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Abstract 

Despite having been affected by several stages of exhumation during the Cretaceous and Cenozoic, the 

contemporary stress state of the East Irish Sea (EISB) is poorly characterised. As the basin is mature in 

terms of exploitation of hydrocarbons, future exploration beyond the conventional Sherwood Sandstone 

Group reservoir (Triassic) necessitates a greater understanding of the in situ stress field, while proposed 

natural gas storage and carbon sequestration schemes also require detailed stress field information. 

Using petroleum well data, the in situ stress field of the EISB has been characterised to assess the 

mechanical seal integrity. A strike-slip stress regime most-likely prevails in the basin, meaning the 

Maximum Horizontal Stress (SHmax) is the greatest of the principal stresses. Interpretation of stress 

orientation data suggests that SHmax is oriented 152˚ ± 12˚, consistent with mean stress orientations across 

the wider region associated with plate boundary forces. Some degree of structural control appears to 

influence the orientation of SHmax, with orientations locally aligned sub-parallel to major Permo-Triassic 

basin-bounding faults. 

Fault reactivation risk is evaluated through modelling the pore pressure increase required to induce 

failure on pre-existing faults. Vertical faults striking 30˚ from SHmax are optimally-oriented to become 

reactivated under elevated pore pressure conditions. For any project relying on an element of fault seal 

for the containment of buoyant fluids at the average reservoir depth of 800 m, pore pressure increase 

should be less than 3.3 MPa to avoid reactivating pre-existing optimally-oriented faults. Higher pressure 

increases would be required to initiate reactivation of faults with other orientations. Vertical faults 

striking perpendicular to SHmax are least likely to become reactivated, and in the absence of halite, seal 

integrity would instead be limited by caprock strength and capillary-entry pressure. 

Major faults affecting the basin have been analysed for their slip tendency (ratio of shear to normal 

stress), which provides an indication of their susceptibility to become reactivated. Although the analysis 

is limited due to lack of an accurate 3D representation of the fault network, the results suggest that many 

of the fault orientations observed in the EISB exhibit high slip tendencies, including N–S striking faults 

to the north and west of the East Deemster Fault, where the SHmax orientation is NW–SE. Faults striking 

perpendicular to SHmax, such as the Lagman Fault, are least likely to become reactivated due to higher 

normal stresses that inhibit frictional sliding, while faults striking parallel or very close to SHmax also 

exhibit low slip tendency as they are not subjected to significant shear stresses. 
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1. Introduction 

Accurate determination of the effective in situ stress conditions is critical for effectively managing 

subsurface resources, particularly in mature hydrocarbon provinces such as the East Irish Sea Basin 

(EISB). Characterisation of the in situ stress state is essential for a range of subsurface engineering and 

energy applications (Bell 1996; Hillis & Nelson 2005; Tingay et al. 2005), including seal integrity 

studies relating to exploration and storage of hydrocarbons (Wiprut & Zoback 2000; Finkbeiner et al. 

2001; Reynolds et al. 2003; Meng et al. 2017), and carbon capture and storage (Lucier et al. 2006; 

Chiaramonte et al. 2008; Williams et al. 2016). Detailed stress field information is also commonly 

applied to the study of fluid flow through or along faults, as faults can constitute a risk to hydrocarbon 

exploration and subsurface fluid storage while also contributing positively to flow in tight, 

unconventional or geothermal reservoirs (Barton et al. 1995; Bjørlykke et al. 2005; Mildren et al. 2005; 

Bretan et al. 2011; Hennings et al. 2012). 

Located in the heart of the UK with restricted outlets to the Atlantic Ocean, the EISB is surrounded by 

Ireland, Scotland, NW England and Wales (Figure 1). Hydrocarbon exploration began in earnest in 

1969 with the drilling of the 110/08–1 well and the later discovery of the South Morecambe Gas Field 

in 1974 (Colter 1997; Bastin et al. 2003). Production to date has been exclusively from the Triassic, 

with a Sherwood Sandstone Group reservoir capped by the Mercia Mudstone Group (Figure 2). Aside 

from untested structures associated with this conventional petroleum system, future exploration might 

focus on prospective Palaeozoic targets such as the potential Carboniferous plays recently identified by 

Pharaoh et al. (2016; in press). The EISB is also of interest in terms of its potential for carbon capture 

and storage (Armitage et al. 2013; Lewis et al. 2009), whereby emissions are captured from 

anthropogenic sources such as power plants, and injected to subsurface reservoirs for long-term storage. 

In addition, the EISB also offers the potential for natural gas storage, both in porous sandstones and in 

solution-mined salt caverns (Evans & Holloway 2009). Relative to conventional exploration and 

production activities, these undertakings will require a greater understanding of the in situ stress field. 

Despite the long history of hydrocarbon development in the EISB there is a paucity of publically 

available data relating to the in situ stress conditions, and no stress orientation data are included in 

recent editions of the World Stress Map (Heidbach et al. 2008; 2010; 2016). A complex history of 

vertical movement, compressional deformation and inversion has affected the EISB (Cowan et al. 1999; 

Quirk et al. 1999), and so understanding the current state of stress and its controlling factors is important 

for any application where geomechanical characterisation is required. The large volume of well data 

available from the legacy of exploration and production are used here to characterise the in situ stress 

conditions and their variations across the EISB, and to examine the implications for seal integrity in the 

region. 

2. Geological Setting 

The post-Variscan basin of the East Irish Sea is one of the largest and deepest post-Carboniferous depo-

centres of Western Britain (Jackson et al. 1995). Its present form (Figure 1) was generated by E–W to 

NW–SE extension associated with Permian–Triassic rifting events, resulting in a series of N–S striking 

grabens and structural highs (Chadwick et al. 1994; Jackson et al. 1995; Jackson & Mulholland 1993; 

Needham & Morgan 1997). Two main structural domains are recognised, strictly related to the presence 

of late Permian evaporite. A southern, densely faulted domain is dominated by N–S striking faults, 

while a northern domain is dominated by westerly tilted half grabens influenced by low-angle listric 

faults detached along Upper Permian evaporites (Jackson & Mulholland 1993). 

Hydrocarbons were generated principally by organic-rich marine mudstones of Carboniferous age 

(Cowan et al. 1999; Jackson et al. 1995; Pharaoh et al. 2016). The Carboniferous strata were deposited 

in basins associated with NNW–SSE extension, later folded along reactivated WSW–ENE Caledonian 

structures during the Variscan Orogeny. Carboniferous strata underlie much of the EISB, but subcrop 



beneath Quaternary sediments to the west (Jackson et al. 1995). The top of the Carboniferous is marked 

by a regional angular unconformity over which continental sandstones of the Lower Permian Collyhurst 

Sandstone Formation (Figure 2) were deposited in narrow half-grabens. Upper Permian marine 

incursions resulted in sedimentation styles characteristic of coastal sabkhas, while halites and anhydrites 

of the St Bees Evaporite Formation were deposited in the central parts of the EISB. Towards the south, 

Upper Permian strata thins and abruptly transitions to mudstones and dolomitic siltstones of the 

Manchester Marls Formation. Increased thicknesses of Permian strata in the hangingwalls of some 

faults provides evidence of syn-sedimentary fault movement, although overall subsidence rates were 

limited at this time (Jackson et al. 1995). 

The principal hydrocarbon-bearing reservoir in the basin is the Lower Triassic Sherwood Sandstone 

Group (SSG), which marks the onset of Triassic deposition during a period of increased tectonic activity 

associated with North Atlantic rifting and rapid basin subsidence. Syn-tectonic deposition in NNW–

SSE oriented basins and thickening towards large growth-faults is observed (Jackson & Mulholland 

1993; Knipe et al. 1993). Sediments were deposited in a predominantly fluvial environment with 

ephemeral playa influences, and increasingly aeolian deposition towards the top (Jackson et al. 1995). 

In the EISB the SSG is divided into two formations, the St Bees and Ormskirk Sandstone Formations. 

The earliest of these, the St. Bees Sandstone Formation, rests unconformably over Permian strata, with 

a sharp contact to the south over the Manchester Marls Formation (Figure 2). The St Bees Formation is 

on average 1200 m thick, with recorded thicknesses of 1700 m adjacent to the Lake District Boundary 

Fault, however it thins southwards to about 900 m (Jackson et al. 1995). An abrupt transition associated 

with tectonic and/or climatic changes marks the onset of the Ormskirk Sandstone Formation (Cowan 

1993; Stuart 1993). The Ormskirk Sandstone is on average 250 m thick, but constitutes the most 

economically important interval in the region, as it forms the reservoir to the majority of hydrocarbon 

discoveries. The Ormskirk Sandstone is composed of cleaner thickly-bedded sandstones with an 

increase in aeolian sandstone content contrasting with the finer-grained argillaceous and fluvial-

dominated facies of the underlying St Bees Sandstone. 

The Mercia Mudstone Group (MMG) forms the main caprock in the conventional EISB petroleum 

system, comprising of alternating mudstones, anhydrites, siltstones, dolomites and evaporites deposited 

during the Late Triassic. The preserved thickness of MMG is highly variable, being significantly 

thinned or absent due to erosion, however 3200 m of MMG are preserved in the Keys Basin, part of the 

northern structural domain. The distribution of halite members within the EISB are illustrated by 

Jackson et al. (1995), and their thickness is controlled in part by faulting and areas of high subsidence, 

resulting in highly variable thickness distributions. Numerous low-angle listric faults, glide planes and 

halokinetic structures associated with the Rossall Halite Member are clearly identified in the MMG 

(Jackson et al. 1995; Jackson & Mulholland 1993; Wilson 1990). 

With the exception of 600 m of Jurassic strata in the hangingwall of the Keys Fault, post-Triassic strata 

are virtually absent due to erosion associated with regional uplift and basin inversion (Chadwick et al. 

1994; Hillis et al. 2008; Holford et al. 2005; Holford et al. 2009). Apatite fission track, vitrinite 

reflectance and sonic log analyses indicate phased regional uplift episodes distributed in three main 

inversion phases as a result of major plate-scale reorganisations, with magnitudes decreasing over time 

(Holford et al. 2005). The main phase of exhumation (2–3 km) took place during the early Cretaceous 

and is likely associated with Atlantic rifting events, with an estimated onset between 120 Ma and 115 

Ma (Hillis et al. 2008; Holford et al. 2005). The early Palaeogene exhumation mechanism for the EISB 

remains debatable due to limited evidence of inversion structures for this period. Rowley & White 

(1998) proposed isostatic response to underplating associated with emplacement of the Iceland Plume 

as a mechanism for Palaeogene exhumation, however later studies suggest that contractional 

reactivation of basin faults resulting from Alpine convergence was responsible (Holford et al. 2008; 

Williams et al. 2005). A combination of tectonic inversion and crustal shortening with magmatism 



(associated with plume activity or North Atlantic break-up) is the likely mechanism that led to 

exhumation of about 1–2 km (Holford et al. 2005; Williams et al. 2005). An estimated 1 km of 

exhumation occurred in Oligo-Miocene times as a response to transpressional deformation along major 

NW trending faults (Holford et al. 2005; Turner 1997), although some inversion structures in the Irish 

Sea Basin may be of late Miocene age, and the result of late Alpine deformation (Blundell 2002). Total 

exhumation was not equally distributed within the EISB, with higher values being estimated in the 

southern peripheral areas relative to the deeper parts of the central Keys Basin (Holford et al. 2005). 

Significant localised variation in estimated exhumation occur over short distances across individual 

faults (Ware & Turner 2002). 

Trap development is estimated to have initiated by the Late Triassic, with fluid migration into the 

Ormskirk Sandstone as early as the early-mid Jurassic (Stuart & Cowan 1991). Structural traps were 

created or enhanced as a result of the reactivation episodes, however the true identification of reverse 

structures is not always clear due to salt movement and significant extension of roll-over anticlines 

adjacent to listric faults (Chadwick et al. 1994). Considerable re-migration of hydrocarbons also 

occurred as a result of basin inversion (Cowan et al. 1999). 

3. Controls on Caprock Integrity 

In a study of caprock integrity in the EISB, Seedhouse & Racey (1997) concluded that the lithology 

overlying the SSG is the most important factor affecting the seal integrity, with evaporites providing 

excellent seal integrity, while the seal capacity of mudstone lithologies is limited by their capillary entry 

pressure. The MMG locally comprises thin interbedded mudstones and siltstones, and some of the 

interstitial pore space is observed to be plugged by bitumen (Seedhouse & Racey 1997). Hydrofractures 

generated as a result of overpressure during inversion, are also filled with bitumen, indicating that they 

once acted as conduits for liquid hydrocarbons. There is a positive correlation between the column 

heights of present-day hydrocarbon accumulations and depth to structure (Cowan et al. 1999), 

indicating that seal integrity is most likely to be maintained in deeper parts of the EISB, and is limited 

in shallow structures (<450 m depth), particularly where the overlying halite members are absent 

(Cowan et al. 1999). Mechanical compaction of mudrocks during burial results in smaller pore throat 

radii (Corcoran & Doré 2002), while shales in the EISB exhibit higher capillary entry pressures than 

shales at equivalent depths in non-inverted basins (Cowan et al. 1999). For structures in the EISB that 

are not filled to spill, the principal control on seal integrity is therefore likely to have been 

hydrofracturing during uplift. Whilst re-migration of hydrocarbons and seal breach have been reported 

as a result of burial history and potentially during halokinesis associated with glacial unloading (Cowan 

et al. 1999), to the author’s knowledge there is no evidence for current leakage of hydrocarbons from 

present-day traps. An evaluation of seismic reflection data to assess caprock continuity and fluid-flow 

anomalies such as bright-spots or gas chimneys could be undertaken to further assess present-day 

caprock integrity.  

Permeability measurements of MMG core samples from onshore UK, indicate permeabilities as low as 

1 x 10-5 mD, indicating very high sealing capacity in clay (illite) rich samples (Armitage et al. 2015). 

Similarly, Spain & Conrad (1997) present mercury-injection capillary-pressure results from equivalent 

strata in the Netherlands Sector of the North Sea, where permeabilities range from 0.0022–0.0165 mD, 

and gas-water capillary-entry pressures range from 0.4–9 MPa (Spain & Conrad 1997). Despite the 

wide range in the capillary-seal capacity of the MMG, the presence of significant gas columns preserved 

in the EISB proves that present-day seal integrity of the MMG is maintained, despite the complex burial 

history and evidence for inversion-related breaching of the seal (Seedhouse & Racey 1997; Cowan et 

al. 1999; Quirk et al. 1999). In an assessment of the mineralogy, petrology and mercury injection 

porosimetry, Armitage et al. (2013) concluded that the MMG probably represents a durable caprock for 

future carbon dioxide storage in the SSG. 



Williams et al. (2014) investigated seal integrity of correlative strata in the UK Southern North Sea, 

suggesting that under elevated pore pressures (resulting from simulated injection of carbon dioxide), 

the most likely mechanism for seal failure is the reactivation of pre-existing faults. The relationship 

between in situ stress and fluid flow in faults is well established, with critically stressed faults aligned 

favourably to the stress tensor perceived as being most likely to be hydraulically conductive and posing 

a greater risk to seal integrity. While this has been shown not to be true in all cases (Laubach et al. 

2004; Sathar et al. 2012; Cuss et al. 2015), a number of studies from a variety of settings worldwide 

(Barton et al. 1995; Wiprut & Zoback 2000; Finkbeiner et al. 2001; Hennings et al. 2012) indicate that 

it is useful to adopt as a general rule in assessing seal integrity, at least in the absence of evidence 

regarding specific fault properties. In a study of fluid flow in naturally occurring fractures at the Soultz-

sous-Forets Hot Dry Rock geothermal site in France, Evans (2005) showed that while all flowing 

fractures were observed to be critically stressed, a large number of similarly stressed fractures were not 

hydraulically conductive. The implication therefore, is that the criticality of faults provides a 

conservative assessment of their risk to seal integrity because not all critically stressed faults will 

necessarily promote seal bypass. The in situ stress field in the EISB is therefore evaluated in order to 

assess seal integrity risk in terms of the potential for fault reactivation. 

4. Methods 

Stress is a six component tensor that, at depth, can be resolved into three principal components (Zoback 

et al. 2003). The vertical stress (Sv) is generally considered to be one of the three principal stresses in 

the subsurface, while the other two are horizontal and orthogonal to each other. In order to characterise 

the effective in situ stress field, knowledge of the pore pressure distribution and the orientation and 

magnitude of the three principal stresses are required. Such information can be derived from data 

commonly acquired in hydrocarbon wells. 

In permeable formations, direct measurements of pore pressure at specific points along a borehole wall 

can be provided by Repeat Formation Tester (RFT), Modular Formation Dynamics Tester (MDT) and 

Formation Multi Tester (FMT) tools. 

The orientation of the horizontal stresses can be characterised from borehole failure mechanisms 

resulting from stress concentration around wellbores once material supporting the surrounding rock is 

removed during drilling (Zoback et al. 1985; Bell 1990). Compressive and tensile failure result in 

borehole breakouts and drilling-induced tensile fractures, respectively. Drilling-induced tensile 

fractures develop as narrow features sub-parallel to the borehole axis in vertical wells, but do not result 

in significant borehole enlargement (Brudy & Zoback 1999). In approximately vertical wells (deviation 

less than 10°) they strike in the direction of the Maximum Horizontal Stress (SHmax) (Aadnoy & Bell 

1998). Conversely, borehole breakouts are enlargements of the borehole wall formed by the 

development of conjugate shear fractures. In approximately vertical wells the borehole is enlarged in 

the direction of the Minimum Horizontal Stress (Shmin). Breakouts and drilling-induced tensile fractures 

can be observed using ultrasonic and electrical borehole image logs, including the Ultrasonic Borehole 

Imager (UBI), Formation Micro Scanner (FMS), Formation Micro Imager (FMI) and Circumferential 

Borehole Imaging (CMI) tools. 

While the magnitude of Sv can be estimated from the integration of bulk density logs (Zoback et al. 

2003), the magnitude of the horizontal stresses is more difficult to constrain. The magnitude of the least 

principal stress, Shmin in normal and strike-slip stress regimes, is commonly estimated from leak-off tests 

(LOTs), during which small-scale hydraulic fracturing occurs. These pumping tests are conducted in 

short open-hole well sections often beneath cemented casing shoes, principally in order to assess drilling 

mud densities, however they are also useful for estimating the magnitude of the least principal stress. 

In regional compilations of in situ stress data, LOT data are plotted relative to depth, and a lower bound 

provides a reasonable estimate of the magnitude of the least principal stress (Breckels & van Eekelen 

1982; Addis et al. 1998). The magnitude of SHmax is generally the most difficult parameter to constrain. 



The presence of drilling-induced tensile fractures and borehole breakouts can be useful in estimating 

the magnitude of SHmax as particular conditions are required in order for them to form (Barton & Zoback 

1988; Moos & Zoback 1990; Zoback et al. 2003.). This however requires accurate knowledge of the 

pore pressure and temperature during drilling, and of the tensile and compressive strength of the rock 

at the specific depths where the breakouts or drilling-induced tensile fractures are observed. In the 

absence of such data, broad limits can be placed on the magnitude of SHmax based on frictional limits to 

stress, beyond which faulting would be expected to occur (Reynolds et al. 2003). 

The methods above have been used to determine a regionally applicable in situ stress model which is 

used to assess the potential for fault reactivation in the EISB. When the full stress tensor is known, the 

potential of faults with any given orientation to become reactivated, as well as the pore pressure increase 

required to induce failure can be calculated (Ferrill et al. 1999; Reynolds et al. 2003). Such an increase 

in pore pressure can be induced by the continued accumulation of a hydrocarbon column asserting 

buoyancy pressure on the fault (Finkbeiner et al. 2001), or from the injection of fluids such as natural 

gas for short-term storage or disposal of waste products such as CO2 (Chadwick et al. 2009; Meng et 

al. 2017). 

5. EISB in situ stress field 

5.1. Pore Pressure 

Direct pressure measurements have been extracted from 77 hydrocarbon wells (Figure 3). The data are 

predominantly measured from intervals within the SSG, although one well (110/13–1) contains some 

measurements from the Permian Collyhurst Sandstone Formation. The pore pressure is generally 

characterised by a gradient of 11.628 MPa/km, which is consistent in both the Triassic and Permian 

measurements. The data also display the many elevated pressures associated with buoyant hydrocarbon 

columns owing to the density contrast between hydrocarbons and formation brine. Some wells (most 

notably 110/02a–H9 and 110/02b–R3Y), highlight pressure depletion effects due to hydrocarbon 

production (Figure 3). Hydraulic connectivity within the SSG saline aquifer, at least where it is not 

significantly offset by major faults, is demonstrated by pressure data from well 110/03b–6A which 

tested a structure ~8 km to the east of the South Morecambe Field in 2009, with pressure depleted by 

several MPa. Differential pressure depletion effects over short depth intervals in some wells implies 

significant vertical heterogeneity, most clearly seen in well 113/27a–Q3 from the Millom Gas Field 

which is known to exhibit poor vertical permeability (Cowan & Bradney 1997). 

Wells in the Keys Basin, are somewhat underpressured by comparison with the rest of the EISB, by up 

to ~1.2 MPa (Figure 3). Swarbrick & Osborne (1998) suggested the following mechanisms for the 

generation of underpressure: 

 Hydrodynamic flow (differential discharge rates in topographically-driven flow systems). 

 Rapid migration of exsolved gas from low permeability reservoirs during uplift relative to the 

rate of gas ingress. 

 Dilation of pores in shallowly buried mudrocks due to removal of vertical load. 

 Aquathermal contraction (fluid shrinkage during cooling). 

 Osmotic flow across shale membranes separating formations with differing salinity. 

Underpressured rocks are typically therefore found in exhumed basins, suggesting that underpressure 

is caused by volumetric pore and pore-fluid volume changes due to decreases in temperature and 

pressure, along with hydraulic realignment during exhumation (Corcoran & Dóre 2002). The lower 

pressure observed in the Keys Basin likely reflects this variation in burial and uplift history.  

5.2. Vertical Stress 

The magnitude of the vertical stress (Sv) at a specific depth can be equated to the pressure exerted by 

the weight of the overburden. It can be obtained by integrating bulk densities from the surface to the 



depth of interest (z) according to equation 1, or equation 2 in the case of offshore settings after Zoback 

et al. (2003): 

𝑠𝑉 = ∫ 𝜌(𝑧)𝑔 ⅆ𝑧
𝑧

0
≈ 𝜌̅𝑔𝑧         (1) 

𝑠𝑉 = 𝜌𝑤𝑔𝑧𝑤 + ∫ 𝜌(𝑧)𝑔 ⅆ𝑧
𝑧

𝑧𝑤
≈ 𝜌𝑤𝑔𝑧𝑤 + 𝜌̅𝑔(𝑧 − 𝑧𝑤)      (2) 

Where 𝜌(𝑧) is density as a function of depth, 𝑔 is the acceleration due to gravity, 𝜌̅ is the mean 

overburden density, 𝜌𝑤 is the density of water (taken as 1 g/cm3) and 𝑧𝑤 is water depth. Bulk density 

logs from 35 wells across the EISB were integrated in order to derive the vertical stress. Density logs 

are not commonly acquired to surface and are commonly affected by bad hole conditions (and any cased 

intervals encountered by the tool), and so a quality control process was undertaken to clean and replace 

bad-hole sections, and to estimate the density values in missing log sections and to account for the 

varying height of the water column. The data are presented in Figure 4, and can be approximated for 

the basin as a whole using a power law function (equation 3). Variations in Sv between individual wells 

are the results of variations in stratigraphy and burial history. The 110/03–2 well, which forms the lower 

bound to the Sv envelope shown in Figure 4, is situated in the Crosh Vusta Graben where >700 m of 

halite was deposited within the MMG, leading to reduced overburden densities. After the minimum 

denudation estimates modelled by Rowley & White (1998), wells that form the upper bound to the Sv 

data are those in areas that have been subjected to significant denudation, such as 112/25a–1 in the 

hangingwall of the Lagman Fault, implying deeper burial prior to exhumation. 

𝑠𝑉 = 0.0159 𝑧1.0511                                                                                                                           (3) 

5.3. Horizontal Stress Orientations 

Although no data regarding the orientation of SHmax in the EISB are available in current editions of the 

World Stress Map (Heidbach et al. 2008; 2010; 2016), several recent publications have analysed 

borehole breakouts and drilling-induced tensile fractures in order to assess the SHmax orientation in the 

UK and surrounding offshore regions. Assessment of the stress orientation of Central and Northern 

England (Kingdon et al. 2016), predominantly within the Carboniferous Coal Measures, found that 

SHmax is orientated NW–SE (150.9°), with a standard deviation of 13.1° suggesting little variation in the 

orientation of far-field stress. A similar orientation is found in offshore UK regions such as the Southern 

North Sea (Williams et al. 2015) and the Faroe-Shetland region (Holford et al. 2016), albeit with a 

degree of short-wavelength variation related to local structural features superimposed on the roughly 

NW–SE regional trend. The regional orientation is controlled principally by plate boundary forces, 

reflecting the configuration of plate boundaries and tectonic forces (Müller et al. 1992; Gölke & 

Coblentz 1996). Variable orientations of SHmax are seen in some parts of the UK Continental Shelf 

because thick Permian evaporites decouple the stress field in the post-Permian sedimentary succession 

from stresses affecting the basement rocks (Hillis & Nelson 2005; Williams et al. 2015), or because 

structural features such as mechanically weak or active faults locally deflect stress orientations (Holford 

et al. 2016; Williams et al. 2016). 

Analysis of image logs from approximately vertical sections in 12 wells in the EISB has identified 

reliable borehole stress indicators in six wells (Table 1). A typical example of a borehole breakout 

feature from well 109/05–1 is shown in Figure 5. When the orientations from all wells are aggregated, 

the data support an average SHmax orientation of 152°, consistent with the regional UK stress orientation. 

The calculated orientations have been subjected to the quality ranking scheme utilised by the World 

Stress Map (WSM) project (Sperner et al. 2003; Heidbach et al. 2010). Although it is important to note 

that the number of data available are relatively few, there appears to be a systematic variation in the 

orientation of SHmax from N–S in the southerly part of the EISB, to NW–SE in the North (Figure 6), 

corresponding to the orientation of the dominant structural domains. The orientations appear to strike 

parallel or sub-parallel (up to ~30˚) to the orientation of the major structural features in the proximity 



of the well locations, implying that the major basin-bounding faults might locally be exerting some 

control on the orientation of SHmax. Stress orientation data have also been identified for three recently 

released onshore wells bordering the EISB (Table 2), two of which have been interpreted as part of this 

study, and another (Preese Hall, the UK’s first dedicated shale gas exploration well) interpreted by 

Baker Hughes (2011). The onshore wells show similar mean orientations to those offshore, while also 

showing some resemblance to the orientation of major Permo-Triassic structures (Figure 6). Given that 

the standard deviation is low (Table 1) when the orientations from all wells offshore are aggregated, the 

mean orientation of 152° is considered to be a good representation of the far field stresses affecting the 

EISB.  

5.4. Horizontal Stress Magnitudes 

Leak-off test (LOT) data were extracted from company records for 89 wells across the EISB (Figure 

7). Data were taken as recorded by the various companies, but the actual pumping pressure charts were 

unavailable for validation. Most of the data constitute Formation Integrity Tests (FITs) rather than true 

LOTs. These tests are where the pressure is not taken to leak-off. It is assumed that the notation on the 

company records follows this convention, so that LOTs are taken to fracture whereas FITs are not, 

however it is not possible to verify this without consulting the raw data which are not available. 

Hydraulic fracture tests and extended leak-off tests (XLOTs or ELOTs) provide improved estimates of 

the least principal stress magnitude (Addis et al. 1998; White et al. 2002), however no such data were 

available to this study. The data are presented in Figure 7, and suggest that the leak-off pressure 

commonly exceeds the magnitude of the vertical stress. LOT measurements depend on other factors in 

addition to stress magnitude, such as the lithology and rock strength at the depth tested, the properties 

of the drilling fluids, and wellbore stability. The data would suggest that the rocks present at the depths 

where the tests were conducted (principally within the MMG) possess an anomalously high strength 

relative to their present depth. Corcoran & Doré (2002) discuss the impact of burial and exhumation on 

the tensile strength of claystones in exhumed Atlantic margin and borderland basins. Up to 2132 m of 

overburden has been denuded from over the preserved MMG (Ware & Turner 2002), so the claystones 

have been subject to increased mechanical compaction at greater depths, contributing to high shear and 

tensile strength. As supported by the LOT data from the EISB, exhumed claystones retain strength 

commensurate to their maximum burial depth (Corcoran & Doré 2002), and so higher pore-pressure is 

required to cause fracturing of the intact rock relative to claystones at similar present day depth in non-

exhumed basins, as long as the exhumation occurred prior to embrittlement. 

A gradient of 18 MPa/km provides a minimum bound to the LOT data which can be used to estimate 

the magnitude of the least principal stress (Shmin) at depth in the absence of detailed XLOT/ELOT 

measurements. As the magnitude of the least principal stress is less than the vertical stress (Figure 7), a 

compressive stress regime (Sv<Shmin<SHmax) can be discounted, and the stress state of the EISB must 

either be one of normal (Shmin<SHmax<Sv) or strike-slip (Shmin<Sv<SHmax) faulting. Earthquake focal 

mechanisms suggest a dominantly strike-slip state of stress over most of the onshore UK region, with 

the exception of dominantly compressional stresses north of the Midland Valley in Scotland (Baptie 

2010). Given that the orientation of SHmax in the EISB is consistent with onshore data, it is expected that 

a strike-slip stress state can also be expected in the EISB. As detailed data are unavailable to accurately 

constrain the magnitude of SHmax, frictional limits can be applied to provide an upper bound after Jaeger 

et al. (2007). This assumes that the differential stress, or ratio of the maximum to minimum effective 

stress magnitudes, cannot exceed a value required to cause reactivation of pre-existing faults 

preferentially-oriented with respect to the prevailing stress regime (equation 4): 

𝜎1

𝜎3
=

S1−𝑃𝑃

S3−𝑃𝑃
≤ [(𝜇2 + 1)1∕2 + 𝜇]

2
        (4) 

Where S1 and S3 are the maximum and minimum principal stresses respectively, Pp is the pore 

pressure, and µ is the coefficient of friction. After Byerlee (1978), µ is commonly 0.6≤µ≤1, so two 

values (0.6 and 0.4) were selected to account for the potential range of frictional fault rock properties, 



within the range of fault gouge properties reported by Haines et al. (2014) and Ferrill et al. (2017). The 

value of µ is likely to vary depending on the clay content of the fault gouge, with clay-rich gouges 

having lower values of µ compared to clast-rich fault gouges (Haines et al. 2014). The estimated SHmax 

gradient for µ=0.6 is 31.54 MPa/km, and for µ=0.4 is 25.55 MPa/km. 

5.5. Full stress tensor 

Although the precise magnitudes of the effective in situ stresses will vary between specific locations, 

the full stress tensor at depth for the EISB can be approximated using the data compiled in this study 

(Figure 8). Note that in the upper few hundred metres there is significant uncertainty regarding the pore 

pressure and stress magnitudes as the gradients converge towards the seabed, complicated by lateral 

variations in sea-water depth and by lack of data in the shallow subsurface. 

6. Risking Fault Reactivation and Seal Integrity 

Pre-existing faults that are subjected to stresses sufficient to induce failure commonly provide conduits 

allowing for fluid-flow through otherwise low permeability strata, leading to potential loss of seal 

integrity (Clayton & Hay 1994; Sibson 1994; Barton et al. 1995; Dewhurst et al. 1999; Wiprut & 

Zoback 2000; Finkbeiner et al. 2001). Conditions required to induce brittle failure can be predicted 

using a Mohr approach, whereby the Mohr circle representing the stress tensor is described alongside a 

failure envelope representing the frictional strength of the fault. Changes in pore pressure will affect the 

effective stresses, moving the position of the Mohr circle, with brittle failure occurring when the Mohr 

circle comes into contact with the failure envelope. 

For pre-existing faults of any given orientation at specific depth, brittle failure theory can be used to 

determine the pore pressure perturbation (∆P) that would result in fault reactivation (Mildren et al. 

2005). The average depth to the top of the Ormskirk Sandstone Formation in the EISB is ~800 m, 

therefore the ∆P for faults has been calculated for that depth and are shown for two cases using 

stereographic projections (Figure 9) based on the parameters given in Table 3. Fault orientations with 

low ∆P values do not require significant increases in pore pressure to become reactivated, while faults 

with higher values require significant increases in pore pressure before they can be reactivated. Given 

the lack of rock failure envelopes for the region, two different cases are assumed with different values 

for µ, while cohesion (C) is given as 2 MPa to account for fault rock strength. 

Under the assumed strike-slip stress regime (Shmin<Sv<SHmax), faults that are most likely to become 

reactivated under elevated pore pressures are vertical faults striking 30˚ from SHmax, at angles of 182˚ or 

122˚. Such faults would require increases in pore pressure of ~3.3 or 5 MPa for cases 1 and 2 

respectively. In both cases, vertical faults striking parallel with Shmin (62˚) are least likely to become 

reactivated, requiring ∆P of over 15 MPa in both cases. Case 2 shows less range in ∆P values than Case 

1, due to the lower differential stress which results in a smaller Mohr circle with greater distance from 

the failure envelope (Figure 10). For certain non-optimally oriented fault orientations, the pore pressure 

required to initiate fault reactivation exceeds the least principal stress magnitude (Shmin), in which case 

new hydrofractures would be expected to form prior to fault reactivation. 

To illustrate the susceptibility of the major EISB faults to reactivation, the slip tendency of the faults 

has been calculated using the Case 1 parameters given in Table 3 (Figure 11). Slip tendency is the ratio 

of shear to normal stress, and indicates that slip is likely to occur when the resolved value is equal to, 

or exceeds the value of µ (Morris et al. 1996). In the absence of a detailed 3D representation of the 

faults, they are assumed to be vertical in this analysis, as this is the worst-case scenario given that faults 

optimally-oriented for failure are vertical under the expected strike-slip stress conditions. The results 

suggest that many of the fault orientations observed in the EISB exhibit high slip tendency values, 

including N–S striking faults to the north and west of the East Deemster Fault, where the SHmax 

orientation transitions towards NW–SE (Figure 11). Faults striking perpendicular to SHmax, such as the 

Lagman Fault, are least likely to become reactivated due to higher normal stresses that inhibit frictional 



sliding, while faults striking parallel or very close to SHmax also exhibit low slip tendency values as they 

are not subjected to significant shear stresses. While Figure 11 is useful in highlighting the relative 

tendency of varyingly oriented faults in the EISB to slip, it is important to note that the fault populations 

in the basin are seldom vertical, dipping instead at relatively low angles (Jackson et al. 1995). The 

impact of this is that the higher slip tendencies shown in Figure 11 are actually rather conservative, and 

would likely be reduced if dip was taken into account. Detailed three-dimensional fault models would 

be required in order to more accurately determine the slip tendency and fault reactivation potential. 

In the EISB context, fluid injection such as for natural gas storage or carbon sequestration are likely to 

be implemented in depleted hydrocarbon fields. Due to coupling between pore pressure and stress it is 

well known that pressure depletion associated with fluid production from reservoirs can induce changes 

to the pre-production stresses (Hillis 2000; Zoback & Zinke 2002). In a pressure-depleted reservoir, 

fluid pressure increases that could be achieved without reactivating pre-existing faults would likely 

exceed the 3.3 and 5 MPa calculated for cases 1 and 2 in Figure 9, which were calculated for virgin 

reservoir conditions. Pressure depletion of the SSG reservoirs in the EISB, of the magnitudes 

highlighted by Figure 3, may be sufficient to have induced significant changes to the horizontal stresses. 

It is possible that relative reduction of the horizontal stresses (both Shmin and SHmax) with respect to the 

magnitude of Sv, will have resulted in local changes of the stress regime (transitioning to a normal stress 

state), if the magnitude of SHmax has been reduced sufficiently so that it is now exceeded by the 

magnitude of Sv. The magnitude of Sv would be expected to have remained unchanged as the earth’s 

surface is a free surface. If the magnitude of Sv now locally exceeds the magnitude of SHmax, fault 

orientations optimally-oriented for failure would now be 60˚ dipping faults striking parallel to SHmax. 

This highlights the necessity of considering the geomechanical impacts of hydrocarbon production as 

well as fluid injection when planning injection to depleted reservoirs. 

7. Conclusions 

Reactivation of pre-existing faults poses a risk to seal integrity in the EISB. In order to quantify the 

potential for fault reactivation in the region, the in situ stress tensor has been determined using 

hydrocarbon well data. Borehole breakouts and drilling-induced tensile fractures suggest a mean SHmax 

orientation of 152˚, which is consistent with regional stress orientations. Some variation in the 

orientation of SHmax is noted however, with alignment to major faults suggesting some degree of local 

structural control. Stress magnitude data suggests the vertical stress exceeds the magnitude of Shmin, 

signifying that either a strike-slip or normal faulting stress regime is prevalent in the region. On the 

basis that the onshore UK stress field is predominantly one of strike-slip faulting (Baptie 2010), and 

that the orientations of SHmax observed in the EISB are consistent with those onshore, a strike-slip faulting 

regime is assumed. This assumption is further supported by the presence of drilling-induced tensile 

fractures, as relatively high differential stresses are required in order for them to form (Zoback et al. 

2003). The magnitude of SHmax has been estimated using frictional faulting limitations, for two different 

cases assuming variation in frictional fault rock properties. 

Regardless of the assumed frictional properties of EISB fault rocks, vertical faults striking 30˚ from 

SHmax (182˚ or 122˚) are most likely to become reactivated under elevated pore pressure conditions. For 

any project relying on an element of fault seal for the containment of buoyant fluids such as naturally-

occurring hydrocarbons or injected fluids such as natural gas or carbon dioxide, the presence of 

similarly oriented faults can be considered to enhance the risk of seal-breach or induced-seismicity if 

present. At the average reservoir depth of 800 m, these optimally-oriented faults will become reactivated 

if pore pressure increases by 3.3 or 5 MPa depending on the assumed frictional properties, however 

higher pore pressure increases would be required to initiate reactivation of faults with other orientations. 

Vertical faults striking perpendicular to SHmax would require very high pore pressure perturbations 

exceeding the minimum principal stress to become reactivated. Seal integrity would then be limited by 

caprock strength and potentially by capillary-entry pressure.  



Slip tendency analysis has been carried-out for the main faults in the central part of the EISB, and shows 

that numerous faults striking close to N–S have relatively high slip tendency values. This analysis 

represents the worst-case scenario, where all faults are considered to be vertical. More accurate 

determination of the slip tendency and susceptibility of the major EISB faults to reactivate is precluded 

by lack of an accurately constrained 3D representation of the fault network. Furthermore, due to lack 

of an accurate determination of the SHmax magnitude, the differential stress is considered to be at the 

frictional limit for faults optimally-oriented for failure within the prevailing stress regime. Higher shear 

stresses are therefore promoted in the slip tendency analysis, and lower pore pressure increases are 

required to reactivate faults. The analyses presented are therefore inherently conservative, representing 

the worst-case scenario in terms of fault stability. 

The largest natural gas accumulation in the EISB is the South Morecambe Field, which has a column 

height of ~400 m. Using pressure data from well 110/08a–C1 along with the gas pressure gradient given 

by Bastin et al. (2003), the pre-production gas column at the field would have exerted a buoyancy 

overpressure of ~5 MPa at the crest of the field. Such a pressure would have exceeded both the estimated 

pressure required to reactivate optimally-oriented faults, and the Shmin magnitude estimated at that depth, 

but the presence of the significant gas column implies that the overlying MMG and the field-bounding 

faults do represent effective mechanical seals. The MMG directly over the field is composed of halite, 

which is likely to possess a fracture pressure greater than the minimum bound to the LOT data estimated 

in this study. Also, it is unlikely that the field-bounding faults are optimally-oriented for reactivation, 

despite the high slip tendencies calculated for the southern part of the Tynwald Fault Zone (Figure 11). 

Seismic sections (Bastin et al. 2003; Knipe et al. 1993) show that the Tynwald Faults and other field-

bounding structures are not vertical as assumed in the slip tendency analysis presented in Figure 11. 

In terms of future hydrocarbon exploration in the basin, the mechanical efficacy of the MMG is unlikely 

to represent a significant risk under contemporary in situ stress conditions, unless significant 

hydrocarbon accumulations are expected to be discovered with column heights of several hundred 

metres. Such columns could exert pressure exceeding the Shmin magnitude at the reservoir-caprock 

interface if halite is absent or is disrupted by halokinesis. Cenozoic uplift had a significant impact on 

tertiary hydrocarbon migration in the EISB (Duncan et al. 1998; Cowan et al. 1999), which most likely 

constitutes the greater exploration risk. For any future gas storage or geological disposal efforts in the 

EISB (for example of anthropogenic carbon dioxide), operational pressures should be carefully 

considered in order to mitigate against the potential for fault reactivation and associated risk to storage 

integrity. 
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Well Log 

Type 

Number 

of 

Indicators 

Stress 

Indicat

or 

Type 

Top 

Depth 

(m ss) 

Bottom 

Depth 

(m ss) 

Total 

Length 

(m) 

Mean SHmax 

orientation 

(°) 

Standard 

Deviation 

(°) 

WSM 

Rank 

109/05–1 FMS 7 BO 801.4 839.7 8.84 154.49 4.53 D 

110/04–1 UBI 2 BO 552.6 560.8 5.94 161.66 2.84 D 

110/08a–5 FMI 1 BO 1294.6 1295.6 0.9 160.05 - D 

110/14–3 FMS 1 BO 1236.8 1237.6 0.76 181.3 - D 

111/15–1 FMS 3 BO 1575.4 1590.5 7.96 141.22 1.15 D 

113/27b–6 FMI 2 DITF 1419.3 1452.3 3.72 133.84 4.42 D 

Summary - 16 - - - 24.42 152.23 12.13 - 

Table 1. Summary of borehole stress indicators used to define SHmax orientation in the EISB. SHmax 

orientation and number weighted standard deviation calculated using the circular statistics of Mardia 

(1972). BO=Breakout, DITF=Drilling-Induced Tensile Fracture, ss=sub-sea. 

 

Well Log 

Type 

Number 

of 

Indicators 

Stress 

Indicat

or 

Type 

Top 

Depth 

(m ss) 

Bottom 

Depth 

(m ss) 

Total 

Length 

(m) 

Mean SHmax 

orientation 

(°) 

Standard 

Deviation 

(°) 

WSM 

Rank 

Doe Green 3 FMI 8 BO 462.8 1221.8 9.4 151.99 6.82 D 

Ince Marshes FMI 129 BO / 

DITF 

403.3 1416.64 211.7 164.98 10 A 

Preese Hall CMI - BO / 

DITF 

- - - 173 7 - 

Table 2. Summary of borehole stress indicators used to define SHmax orientation in onshore region 

bounding the EISB. Data for Preese Hall are taken from Baker Hughes (2011); image logs were not 

re-interpreted as part of this study. Doe Green 3 is a deviated borehole with 43 BO and DITF 

observations, however only those observations where borehole deviation <10 degrees from vertical 

are presented here following Mastin (1988). 

 

 Pore 

Pressure 

(MPa) 

Sv (MPa) Shmin 

(MPa) 

SHmax 

orientation 

C (MPa) µ Upper bound 

SHmax (MPa) 

Case 1 9.3 17.9 14.4 152.23˚ 2 0.6 25.23 

Case 2 9.3 17.9 14.4 152.23˚ 2 0.4 20.44 

Table 3. Parameters used to model fault reactivation and seal integrity in the EISB, for a depth of 

800 m below mean sea level. The two cases account for uncertainty regarding the coefficient of 

friction (µ) of optimally-oriented faults.  



 

Fig. 1. Location of EISB and surrounding basins, main structural features and distribution of Sherwood 

Sandstone and Mercia Mudstone Groups (after Jackson et al. 1995), hydrocarbon fields, and key wells. 

Well names are preceded by UK offshore quadrant numbers (shown by bold labels in quadrant corners). 

CB, Cheshire Basin; CVG, Crosh Vusta Graben; EB, Eubonia Basin; EDF, East Deemster Fault; FPF, 

Formby Point Fault; GCF, Godred Croven Fault; KB, Keys Basin; KF, Keys Fault; LB, Lagman Basin; 

LDBF, Lake District Boundary Fault; LF, Lagman Fault; NCB, North Channel Basin; OP, Ogham 

Platform; PB, Peel Basin; SB, Stranraer Basin; SFB, Solway Firth Basin; SMF, South Morecambe Gas 

Field; TF, Tynwald Fault Zone; WBFLC, Western Boundary Fault of the Lancashire Coalfield; WOF, 

Woodsford Fault. Coastline, fields and quadrant data contain public sector information licenced under 

the Open Government Licence v3.0. 

 



 

Fig. 2. Schematic stratigraphic column for the East Irish Sea showing broad stratigraphic, lithological 

and petroleum system relationships. Stratigraphic nomenclature after Jackson et al. (1995). 

 

 



 

Fig. 3. Pore pressure data from the EISB showing pore pressure gradients for the EISB as a whole and 

for the Keys Basin (dotted lines). Pressure data that indicate hydrocarbon columns for certain wells are 

labelled, and data from wells displaying considerable depletion due to hydrocarbon production are also 

highlighted. Wells referred to in text are labelled along with significant outliers. 

 

 

 

 

Fig. 4. Vertical stress magnitudes for 35 wells in the East Irish Sea Basin along with Sv depth function 

(solid black line). The deepest well from which the vertical stress has been estimated, is 110/10–1, 

which extends into the Namurian. 

 



 

Fig. 5. Unwrapped circumferential (clockwise from north) resistivity borehole image (FMS) from well 

109/05–1, showing typical example of borehole breakout observed in the EISB. The breakout zone is 

highlighted by the black boxes on opposing sides of the borehole wall and is oriented ENE–WSW, 

indicating SHmax orientation of NNW–SSE. 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 6. SHmax orientations in the EISB and adjacent regions. Stress orientations of Sellafield wells taken 

from Kingdon et al. (2016) and structural features as denoted in Figure 1. Inset map places new data 

into regional context showing quality A–D SHmax orientations from WSM as grey markers (Heidbach et 

al. 2016) and recently published data from the Inner Moray Firth within stippled box (Williams et al. 

2016). Location of earthquake focal mechanisms used by Baptie (2010) shown by graduated circles 

(Magnitudes 2.8–5.4). Coastline, fields and quadrant data contain public sector information licenced 

under the Open Government Licence v3.0. 

 

 



 

Fig. 7. Formation Leak-Off Test (LOT) and Formation Integrity test (FIT) data from the EISB relative 

to a regional hydrostatic gradient of 11.628 MPa/km, vertical stress (Sv) function (equation 3) and lower-

bound LOT gradient (Shmin) of 18 MPa/km. 

 

 

Fig. 8. Regional in situ stress-depth plot for the EISB. Pore pressure is taken from the regional pore 

pressure gradient, Shmin represents the lower bound to LOT measurements, Sv is calculated using the 

power law function described by equation 3, and two cases are assumed for SHmax, estimated using 

frictional limits based on different friction coefficients (µ) for optimally-oriented faults. 



 

Fig. 9. Equal angle, lower hemisphere stereographic projections of poles to planes, displaying risk of 

fault reactivation at a depth of 800 m in the EISB for two cases with differing coefficients of friction 

(Table 3). The numerical values refer to the increase in fluid pressure (∆P) required to cause fault 

reactivation, assuming a Griffith–Coulomb failure envelope with stress state and failure envelope 

parameters from Table 3. The black poles to planes and strike lines indicate the orientations of 

optimally-oriented faults. 

 

 

 

 

Fig. 10. Mohr circle representation of EISB stress state at 800 m depth using stress-field parameters 

and assumed failure envelope shown in Table 3. Despite the lower angle of the Case 2 failure envelope, 

the differential stress is lower because of the frictional limit placed on the magnitude of SHmax. Case 2 

therefore has a greater horizontal distance from the failure envelope, and greater ∆P would be required 

to initiate failure. 

 

 

 



 

 

Fig. 11. Slip tendency of faults across the central part of the EISB, accounting for variation in 

orientation of SHmax, but assuming that all faults are vertical. The orientation of SHmax is assumed to vary 

smoothly between the borehole stress indicators. Structural features as denoted in Figure 1. 

 

 


