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SUMMARY 32 

Within geoelectrical imaging, the choice of measurement configurations and electrode 33 

locations is known to control the image resolution. Previous work has shown that optimized 34 

survey designs can provide a model resolution that is superior to standard survey designs. This 35 

paper demonstrates a methodology to optimize resolution within a target area, while limiting 36 

the number of required electrodes, thereby selecting optimal electrode locations. This is 37 

achieved by extending previous work on the ‘Compare-R’ algorithm, which by calculating 38 

updates to the resolution matrix optimizes the model resolution in a target area. Here, an 39 

additional weighting factor is introduced that allows to preferentially adding measurement 40 

configurations that can be acquired on a given set of electrodes. The performance of the 41 

optimization is tested on two synthetic examples and verified with a laboratory study. The 42 

effect of the weighting factor is investigated using an acquisition layout comprising a single 43 

line of electrodes. The results show that an increasing weight decreases the area of improved 44 

resolution, but leads to a smaller number of electrode positions. Imaging results superior to a 45 

standard survey design were achieved using 56 % fewer electrodes. The performance was also 46 

tested on a 3D acquisition grid, where superior resolution within a target at the base of an 47 

embankment was achieved using 22 % fewer electrodes than a comparable standard survey. 48 

The effect of the underlying resistivity distribution on the performance of the optimization was 49 

investigated and it was shown that even strong resistivity contrasts only have minor impact. 50 

The synthetic results were verified in a laboratory tank experiment, where notable image 51 

improvements were achieved. This work shows that optimized surveys can be designed that 52 

have a resolution superior to standard survey designs, while requiring significantly fewer 53 

electrodes. This methodology thereby provides a means for improving the efficiency of 54 

geoelectrical imaging. 55 
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1 INTRODUCTION 59 

Within the last two decades geoelectrical data acquisition and processing have seen crucial 60 

developments. Automatic, multi-channel measurement systems combined with autonomous 61 

processing schemes nowadays allow for real-time electrical resistivity tomography (ERT) 62 

monitoring (Johnson, 2016; Parsekian et al., 2015; Singha et al., 2014). This has opened the 63 

opportunity to study a wide variety of subsurface processes, such as nuclear waste 64 

decommissioning (Daily et al., 2004; Johnson et al., 2012; Kuras et al., 2016), CO2 65 

sequestration (Benisch et al., 2015; Schmidt-Hattenberger et al., 2016), landslide hydrology 66 

(Gance et al., 2016; Supper et al., 2014; Uhlemann et al., 2017), permafrost degradation 67 

(Hilbich et al., 2008; Krautblatter et al., 2010), and landfill processes (Dumont, 2017; Godio et 68 

al., 2015; Grellier et al., 2008). Monitoring studies where data are acquired on hundreds of 69 

electrodes within short timescales are becoming more frequent (Kuras et al., 2016; Uhlemann 70 

et al., 2017). Nevertheless, the time required for data acquisition, and how to handle and 71 

interpret the vast amount of data such installations provide are posing new challenges 72 

(Parsekian et al., 2015; Rucker, 2014). To overcome these, efforts are undertaken to limit the 73 

amount of data without reducing their information content. 74 

This can be achieved by optimizing the survey design, which can be broadly divided into two 75 

approaches. The most common approach is to take a set of electrodes and choose measurement 76 

combinations from it that maximises the image resolution (Loke et al., 2013). Those algorithms 77 

can achieve an image resolution superior or equal to standard survey designs, e.g. Wenner-78 

Schlumberger or dipole-dipole, with the same or fewer number of measurements (Loke et al., 79 

2014; Stummer et al., 2004; Wilkinson et al., 2012). The other approach is to optimize the 80 

sensor positions. Wagner et al. (2015) showed that by using an optimized set of electrode 81 

locations the resolution within a target horizon can be significantly improved compared to 82 



conventional equally spaced electrode arrays. Both approaches reduce the amount of data while 83 

preserving image resolution. 84 

Here we present a novel algorithm that combines these two approaches. We extend the 85 

methodology introduced by Wilkinson et al. (2015), which optimized measurement 86 

configurations to improve image resolution within a target area, by preferentially adding 87 

measurement configurations that can be acquired on a given set of electrodes. The new 88 

approach is tested on a synthetic example, where measurement configurations and electrode 89 

positions are chosen from a linear electrode array, and by a laboratory experiment simulating 90 

a 3D measurement setup (i.e. an electrode grid) on an embankment. We show that this 91 

methodology can generate an optimal set of electrode locations and measurement 92 

configurations that is a fraction of all possible locations and configurations, while still offering 93 

equal or superior resolution to standard survey designs. This is in contrast to previous 94 

optimisation strategies that solely aimed to improve the model resolution (Loke et al., 2013; 95 

Stummer et al., 2004; Wilkinson et al., 2015). The presented approach will not only aid in 96 

creating survey designs for optimal resolution of a target area, but also reduce costs for ERT 97 

installations, as fewer electrodes and cables will be required for the optimized survey. Hence 98 

it addresses exactly what Curtis and Maurer (2000) define as an optimal survey, i.e., a survey 99 

that leads to high accuracy and reliability of the model estimates, while being easily realizable 100 

under minimal financial effort. Thus, this methodology will aid in improving the efficiency of 101 

ERT data acquisition, in particular if a priori information about the subsurface is available. 102 

While it is applied to an ERT example here, the approach should be easily transferrable to 103 

optimizing image resolution for other geophysical tomographic methods. 104 

2 METHODOLOGY 105 



(1)

Most recent studies on ERT measurement optimization make use of the model resolution 106 

matrix (Alfouzan et al., 2010; Loke et al., 2015b, 2014, 2010; Stummer et al., 2004; Wagner et 107 

al., 2015; Wilkinson et al., 2015, 2012, 2006). In comparison to sensitivity based optimization 108 

strategies (Athanasiou et al., 2009; Tsakirrbaloglou et al., 2016; Tsourlos et al., 2016), the 109 

model resolution accounts for linear (in)dependency between measurement configurations, and 110 

is therefore used here as well. The model resolution matrix R quantifies how well each model 111 

cell of a resistivity image is resolved by the measured data. For the linearized iterative Gauss-112 

Newton solution of the ERT problem, R is defined as (Wilkinson et al., 2006): 113 

܀ ൌ ሺ۵୘۵ ൅ ۱ሻିଵ۵୘۵, 114 

with the Jacobian matrix G and the constraint matrix C. The main diagonal elements Rj of R 115 

are referred to here as the model resolution and range between 0 and 1, where Rj = 0 represents 116 

an entirely unresolved, and Rj = 1 a perfectly resolved cell j. Although C could represent any 117 

kind of model constraints (Loke et al., 2014; Wilkinson et al., 2012), here it is defined as C = 118 

λI, with I being the identity matrix, to represent a simple damped least square problem 119 

(Wilkinson et al., 2006). The choice of the damping factor λ is problem specific, with larger 120 

values leading to lower resolution (Loke et al., 2010). For this type of optimization problem, λ 121 

is often chosen so that the model resolution is small (R ≈ 0.05) at a certain distance from the 122 

electrodes, typically at the base of the model (Stummer et al., 2004; Wilkinson et al., 2006). 123 

Note that λ is not only affecting the absolute values of the diagonal elements of R, but also the 124 

distribution of the relative magnitudes. Nevertheless, Loke et al. (2010) have shown that the 125 

relative performance of the optimization is not particularly sensitive to the value of λ. 126 

The optimization is an iterative process and starts from a small set of measurements from a 127 

small number of electrodes. Additional measurements are selected from a comprehensive set, 128 

comprising alpha and beta-type configurations (Loke et al., 2015). For each possible new 129 



measurement, the change in the resolution matrix ΔR is calculated using a Sherman-Morrison 130 

Rank-1 update of the resolution matrix, which is defined as (Loke et al., 2014; Wilkinson et 131 

al., 2006): 132 

܊܀∆ ൌ
ܢ

1 ൅ ሺ܏ ∙ ሻܢ
ሺ܏୘ െ  ୘ሻ 133ܡ

where 134 

ܢ ൌ ൫۵ୠ
୘۵ୠ ൅ ۱൯
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,܏ ܡ ൌ ൫۵ୠ
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with the Jacobian matrix Gb consisting of the sensitivities of the measurements of the current 136 

base set, and g comprising the sensitivities of the new test configuration. Following Wilkinson 137 

et al. (2015) all additional measurements are ranked according to the calculated improvement 138 

of the  resolution in the target region 139 

ୈܨ ൌ 	
1
݉
෍

୲,௝∆ܴୠ,௝ݓ
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௠

௝ୀଵ

		, 140 

with the number of model cells m, the resolution of cell j given by the comprehensive set Rc,j, 141 

and a weighting factor wt,j that is 1 if cell j is within the target region and 10-12 if not. Survey 142 

designs are often “focused” on specific target areas, which requires a priori information about 143 

the subsurface properties (Curtis, 1999; Furman et al., 2007; Loke et al., 2015b; Roux and 144 

Garcia, 2014). In order to penalize measurements that would require electrodes other than those 145 

already present in the current base set, the weighting factor we was added to equation 4: 146 

ୈܨ ൌ 	
1

ఉୣݓ݉
෍

୲,௝∆ܴୠ,௝ݓ
ܴୡ,௝

௠

௝ୀଵ

 147 

For a given measurement, we = (1 + ne) where ne is the number of additional electrodes required 148 

(from 0 to 4). This weighting factor is controlled by the exponent β; increasing values of β 149 

(4)

(3)

(2)

(5)



cause a stronger penalty for measurements requiring additional electrodes. The highest ranked 150 

measurement is added to the current base set. The second highest is only added if its linear 151 

dependency to the first is below a certain limit. Wilkinson et al. (2012) showed that superior 152 

results can be obtained by setting this limit to the value of the current average relative resolution 153 

S, defined as 154 

ܵ ൌ
1
݊
෍

ܴୠ,௞
ܴୡ,௞

௡

௞ୀଵ

 155 

which was evaluated for all cells k within the target volume. Linearity tests are performed and 156 

measurements added until a certain fraction of the size of the current base set have been added, 157 

defined by the step size of the iterative optimization process. After each iteration, Rb is 158 

recalculated. Loke et al. (2014) showed that the performance of the optimization degrades with 159 

increasing step size, however, computationally larger step sizes are preferable as Rb needs to 160 

be recalculated fewer times; this is further discussed in the following section.  161 

Calculations of G, Rc, Rb, and FCR were facilitated by adapting the fully parallelized source 162 

code of E4D (Johnson et al., 2010), and exploiting OpenBLAS routines (Wang et al., 2013) to 163 

improve computational performance of the R and FCR calculations. All optimizations presented 164 

in this study were calculated on a machine with four Intel® Xeon® E5-2697V3 CPUs, 165 

comprising in total 56 cores running at 2.6 GHz. Loke et al. (2015) found that using single 166 

precision, compared to double precision, caused only a marginal change in the calculated model 167 

resolution, while significantly reducing calculation times. Hence, single precision was used in 168 

the calculation of R and FCR. 169 

For N electrodes N(N – 1)(N - 2)(N -3)/8 unique four-point measurements can theoretically be 170 

acquired (accounting for polarity and reciprocity); for 32 and 117 electrodes this would equal 171 

107 880 and 22 241 115 measurements, respectively. Evaluating all of these measurements 172 

(6)



would be computationally very demanding and some measurements would be impractical to 173 

acquire due to small signal-to-noise ratios and high sensitivities to electrode misplacements. 174 

Thus, the comprehensive set from which measurements are added at each iteration comprises 175 

only alpha and beta-type configurations that have geometric factors and sensitivities below 176 

specified problem-specific limits.  177 

3 LINEAR ELECTRODE ARRAY 178 

The methodology was tested first on a simple synthetic model, comprising 32 possible 179 

electrode locations spaced by 1 m along a single line. A trapezoidal prism in the centre of the 180 

model formed the target volume, within which the resolution was to be optimized (Figure 1). 181 

As the methodology was developed for 3D problems, this example was calculated on a 3D 182 

representation of a linear electrode array. The model domain was discretized using an 183 

unstructured tetrahedral mesh, comprising 3312 elements (equal to the number of model 184 

parameters m), which was refined around the electrode locations and extended beyond to 185 

account for ‘outer-space’ sensitivities (Maurer and Friedel, 2006). The comprehensive set 186 

comprised alpha and beta-type configurations with a maximum geometric factor Kmax =  4146.9 187 

m (equal to a dipole-dipole geometric factor for a = 1 and n = 10) and a maximum geometric 188 

sensitivity of s/K = 5 m-1 (Wilkinson et al., 2008), totalling 70 555 four-point measurement 189 

configurations. A description of the alpha and beta-type arrays can be found in Loke et al. 190 

(2015a). Szalai and Szarka (2011) present other possible measurement configurations that 191 

could be added to the comprehensive set (e.g. “Null” or “Quasi-null” arrays). However, some 192 

of those may cause instabilities in the inversion if the data and model parameters are 193 

logarithmically transformed (Johnson et al., 2010), which is desirable due to the large range of 194 

resistivities often encountered in geoelectrical imaging. Measurements involving remote 195 

electrodes (pole-pole or pole-dipole) could also be included, but often present difficulties in 196 

practical site investigations and cannot be used in tank experiments. Restricting the 197 



Fig. 1 

comprehensive set to alpha- and beta-type configurations below a certain limit for their 198 

geometric factor removes measurement configurations that are likely to be unstable (Loke et 199 

al., 2014). The damping factor λ = 0.004 was chosen so that the model resolution was small at 200 

the base of the model (R < 0.05; Wilkinson et al., 2006). The initial measurement set comprised 201 

30 measurements employing six electrodes located above the target area. 202 

To investigate the effect of the exponent β, which controls the penalty for including additional 203 

electrodes at every iteration, the optimization was run for values of β = 0.0, 2.0, and 5.0 (Figure 204 

2). Each optimization employed a step size of 5%, meaning that at each iteration the number 205 

of measurements in the optimized set increased by 5%. Setting β = 0.0 is equivalent to the 206 

methodology introduced by Wilkinson et al. (2015) to optimize resolution within a target 207 

region. For β = 0.0 all possible electrode locations are used once the set includes more than 327 208 

measurements, which is reached within the first 49 iterations. This ‘unconstrained’ 209 

optimization yields mostly superior resolution compared to employing larger values of β. For 210 

β = 2.0 all possible electrodes are included in the survey once it comprises 6201 measurements. 211 

From this point, the resolution achieved in the optimization is independent of β. Despite using 212 

up to 59% fewer electrodes, the relative resolution achieved with β = 2.0 is similar to β = 0.0, 213 

with differences in average relative resolution being less than 0.06 for all iterations. During a 214 

few iterations, i.e., between 386 and 1303 measurements (Figure 2b), the relative resolution 215 

obtained with β = 2.0 is superior to β = 0.0, with a maximum difference of 0.016. This is likely 216 

to be an effect of a localised optimum that was found by constraining the optimization to use a 217 

certain set of electrodes. However, once the measurement set comprises more than 1303 218 

measurements, the constraints on adding additional electrodes limit the increase in relative 219 

resolution compared to β = 0.0.  220 

Using β = 5.0, for small measurement sets the optimized survey employs considerably fewer 221 

electrodes than β = 0.0 or 2.0. When the survey comprises about 2750 measurements, β = 0.0 222 

Fig. 2 



uses all 32 electrodes and β = 2.0 uses 23 electrodes, while β = 5.0 uses only 17 electrodes, 223 

thus only 53% of the available electrodes. This, however, also results in a relative resolution 224 

0.22 smaller than for β = 0.0. For less than 1500 measurements (Figure 2b), this difference is 225 

smaller than 0.09, despite using about 50% fewer electrodes than β = 0.0. The β = 5.0 optimized 226 

survey includes all possible electrodes once the set comprises more than 15000 measurements. 227 

In general, the higher β the longer a certain set of electrodes is used to optimize the resolution, 228 

leading to a decreasing performance of the optimization. 229 

Figure 2 also shows the relative resolution of a standard survey, comprising 934 dipole-dipole 230 

and Wenner-Schlumberger measurements and using all 32 electrodes. This shows the benefit 231 

of the presented approach clearly. The optimization, for all tested values of β, achieves a 232 

relative resolution in the target area higher than the standard survey (S = 0.185). For β = 0.0, 233 

the improvement in the relative resolution is 0.042, for β = 2.0 it is 0.054 and for β = 5.0 it is 234 

0.018. In the case of β = 2.0 and β = 5.0 this improvement is achieved using 43.8% and 56.3% 235 

fewer electrodes than used in the standard survey, respectively. 236 

Figure 3 shows the resolution within the imaging plane for the standard and optimized surveys, 237 

employing 934 measurements each, and the difference in resolution between the optimized and 238 

standard survey. The resolution of the standard survey shows the usual distribution with high 239 

resolution close to the electrodes, and a fast decline with increasing distance from the 240 

electrodes. Within the target area a similar behaviour can be found; the upper part is perfectly 241 

resolved, while the lower part exhibits a resolution < 0.3. The optimization is set to improve 242 

the resolution within this target area. All tested values of β gain a higher resolution than the 243 

standard survey in this part of the imaging plane, and image more than half of the target area 244 

with a resolution > 0.9.  While for β = 0.0, the entire imaging plane shows high resolution, 245 

especially close to the surface, and increases with depth, for higher β values high resolution is 246 

only achieved close to the target area. The higher β the fewer electrodes are used and the smaller 247 



the well-resolved area becomes. The difference between optimized and standard resolution 248 

highlights this behaviour (Figure 3 e-g). While for β = 0.0 the resolution in the target area 249 

improves by more than 0.5, which is an increase of more than 100 %, considerable 250 

improvements are also achieved in nearly the entire imaging plane, except in areas close to the 251 

surface towards the boundaries, where the resolution is slightly smaller than for the standard 252 

survey. In the target area, β = 2.0 provides comparable increases in resolution to β = 0.0, 253 

improvements of up to 0.35 are gained using β = 5.0. Outside the target, the area with improved 254 

resolution decreases with increasing β, and areas with worse resolution increase. The parts of 255 

the imaging plane with decreased resolution are linked to the smaller set of electrodes used. In 256 

general, increasing β results in improved resolution that is increasingly focussed on the target 257 

area. This has to be considered for practical applications. If the location of the area of interest 258 

is known with high confidence, large values of β can be used, while if the target location is 259 

more uncertain then smaller values of β should be used. 260 

The impact of the step size on the performance of the optimization was also investigated; Figure 261 

4 shows the performance for step sizes of 2%, 5%, and 10%. The main difference is when 262 

additional electrodes are added to the survey during the optimization. Generally, step sizes of 263 

5% and 10% tend to add more electrodes at a single iteration than added when using a step size 264 

of 2%. This is particularly evident when the optimized set comprises about 5100 measurements. 265 

At step sizes of 10% and 5%, ten and seven electrodes are added, respectively, while for 2% 266 

only one additional electrode is used. Those differences in the use of electrodes also cause the 267 

differences in relative resolution obtained by the different step sizes. The effect is comparably 268 

small for optimized sets comprising less than 5500 measurements, but becomes more 269 

significant for larger measurement sets, where differences in the relative resolution reach 0.11. 270 

This larger difference is caused by a 2% step size using 13.8% fewer electrodes than employed 271 

for a step size of 10%. Figure 4b shows that where the same number of electrodes are used, 272 

Fig. 3 



regardless of step size, the optimized relative resolution is virtually identical. With the 273 

increasing number of iterations, the calculation times increase considerably; while a 10 % step 274 

size was calculated in 7.4 h, 5 % took 15.4 h, and 2% 26.3 h.  275 

The actual imaging performance of the survey designs is shown in Figure 5, where inverted 276 

resistivity models are presented. In the forward model (Figure 5a), the area for which the 277 

resolution was optimized was given a resistivity of 10 Ωm, while the background had a 278 

resistivity of 100 Ωm. The forward problem was implemented and solved in Res3DMod 279 

(Geotomo Software, Malaysia). The synthetic data were contaminated with voltage-dependent 280 

noise defined as:  281 

|݁| ൌ ܽ ൅ 	ܾ|ܴ௧|, 282 

with a = 0.05 Ω, and b = 0.02. 283 

All models were inverted using an L1 norm on the model roughness, and the data were fitted 284 

to their respective errors (χ2 = 1.0). The comprehensive set, forming the benchmark for this 285 

comparison, is able to delineate the target in its correct position and approximate extent; the 286 

shape can be recognized in the inverted resistivity model, but is considerably smoothed and 287 

imaged with a higher vertical extent. The target area is imaged with a minimum resistivity of 288 

34.4 Ωm and a mean of 52.3 Ωm, while the background has a mean resistivity of 95.1 Ωm. The 289 

standard survey, employing only 934 measurements (1.3% of the comprehensive set) and all 290 

32 possible electrode location, fails in imaging the true shape and depth of the target. It is 291 

imaged as a subvertical feature with a mean resistivity of 53.4 Ωm in the true target location, 292 

thus 1.1 Ωm higher than imaged by the comprehensive survey. The background resistivity has 293 

a mean of 96.8 Ωm. The optimized set images the target in a shape similar to the comprehensive 294 

set and with a mean resistivity of 45.2 Ωm and a minimum of 24.1 Ωm, thus closer to the true 295 

resistivity model than imaged by the standard survey. The background is imaged at a mean 296 

(7)
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resistivity of 80.7 Ωm, and thus lower than for the comprehensive and standard surveys. This 297 

is an effect of the lower resolution outside the target area. The uncentered Pearson r correlation 298 

coefficient of the target area showed a stronger correlation between the true resistivity model 299 

and optimized inversion result (ropt = 0.89) than between the true resistivity model and standard 300 

survey results (rstandard = 0.78). Similarly, the root-mean-squared (RMS) difference between the 301 

true resistivity model and the results of the optimized survey was 32.7 Ωm, while it was 43.7 302 

Ωm for the standard survey. Outside the target area is where the optimized set performs worse 303 

than the standard survey. Thus, within the target horizon the optimized set images the true 304 

resistivity more accurately than the standard survey, despite employing 56% less electrodes, 305 

but the smaller number of employed electrodes causes a loss of imaging performance outside 306 

the target.  307 

Both the spatial distribution of possible electrode locations and the electrodes comprising the 308 

initial set are variables affecting the results of the optimization. To show this, we recalculated 309 

the optimization using β = 5.0 but employing a different initial set of electrodes, with four 310 

electrodes being placed close to the model boundaries, and three close to the target (white dots 311 

in Figure 6, initial set B). The results are similar to what was achieved with the first initial set 312 

comprising electrode locations directly over the target (initial set A). The resolution within the 313 

target is virtually identical (compare Figures 3d and 6a), but more resolution is retained in 314 

shallow areas close to the model boundaries. The similarity between the two results is 315 

highlighted when comparing the difference of the optimized resolution to the resolution of the 316 

standard survey (Figures 3g and 6b). In both cases, the optimized survey shows increased 317 

resolution in lower parts of the target area, which extend outside the target boundaries. Using 318 

initial set B this area outside the target is smaller than for initial set A. The inverted resistivity 319 

model shows the target with a similar shape to that imaged using the optimized survey of initial 320 

set A, but with a shape more comparable to the results obtained by the comprehensive survey. 321 

Fig. 5 



This is an effect of a higher fraction of measurements with low geometric factor in the 322 

optimized survey of initial set B. These measurements have a smaller error and thus lead to a 323 

better imaging performance. The additional use of measurements close to the model boundaries 324 

cause a lower reduction of resolution in this area and improved the recovery of the true 325 

resistivity in these parts of the model. Despite the different initial sets of electrodes, the 326 

performance of the optimizations are comparable in both the achieved resolution of the target 327 

and used electrode locations.  328 

 329 

4 3D MEASUREMENT GRID 330 

Extending surveys into three dimensions usually leads to significant increases in the number 331 

of electrode locations and measurements. Hence, this is where the proposed optimization 332 

methodology is expected to show the greatest benefits. In order to test the optimization, a 3D 333 

synthetic example was designed, comprising 117 electrodes, arranged in a grid of 13 electrodes 334 

along the x-axis, and 9 electrodes along the y-axis. The setup replicates a typical embankment 335 

situation, e.g. a flood embankment or mining tailings dam, where electrodes are deployed only 336 

on one side (Figure 7). To resemble typical conditions, the “embankment” has a 1 in 2 slope 337 

(Glendinning et al., 2014), miniaturized into an assumed laboratory tank set-up being 1 m long 338 

and wide, with an embankment height of 0.25 m. The results of this synthetic study are used in 339 

the following laboratory study, testing the methodology on real data. The electrode spacing in 340 

x-direction was chosen to be 0.075 m, and 0.1 m in the y-direction. The impact of different 341 

model mesh sizes on the performance of the optimization was tested and showed only 342 

negligible effects. Thus, a relatively coarse discretization using 9711 tetrahedral elements was 343 

used. The target was defined as a rectangular prism, with dimensions of 0.68 m, 0.3 m, and 344 

0.06 m along the x, y, and z-directions. It was placed centrally at the base of the slope, 345 

resembling an area that could potentially be affected by soil piping or a different failure type 346 

Fig. 6 



at the base of an embankment. Neumann-boundary conditions were used at the outer and lower 347 

model boundaries to account for the insulating tank walls. The comprehensive set comprised a 348 

subset of alpha and beta configuration, including inline, crossline, and diagonal alpha and beta-349 

type configurations, as well as equatorial beta-type configurations (sensitivity patterns of these 350 

measurement types are discussed in detail in Loke et al., 2014), with a maximum geometric 351 

factor of Kmax = 345 m (equal to a dipole-dipole geometric factor for a = 1 and n = 10) and a 352 

geometric sensitivity of s/K = 100 m-1. The grid of electrodes extended close to the model 353 

boundaries, which were found to have a significant impact on the calculation of the geometric 354 

factor. Thus, the comprehensive set was filtered on the geometric factors calculated using a 355 

homogeneous forward model incorporating the correct boundary conditions (Loke et al., 2014); 356 

after filtering it included 12755 measurements. The damping factor λ = 0.05 was chosen so 357 

that the resolution at the base of the model was R < 0.05. The computation time of this 358 

optimization was 10.2 h. 359 

The initial set for the optimization comprised six electrodes, located centrally above the target 360 

volume, and 20 measurements. Considering the optimization performance obtained on the 361 

linear electrode array example, the 3D optimization was run using a step size of 10% and for a 362 

weighting exponent of β = 5.0 (Figure 8). Optimization studies often assume a homogeneous 363 

model resistivity for generality, and previous studies have shown that moderate deviations from 364 

this assumptions have negligible effects on the results (e.g., Stummer et al., 2004; Wilkinson 365 

et al., 2006). In this 3D example we envisage to image a very strong resistivity contrast, which 366 

could have a potential impact on the optimization as potential fields are considerably disturbed. 367 

Thus, rather than testing the optimization performance regarding β and the step size, the effects 368 

of the underlying resistivity model are investigated. Hence, optimized survey designs were 369 

calculated assuming a homogeneous resistivity model of 10 Ωm, and a resistivity model with 370 

a resistive target (5000 Ωm) in a 10 Ωm background medium. As a real data application is 371 



considered, measurement errors are incorporated into the optimization (Wilkinson et al., 2012) 372 

and assumed to be a function of the transfer resistance Rt (eq. 7).  373 

Figure 7 shows the resolution of the comprehensive set for both situations. While for the 374 

homogeneous model (Figure 7a) the target is well resolved (R > 0.5) between x = 0.4 and x = 375 

0.6 m, defining it as a resistive feature lowers the resolution within the target significantly (R 376 

< 0.05). This is because current will flow predominantly through the background medium and 377 

not through the highly resistive target volume.  378 

This considerable change in the comprehensive set resolution affects the performance of the 379 

optimization (Figure 8), as different measurements will need to be chosen to resolve a resistive 380 

target, compared to a target with a similar resistivity to the background medium. Generally, the 381 

lower the resolution in the resistive target, the lower the relative resolution that is achieved at 382 

a given number of measurements, compared to the optimization using a homogeneous 383 

resistivity model; the largest difference ΔS = 0.31 occurs with the optimized set comprising 384 

3345 measurements. Although, the absolute improvement is smaller for the resistive target, the 385 

general shape of the optimization curves are comparable. Also the number of employed 386 

electrode locations is similar, with the optimization on the homogeneous resistivity model 387 

usually employing 2-6 electrodes fewer than on the resistive target. A significant difference 388 

can only be observed during the first 25 iterations (< 180 measurements), where the 389 

optimization on the homogeneous model uses up to 25 electrodes fewer than for the resistive 390 

target, where more electrodes are required to gain improvements.  391 

Figure 8 also shows the relative resolution of the standard survey design, comprising 1591 392 

dipole-dipole and Wenner-Schlumberger configurations, both inline and crossline. As for the 393 

comprehensive and optimized surveys, the relative resolution of the standard design on the 394 

resistive target is significantly smaller (S = 0.06) than on the homogeneous model (S = 0.21).  395 

Fig. 7 
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For the same number of measurements the relative resolution achieved using optimized survey 396 

designs is 0.54 and 0.26 for the homogeneous model and resistive target, respectively, increases 397 

in resolution of 157 % and 333 %. Thus, the optimization survey design calculated on the 398 

resistive target should provide better results, given that the underlying assumption of a strong 399 

resistivity contrast holds true. Those considerable improvements are achieved using 28 and 26 400 

electrodes fewer than used in the standard survey (homogeneous model and resistive target, 401 

respectively), reductions of 24 % and 22 %. 402 

Figure 9 shows the distribution of the resolution along a slice through the model domain at y = 403 

0.5 m, both for the standard and optimized surveys. For the homogeneous model (compare 404 

Figure 9c against 9a) resolution is improved particularly in deeper parts of the model, while, 405 

e.g., at the top of the slope resolution decreases. Within the target volume, the largest absolute 406 

increase in resolution can be found at the shallow parts between x = 0.5 and 0.65 m. While 407 

deeper parts show smaller absolute increases in resolution, the increase relative to the standard 408 

survey exceed 100 % and are thus higher than for the shallow parts. Similarly to the results 409 

obtained on the linear electrode array example, the large weighting exponent of β = 5.0 forces 410 

improvements more strongly towards the target volume, while resolution decreases away from 411 

it. The reduction is strongest close to the boundaries of the model domain (Figure 9e), where 412 

also fewer electrodes are employed. This observation is independent of type of resistivity 413 

model used for the optimization, as similar patterns of resolution improvements and reductions 414 

can be found for the optimization of the resistive target (Figure 9f). However, improvements 415 

relative to the standard survey are considerably higher within the target volume (exceeding 200 416 

%, comparing Figures 9b and d), despite the absolute values remaining low. This comparison 417 

to the resolution of the standard survey shows that a precise knowledge of the target’s locations 418 

is not a prerequisite for improved imaging results, as the resolution increases in a wider area 419 

around the target employing an optimized survey design. 420 

Fig. 9 



Figures 9e and f also show the employed electrode locations. The pattern is comparable for the 421 

two optimizations. Electrodes along the x = 0.0, and y = 1.0 boundaries tend to be rejected by 422 

the optimization routine, as well as electrodes on top of the slope. This is somewhat surprising, 423 

as for imaging a deeper target, conventional survey designs would usually employ larger 424 

electrode spacing. However, measurements with large electrode spacing usually have larger 425 

measurement errors and are therefore “penalized” in the optimization. This exercise shows that 426 

those outer electrodes are not required to gain high resolution in the target volume, and 427 

highlights the potential of this optimization approach to increase the efficiency of ERT 428 

imaging, by reducing costs for cables and instrumentation.   429 

The imaging capability of the different survey designs was tested by defining the target volume 430 

as a resistive feature (5000 Ωm) within a 10 Ωm background material. This may represent, e.g., 431 

a clay embankment with a structural defect at its base, which could cause soil piping or slope 432 

instabilities, and is of the same order of magnitude as expected for the laboratory experiments. 433 

All synthetic data were contaminated with 2% voltage-dependent noise, and the inversion 434 

converged to fit these data within its error levels, using the same inversion parameters as for 435 

the linear electrode array example.  436 

The results of the comprehensive set (Figure 10a) resemble the distribution of the resolution 437 

(Figure 7); the target is imaged with a strong resistivity contrast between x = 0.4 m and 0.8 m, 438 

showing resistivities above 30 Ωm, with a maximum of 163.5 Ωm. The mean resistivity in the 439 

target volume is 33.0 Ωm. This shows the effect of the lower resolution within a resistive target; 440 

the difference between the imaged and the true resistivity (5000 Ωm) is more than one order of 441 

magnitude. Its centre is imaged with the highest contrasts, which decrease towards the edges, 442 

imaging it with an oval shape. With increasing distance along the x-direction, and thus 443 

increasing depth from the surface, the target becomes less well resolved, with smaller resistivity 444 

contrasts and a shift of the highest values to shallower layers. Thus, the resistive target seems 445 



to have an apparent dip. Between x = 0.8 and 1.0 m, the resistivity contrast becomes smaller, 446 

and therefore could be overprinted by natural resistivity variations in real applications.  447 

The standard survey, using about 12.5 % of the measurements of the comprehensive set, images 448 

the target with a smaller resistivity contrast than the comprehensive set, having a maximum of 449 

67.6 Ωm and a mean resistivity in the target volume of 22.4 Ωm. Considering an iso-volume 450 

at 30 Ωm, the target is imaged extending from x = 0.41 to 0.71 m, while for the comprehensive 451 

set, it extend from 0.41 to 0.80 m. Deeper parts of the model, x > 0.70 m, show lower 452 

resistivities than imaged with the comprehensive set and the contrast is less sharply defined. 453 

The optimized survey designs image the target with a higher resistivity contrast and larger 454 

extent than the standard survey, independently of their underlying resistivity model. However, 455 

the target is imaged with a higher maximum resistivity (ρmax = 113.8 Ωm) and mean resistivity 456 

in the target volume (ρmean = 28.1 Ωm) when using the resistive target in the optimization, than 457 

if using a homogeneous model (ρmax = 100.5 Ωm, ρmean = 26.2 Ωm). Considering again a 30 458 

Ωm iso-volume, the target is imaged to extend from 0.40 to 0.73 m for both optimized surveys.  459 

The improved performance of the optimized surveys is highlighted when looking at the 460 

uncentered Pearson correlation coefficient. While for the standard survey a Pearson correlation 461 

coefficient of rstandard = 0.29 is obtained, for the optimized set the correlation is better with rhom 462 

= 0.31 and rresistive = 0.33. Thus, in comparison to standard survey designs improved imaging 463 

results can be obtained using the optimization methodology, despite requiring up to 24 % fewer 464 

electrodes. Even higher reductions in number of electrodes used can be expected for smaller 465 

targets.  466 

 467 

5 LABORATORY EXPERIMENT 468 

To test the applicability of the optimization methodology to measured data, a laboratory tank 469 

was prepared as described in the previous synthetic example. To ensure a mostly homogeneous 470 

Fig. 10 



background medium, a 1 m × 1 m laboratory tank was filled with pre-prepared, moist 471 

(volumetric moisture content (VMC) of 0.31 m3/m3) pottery clay of low shrinkage (< 5 %), and 472 

a mean resistivity of 17 Ωm. The target was constructed using kiln-dried silica sand with a 473 

grain size below 0.5 mm and a VMC < 0.04 m3/m3; its resistivity was estimated to be > 5000  474 

Ωm. Electrode layout and surface topography was as described for the synthetic example. Data 475 

were acquired using a Geolog2000 GeoTom system (employing one channel at 8 1/3 Hz) and 476 

were measured in normal and reciprocal configurations, where the reciprocal measurement is 477 

equivalent to the normal, but with interchanged current and injection dipoles (LaBrecque et al., 478 

1996). The data were defined as the mean of the two measurement, and the error as the standard 479 

error in the mean, which is referred to as reciprocal error hereafter. The measurement sequence 480 

was reordered to minimize potential polarization effects of the electrodes (Wilkinson et al., 481 

2012). Despite using small electrodes (1.55 mm diameter, 5 mm length) contact resistances 482 

between electrodes and clay were below 1.1 kΩ. The data quality was very good, with about 483 

99 % of the data having reciprocal errors below 5%. Analysis of the reciprocal error distribution 484 

(Koestel et al., 2008) confirmed the applicability of the previously introduced linear error 485 

model (equation 7), but measurement errors were actually lower, so coefficients of a = 0.0025 486 

Ω and b = 0.003 were used to weight the data in the inversion. The data were inverted using 487 

E4D (Johnson et al., 2010), employing the same inversion parameters as for synthetic 488 

examples. The inversions converged fitting the data to their corresponding error levels, at RMS 489 

misfits between modelled and measured data of 2.1 – 3.2 %.  490 

The results are similar to those obtained in the synthetic model, but with the target showing a 491 

considerably higher resistivity (Figure 11). Thus, the true target resistivity likely to be higher 492 

than was assumed in the synthetic model and used for the calculation of the optimized survey 493 

design. This would reflect field usage of this technique where the actual resistivity of the target 494 

area is unlikely to be known exactly. The comprehensive survey images the target with a 495 



maximum resistivity of 969.7 Ωm and a mean resistivity in the target volume of 108.5 Ωm. 496 

The resistive anomaly follows mostly the actual target location, with a slight overestimation in 497 

depth for shallow parts (0.4 m < x < 0.7 m) and an underestimation in deeper parts (x > 0.8 m). 498 

Thus, the target shows an apparent dip as in the previous section. The 60 Ωm iso-volume 499 

highlights this dip, but images the target with a reasonable accuracy (Figure 11a). The standard 500 

survey shows the shallow parts of the target at the correct location, but with a smaller resistivity 501 

contrast; the maximum resistivity is 264.6 and the mean target resistivity 49.9 Ωm. The 502 

apparent dip is more pronounced, as the resistive anomaly bends towards shallower depths and 503 

resistivities decrease considerably. The 60 Ωm iso-volume extends only until x = 0.84 m, and 504 

becomes narrow for x > 0.7 m (Figure 11b). The results for the optimized survey assuming a 505 

homogeneous resistivity model show some improvement compared to the standard survey; the 506 

target is imaged with a maximum resistivity of 404.0 Ωm and a mean resistivity of 62.6 Ωm. 507 

The narrowing of the 60 Ωm iso-volume for x > 0.7 m is less pronounced, but extends only to 508 

x = 0.81 m. Better imaging results are achieved using the optimization assuming a resistive 509 

target, where the target volume is imaged with a maximum of 490.7 Ωm and a mean of 68.2 510 

Ωm. The 60 Ωm iso-volume is comparable to the one obtained from the comprehensive set. 511 

Thus, the resistivity values obtained from the optimized surveys are closer to the 512 

comprehensive set than imaged using the standard survey design.  513 

Even though the resistivity distribution in the tank can be estimated, variations in degree of 514 

compaction of the material and moisture content may cause variations. Therefore, the 515 

resistivity model of the comprehensive survey is taken as the imaging benchmark. Considering 516 

the uncentered Pearson correlation and the RMS difference highlights the improved 517 

performance of the optimized survey designs compared to the standard design. The Pearson 518 

correlation coefficient between the imaged resistivities using the comprehensive and standard 519 

survey design is rstandard = 0.88, while for optimization assuming a homogeneous model and a 520 
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resistive target it is rhom = 0.94 and rresistive = 0.96, respectively. This highlights that if very large 521 

resistivity contrasts exist in the subsurface, these should be accounted for in the optimization, 522 

as it has a significant effect on the model resolution, as shown in Figures 6 and 8. The RMS 523 

differences between the imaged resistivities obtained from the optimized sets and the 524 

comprehensive set are RMShom = 32.7 %  and RMSresistive = 29.8 %, while it is RMSstandard = 525 

40.4 % for the standard survey design. This highlights the considerable improvements that can 526 

be achieved when using the proposed optimization methodology, while reducing the amount 527 

of required electrode locations.  528 

6 DISCUSSION AND CONCLUSION 529 

Optimization of survey design can usually by categorised as (1) trying to find optimum 530 

measurement configurations on a given set of electrode locations, or (2) selecting electrode 531 

locations based on their comprehensive resolution. This paper presents a modification to the 532 

“Compare-R” algorithm, which combines the two approaches by introducing an additional 533 

weight penalizing the addition of electrode locations to the optimized set.  534 

Tests on synthetic examples showed that optimization step size and model discretization have 535 

negligible effects on the results. Experimenting with different weighting exponents β, which 536 

controls how much the addition of electrodes to the optimized set is penalized, showed that 537 

higher values of β cause more focussed improvements in resolution and the use of smaller 538 

numbers of electrodes, with the drawback of decreasing resolution away from the target 539 

volume. Therefore, high values of β should be used if the target location and size is well known, 540 

and smaller values if it is more uncertain. For an example using a linear electrode array, it was 541 

shown that superior resolution compared to a standard survey design can be achieved, despite 542 

using 56 % fewer electrodes. To test the impact of the number of electrodes in the 543 

comprehensive set, the optimization was run for 16 and 64 electrodes, half and twice the 544 



number of electrodes in the shown example. While for 16 electrodes, all electrodes are required 545 

to achieve high resolution in the target area, using double the amount of electrodes had no 546 

considerable impact on the outcome of the optimization, as electrodes were chosen in the same 547 

area as shown for a comprehensive set of 32 electrodes. 548 

An investigation of the effect of the mesh discretisation on the calculated sensitivities showed 549 

that unstructured tetrahedral meshes can introduce a slight degree of asymmetry into the results. 550 

This is caused by the tetrahedral elements not having the same symmetry as the distribution of 551 

electrodes and can be overcome by using a mesh discretization with different polyhedra, such 552 

as cuboids. 553 

The methodology was also tested on a 3D synthetic example and verified with a laboratory 554 

experiment. The 3D example imaged a structural, highly resistive, defect within a miniaturized 555 

embankment model. Here the effect of the underlying resistivity model on the performance of 556 

the optimization was tested. By accounting for the resistive target better results were obtained, 557 

increasing the uncentered Pearson correlation coefficient between the imaged resistivities and 558 

the forward model from rstandard = 0.29 for the standard survey to rresistive = 0.33 for the optimized 559 

survey assuming a resistive target. The uncentered Pearson correlation between model and 560 

imaged resistivities was rhom = 0.31 for the optimized survey assuming a homogeneous 561 

medium. This is in agreement with previous studies, which showed that small variations in the 562 

resistivity distribution have negligible effects on the optimization (e.g., Athanasiou et al., 563 

2006). Here, accounting for a strong resistivity contrast improved the performance of the 564 

optimization, but not significantly. Although no marked improvement was obtained, both 565 

optimized surveys were able to image the resistive target better than the standard survey design 566 

while using fewer electrodes. This was true for the synthetic models and the laboratory 567 

experiment. In the latter, accounting for the resistive target helped to increase the Pearson 568 

correlation coefficient between optimized and the comprehensive sets from rhom = 0.94 to 569 



rresistive = 0.96, which were both superior to the Pearson correlation of the standard survey 570 

design (rstandard = 0.88). Here a high weighting factor of β = 5.0 was used, thereby achieving 571 

this improved resolution despite using up to 24 % fewer electrodes than a comparable standard 572 

survey. Note that using smaller values of β would yield higher resolution within the target area, 573 

with the cost of using more electrodes. Higher values were tested but reduced the number of 574 

electrodes only marginally while causing a further decrease in resolution of the target. 575 

This study shows that by using optimization algorithms that can penalize the number of 576 

electrodes used, the efficiency of resistivity imaging and monitoring can be increased by 577 

reducing its costs. It may offer the opportunity for high-resolution resistivity imaging using 578 

smaller numbers of electrodes and therefore cables, but also using measurement systems 579 

capable of addressing only a limited number of electrodes. This may be particularly important 580 

for complex monitoring studies with limited accessibility, or where the installation of 581 

electrodes may be difficult or detrimental to the structural integrity. For this purpose, values of 582 

β > 5 may be chosen to reduce the number of electrodes to a minimum. On the other hand, if 583 

measurement time is a priority, smaller values of β may be used, allowing to gain high 584 

resolution at comparably small measurement sets. We envisage the greatest benefit of the 585 

presented approach would be for monitoring or characterisation studies where information 586 

about the location of areas of interest are available prior to the survey, e.g., for leaking flood 587 

embankments, landslides with well-defined slip surfaces, or contamination studies with 588 

reasonably well known hydrology. Additional research is required to implement further 589 

constraints on the survey design, such as a priori limitations regarding the maximum number 590 

of electrode locations, or pre-defined maximum lengths of survey lines, but also to investigate 591 

the practical performance of recently developed measurement configurations (Falco et al., 592 

2013; Szalai et al., 2015, 2014, 2002). Recent research of Loke et al. (2015) shows that 593 

calculation times for the optimization can be reduced by assuming symmetry of the 594 



measurement configurations and exploiting developments in the GPU technology. Comparing 595 

their calculation times to the calculation times presented here, GPU and other computational 596 

developments may reduce the calculation time of the presented approach by up to 100 times. 597 

Smaller calculation times will certainly increase the applicability of the survey optimization 598 

and may help to investigate larger-scale problems. 599 
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Figure 1 Comprehensive set model resolution (comprising 70555 measurements); grey lines represent 762 
the model discretization. The target volume is shown opaque. Grey dots indicate possible electrode 763 
locations; white dots indicate the initial set of electrodes. Note that the slight asymmetry is caused by 764 
the discretization of the model. 765 

 766 

 767 

Figure 2 a) Optimization performance in terms of the relative resolution S and number of used 768 
electrodes for weighting exponents β = 0.0, 2.0, and 5.0, employing a step size of 5%. The grey area 769 
shows the range shown in b). b) subset of a) showing the results for the first 2000 measurements with 770 
dashed lines indicating the number of measurements and relative resolution of a standard survey.  771 

 772 



 773 

Figure 3 Model resolution for a) standard survey and b)-d) optimized surveys using β = 0.0, 2.0, and 774 
5.0. e)-g) difference in model resolution between optimized and standard survey design. In all cases, 775 
the resolution within the target volume increased compared to the standard survey. Dots indicate used 776 
electrode locations; white dots show the initial set. 777 

 778 

 779 

Figure 4 a) Optimization performance in terms of the relative resolution S and number of used 780 
electrodes for β = 5.0 and different step sizes of 2%, 5%, and 10%. b) subset of a) showing the results 781 
for the first 2000 measurements with dashed lines indicating the number of measurements and relative 782 
resolution of a standard survey. 783 

 784 



 785 

Figure 5 Resistivity models. a) resistivity model employed in the calculation of the synthetic data; b) 786 
inverted resistivity model using a comprehensive set of measurements, employing 70 555 787 
measurements and 32 electrodes; c) inverted resistivity model using a standard survey design 788 
comprising 934 measurements and 32 electrodes; d) inverted resistivity model using an optimized 789 
survey comprising 934 measurements, but only 14 electrodes. Note that some asymmetry maybe 790 
introduced by the model discretization. 791 

 792 

 793 

Figure 6 Results for an optimization using an initial set comprising four electrodes close to the section 794 
boundaries and three electrode close to the target. Electrode locations are shown as dots, with white 795 
dots indicating the initial locations. a) Resolution of the optimized survey, b) difference in resolution 796 
between optimized and standard survey, and c) inverted resistivity model as shown in Figure 5. 797 
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 799 

Figure 7 Resolution of the comprehensive set for the synthetic 3D example assuming a homogeneous 800 
resistivity distribution of 10 Ωm (a), and the target as having a resistivity of 5000 Ωm within a 10 Ωm 801 
background medium (b). The target volume is shown opaque. The dots show the electrode locations, 802 
with white dots indicating the initial set of six electrodes. 803 

 804 

 805 

Figure 8 Optimization performance of the 3D example in terms of the relative resolution S and number 806 
of used electrodes for a weighting exponents β = 5.0, employing a step size of 10%, and two different 807 
resistivity models. The blue lines show the performance for a homogeneous resistivity model of 10 Ωm, 808 
the red lines for a resistive target (5000 Ωm) within a 10 Ωm background medium. b) subset of a) 809 
showing the results for the first 2000 measurements, with the grey dashed line showing the number of 810 
measurements comprising the standard survey design, and the red and blue dashed lines showing the 811 
relative resolution of a standard survey on a homogenous and resistive target, respectively. 812 
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 814 

Figure 9 Model resolution at y = 0.5 m for the standard (a,b) and optimized survey designs (c,d), both 815 
applied to (a,c) a homogeneous (10 Ωm) medium, and (b,d) with the target being highly resistive (5000 816 
Ωm). The resolution of this central model domain is clearly improved by the optimized survey designs. 817 
The bottom panel (e,f) shows the difference between the optimized and standard survey design, with an 818 
iso-volume indicating a 100 % improvement. White dots on the 3D plot indicate used electrode 819 
locations, while grey dots show electrode locations which are not used in the optimized design. 820 
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 822 

Figure 10 Inverted resistivity model for the 3D synthetic example; opaque iso-volumes indicates 823 
resistivities ρ > 30 Ωm. a) results for the comprehensive survey, b) for the standard dipole-dipole and 824 
Wenner-Schlumberger survey, and c)-d) for the optimized surveys calculated on a homogeneous model 825 
and a resistive target, respectively. The slice of the right column is located centrally through the target 826 
volume at y = 0.5 m. White dots on the 3D plots indicate used electrode locations, while grey dots show 827 
electrode locations that are not used in the optimized design. 828 



 829 

Figure 11 Inverted resistivity models of the laboratory data; opaque iso-volume indicates resistivities 830 
of ρ > 60 Ωm; black box outlines the target volume. a) results for the comprehensive survey, b) for the 831 
standard dipole-dipole, and Wenner-Schlumberger survey, and c)-d) for the optimized surveys 832 
calculated on a homogeneous model and a resistive target, respectively. The slice of the right column 833 
is located centrally through the target volume at y= 0.5 m. White dots on the 3D plots indicate used 834 
electrode locations, while grey dots show electrode locations that are not used in the optimized design. 835 


