/80	186	1st
13	Særheim	2002	140/80	150	2nd
14	Særheim	2002	140/80	178	2nd
15	Quebec	1999	-/-	167	1st
16	Quebec	1999	60/-	167	1st
17*	Quebec	1999	120/-	167	1st
18	Quebec	2000	_/_	172	2nd
19*	Quebec	2000	60/-	172	2nd
20	Quebec	2000	120/-	172	2nd
21*	Quebec	2001	_/_	171	3rd
22	Quebec	2001	60/-	171	3rd
23	Quebec	2001	120/-	171	3rd
24	Lacombe	2004	100/-	201	1st
25	Lacombe	2005	100/-	185	2nd
26	Umeå	1995	90/90	171	2nd
27	Umeå	1996	90/90	178	3rd
28	Fredericton	1991	168/-	169	1st
29	Fredericton	1992	200/-	173	1st
30*	Fredericton	1993	-/-	173	1st
31	Fredericton	1993	70/-	173	1st
32	Fredericton	1993	140/-	173	1st
33*	Fredericton	1993	210/-	173	1st

Table S2. BASGRA model parameters: prior ranges and maximum a posteriori (MAP) values as gained from cultivar-specific and non-cultivar specific

(generic) calibrations.

Parameter name	Description	Unit	Prior parameter range	MAP cultivar specific						MAP non-cultivar specific (generic)
				Tammisto II	Iki	Grindstad	Champ	Climax	Jonatan	
LOG10CLVI	Initial weight of leaves	log(gC m ⁻²)	-0.5–2.5	1.76	0.72	1.43	0.754	1.51	1.71	1.24
LOG10CRESI	Initial weight of reserves	log(gC m ⁻²)	-1.5–1.5	0.962	-0.586	1.21	1.22	0.212	0.871	0.375
LOG10CRTI	Initial weight of roots	log(gC m ⁻²)	-1–2	1.42	0.993	0.538	0.103	0.983	0.897	0.214
LOG10LAII	Initial LAI	log(m ² leaf m ⁻²)	-2-1	-0.0392	-0.289	0.0325	-1.1	-0.224	0.205	-0.319
TILTOTI	Initial tiller density	m ⁻²	1000-3000	2320	1830	2410	1630	2110	2090	2390
FRTILGI	Initial fraction of elongating tillers	-	0–0.5	0.117	0.242	0.4	0.0268	0.159	0.195	0.399
CLAIV	Maximum LAI remaining after harvest, when no tillers elongate	m ² leaf m ⁻²	0.25–1	0.438	0.656	0.371	0.645	0.651	0.515	0.569
COCRESMX	Maximum concentration of reserves in aboveground biomass	-	0.0706-0.282	0.136	0.154	0.142	0.151	0.148	0.151	0.145
CSTAVM	Maximum size of elongating tillers	gC tiller ⁻¹	0.1–1.9	1.11	0.995	1.24	1.26	1.26	1.03	1.11
DAYLB	Day length below which phenological stage is reset to zero	d d ⁻¹	0–0.784	0.363	0.331	0.55	0.558	0.402	0.48	0.533
DAYLP	Day length below which phenological development slows down	d d-1	0.316–1	0.581	0.662	0.687	0.662	0.635	0.699	0.71
DLMXGE	Day length below which DAYLGE becomes less than 1	d d-1	0–1	0.943	0.837	0.985	0.574	0.988	0.898	0.985
FSLAMIN	Minimum SLA of new leaves as a fraction of maximum possible SLA		0-0.933	0.47	0.471	0.797	0.711	0.62	0.534	0.862
HAGERE	Fraction of reserves in elongating tillers that is harvested	-	0.7–1	0.818	0.799	0.77	0.741	0.803	0.799	0.834
Κ	PAR extinction coefficient	m ² m ⁻² leaf	0.3–0.9	0.45	0.543	0.386	0.591	0.518	0.41	0.467
LAICR	LAI above which shading induces leaf senescence	m ² leaf m ⁻²	1.9–7.59	4.42	5.44	4.45	3.39	4.51	4.15	3.91
LAIEFT	Decrease in tillering with leaf area index	m ² leaf m ⁻²	0.1-0.4	0.272	0.186	0.242	0.182	0.192	0.174	0.122
LAITIL	Maximum ratio of tiller and leaf appearance at low leaf area index	-	0.283–1.13	0.666	0.529	0.789	0.815	0.542	0.487	0.966
LFWIDG	Leaf width on elongating tillers	m	0.00426-170000	0.0096	0.00643	0.00952	0.0103	0.00757	0.00801	0.0104
LFWIDV	Leaf width on non-elongating tiller	m	0.00246-0.00984	0.00603	0.00389	0.00683	0.00375	0.00433	0.0042	0.007
NELLVM	Number of growing leaves per non- elongating tiller	tiller-1	1.05–3.5	2.37	1.24	2.13	1.64	2.1	1.81	2.17

PHENCR	Phenological stage above which	-	0.248 - 0.99							
	elongation and appearance of leaves on			0.523	0.53	0.319	0.614	0.431	0.474	0.499
PHY	Phyllochron	°C d	31.5-126	54.3	59.2	46.4	48.9	63.6	61.1	45.1
RDRSCO	Relative death rate of leaves and non-	d ⁻¹	0.0356-1420000	0.0707	0.0064	0.0000	0.00.12	0.0.010	0.0610	0.0056
	elongating tillers due to shading			0.0797	0.0964	0.0888	0.0942	0.0612	0.0618	0.0956
RDRSMX	Max. rel. death rate of leaves and non- elongating tillers due to shading	d ⁻¹	0.03–0.12	0.0738	0.0583	0.0629	0.064	0.0522	0.0465	0.0634
RDRTEM	Proportionality of leaf senescence with temperature	d-1 °C-1	0.000513-0.00205	0.00114	0.0014	0.00119	0.000795	0.00115	0.00109	0.000937
RGENMX	Maximum relative rate of tillers becoming elongating tillers	d-1	0.00544-218000	0.0105	0.0117	0.0194	0.0166	0.011	0.0105	0.0172
RRDMAX	Maximum root depth growth rate	m d ⁻¹	0.006-0.024	0.0132	0.0102	0.0088	0.0156	0.0114	0.0121	0.0155
RUBISC	Rubisco content of upper leaves	g m ⁻² leaf	2.89-11.6	6.36	4.43	4.82	5.39	4.41	5.27	4.55
SHAPE	Area of a leaf relative to a rectangle of same length and width	-	0.269–1	0.585	0.456	0.561	0.602	0.563	0.544	0.844
SIMAX1T	Sink strength of small elongating tillers	gC tiller-1 d-1	0.00225-0.00901	0.00505	0.00666	0.0055	0.00683	0.00312	0.00504	0.00547
SLAMAX	Maximum SLA of new leaves	m ² leaf gC ¹	0.03-0.09	0.0658	0.0748	0.0676	0.0724	0.0574	0.0552	0.0781
TBASE	Minimum value of effective temperature for leaf elongation	°C	1.81–6	3.24	3.98	4.17	4.51	4.26	3.89	2.77
TCRES	Time constant of mobilisation of reserves	d	0.945–3.78	2.21	1.55	2.37	1.45	2.2	1.58	2.64
TOPTGE	Opt. temperature for vegetative tillers to become generative	°C	7–25.2	4.45	12.1	13	8.8	9.47	14.7	21.4
TRANCO	Transpiration coefficient	mm d ⁻¹	4–16	9.04	12.1	5.81	6.73	6.83	6.62	6.44
YG	Growth yield per unit expended carbohydrate	gC gC ⁻¹	0.65–0.9	0.866	0.863	0.836	0.864	0.821	0.836	0.876
Dparam	Constant in the calculation of de- hardening rate	°C ⁻¹ d ⁻¹	0.00125-0.00375	0.00307	0.00267	0.00291	0.00324	0.00269	0.00306	0.0019
FGAS	Soil pore space	m ³ m ⁻³	0.2–0.6	0.394	0.465	0.347	0.333	0.456	0.399	0.418
FO2MX	Maximum oxygen fraction of soil gas	mol O ₂ mol- ¹ gas	0.105-0.315	0.24	0.174	0.233	0.194	0.242	0.206	0.201
gamma	Temperature extinction coeff. snow	m ⁻¹	32.5–97.5	66.8	71.5	59.9	69.5	60.2	66.8	68.9
Hparam	Hardening parameter	°C ⁻¹ d ^{-1'}	0.004-0.012	0.00524	0.00714	0.0078	0.00625	0.00553	0.00453	0.00826
KRDRANAER	Maximum relative death rate due to anaerobic conditions	d-1	0–1	0.157	0.264	0.227	0.307	0.268	0.181	0.64
KRESPHARD	Carbohydrate requirement of hardening	gC gC ⁻¹ °C ⁻¹	0.001 - 0.05	0.0178	0.00523	0.012	0.0234	0.00485	0.00733	0.0224
KRSR3H	Constant in the logistic curve for frost survival	°C ⁻¹	0–1	0.896	0.702	0.986	0.739	0.973	0.969	0.962
KRTOTAER	Ratio of total to aerobic respiration	-	1–2	2.04	1.69	1.98	2.34	2.36	1.69	1.78
KSNOW	Light extinction coefficient of snow	mm ⁻¹	0.0175-0.0525	0.0373	0.0263	0.0413	0.0327	0.0304	0.0379	0.0387
LAMBDAsoil		J m- ¹ \square C ⁻¹ d ⁻¹	86400-259000	171000	162000	128000	167000	153000	185000	199000
LDT50A	Intercept of linear dependence of LD50 on LT50	d	0.67–2.01	1.35	1.24	0.946	1.35	1.59	1.33	1.56
LDT50B	Slope of linear dependence of LD50 on LT50	d °C-1	-3.2-(-1.1)	-2.16	-2.51	-1.98	-1.57	-2.42	-2.19	-2.17

LT50MN	Minimum LT50	°C	-40–20	-25.9	-25.1	-24.9	-25.2	-30.2	29	-25.5
LT50MX	Maximum LT50	°C	-7–(-3)	-4.88	-5.13	-5.85	-5.03	-5.1	-5.3	-4.54
RATEDMX	Maximum de-hardening rate	°C d ⁻¹	1–3	1.7	1.73	1.82	2.37	1.8	1.71	1.81
reHardRedDay	Duration of period over which re- hardening capability disappears	d	5–160	144	138	135	133	150	139	134
RHOnewSnow	Density of newly fallen snow	kg SWE m ⁻³	50-150	97.3	102	89.4	91.6	105	109	85.9
RHOpack	Relative packing rate of snow	d-1	0.01-0.03	0.0197	0.0212	0.0205	0.0137	0.0185	0.0194	0.0219
SWret	Liq. water storage capacity of snow	mm mm ⁻¹ d ⁻¹	0.05-0.15	0.11	0.0928	0.104	0.0983	0.103	0.0977	0.0842
SWrf	Maximum refreezing rate per degree below 'TmeltFreeze'	mm d ⁻¹ °C ⁻¹	0.005-0.015	0.00782	0.0121	0.00856	0.00673	0.00914	0.0101	0.0104
THARDMX	Maximum surface temperature at which hardening is possible	°C	5–15	14.7	13.2	13.2	14.2	14.3	14.5	14.8
TrainSnow	Temperature below which precipitation is snow	°C	0.005-0.015	0.0103	0.01	0.00938	0.00906	0.00917	0.0102	0.0106
TsurfDiff	Constant in the calculation of de- hardening rate	°C	0–10	0.192	2.32	1.19	0.328	1.82	0.675	3.35
KLUETILG	LUE-increase with increasing fraction elongating tillers	-	0–1	0.36	0.46	0.12	0.317	0.391	0.653	0.579
ROOTDM	Initial and max. value rooting depth	m	0-1.52	0.866	0.559	0.626	1.14	0.484	0.788	1.18
FWCWP	Water conc. at wilting point	$m^3 m^{-3}$	0.02-0.3	0.0456	0.159	0.063	0.0517	0.0837	0.0698	0.0774
FWCFC	Water conc. at field capacity	$m^3 m^{-3}$	0.3–0.9	0.813	0.797	0.734	0.619	0.63	0.648	0.65
FRTILGG11	Initial fraction of non-elongating generative tillers	-	0–1	0.131	0.446	0.127	0.255	0.0402	0.142	0.565
DAYLG1G2	Day length above witch non-elongating generative tillers starts to become elongating tillers	d d-1	0–1	0.683	0.879	0.551	0.568	0.688	0.697	0.63
RGRTG1G2	Relative rate of non-elongating tillers becoming elongating tillers	d-1	0–1	0.907	0.955	0.64	0.505	0.899	0.85	0.824
RDRTMIN	Minimum root death rate	d-1	0-0.02	0.00969	0.00705	0.0129	0.00854	0.00881	0.00961	0.0121
NCSHMAX	Maximum N-C ratio of shoots	g N g ⁻¹ C	0.02 - 0.08	0.0412	0.0578	0.0657	0.0326	0.0445	0.0404	0.0693
NCR	N-C ratio of roots	g N g ⁻¹ C	0.015-0.06	0.0364	0.0217	0.0238	0.0214	0.0245	0.0247	0.022
RDRSTUB	Relative death rate of stubble	d ⁻¹	0.1-0.4	0.196	0.217	0.22	0.192	0.242	0.205	0.209
FNCGSHMIN	Shoot N-sink at N-deficiency	-	0-0.5	0.13	0.0554	0.173	0.0474	0.166	0.126	0.327
TCNSHMOB	Time constant for remobilisation of shoot N	d	1–64	4.58	16.6	9.1	6.6	5.66	14.8	7.64
TCNUPT	Time constant of soil mineral N supply	d	1–64	10.1	28.7	24.9	11.8	7.01	17.6	27.6

Table S3. CATIMO model parameters: prior ranges and maximum a posteriori (MAP) values gained from cultivar-specific and non-cultivar specific

(generic) calibrations.

Parameter name	Description	Unit	Prior parameter range	MAP cultivar specific						MAP non- cultivar specific (generic)
				Tammisto II	Iki	Grindstad	Champ	Climax	Jonatan	
Fropt	Partitioning fraction of biomass into roots under optimal conditions	-	0.10-0.20	0.16	0.17	0.19	0.17	0.19	0.15	0.19
Hvl0	Vertical height of leaves above shoot apex	cm	1-10	6	6	7	7	6	6	5
Initial_LAI	LAI at the beginning of simulation	m ² leaf m ⁻² soil	0.01-0.25	0.12	0.04	0.07	0.23	0.16	0.11	0.06
RUEpot	Potential radiation use efficiency	g DM MJ ⁻¹ PAR	2.0-5.0	3.4	2.4	3.4	3.1	2.3	3.4	2.5
SLAadd	Maximum increase of specific leaf area of new leaves due to temperature	m² leaf g⁻¹ leaf DM	0.00-0.040	0.006	0.020	0.002	0.011	0.002	0.022	0.008
То	Optimum temperature for radiation use efficiency	°C	11-17	12	16	12	12	14	14	12
Tsumcrib	Thermal time for bud burst	°C d	0-50	28	13	26	26	45	13	18
Tbase.spring	Base temperature for start of growing season	°C	0-10	3.5	1.2	2.0	6.6	9.7	2.3	1.9
Rooting.depth	Rooting depth.	mm	500-1500	1242	1020	705	842	688	570	*
soil_N_init	Amount of N in soil at the beginning of simulation period.	kg ha ⁻¹	1-20	5	9	4	6	2	4	*
soil_water_init	Amount of water in soil in the beginning of simulation period	cm ³ cm ⁻³	100-400	203	130	129	188	211	195	*
MINmax	Maximum N mineralization rate	g N m ⁻² d ⁻¹	0.200-0.500	0.369	0.355	0.290	0.263	0.221	0.374	*
FNAmax	Maximum fraction of available N in soil	-	0.100-1.000	0.351	0.325	0.208	0.188	0.621	0.293	*

*Values of cultivar-specific calibration used in generic calibration.

Table S4. STICS model parameters gained from cultivar-specific and non-cultivar specific (generic) calibrations.

Parameter name*	Description	Unit	Prior parameter range	Cultivar specific calibration					Non- cultivar specific (generic) calibration	
				Tammisto II	Iki	Grindstad	Champ	Climax	Jonatan	
dlaimaxbrut	maximum rate of daily increase of leaf area index	m ² leaf plant ⁻¹ degree-day ⁻¹	2.10-4-4.10-4	0.00032	0.00032	0.00032	0.00032	0.00032	0.00032	0.00032
slamin	minimum specific leaf area of green leaves	cm ² g ⁻¹ DM	200-300	246	246	246	246	246	246	246
slamax	maximum specific leaf area of green leaves	$\mathrm{cm}^2\mathrm{g}^{-1}\mathrm{DM}$	300-500	377	377	377	377	377	377	377
durvief	maximum lifespan of an adult leaf	Q10	0-100	51	36	40	46	36	26	45
stamflax	cumulative growing degree-days between the maximum acceleration of leaf growth and the maximum LAI	Degree-days	200-1000	676	467	994	510	916	991	821
stlevamf	cumulative growing degree-days between beginning of growth and maximum acceleration of leaf growth	Degree-days	10-300	10	290	159	197	110	127	148
teopt	beginning of the thermal optimum plateau for net	°C	8-15	10	10	10	10	10	10	10
teoptbis	end of the thermal optimum plateau for net	°C	12-20	15	15	15	15	15	15	15
temin	minimum threshold temperature for net	°C	0-5	1	1	1	1	1	1	1
temax	maximum threshold temperature for net	°C	20-40	20	20	20	20	20	20	20
efcroijuv	maximum radiation use efficiency during the invenile phase	g DM MJ ⁻¹	1.5-3	2.6	2.6	2.6	2.6	2.6	2.6	2.6
efcroiveg	maximum radiation use efficiency during the vegetative phase	g DM MJ ⁻¹	1.5-3	2.7	2.7	2.7	2.7	2.7	2.7	2.7
efcroirepro	maximum radiation use efficiency during the reproductive phase	g DM MJ ⁻¹	2-5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
croirac	growth rate of the root front	cm degree ⁻¹ day ⁻¹	0-0.5	0.043	0.086	0.026	0.048	0.117	0.06	0.027
extin	extinction coefficient of photosynthetic active radiation		0.1-1.5	0.67	0.67	0.67	0.67	0.67	0.67	0.67
adens	interplant competition parameter	-	-2-0	-0.5	-0.81	-0.7	-0.55	-0.58	-1.83	-0.5

*Cultivar-specific parameters in bold

Table S5. Root mean squared errors (RMSE) of the simulated above-ground biomass (g DM m⁻²) from the calibration and model evaluation (marked with asterisks) of three timothy models during the spring and summer growth for all 33 treatments.

Location	Treatment	BASG	RA	CATIMO						STICS				
			cultivar-specific calibration		generic		cultivar-specific		generic		cultivar-specific		generic	
		Spring growth	Summer growth	Spring growth	Summer growth	Spring growth	Summer growth	Spring growth	Summer growth	Spring growth	Summer growth	Spring growth	Summer growth	
Maaninka	1	28	85	175	49	235	147	338	224	78	32	180	37	
(Finland)	2	94	30	107	30	134	62	273	83	31	24	192	22	
Rovaniemi	3	44	17	61	47	61	28	58	46	36	39	90	57	
(Finland)	4	33	31	64	22	82	48	68	31	51	42	68	46	
	5*	175	57	189	104	164	108	100	82	78	59	250	48	
	6*	116	51	113	40	151	114	83	87	52	48	272	45	
	7	158	10	142	37	122	78	92	118	64	81	82	192	
	8	131	45	100	88	121	69	92	94	64	92	84	182	
Særheim	9	109	208	133	246	86	192	197	157	88	223	132	174	
(Norway)	10	257	288	295	334	235	257	399	235	156	314	264	250	
	11*	286	260	294	276	114	193	214	140	53	231	53	231	
	12*	474	102	493	123	256	90	412	53	187	61	187	61	
	13	164	67	168	99	168	167	156	84	205	191	174	127	
	14	74	134	65	169	34	32	163	92	132	82	45	156	
Québec	15	154	32	416	22	175	280	195	156	129	102	117	163	
(Canada)	16	150	6	317	17	83	335	151	200	62	195	84	212	
	17*	254	83	250	5	174	262	246	122	172	132	189	154	
	18	24	56	256	15	19	326	38	199	69	14	89	3	
	19*	99	4	333	48	98	297	133	166	50	23	88	11	
	20	14	121	225	74	153	198	212	56	89	77	139	105	
	21*	73	23	240	52	82	403	60	274	81	13	133	31	
	22	72	60	264	75	87	459	86	314	72	95	103	103	
	23	92	3	155	70	46	422	131	270	62	61	115	78	
Lacombe	24	125	34	61	50	74	87	155	124	62	38	86	28	
(Canada)	25	67	95	104	121	87	98	232	119	83	56	134	76	
Umeå	26	62	37	214	83	34	157	168	184	111	84	72	114	
(Sweden)	27	68	33	99	62	25	223	104	127	74	62	119	102	
Fredericton	28	52	NA	133	NA	72	NA	149	NA	58	NA	54	NA	
(Canada)	29	110	NA	86	NA	301	NA	321	NA	70	NA	97	NA	
	30*	244	NA	47	NA	121	NA	168	NA	83	NA	83	NA	
	31	25	NA	111	NA	29	NA	106	NA	97	NA	137	NA	
	32	56	NA	76	NA	53	NA	116	NA	85	NA	124	NA	
	33*	65	NA	81	NA	59	NA	120	NA	91	NA	123	NA	

Figure S1

Figure S1. Observed and simulated above-ground biomass dynamics for all sites and treatments. Evaluation treatments are marked with an asterisk. BASGRA (Blue), CATIMO (Red) and STICS (Grey). Simulation results with cultivar-specific calibrations are shown with solid lines and results with generic calibrations with dashed lines. Observations are marked with black dots with the standard deviation as error bars.

Figure S2

Figure S2. Leaf area index (LAI) dynamics (cultivar-specific calibration) for all sites and treatments. Evaluation treatments are marked with an asterisk. BASGRA (Blue), CATIMO (Red) and STICS (Grey). Observations are marked with black dots with the standard deviation as error bars.

