

British Geological Survey

Gateway to the Earth

Baseline Scotland – Scotland's groundwater quality

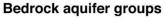
Brighid Ó Dochartaigh British Geological Survey

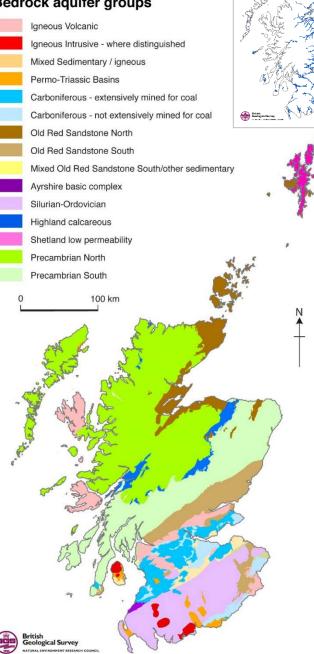
With thanks to Alan MacDonald and Pauline Smedley, BGS & Vincent FitzSimons, SEPA

© NERC All rights reserved

Talk Overview

- Groundwater in Scotland
- Introduction to the Baseline Scotland project
- What is baseline groundwater quality?
- Study methodology
- Results





Assimilating waste

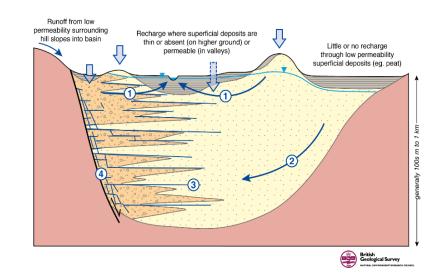
Irrigation

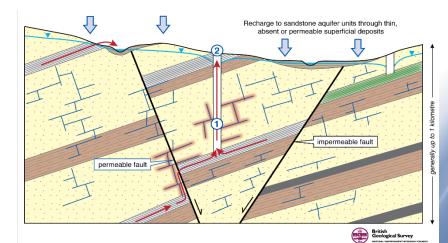
Bottled water

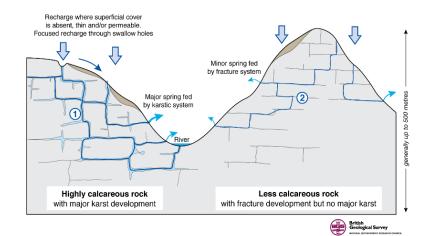


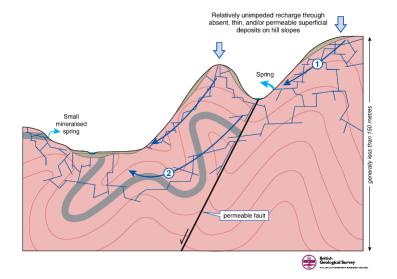
Scotland's Aquifers

- Different ages, lithologies, geological histories
- **Different physical & chemical** aquifer properties – permeability & aquifer productivity; groundwater flow type; chemistry
- Occasionally significantly altered by humans - Carboniferous

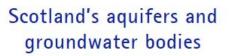







TARREFLES 26

Aquifers are 3D


© NERC All rights reserved

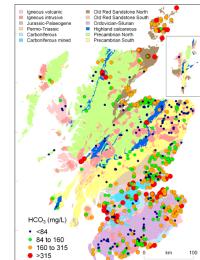
Find out more about Scotland's aquifers:

http://nora.nerc.ac.uk/511413/

Groundwater Science Programme OPEN REPORT OR/15/028

The Baseline Scotland project

- An overview of the natural ('baseline') chemistry of groundwater in major bedrock aquifers in Scotland
- Project ran 2005 2014
- Run by BGS in collaboration with SEPA
- Systematic regional surveys of all major bedrock aquifers
- Several regional / aquifer-specific reports published (e.g. Midland Valley Carboniferous)
- Synthesis report published 2017

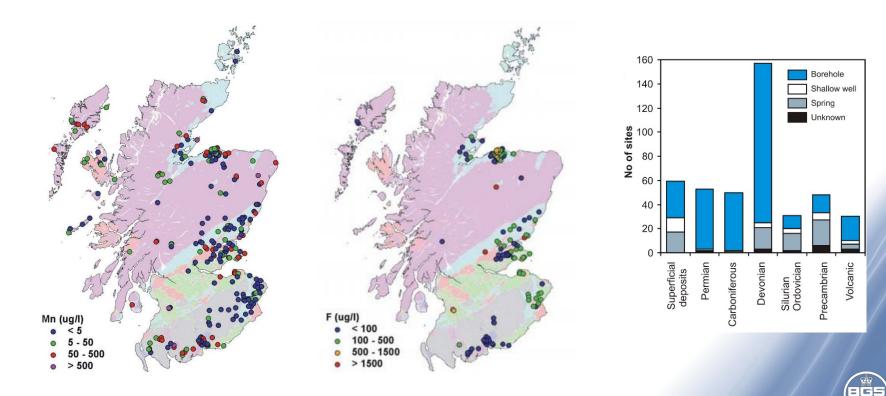


Aims of Baseline Scotland

- 1. To characterise the ranges in natural background groundwater quality in Scotland's main aquifers, by carrying out groundwater sampling surveys that as far as possible are representative of each aquifer.
- 2. To provide a scientific foundation to underpin Scottish, UK and European water quality guideline policy, notably the Water Framework Directive, with an emphasis on the protection and sustainable development of high quality groundwater.

Baseline Groundwater Quality

- Groundwater chemistry varies naturally between & within aquifers
- Many complex & interrelated natural controls, e.g.
 - Rainwater chemistry
 - Evapotranspiration
 - Type & thickness of soil & superficial deposits
 - Geology & geochemistry of an aquifer
 - Chemical evolution of groundwater as it flows through an aquifer (e.g. redox reactions, ion exchange, & sorption)
- A range of chemical values characterises the natural baseline groundwater quality of any one aquifer:
 - This project used the 10th 90th percentile range to define a baseline
- Knowing the baseline allows outliers to be identified these are more likely to be caused by human pressures than to be natural


Project Methodology

- Review and assess existing data
- New data collection: groundwater sampling
- Sample analysis
- Data interpretation and synthesis

Pre-Baseline Scotland: review & assessment of existing data

- Existing data from previous projects, monitoring, etc
- Variable data distribution, completeness & quality

Groundwater sampling & supporting data collection

• Site selection

- Representative of aquifer
- Away from contamination sources

Source type

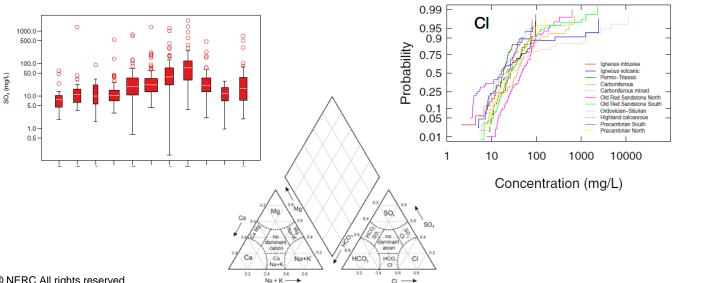
- Boreholes 78%
- Springs 18%
- Large diameter wells 4%

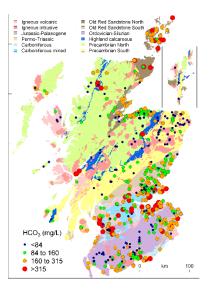
Sampling procedure

- Purged/flowing samples, if possible direct from wellhead or spring source.
- Field measurements DO, pH, SEC, Eh, temperature, HCO₃

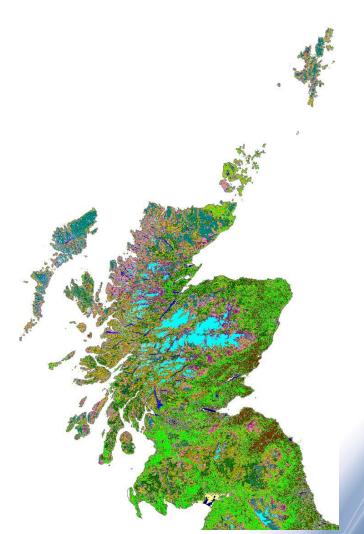
Supporting data

- Sampling (e.g. date, time, purged status)
- Source (e.g. depth, construction, condition, pumping rate, use)
- Surrounding area (e.g. land use)


Sample analysis

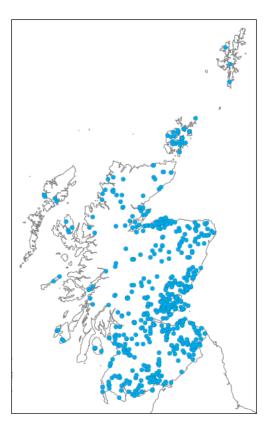

- Samples analysed at BGS laboratories:
 - ICP-OES (major cations, total S, Si)
 - ICP-MS (wide range of trace elements)
 - IC (NO₃, Cl, Br, F)
 - Automated colorimetry (NH₄, I)
 - Carbon analyser (DOC)
- Also analysed for
 - Stable isotopes d²H, d¹⁸O at most sites
 - Dissolved gases CFC, SF₆, CH₄ at selected sites
- Rigorous data QA done, including
 - analysis of certified standards
 - exclusion of analyses with high charge imbalances

Data interpretation & presentation


- Summary statistics calculated for whole dataset; for each aquifer; & for different land use categories:
 - Minimum, 10th, 25th, 50th, 75th, 90th, 95th percentiles, maximum
 - Median is preferred estimate of central tendency (less affected by extreme concentrations than mean)
- Results presented as Piper diagrams, box plots, cumulative probability plots and maps

Land use

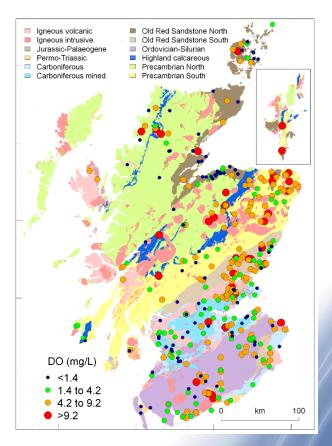
- Land use is the key influence on anthropogenic impacts on groundwater quality
- National-scale land cover mapping and site-scale land use categorisation used to identify potential diffuse & point source pressures, e.g.
 - Agriculture (e.g. improved pasture grassland; arable; dairy/pigs/poultry)
 - Recreation (e.g. golf courses)
 - Septic tanks
 - Fuel stations
 - Industry



CEH LCM2007 1.0

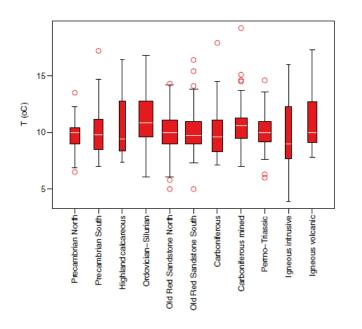
Summary of Results

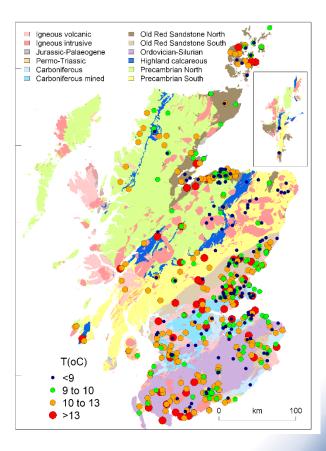
- 646 chemical analyses of groundwater samples
- Distributed across 11 bedrock aquifers & 9 land use categories



Land use	Arable				Improved pasture			Mixed agricultural		Mixed rural land use				Pasture DPP			Recreat- ional			Semi natural				Urban and/ or urban industrial			Wood land			Unknown				Total	
Aquifer Group	В	S	W	В	S	W	В	S	W	Α	В	S	W	В	S	W	В	S	W	Α	В	S	W	В	S	W	В	S	W	Α	В	S	W	U	
Per mo-Tri assic				17			1				5			10							1			5			1				19	2	1		62
Carbon ifer ous	11			4			6				2	1		2	1		5				2	3		2			1				14	1			55
Carbon ifer ous min ed	7	1		3			3			1	1			7			1			1	3			9	1					2	16				56
Old Red Sandstone North	9			14	2	1	7		1		6	1		7			4				1			2		1					33	8	2		99
Old Red Sandstone South	23	3	1	8	2		12	1			9	2		3			5					1		3			1	1			44	3	3		125
Silurian- Ordovician	2			14	10	1	1					1		7	1		1				6	5		1				2			9	8	3	1	73
Calcareous				6				2			3	1		1								3										1	1		18
Precambrian North				4			1				4	2					1				8	1					3				7	9	1		41
Precambrian South	2	1		3	4	1		2			7	1		1		1	2					1					1	2			9	1			39
Igneous volcanic	5		1	4	3		4				1			2			2				3	2						1			12	3			43
Igneous intrusive	1			3	2	1	1	1	1		1			4		1					1	3					2	1	1		6	3		1	34
Total	60	5	2	80	23	4	36	6	2	1	39	9	0	44	2	2	21	0	0	1	25	19	0	22	1	1	9	7	1	2	169	39	11	2	
	67			107		44		49			48		21			45				24			17				223				645				

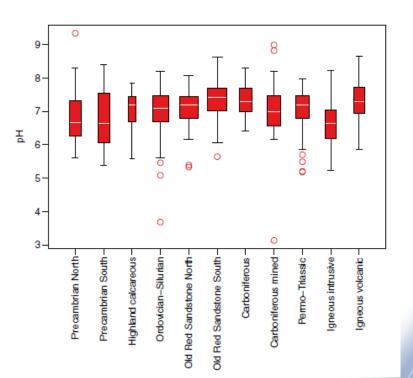
Dissolved oxygen / redox conditions


- Oxic conditions dominate consistent with mainly shallow groundwater flowlines
- Local mildly reducing zones in several aquifers
- Regionally extensive reducing conditions only in Old Red Sandstone North, Moray – reducing NO₃, Fe & Mn
- Locally more strongly reducing conditions in Carboniferous & in mineralised springs in Ordovician-Silurian aquifers – reducing SO₄ & NH₄

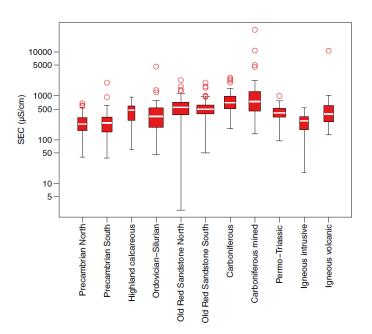


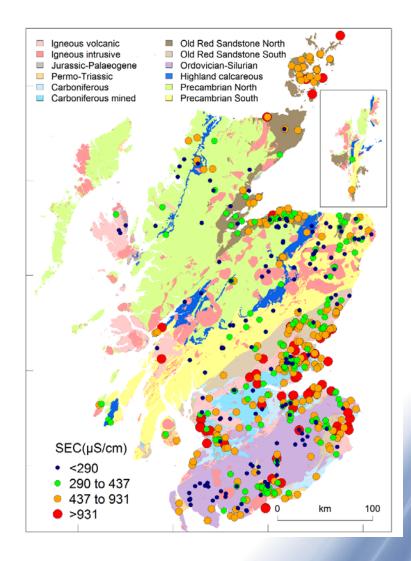
Groundwater temperature

- Average ~10°C
- Lowest in shallow groundwater in uplands
- Highest in deeper groundwater, e.g. from mined zones in Carboniferous (to ~900m)



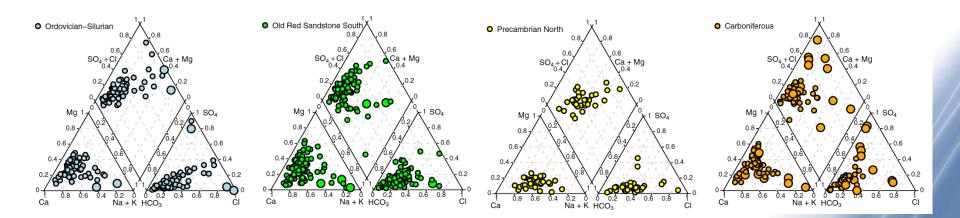
pН


- Median pH for each aquifer is nearneutral, 6.5 – 7.5
- Acidic groundwater (<6) seen in most aquifers – usually reflects an absence of carbonate mineral; in some cases related to oxidation or pyrite & other sulphides
- More strongly acidic conditions locally contribute to higher dissolved Fe, Mn & Al in groundwater

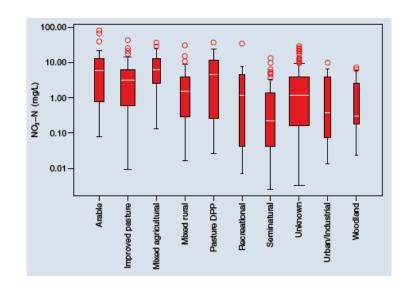


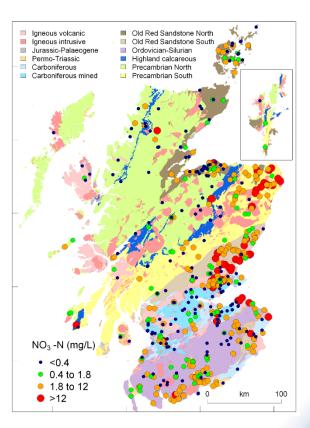
Conductivity (SEC) / Total Dissolved Solids

- TDS typically 54 520 mg/L
- Highest values in:
 - Mining-impacted groundwaters in Carboniferous
 - Some coastal areas, caused by saline intrusion
 - Rare mineralised springs



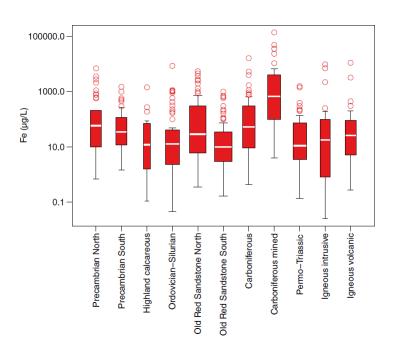
Major ions

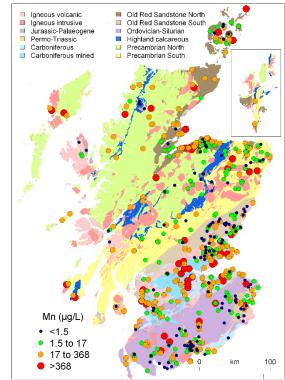

- A range of water types including Ca-HCO₃, Na-HCO₃, Na-HCO₃, Na-HCO₃, Na-SO₄ & Na-CI
- The highest concentrations of major ions are in Carboniferous (mined & unmined) – reflects presence of carbonate and silicate (e.g. clay) minerals, and acidic conditions related to post-mining effects



Nitrate (NO₃)

- High nitrate in many aquifers
- Strong link with land use: highest median NO₃ below intensive agricultural land (esp DPP); lowest below seminatural, woodland & urban / industrial
- Clear spatial trend highest NO₃ in east in areas of greatest agricultural activity





Iron and Manganese

- Low in most bedrock groundwaters, related to the generally oxic conditions
- Can be high where groundwater is reducing, e.g. Old Red Sandstone North & Carboniferous (especially mined – where Fe from pyrite is also possible)

Summary

- Scotland's groundwater chemistry is naturally highly variable
- Natural groundwater chemistry reflects:
 - Host aquifer lithology
 - Mineral reactions (e.g. silicate & carbonate dissolution, sulphide oxidation & ion exchange)
 - Redox conditions
 - Residence time
- Groundwater chemistry also reflects human influences, especially:
 - Land use
 - Groundwater abstraction (e.g. saline intrusion)

Much more detail in this report!

Baseline groundwater chemistry in Scotland's aquifers

OPEN REPORT OR/17/030

http://nora.nerc.ac.uk/id/eprint/519084/

Thankyou

