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Abstract: Research in Cretaceous shales from West Africa has demonstrated that significant permeability can
develop within shales at shallow depths (<100 m), equivalent to a permeability of >1 m day−1. Much of the
variation in permeability is related to the degree of burial metamorphism, with shales that have been altered
and that approach the anchizone having the highest permeability and those that are largely unaltered (early
diagenetic zone) having the lowest permeability. However, further research targeting largely unaltered shales
dominated by smectite clay has shown that the presence of small igneous intrusions can radically alter the hydro-
geology. Twenty-four exploratory boreholes were drilled into smectite-dominated shale and nine of these
boreholes were targeted to small dolerite intrusions within the shale. The dolerite was intensely fractured at
the intrusion edge, with significant zeolite growth along the fracture surfaces. The permeability in the fractured
dolerite was the highest measured in any shale borehole, with transmissivities of up to 60 m2 day−1 measured
from pumping tests. Fracturing was less where dolerite was intruded into sandstones, however, and the mea-
sured transmissivity was lower (<0.5 m2 day−1). We postulate that the low permeability and high water content
of the shale enabled high pressures to develop during intrusion, facilitating the development of fractures along
the intrusion contact zone.

Fractures in shale are essential for controlling fluid
migration. They are often studied from the perspec-
tive of hydrocarbons as a result of the control they
exert on the characteristics of reservoirs (Curtis
2002) and their impact on the coherence of cap-
rocks (Shukla et al. 2010; Bricker et al. 2012). In
waste management, the development of fractures
within clays and shales is crucial in limiting the
migration of contaminants from repositories – partic-
ularly for nuclear waste (Hanor 1993; Neuzil 1994).
Shales and mudstones are more rarely considered as
aquifers, although they can provide a strategic source
of drinking water for dispersed rural populations
(Jones et al. 2000).

Research within shallow shale environments
shows that significant fracture permeability can
develop within shales at depths <100 m, equivalent
to a permeability of >1 m day−1 (MacDonald et al.
2005). Much of the variation in permeability is
related to the degree of burial metamorphism the
shale has undergone and the corresponding change
in clay mineralogy. Shales that have been altered
by burial to approach the anchizone have a clay
mineralogy dominated by illite and have the highest
permeability. Those that are largely unaltered (early
diagenetic zone) have the lowest permeability.

These unaltered low-permeability shales are often
dominated by smectite clays, within which fractures
do not remain open (Neuzil 1994; MacDonald et al.
2005). However, the presence of igneous intrusions
within low-permeability shales can radically change
the hydrogeology.

To study the impact of small igneous intrusions
within a smectite-dominated shale environment, we
drilled and tested 24 exploratory boreholes, nine
of which were targeted to small dolerite intrusions
and the remainder to unaltered shale.

Methods

Study area

The research was undertaken in Cretaceous sedi-
ments of the Middle Benue Trough in Nigeria. The
study area covers two local government areas (Oju
and Obi) in Benue state (Fig. 1). Oju/Obi is a remote
part of SE Nigeria and experiences severe water
shortages during the annual dry season, despite a high
average annual rainfall of c. 1600 mm (Davies &
MacDonald 1999). The area has been subject to
extensive groundwater investigations in an attempt to
improve the stubbornly high rates of guinea worm
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infection and low water supply coverage (MacDon-
ald et al. 2001, 2005, 2008; Bonsor et al. 2014).
Oju/Obi is situated within the lower section of the
Benue Trough, a major elongated geological rift
structure infilled with fine-grained, low-permeability
Cretaceous sediments (Ofoegbu 1985). The sedi-
ments were deposited in deep to shallow marine
and deltaic to fluviatile environments. Parts of the
sedimentary sequence have undergone low-grade
metamorphism (Ojoh 1990). Igneous rocks (mainly
dolerite) have been intruded within the sediments.

Geophysical surveys

Smectite-dominated shale and the presence of
dolerite intrusions were identified by combining
frequency domain electromagnetic surveying and
magnetic profiling, following a survey methodo-
logy developed by MacDonald et al. (2001). Four
5–10 km surveys were undertaken in areas map-
ped to have mainly smectite-dominated shales. The
locations of the geophysical traverses are shown in
Figure 1. The North Obi traverse is section A–A*,

Fig. 1. Location and geology of Oju and Obi within the Benue Trough, Nigeria. The locations of the transects are
also shown.
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the Ugbodum traverse is B–B*, the Adum West
traverse is C–C* and the Itogo traverse is D–D*.

Electrical conductivity was measured using a
Geonics EM34 system with 20 m separation and a
transmitter frequency of 1600 Hz in both the vertical
and horizontal dipole configurations. The operating
range of the equipment was 0–150 mS m−1 with an
accuracy of c. 10%. Smectite-dominated shales
were identified by their high electrical conductivity
(>60 mS m−1); illite–smectite shales and sandstones
were identified by their lower electrical conductivity
(<50 mS m−1) (MacDonald et al. 2001).Variations
in the Earth’s magnetic field were measured using
a proton precession magnetometer (GEM Systems)
with an operating range of 10 000–120 000 nT and
a sensitivity of 0.1 nT. The presence of dolerite intru-
sions was identified by deflections in the Earth’s
magnetic field of >10 nT.

Drilling

Twenty-four exploratory boreholes were drilled in
the four transects at locations identified from the
interpretation of the geophysical surveys (see
Fig. 1). Nine were targeted to dolerite intrusions
within the shale, 11 to unaltered shale and four to
the Agbani Sandstone Formation, which comprises
increased sandy horizons within the shale. Rock
chip samples were taken every 0.5 m and core sam-
ples were taken from targeted horizons. Exploration
boreholes that encountered groundwater were devel-
oped and completed with a 125 mm plastic screen.
The upper 2–3 m were grouted to stop inflow from
the highly permeable shallow laterite layer.

Pumping tests

Pumping tests were undertaken in all piezometers
in which groundwater was encountered. For bore-
holes where the yield estimated from airlifting
was greater than c. 0.1 l s−1, constant rate tests
using low-yielding WHALE® pumps were under-
taken. For boreholes with considerably higher yields
(>0.5 l s−1), a Grundfos submersible pump was
used. Boreholes were pumped for five hours and
the recovery data were analysed using the Theis
recovery method (Kruseman & deRidder 1990).
Where the yield of the borehole was estimated by air-
lifting to be <0.1 l s−1, a modified slug test, known
as the bailer test (MacDonald et al. 2008), was car-
ried out. This test involved removing water over
a ten-minute period and monitoring the recovery.
The data were analysed numerically, accounting
for the non-instantaneous removal of water (Papado-
pulos & Cooper 1967; Barker 1985, 1988). Pumping
tests were carried out towards the end of the dry
season when water levels were at their lowest and
the influence of the shallow laterite aquifer was

negligible (Bonsor et al. 2014). This combined
experimental procedure enabled transmissivity val-
ues to be measured in the range 0.01–100 m2 day−1.

Results

Geophysical profiles for two of the transects are
shown in Figure 2, together with a simple geological
interpretation from the exploration boreholes. These
profiles illustrate the different geophysical signa-
tures between the unaltered shale and igneous intru-
sions within the shale. Unaltered smectite-dominated
shale is clearly identified by a bulk apparent conduc-
tivity of >60 mS m−1 and little deflection of the mag-
netometer. Dolerite intrusions are identified by a
lower apparent electrical conductivity (<50 mS m−1)
and large deflections (>10 nT) of the magnetic field
over a short distance.

Summary logs for the exploratory boreholes
are shown in Figure 3 for the four transects. The loca-
tion of the first water strike is also noted. The Awgu
Shale Formation is dominated by carbonaceous
shales, rich in smectite clay minerals, with thin shelly
limestone and rare thin sandstone. The Agbani Sand-
stone Formation consists of fine- to medium-grained
sandstones, siltstones and shale. The dolerite intru-
sions encountered varied in thickness from <0.1 to
>30 m. The dolerite generally occurs as hard, dark
blue–green, fine- to medium-grained basic igneous
dykes and sills. These are intruded into the mud-
stones, siltstones and sandstones of both the Awgu
Shale and Agbani Sandstone formations. At Adum
West (section C–C*), the dolerite is highly fractured
and zeolite crystals (mainly mesolite) have grown
on some of the fracture surfaces. At Ugbodum (sec-
tion B–B*), the dolerite intrusions are thinner than
those at Adum West and are mainly intruded into
sandstone. The dolerite is finer grained and the
occurrence of zeolite is rarer, with less evidence
of fracturing from the drilling. Another dolerite sill
was encountered in the Itogo traverse (section
D–D*) and was observed to be medium to fine
grained with zeolite growths. The control transect
in North Obi encountered mostly shale with some
thin limestone, sandstone and siltstone (section
A–A*). No igneous intrusion was encountered by
drilling, nor detected from field geophysics, in
North Obi (section A–A*), despite there being some
anomalies recorded in the airborne survey. The sed-
iments at the edge of the dolerite intrusions have
been altered, although rarely >1 m. The mudstones
become harder and change to a light grey–white col-
our. At the surface, the dolerite weathers to form
smectite clay (Kemp et al. 1998) and thick ferralitic
soils develop over both the shale and the dolerite.

Interpretation of the presence of fractures within
the boreholes from drilling records and analyses
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Fig. 2. Geophysical profiles for two transects: (a) the North Obi traverse (A–A*) and (b) the Adum West traverse
(C–C*). The apparent conductivity measured using the Geonics EM34 system (1600 Hz transmitter and 20 m
coil separation) and the total magnetic field intensity clearly identify the presence of shallow igneous intrusions
within the shale.
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of the chip and core samples showed that frac-
tures are present mostly within the dolerite and occa-
sionally within the baked margins surrounding the
intrusions.

Transmissivity and water strike data for the
tests are shown in Table 1 and summarized for the
different formations in Figure 4. Dry boreholes
were assigned a transmissivity of <0.01 m2 day−1

Fig. 3. Lithological logs for exploratory boreholes in the Benue Trough. The location of the transects are shown in
Figure 1.
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Table 1. Summary information for piezometers, lithology, fracture zones and measured transmissivity

Piezometer Traverse Major
lithology

Minor lithology Lithology of
major inflow

Depth to
fracture
zones (m)

Depth* to water
strike (m)

Transmissivity
(m2 day−1)

BGS22 A, North Obi Soft shale None Dry <0.01
BGS23 A, North Obi Soft shale Limestone None Dry <0.01
BGS24 A, North Obi Soft shale None Dry <0.01
BGS25 A, North Obi Soft shale None Dry <0.01
BGS26 A, North Obi Soft shale Limestone Limestone None 20 0.024
BGS27 A, North Obi Soft shale Limestone Limestone None 15 0.08
BGS28 A, North Obi Soft shale Limestone, sandstone None Dry <0.01
BGS29 A, North Obi Soft shale Siltstone None Dry <0.01
BGS30 A, North Obi Soft shale Sandstone None 5 <0.01
BGS31 A, North Obi Soft shale None Dry <0.01
BGS33 C, Adum West Dolerite Soft shale Dolerite 15–18 16.5 57
BGS34 C, Adum West Dolerite Soft shale Dolerite 34–39 32 3.8
BGS35 C, Adum West Dolerite Soft shale Dolerite 15–21 18 23
BGS40 B, Ugbodum Sandstone Dolerite Dolerite 17, 26 0.15
BGS41 B, Ugbodum Soft shale Limestone Limestone None 29.5 0.25
BGS42 B, Ugbodum Sandstone Soft shale, siltstone Dolerite None 15, 18, 24 0.8
BGS43 B, Ugbodum Shale None Dry <0.01
BGS44 B, Ugbodum Soft shale Dolerite, sandstone Dolerite 5–10 5 0.1
BGS45 B, Ugbodum Sandstone Siltstone, dolerite Dolerite 18–20 18 0.19
BGS46 B, Ugbodum Soft shale Dolerite Dolerite 8, 10 8, 9, 10 59
BGS47 D, Itogo Sandstone Soft shale None Dry <0.01
BGS48 D, Itogo Sandstone Soft shale Sandstone None 8, 19 <0.01
BGS49 D, Itogo Sandstone Sandstone None 7 0.04
BGS50 D, Itogo Dolerite Soft shale Dolerite 15–17 5, 11, 15 3.6

*If more than one water strike, the most significant is given in bold.
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(i.e. below the detection limit for the experimental
set-up). The data showed a clear difference in the
transmissivity data measured from boreholes that
encountered dolerite. Boreholes that encountered
only unaltered sedimentary rocks generally had a
transmissivity <0.1 m2 day−1. Where dolerite was
encountered, the transmissivity was >0.1 m2 day−1

and, for dolerite within shale, it was mostly in the
range 1–100 m2 day−1. Figure 5 shows representa-
tive recovery curves from bailer tests for boreholes
that encountered shale or dolerite.

Discussion

A clear pattern emerges from the data: boreholes
that penetrate dolerite intrusions within the shale
have considerably greater transmissivity than bore-
holes that encounter only smectite-dominated shale,
or thin sandstone and limestone layers within the
shale (Fig. 4). Thick dolerite intrusions (such as at
Adum West or Itogo) contain significant groundwa-
ter and generally have a transmissivity >5 m2 day−1.
These thicker intrusions are the most productive
aquifers within the region. Boreholes that encounter
only unaltered shale have negligible transmissivity
(<0.01 m2 day−1), which is occasionally enhanced to
up to 0.5 m2 day−1 by the presence of thin sandstone
units and limestones. Thinner dolerite intrusions
(<10 m) also increased the measured transmissivity
from pumping tests, but not to the same extent as the
larger intrusions, and there is some indication that
intrusions within sand-dominated layers had less
impact on the transmissivity.

The geological logs of the Adum West and Itogo
transects contain interesting information about

the fracturing of the larger dolerite intrusions and
shale. Most groundwater is not found in the meta-
morphosed and disturbed rock next to intrusions,
as found previously in most studies of dolerite
intrusions within the Karoo sediments of South
Africa (Bell & Maud 2000; Woodford & Chevallier
2002). The groundwater is encountered in fractures
within the dolerite. The dolerite is highly frac-
tured, with significant void spaces that allow the
growth of several millimetre-long mesolite crystals
within the fractures. For example, at two boreholes,
BGS33 and BGS35, the dolerite was highly fractured
and contained much mesolite (Fig. 6 shows a photo-
graph of a core sample from BGS 35); transmissivity
values >20 m2 day−1 were determined at these two
boreholes. At another borehole, BGS34, the dolerite

Fig. 4. Transmissivity data from pumping tests from boreholes encountering shale, fine-grained sandstone and
dolerite intrusions in the Benue Trough. (a) Cumulative frequency plot. (b) Box plot.

Fig. 5. Recovery curves from bailer tests in different
boreholes in the study area. The bailer test is a modified
slug test involving pumping for ten minutes at rates
between 0.15 and 0.3 l s−1 and monitoring the recovery
(MacDonald et al. 2008).
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was encountered at 31 m depth; there was little zeo-
lite present and the transmissivity was 4 m2 day−1.
Subsequent modelling of the geophysical data
showed that an extensive dolerite sill was present
in the area, which was further intruded by dolerite
dykes (MacDonald et al. 2001).

Other exploratory boreholes targeting dolerite
also encountered intrusions within sandstone. Here
the dolerite was much less fractured and zeolite
was rare. Pumping tests from these boreholes indi-
cated that, although the aquifer properties were
enhanced (up to 0.5 m2 day−1), the transmissivity
was not as high as that recorded in the intrusions
with soft, smectite-rich shale.

Why are the dolerite intrusions so fractured in
Oju and Obi? The most likely reason is the high-
porosity, low-permeability, swelling nature of the
host rock, the Awgu Shales. At the time of intrusion
the mudstones had undergone little change since
deposition and therefore had a high porosity and con-
tained large quantities of interstitial water. As the
dolerite was intruded and the sills and dykes devel-
oped, the interstitial water reacted, leading to high
pressures (Jamtveit et al. 2004), which were unable
to dissipate quickly due to the low permeability of
the mudstone and the plastic, self-healing nature of
the smectite clay. The resulting high pressures and
rapid cooling may have caused the extensive frac-
turing observed within the edges of the intrusions.
Circulating fluids may subsequently have given
rise to zeolite growth on the fracture surfaces. This
hypothesis is supported by data from the boreholes
that encountered dolerite intruded into sandstone,
which encountered little fracturing or zeolite growth.
In this situation, the higher permeability of the

sandstone would not have allowed high pressures
to build. A study in the dolerite dykes of the Karoo
in South Africa identified similar chilled margins
of dolerite dykes as potential fluid pathways, with
the extent of fracturing associated with the hydraulic
properties of the host rock (Senger et al. 2015).

Within the context of water supply, the presence
of dolerite intrusions within low-permeability shale
provides targets for viable groundwater supplies.
This is particularly important as shale environments
are often the most difficult areas in which to find
groundwater (MacDonald & Calow 2009) and are
associated with persistent low water coverage and
poor health (MacDonald et al. 2005). Dolerite intru-
sions are also relatively simple to find using geo-
physical methods (Woodford & Chevallier 2002).
Because the fracturing mechanism is not associated
with weathering and unloading, dolerite intrusions
are also likely to provide significant fluid pathways
at depth within a sedimentary sequence. In this
example, the intrusions were more significant than
the presence of sandstone, limestone or siltstone.
Therefore the occurrence of dolerite intrusions
must also be carefully considered when relying on
argillaceous environments to restrict fluid migration.

Conclusions

Detailed research into the hydrogeology of low-
permeability Cretaceous shales in West Africa has
shown that the presence of dolerite intrusions can
significantly enhance permeability and facilitate
groundwater flow. Exploration boreholes that tar-
geted dolerite intrusions within smectite-dominated
host rock have transmissivities of up to 60 m2 day−1.
Where dolerite was intruded into sandstones, how-
ever, fracturing was less and the measured transmis-
sivity was lower (<0.5 m2 day−1). Where no dolerite
intrusion was present, the transmissivity was gener-
ally <0.01 m2 day−1. The dolerite intrusions within
the shale were intensely fractured at the intrusion
edge, with significant zeolite growth along fracture
surfaces. We postulate that the low permeability and
highwater content of the shale enabled high pressures
to develop during intrusion, facilitating the develop-
ment of fractures along the intrusion contact zone.

This research has two major implications: (1)
dolerite intrusions may offer a promising target for
rural water supply in smectite-dominated shale envi-
ronments; and (2) when considering shale envi-
ronments for their ability to restrict fluid flow, and
therefore as targets for waste repositories, careful
consideration is required of the possibility of encoun-
tering igneous intrusions within the sequence.
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