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Foreword 

This report presents the collated preliminary results from the British Geological Survey (BGS) 

led project Science-based environmental baseline monitoring associated with shale gas 

development in the Fylde, Lancashire. The project has been funded by a combination of BGS 

National Capability funding, in-kind contributions from project partners and a grant awarded by 

the Department of Business Energy and Investment Strategy (BEIS). It complements an on-

going project, in which similar activities are being carried out, in the Vale of Pickering, North 

Yorkshire. Further information on the projects can be found on the BGS website: 

www.bgs.ac.uk. 

The project has initiated a wide-ranging environmental baseline monitoring programme that 

includes water quality (groundwater and surface water), seismicity, ground motion, atmospheric 

composition (greenhouse gases and air quality), soil gas and radon in air (indoors and outdoors). 

The motivation behind the project(s) was to establish independent monitoring in the area around 

the proposed shale gas hydraulic fracturing sites in the Fylde, Lancashire (Cuadrilla Resources 

Ltd) before any shale gas operations take place. 

As part of the project, instrumentation has been deployed to measure, in real-time or near real-

time, a range of environmental variables (water quality, seismicity, atmospheric composition). 

These data are being displayed on the project’s web site (www.bgs.ac.uk/lancashire). Additional 

survey, sampling and monitoring has also been carried out through a co-ordinated programme of 

fieldwork and laboratory analysis, which has included installation of new monitoring 

infrastructure, to allow compilation of one of the most comprehensive environmental datasets in 

the UK. 

The monitoring programme is continuing. However, there are already some very important 

findings emerging from the limited datasets which should be taken into account when developing 

future monitoring strategy, policy and regulation. The information is not only relevant to 

Lancashire but will be applicable more widely in the UK and internationally. Although shale gas 

operations in other parts of the world are well-established, there is a paucity of good baseline 

data and effective guidance on monitoring. The project will also allow the experience gained, 

and the scientifically-robust findings to be used, to develop and establish effective environmental 

monitoring strategies for shale gas and similar industrial activities. 

  

http://www.bgs.ac.uk/
http://www.bgs.ac.uk/lancashire
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1 Introduction 

This report presents the initial results of the environmental baseline monitoring in the Fylde, 

Lancashire, carried out by the British Geological Survey (BGS) and its partners. The objective of 

this monitoring is to acquire a comprehensive set of data in order to establish baseline 

environmental conditions ahead of Cuadrilla’s proposed shale-gas exploration activities in the 

area. Cuadrilla submitted two applications to explore for shale gas in 2014, one at Preston New 

Road (PNR) and one at Roseacre Wood (Figure 1). In 2016 and following an appeal and public 

enquiry, the Cuadrilla application for the PNR site was approved by Secretary of State for the 

Department for Communities and Local Government. A decision on the appeal in respect of the 

Roseacre Wood site was delayed pending a reopening of the public enquiry in order to examine 

outstanding questions over highways management. 

 

Figure 1. Location of the Fylde, Cuadrilla sites subject to planning permission and 

hydrocarbon wells. © Crown Copyright and/or database right 2018. Licence number 

100021290 EUL 

Public concerns over shale-gas exploration and development have included the potential 

pollution of surface waters and groundwater (drinking water), triggering of earthquakes and 

impacts on air quality (health related and greenhouse gases). Concerns particularly relate to 

hydraulic fracturing (‘fracking’) activities but risks are associated with other stages of the shale 

gas operation throughout its lifetime. Environmental safeguards need to be in place to ensure the 

risks are minimised and environmental monitoring throughout the life cycle of the operation 

provides assurance of those safeguards. 

Although a number of studies in countries where shale gas is a developed industry have inferred 

a link between groundwater quality, seismicity, health impacts and hydrocarbon extraction 

(Jackson et al., 2013; Llewellyn et al., 2015; Osborn et al., 2011), establishing a causal 
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relationship is difficult without evidence of the pre-development baseline conditions. This can 

provide a more robust basis for establishing whether any environmental change(s) or events are 

related to the shale gas exploration and development.  

This report outlines the preliminary results of investigations carried out so far to establish the 

pre-development environmental baseline in the Fylde and covers key diagnostic analyses for 

water, air, seismicity, ground motion, soil gas and radon. 

It is important to note that the baseline assessed here relates to the conditions pertaining currently 

under pre-development (pre-fracking) environmental conditions and does not imply a pre-

modern ‘pristine’ condition. The baseline conditions are therefore subject to inputs such as 

contamination from pre-existing agricultural, domestic and industrial sources. 

The Operator (Cuadrilla) has a requirement to monitor as part of its environmental permit 

conditions. BGS’s monitoring activities have been additional to and independent of this 

monitoring. 

2 Study area 

2.1 GEOGRAPHY 

The Fylde is a flat, low lying area, forming part of the West Lancashire Plain. It is dominated by 

the urban centres of Lytham St Annes and Blackpool, but surrounded by agricultural land, both 

pasture and arable (Figure 2). The topography is mostly flat, ranging from 0–47 mOD, with the 

Kirkham Moraine forming a subtle topographic high towards the east (Cripps et al., 2017). Two 

major rivers bound the Fylde: the River Wyre to the north and the River Ribble to the south. 

Another slight topographic high separates the valleys occupied by these two rivers (Newell et al., 

2016). In the area close to PNR, surface drainage comprises mostly small ditches, often with 

very low flows in the summer months. Marton Mere is the only glacial lake in the area, thought 

to occupy a kettle hole, and is designated as an SSSI. Across the Fylde are multiple flooded brick 

pits; small hollows or depressions where clay has previously been extracted and have now 

formed ponds. These legacy man-made features are now of ecological importance. 

The area has a previous history of hydrocarbon exploration/development and five hydrocarbon 

wells have been drilled previously across the Fylde (Figure 1). One (Elswick) is classed as a 

production well, while three are fully abandoned (Preese Hall, Thistleton and Anna’s Road) and 

plans are in place for abandonment of the fourth (Grange Hill). 

 

Figure 2. Topography of the Fylde and clay hollows found commonly in the area 
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2.2 REGIONAL GEOLOGY 

Background information on the Quaternary and bedrock geology of the Fylde is given by Cripps 

et al. (2017) and Newell et al.(2016), but a brief overview is provided here. 

2.2.1 Quaternary geology 

The Fylde is dominated by Quaternary-age glacigenic deposits (Figure 3), comprising mostly till 

(clay-rich), glaciofluvial deposits (sand and gravel) and some glaciolacustrine deposits (clays 

and silts). These tills, sands and gravels are of variable thickness and lateral extent due to the 

varying character of depositional environments and physical processes (Cripps et al., 2017). The 

most widespread unit at the surface is till, with the associated glaciofluvial deposits forming 

linear outcrops. In general, the sequence broadly comprises a basal till overlain by glaciofluvial 

sand and gravel, which is in turn overlain by an upper till. There are major local variations to this 

succession and the units are both laterally and vertically variable, making interpolation of units 

very difficult. 

Holocene deposits occur around Blackpool and in both the River Wyre and River Ribble 

estuaries. These consist mostly of clays, silts and sands of alluvium and tidal-flat origin. A large 

area of wind-blown cover sand is present around Blackpool and Lytham St Annes. Areas of peat 

are also present: at surface occupying a roughly north-south channel east of Blackpool, with 

some sub-surface layers (2–3 m thick) around Lytham St Annes and Blackpool. 

 

 

Figure 3. Regional Quaternary geology of the Fylde. Dashed line refers to cross section in 

Figure 4. © Crown Copyright and/or database right 2018. Licence number 100021290 EUL 
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Figure 4. Quaternary geology cross section (from Cripps et al., 2017) 

Borehole records show that the thickness of the Quaternary deposits is variable, between 1–

86 m, and the sediments thin to the east of the area where the rockhead is closer to surface. The 

Kirkham Moraine is present between the two Cuadrilla sites. The glaciofluvial deposits are the 

main aquifer unit in these Quaternary deposits and have also been known as the ‘Middle Sands’ 

(Worthington, 1972) and defined by the Environment Agency for the purposes of the Water 

Framework Directive (WFD) as the ‘West Lancashire Quaternary Sand and Gravel Aquifers’. 

Close to PNR, borehole records report a confining upper boulder clay ca. 10 m thick, comprising 

alternating sand/gravel and clay layers (forming a shallow aquifer) and then ca. 15 m of glacial 

sands and gravels, forming the main Quaternary aquifer. At Roseacre Wood, the lower boulder 

clay unit is missing. Instead, ca. 15 m of glaciofluvial deposits sit directly on the Mercia 

Mudstone Group (MMG), and are overlain by an upper unit of boulder clay. 

2.2.2 Bedrock geology 

In the Fylde, the Quaternary deposits overlie a thick (up to ca. 350 m) sequence of Triassic 

MMG deposits, the latter dominated by mudstone with thin layers of halite and sandstone 

(Aitkenhead et al., 1992; Wilson and Evans, 1990). These are thickest within the deep graben 

structure of the Kirkham Basin (Figure 5). The SW–NE-trending Woodsfold Fault is a normal 

fault with downthrow to the west. To the west of the fault, BGS geological mapping indicates 

that MMG occurs everywhere at rockhead, although modelling undertaken for this study (see 

below) suggests that MMG thins or is absent in a section to the north of the Thistleton 1 borehole 

(Figure 6) (Newell et al., 2016). Below the MMG, the Permo-Triassic Sherwood Sandstone 

Group (SSG) reaches a thickness of some 750 m. 

The Woodsfold Fault forms the eastern margin of the West Lancashire Basin. To the east of the 

fault, the MMG is missing and the SSG forms the top of the bedrock, underlying Quaternary 

deposits directly. 

The SSG rests on Carboniferous strata, the eroded top of which define the Variscan 

unconformity. The top of the Carboniferous has considerable relief created by differential 

movement of fault-bounded blocks. The Kirkham Basin is bounded to the west by a faulted 

structural high (including the Elswick Dome), where the deep hydrocarbon exploration boreholes 

Elswick 1 and Thistleton 1 were drilled (Figure 6). Westwards from this high, the top 

Carboniferous surface dips toward the west under Blackpool and toward the Formby Point Fault 

which forms the boundary of the East Irish Sea Basin (Newell et al., 2016). 

 

East West 
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Figure 5. Bedrock geology of the Fylde. © Crown Copyright and/or database right 2018. 

Licence number 100021290 EUL 

 

Figure 6. E–W geological cross section across the Fylde 

2.3 REGIONAL HYDROGEOLOGY 

2.3.1 Quaternary deposits 

The glacial sands and gravels are the main aquifer in the Fylde, although they do not form one 

laterally continuous aquifer unit. In general, the sand and gravel units occur as discontinuous 

lenses interbedded with clays, and are confined by the upper boulder clay. In areas such as PNR, 

shallower lenses of sand may be water-bearing, but are separated from the main glaciofluvial 

(‘Middle Sands’) aquifer by thin clay layers. The variability in the thickness (or presence) of the 

upper boulder clay will affect the degree of confinement and hence the hydrogeological 

conditions within the shallow aquifer. 

Historically, few investigations have been undertaken on the Quaternary aquifer in this area. The 

deposit is mostly defined as a Secondary (undifferentiated) Aquifer by the Environment Agency 

(Figure 7). Where peat or tidal-flat deposits are present, the shallow sediments are defined as 

Unproductive and the alluvium, blown sands and glacial sands/gravels are classed as Secondary 

A. These glaciofluvial deposits are used locally by small businesses, farms and golf courses but 

problems with water quality (mostly iron) and groundwater yields are not uncommon. 

Line of section 
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Groundwater levels are generally shallow (1–2 m below ground surface) and are artesian in 

parts, especially in topographic lows located near to surface drainage. 

 

Figure 7. Environment Agency designation of the Quaternary aquifer across the Fylde, 

showing locations of the proposed shale-gas sites. Geological information, BGS © NERC 

 

Figure 8. Environment Agency designation of the bedrock aquifer across the Fylde, 

showing locations of the proposed shale-gas sites. Geological information, BGS © NERC 
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2.3.2 Sherwood Sandstone Group 

In the area of the Fylde peninsula (west of the Woodsfold Fault), the top of the Sherwood 

Sandstone Group occurs at some 370 m depth below surface. This is at too great a depth to be of 

practical use for water supply. To the east of the Woodsfold Fault, as the SSG is at rockhead 

(shallow), it is classed by the Environment Agency as a Principal Aquifer (Figure 8) and is used 

for public water supply. 

To the east of the Woodsfold Fault, Quaternary deposits cover the SSG, the boulder clay again 

acting as a confining layer. In areas where the Quaternary deposits comprise sand and gravel, 

these are in hydraulic continuity with the SSG. 

Recharge to the SSG primarily occurs through the Quaternary deposits (Sage and Lloyd, 1978) 

but also from permeable sandstone and limestone layers in the Carboniferous sequence 

(Bowland Fells), across the Bilsborrow Fault (Figure 9). Investigations to remap the Fylde SSG 

aquifer by the Environment Agency in the 1990s identified that the regional groundwater flow 

direction is from east to west, following the line of topography (Seymour et al., 2006). Main 

groundwater discharge points are thought to be the River Ribble to the south and River Wyre in 

the north. However, this is complicated by the occurrence of marl bands within the SSG and N–S 

faulting, especially near Preston, which can isolate parts of the sandstone and cause local 

anisotropy. The SSG in this area has a lower porosity and hydraulic conductivity compared to 

equivalent units in the Midlands as the sandstones of the Fylde tend to be more consolidated and 

cemented (Seymour et al., 2006). 

As part of their groundwater models, the Environment Agency have historically taken the 

Woodsfold Fault as a regional barrier to groundwater flow, based on the conclusion that there is 

no juxtaposition along the fault of the deep and shallow SSG aquifer. The contact with the 

shallow SSG along the fault line is taken to be the MMG (Figure 9). Investigations by Sage and 

Lloyd (1978) identified that groundwater from the SSG to the east of the Woodsfold Fault 

discharged through the Quaternary deposits. 

  

Figure 9. Hydrogeological conceptual model of groundwater in an E–W section across the 

Fylde, Lancashire. 



 

 8 

3 Water monitoring 

3.1 WATER MONITORING NETWORK 

A monitoring network of groundwater and surface water sites has been established across the 

Fylde, including areas proximal to PNR and Roseacre Wood, in order to evaluate baseline water 

quality and allow for evaluating any future changes in conditions should shale-gas operations 

take place. The constructed hydrogeological model (Figure 9) was used to inform the selection of 

sites suitable for monitoring and further investigation. Sites for surface water and groundwater 

monitoring were chosen within approximately 10 km of the proposed shale-gas exploration sites, 

with effective barriers imposed by the Rivers Wyre and Ribble and the Fylde west coast. An 

inventory of groundwater sites was collated from information in available well databases 

augmented by field visits. Groundwater sources are mainly boreholes owned by local small 

businesses and households, although some public water supplies exist in the area of interest. 

First-order stream sites were sought for surface-water monitoring to limit the size of the 

influencing catchment area. 

A shortlist of suitable sites was drawn up on the combined basis of site access, source condition 

(status and representativeness) and site safety. Investigations established that availability of 

suitable groundwater sites was limited in the area of interest and so all groundwater sites deemed 

to be suitable, accessible and representative for sampling have been included in the resulting 

water monitoring network. The established monitoring network comprises 19 groundwater 

sources and 11 surface waters, the latter all streams (Figure 10 and Table 1). Groundwater 

sources include 9 sites from the Superficial (Quaternary) aquifer and 10 sites from the Sherwood 

Sandstone to the east of the Woodsfold Fault. All groundwater sites in the initial water 

monitoring network are owned by third parties. 

3.2 BGS BOREHOLES 

As the water monitoring network relied on pre-existing groundwater sources which were in some 

cases not located ideally, a decision was made to purpose-drill a number of water boreholes 

closer to the proposed Cuadrilla sites for the purposes of detailed investigation and monitoring, 

with a view to final reinstatement for private water supply pending further investigations. These 

were located within ca. 1 km of the PNR or Roseacre Wood proposed sites (Figure 10 and Table 

1). Shallow boreholes completed within the Quaternary (Superficial) aquifer were installed in 

pairs, one ‘deep’ and one ‘shallow’ (though all <50 m below ground level. Completions were 

according to site conditions, favouring screens within sandy horizons to provide best-available 

groundwater yields. 

A single borehole was also completed within the Sherwood Sandstone at 500 m depth, at some 

2 km distance west of the Roseacre Wood site. This borehole was cased off from surface to 

350 m depth with an open-hole section, wholly within the Sherwood Sandstone, thereafter. 

 

Table 1. Water monitoring sites and purpose 

Site Number Site Type Monitoring Type 

Site 1–24 Groundwater Initial network 

Site 25–35 Surface water Initial network 

Site 36–48 Groundwater BGS borehole 

Site 49–53 Groundwater Cuadrilla borehole 
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Figure 10. Location of groundwater and stream sites in the water monitoring network. 

© Crown Copyright and/or database right 2018. Licence number 100021290 EUL 

3.3 SAMPLING AND ANALYSIS 

Sampling of groundwater and surface water in the monitoring network began in February 2015. 

Sites have been sampled quarterly in accordance with BS ISO 5667-11 (2009). Groundwater 

sources were purged before sampling and where possible, flow cells were set up inline to 

monitor redox characteristics. These, along with pH, temperature and specific electrical 

conductance (SEC), were monitored until stable readings were obtained, at which point, total 

alkalinity was determined onsite by titration and samples were collected for subsequent 

laboratory analysis. Samples for analysis of major cations, anions and trace metals were filtered 

(0.22 µm) and collected in factory-new LDPE bottles, pre-rinsed with filtered sample. Aliquots 

for determination of major-cation and trace-metal concentrations were acidified (1% v/v) with 

pure HNO3 (and subsequently in the laboratory with 0.5% v/v pure HCl). Samples for 

determination of non-purgeable organic carbon (NPOC) were filtered (0.45 µm) using Ag-

impregnated filters and collected in acid-washed glass bottles. Samples for dissolved gases were 

collected inline at pump pressure in steel bombs. Samples were also collected periodically for 

organic compounds (total petroleum hydrocarbons, TPH; polycyclic aromatic hydrocarbons, 

PAH; volatile (and semi-volatile) organic compounds, VOC/SVOC). 

Major cations and trace elements were analysed by ICP-MS and anions by ion chromatography. 

The analysing laboratory holds ISO 17025:2005 certification for analysis of environmental 

materials (including water) using these methods. The laboratory operates an AQC regime 

including use of International Standard Reference Materials and operates an Aquacheck 

proficiency testing scheme. 

Samples for TPH were solvent-extracted and analysed using a modified USEPA 8015B method. 

Solvent-extractable petroleum hydrocarbons with carbon banding in the range C8-C40 were 

determined by GC-FID. Gasoline Range Organics (GRO) in the carbon chain range of C4-12 
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were determined by headspace GC-FID. Samples for SVOC were solvent-extracted and analysed 

using a modified USEPA 8270 method, by GC-MS. The testing laboratory holds ISO 17025 

certification for TPH CWG and SVOC in surface water. VOC determinations were by direct 

aqueous injection using purge-and-trap GC-MS and PAH determination by solvent extraction, 

GC-MS. The testing laboratory for VOC, PAH determinations holds ISO 17025:2005 

certification for these methods in water. 

In addition, a non-accredited (semi-quantitative) analysis of water samples by target-based 

screening has also been determined using GC-MS and LC-MS. 

3.3.1 Real-time monitoring 

Real-time monitoring for a restricted number of water-quality parameters has been carried out 

within six of the shallow BGS boreholes located around the PNR and Roseacre Wood sites. 

Monitoring includes water temperature, water level, pH and electrical conductivity. These are 

monitored hourly to obtain high-resolution data for characterisation of the groundwater baseline 

conditions and to act as early-warning indicators of any future environmental change. Data are 

telemetered to BGS and displayed on the BGS website (www.bgs/ac/uk/lancashire). 

3.4 WATER QUALITY RESULTS 

3.4.1 Superficial aquifer 

Water-quality data for groundwater from the Quaternary (Superficial) aquifer indicate an 

overwhelmingly anoxic condition (lacking dissolved oxygen), with pH values near neutral. 

Dominant ions are Ca, Na and HCO3, though SO4 concentrations are relatively high in some 

samples (Figure 11). Most have low conductivity although some groundwater samples have 

values more than 1000 µS/cm (Figure 11). 

As a result of the anoxic condition of the groundwater, concentrations of nitrate (NO3) are low 

and concentrations of dissolved iron (Fe) and manganese (Mn) are high (Figure 12). 

Concentrations of arsenic (As) and ammonium (NH4) are relatively high in some. Methane 

(CH4) is also often detected, though rarely at high concentrations. The site in the Superficial 

aquifer with the highest observed concentrations of CH4 (of the order of 3 mg/L) has a depleted 

δ
13

CCH4 isotopic signature (-73.1 ‰ VPDB) consistent with a biogenic methane origin, possibly 

linked to degradation of peat within the superficial deposits present at the site. 

 

 

Figure 11. Piper diagrams showing the major-ion chemistry of groundwater (Superficial 

and Sherwood Sandstone aquifers) and stream water samples from the monitoring 

network (sampling February 2016). Symbol sizes are distinguished by electrical 

conductivity (SEC) 

 

http://www.bgs/ac/uk/lancashire
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Figure 12. Box plots showing summary chemical data for groundwater samples collected 

from the Superficial (left) and Sherwood Sandstone (right) aquifers. Red lines indicate 

European drinking-water limits for relevant analytes. 

Monitoring of groundwater in the Superficial aquifer (Figure 13) has shown that the chemical 

characteristics have been broadly consistent over time, although variations are greater at some 

sites (e.g. Site 3) than others. Monitoring at Site 4 ceased in Summer 2016 due to the installation 

of water-treatment equipment at the site, negating access to raw groundwater for sampling. 

Monitoring of groundwater from the BGS boreholes in the Superficial aquifer (Figure 14) shows 

a greater heterogeneity of water types. Two sites show relatively high concentrations of Ca and 

SO4 (greater than 500 mg/L and 1500 g/L respectively); one of these shows high concentrations 

of Na and Cl (ca. 1400 mg/L) relative to samples from the other BGS sites. Variability is likely 

due to spatial variability in mineral-dissolution and ion-exchange reactions. 

Spatial variation in dissolved methane concentration in the Superficial groundwater is sporadic 

(Figure 15). One of the samples with the highest observed concentration occurs in the south-

western part of the Fylde. This roughly coincides with occurrences of peat deposits in the 

shallow Quaternary sediments (Figure 3). One of the Cuadrilla boreholes on the PNR well pad 

also has groundwater with comparatively high CH4 concentrations. 

Activities of dissolved radon gas are low in the groundwaters, typically <10 Bq/L (Figure 16). 

This is consistent with clay-dominated superficial deposits in the UK, and with the Public Health 

England/BGS map of radon potential in the Fylde: http://www.ukradon.org/information/ukmaps. 

 

 

 

http://www.ukradon.org/information/ukmaps
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Figure 13. Temporal variation in concentrations of selected solutes from groundwater in 

the Superficial aquifer. 
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Figure 14. Temporal variation in concentrations of selected solutes from groundwater in 

the BGS boreholes (Superficial aquifer) 
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Figure 15. Spatial distribution of dissolved methane in groundwater measured at 

groundwater monitoring points where measurement possible. 

 

 

Figure 16. Histogram of representative radon distributions in groundwater samples from 

the Superficial (Quaternary) and Sherwood Sandstone aquifers from the monitoring 

network during a single sampling round 

3.4.2 Sherwood Sandstone aquifer 

Groundwater from the samples in the Sherwood Sandstone aquifer in the eastern part of the 

study area has a much less variable chemical composition. Here, Ca and HCO3 are the dominant 

ions, pH is neutral to slightly alkaline, and all samples have low SEC values (<1000 µS/cm; 

Figure 11). The groundwater in the Sherwood Sandstone is also anoxic because of the confining 

condition imposed on the aquifer by the presence of overlying Quaternary Superficial deposits. 

Groundwater in the Sherwood Sandstone has correspondingly low concentrations of NO3 and 
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high concentrations of Fe and Mn (Figure 12); NH4 concentrations are relatively high in some 

samples. Methane is almost invariably detectable, though concentrations are low and in the µg/L 

range (Figure 12). Temporal variability has been more limited over the period of monitoring than 

for the Superficial aquifer (Figure 14). Spatial variations are sporadic, although few data exist to 

make a detailed assessment (Figure 15). 

Activities of dissolved radon in the Sherwood Sandstone groundwater typically have a larger 

range than those in groundwater from the Superficial aquifer, although values are still not high. 

Activities up to 15 Bq/L were recorded in one representative sampling round (Figure 16). These 

values are consistently below the national parametric value for Rn in drinking water of 

100 Bq/L. 

 

 

 

Figure 17. Temporal variation in concentrations of selected solutes from groundwater in 

the Sherwood Sandstone aquifer 

3.4.3 Stream water 

Stream compositions are also dominated by Ca and HCO3 and low SEC values (<1000 µS/cm) 

are indicated (Figure 11), although relatively high concentrations of Cl and SO4 are observed 

infrequently (Figure 18). The greater variability in observed compositions over time could be 

due to varied rainfall and contributions from runoff. Methane has not been measured in the 
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stream water because rapid degassing is likely and concentrations are expected to be low. Figure 

18 indicates some high (and variable) concentrations of NO3, especially in the earliest phases of 

monitoring. This is likely due to inputs from surface pollutants (agricultural and/or domestic 

discharges). 

 

 

 

Figure 18. Temporal variation in concentrations of selected solutes from stream water 

3.4.4 Organic compounds 

In samples from the monitoring network monitored over the period February 2015 to May 2017, 

concentrations of organic compounds measured by quantitative methods are low, almost 

invariably being non-detectable. 

Semi-quantitative determinations of compounds from a representative sampling round are shown 

in Figure 19. The presence of some pesticides is indicated, along with components of plastics 

(including Bisphenol A, BPA) and a number of perfluorinated compounds. Concentrations of 

these are also low however, almost all <1 µg/L. The only exceptions are benzenesulphonamide, 

DEHP and BPA. The low concentrations of PAH (<0.1 µg/L, Figure 19) support the non-detects 

determined for PAH by quantitative methods (e.g. fluorene and pyrene). 
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Figure 19. Representative plot of observed organic compounds in samples from the water 

monitoring network. 

3.4.5 Deep Sherwood Sandstone groundwater 

Sampling of groundwater from the deep (500 m) borehole in the Sherwood Sandstone close to 

Roseacre Wood has shown that the groundwater in the borehole is saline and salinity is stratified 

with depth (Table 2). The dominant ions in seawater are Na and Cl (ca. 10,500 and 19,000 mg/L 

respectively). The concentrations in the borehole water show that salinity values are more 

concentrated than solutes in seawater, in the case of the first analysis from a sample at 500 m 

depth, around fivefold more. Concentrations in the second round of sampling at 360 m depth 

increased slightly relative to the first analysis. 

The salinity values observed indicate that the groundwater quality is notably different from that 

in the Sherwood Sandstone to the east of the Woodsfold Fault and suggest a lack of any 

significant hydraulic connection between the two. The high salinity also suggests a lack of 

significant groundwater flow below the Mercia Mudstone Group. The high salinity, albeit from 

only one borehole source, suggests that the deep Sherwood Sandstone in the Fylde (west of the 

Woodsfold Fault) is unlikely to be suitable for drinking water. 
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Table 2. Chemistry of depth samples taken from groundwater in the 500 m borehole into 

the Sherwood Sandstone near to Roseacre Wood; concentrations in mg/L 

Sample 

depth (m) 

Sample 

date 

Ca Na Cl SO4 

360 12-05-16 448 15,200 24,000 1,530 

500 12-05-16 1,120 56,100 92,000 3,100 

360 08-05-17 795 41,100 62,700 2,150 

430 08-05-17 835 43,000 67,100 2,240 

 

3.4.6 Real-time monitoring 

Sondes have been inserted into a sub-set of the new BGS boreholes in the Fylde, monitoring pH, 

SEC, water temperature and water level hourly, with data transfer to BGS by telemetry. Five 

sondes (EBM 1–5) have been monitoring since early 2016, a further one (EBM 12) since May 

2017. Results of the monitoring are shown in Figure 20. The vertical spikes in data represent the 

short intervals when sondes were removed from the boreholes for maintenance or calibration. 

The plots demonstrate the instrument drift in pH values over time and the need for frequent 

recalibration. SEC shows broad consistency over time in each borehole. Water temperature 

varies most in EBM 2, consistent with it being the shallowest deployed sonde and hence 

reflecting response to surface air temperature. 

 

Figure 20. Real-time monitoring data for pH, SEC, water temperature and water level in 

groundwater from the Superficial aquifer 

3.5 SUMMARY 

Collated water-quality data for water from the monitoring network, BGS boreholes and sondes, 

indicate some distinct compositional differences between groundwater from the Superficial 

aquifer, from the Sherwood Sandstone and from streams. Groundwater from the Superficial 

aquifer is typically of Ca-Na-HCO3 type, pH-neutral, and almost universally anoxic. 

Compositions are consistent with interaction with clay minerals in the aquifer. Concentrations of 

dissolved methane are typically low (µg/L) but up to some 2–3 mg/L at a small number of 

locations. Occurrence of methane is consistent with derivation by natural reactions with organic 

material, e.g. peat, in the Superficial deposits. Activities of dissolved Rn are low. Monitoring 

shows much consistency over time. 
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Groundwater from the Sherwood Sandstone aquifer to the east of the Woodsfold Fault is more 

typically a Ca-HCO3 water, also pH-neutral and also anoxic because of the continuous layer of 

Superficial deposits overlying the Sandstone aquifer. Concentrations of dissolved methane are 

universally low (µg/L range). Activities of dissolved Rn are higher than in the Superficial 

groundwater but still low (<100 Bq/L). Monitoring also shows some consistency in compositions 

over time. 

Data for one deep borehole (500 m) into the Sherwood Sandstone aquifer below the Fylde 

(Roseacre Wood area), indicate that the groundwater below the thick Mercia Mudstone (ca. 

350 m) is highly saline, increasing with depth, and is unsuitable for water supply. 

Streamwaters show greater variation in compositions over time than the groundwaters, as 

expected as a response to varying rainfall and surface runoff. 

Concentrations of analysed organic compounds (VOCs, SVOCs, TPH, PAHs) are usually low in 

the groundwater and stream samples investigated, almost all being repeatedly non-detectable. 

Semi-quantitative analysis by GC-MS and LC-MS has detected some occurrences of organic 

contaminants, including pesticides, plasticisers, and perfluorinated compounds. These are at low 

concentrations, usually much less than 1 µg/L, but nonetheless, indicate effects of human activity 

on shallow groundwater and streamwater. 

The water monitoring data collated over the 2015–2017 sampling period are facilitating the 

detailed characterisation of the baseline condition of the waters in the Fylde area. This work will 

be completed once a full set of baseline data has been compiled. 
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4 Atmospheric Composition 

4.1 INTRODUCTION 

An atmospheric baseline is a set of measured data at a specified fixed location that is statistically 

representative of the local atmospheric composition, and which reflects the role of existing local, 

regional and global pollution sources. The dataset should include inputs to air sampled over a 

period of time that is sufficient to capture typical ranges in meteorological conditions. An 

atmospheric baseline provides a set of statistical values against which the incremental impacts of 

new emissions, new pollution sources, or policy interventions, can be assessed at a later date 

using analogous comparative data. The baseline in air pollution conditions may be expected to 

vary by wind direction, time of day, and season, and meaningful statistics are established through 

long-term continuous observations. 

The analysis in this report uses greenhouse gas concentration, principal air quality trace gas and 

particulate matter concentrations, and meteorological data, collected at the monitoring site at 

Preston New Road, Little Plumpton close to the shale-gas development site. These data represent 

the first full year of data. Monitoring is continuing and these further data will be reported in due 

course as part of a full baseline assessment. 

The method of baseline interpretation used here allows us to explore the statistical climatology 

of the atmospheric environment at each site and to explore the mix of pollutant source-types that 

influences the local area by comparing meteorology (especially wind direction and wind speed) 

and trace gas concentrations (and correlations) as a function of time, such as time of day, day of 

week, seasonal and annual. We do this by discussing the mean state and variability of the 

measured data within relevant subsets of time over which we may expect the dataset to behave 

consistently and comparatively, e.g. days of the week versus weekends, winter versus summer, 

day versus night and differing wind directions, wind speeds, and surface pressure conditions. By 

comparing the differences between such regimes, we can attempt to unpick the causes of 

observed systematic differences and variability, and use data such as back-trajectory analysis to 

facilitate potential sources of gas emission upwind or nearby. 

The analysis here often refers to what we describe as the airmass history. In atmospheric science, 

this term refers to the character of a volume of air in terms of any impacts on the air’s 

composition as air moves over and through its upwind environment. Airmass composition (e.g. 

trace gas concentrations) is continually perturbed as air moves through Earth’s atmosphere, 

experiencing chemical and dynamical changes associated with inputs (e.g. pollution sources), 

chemical modulation (due to atmospheric chemistry), physical modulation (due to dry and wet 

deposition) and diffusion/dispersion processes as airmasses mix as a function of the prevailing 

meteorology. The sum of all of these processes results in the measurements that we might see at 

a fixed location. Put simply, these impacts - in the context of air pollution - can be additive, 

representing a mix of pollution added to the airmass as it advects over various sources upwind, 

subtractive due to chemical and physical removal, and dispersive as airmasses mix with each 

other. 

Detailed airmass characterisation in atmospheric science research requires the use of cutting 

edge chemical transport models and highly detailed and comprehensive (global) measurement 

datasets and remains the subject of much academic research well beyond the scope of this report 

and this project. Therefore, in this project, which is concerned with impacts on the local 

environment, we limit ourselves to the interpretation of local and regional pollutant sources and a 

relatively recent airmass history to interpret how these factors impact the measurement sites in a 

statistical framework to obtain a representative and meaningful baseline climatology. 

A further objective was to advise on the spatial transferability of the climatology, (i.e. the wider 

area that the baseline can be extended to represent), and the temporal lifetime of the baseline (i.e. 

how far into the future the statistics can be reasonably assumed to be valid). This is because 
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different locations will typically have very different existing local pollution sources and future 

development plans, such that baselines have finite extrapolation potential. As the greenhouse gas 

baseline is intended to provide a contextual source of information from which to compare any 

future measured increment in local pollution attributable to shale-gas activity, it will be 

important to establish the utility of the baseline for this future purpose. 

In an earlier report (Smedley et al., 2015), we discussed the technical specifications of the 

instrumentation at the atmospheric composition monitoring site built for the purpose of 

environmental baselining. We also described the rationale for site location, sampling frequency 

(1-minute resolution) and sampling duration (12 months) in the context of providing meaningful 

statistical comparative datasets and interpretation of local (defined here as <10 km from site) and 

far-field (>10 km from site) generalised sources of gas emissions that may predate any future 

exploration for shale gas in each location. For further information on the instrumentation, siting, 

and atmospheric composition baseline rationale, consult the project website: 

www.bgs.ac.uk/lancashire. 

4.2 SITE SELECTION 

The position of the atmospheric composition measurement site (see Figure 21) was selected so as 

to be downwind of exploratory shale gas extraction infrastructure (to optimise potential future 

operational monitoring) in order to obtain a representative local baseline ahead of any 

exploratory activity. The site consists of a mains-powered outdoor weatherproof enclosure 

containing all scientific instrumentation and a meteorological station to record local 

thermodynamics (winds and meteorological variables) to aid qualitative source apportionment 

based on airmass history. 

4.2.1 Monitoring site details 

On beginning the project in September 2015, new instrumentation was procured and site 

locations were selected for installation. By late January 2016, the monitoring site was fully 

operational and collecting the full suite of data detailed in Table 3 below. 

The LP site is situated on privately-owned farmland near to the village of Little Plumpton, 

Lancashire, where planning permission has been granted to Cuadrilla to carry out drilling and 

hydraulic fracturing for shale gas exploration. The site has been established with the land-

owner's permission and a full risk assessment carried out prior to installation of the monitoring 

station. 

 

  

 

Figure 21. Left: photograph of the Little Plumpton (LP) measurement site; right: map 

showing location of the measurement site and proposed Cuadrilla site to the north of the 

A583 at Little Plumpton. © University of Manchester, 2017 
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4.3 INSTRUMENTATION 

Air-quality instruments at LP were purchased using grant funding from the Department of 

Business, Energy and Industrial Strategy (BEIS) and administered through the British Geological 

Survey, including the Whole Air Sampling (WAS) system used here to derive concentrations of 

hydrocarbons in free air. Greenhouse gas measurement instrumentation has been provided by the 

University of Manchester. 

Air inlets positioned on 2–3 m high pylons draw air into the instruments to record instantaneous 

concentrations of trace gases and particulate matter in the air moving over the measurement sites 

with the prevailing wind. Data were recorded locally and also transmitted wirelessly to a data 

storage facility, from where the science team can monitor performance and nominal operation. 

 

Table 3. Measurements at both sites, dates when measurements became active, and 

measurement frequency (as streamed via the cloud). Note that NMHC refers to non-

methane hydrocarbons and PM refers to particulate matter 

Species Little Plumpton Frequency 

Meteorological Data 

(T, q, p, 3D wind vector) 

Nov 2014 1 minute 

NO, NO2, NOx Dec 2015 1 minute 

O3 Dec 2015 1 minute 

PM1, PM2.5, PM4, PM10 Nov 2015 1 minute 

NMHCs Jan 2016 weekly 

CH4 Nov 2014 1 minute 

CO2 Nov 2014 1 minute 

4.4 MOBILE BASELINE METHANE MONITORING 

In addition to fixed-receptor-site monitoring, two 2-day measurement campaigns were 

undertaken using the Royal Holloway University of London (RHUL) mobile greenhouse gas 

laboratory following the procedures and protocols outlined in Zazzeri et al. (2015). These 

surveys were designed to characterise the types of existing greenhouse gas sources in the wider 

local area around each monitoring site. The results from these mobile surveys will be presented 

in Section 4.7.2. The dates and locations of the mobile surveys were 9–10 March 2016 and 27–

28 July 2016. 

Where repeatable plumes of methane were identified, with significant elevation of methane 

concentrations recorded for at least 20 seconds on forward and reverse driving profiles, the 

plumes were sampled for isotopic analysis by pumping air into Flexfoil bags. On average, 25 

bags were filled during each 2-day campaign for subsequent analysis in the laboratory at RHUL. 

Some source emissions might be expected to be continuous and measured on consecutive days 

and repeat campaigns, while others such as gas leaks may be repaired or pressure dependent, and 

emissions associated with animals may vary as they move around from barn to field. Plume 

receptor points sampled by the mobile laboratory were along accessible roads and tracks, so 

transecting a plume can be conceived to be entirely wind-dependent. 

Each methane source has a typical carbon isotopic signature. These are conventionally assigned 

to a per mil (‰) scale for global carbon sources, which for methane gives δ
13

C ranging from -75 

‰ for biological sources to -15 ‰ for combustion sources. Well-mixed background air contains 

methane with an isotopic signature between -48 and -47 ‰. Background CH4 is typically 

between 1.9 and 2.0 parts per million (ppm), depending on meteorological conditions. These 

classifications will be used as the basis for interpretation of results. 
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4.5 CALIBRATION AND QUALITY ASSURANCE 

Quality assurance (QA) and quality control (QC) procedures have been employed for air quality 

and greenhouse gas concentration data covering all aspects of network operation, including 

equipment evaluation, site operation, site maintenance and calibration, data review and 

ratification. All instrumental calibrations are traceable through an unbroken chain to 

international standards to ensure high accuracy and known uncertainty in the gathered dataset. 

Metadata concerning the precision and guidance on use of the data is prepared for each 

measurement reported and will be available to view publicly on the Centre for Environmental 

Data Analysis (CEDA) after final QC approval. Data were checked online initially before being 

uploaded to the CEDA repository will be quality checked. Site visits occur at 3-weekly intervals 

to check the instruments physically, and to perform checks on analyser accuracy, precision and 

response times as well as calibration. 

The calibration and maintenance procedures for each instrument are detailed in Table 4 below. 

Measurements of CO2 and CH4 were made using an Ultra-portable Greenhouse Gas Analyser 

(UGGA; Los Gatos Research Inc., USA). This instrument was calibrated on site using two 

standards traceable to the WMO greenhouse gas scales: X2007 and X2004A for CO2 and CH4 

respectively. One standard was chosen to contain roughly ambient concentrations (403.69 ppm 

CO2 and 1901.00 ppb CH4), while the other was enhanced in both gases (603.02 ppm CO2 and 

5051.07 ppb CH4). The concentration of both gases within the standards has been determined by 

EMPA, Switzerland, relative to the corresponding WMO scales. The instrument uncertainty can 

be quantified by the 1σ values given for the calibration parameters above. These values include 

uncertainties associated with instrument drift and the uncertainties associated with the calibration 

cylinder certification. Assuming these uncertainties are uncorrelated and normally distributed, 

CH4 measurements of 1900 ppb and 5000 ppb would have 95 percent confidence intervals equal 

to 10.49 ppb and 22.40 ppb respectively. Similarly, CO2 measurements of 400 ppm and 600 ppm 

would have 95 percent confidence intervals equal to 2.92 ppm and 3.83 ppm respectively. 

 

Table 4. Detailed descriptions of the QA/QC for data collected at LP measurement site 

Parameter Calibration and maintenance procedure 

NO and NO2 Traceable calibration cylinders from the National Physical Laboratory. 

Monthly checks of analyser accuracy, precision convertor efficiency. 

Ozone Six monthly calibrations in the field by a calibration unit links to a primary 

UV photometric standard that is itself calibrated against a certified national 

source annually at the National Physical Laboratory. 

Particulate matter Six monthly calibration in the field by a monodust (CalDust), monthly 

maintenance checks 

CO2 and CH4 Calibration of greenhouse gas concentration data is performed by routine 

reference to certified gas standards, traceable to the World Meteorological 

Organisation scale. 

NMHCS Calibration of NMHCs is performed by reference to an NPL ozone 

precursor mix. This calibration scale has been adopted by the GAW-VOC 

network and hence the measurements of NMHCs made by this instrument 

are directly comparable to those made by all of the WMO-GAW global 

observatories. 

Calibrations are performed each month or more frequently if field 

deployment allows. A long-term data set of the response of the instrument 

is held and regularly updated to ensure that the instrument responses do not 

change and to highlight any issues with stability of components within the 

gas standards used. 
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4.6 METEOROLOGICAL BASELINE 

The principal meteorological variable of interest to baseline characterisation and pollution source 

interpretation is the local wind speed and direction, as an indicator of the local airmass history 

(i.e. what source of pollution the sampled airmass may have passed over upwind). The 

instantaneous wind speed and direction can point us to relatively nearby sources of pollution 

(within ~ 10 km) where repeated and consistently elevated concentrations of trace gases are 

observed to correlate with wind direction and wind speed. When discussing more long-range 

sources of pollution (such as may be added over cities many 10s or 100s of km upwind), the 

timescales of interest to airmass history typically extend to no more than around 5 days. Beyond 

this time, the uncertainty in the path of air upwind (and the chemical changes in such air) 

increases rapidly and interpretation becomes meaningless. Therefore, we limit our analysis to 

these timescales of advection only.  

We now describe the climatology of wind observed at the baseline sites and discuss what this 

means in the context of pollutant gas concentrations and sources that have been observed at the 

measurement stations.  

4.6.1 Little Plumpton wind climatology 

The wind speed and wind direction statistics observed at the LP site over the full measurement 

period are shown in Figure 22 as a conventional wind rose. This type of illustration simply 

shows the frequency (in percent of total time) of instances when wind blows from various 

directions (seen as the vector and radius in Figure 22). The colour scale in Figure 22 then 

illustrates the corresponding proportion of winds in each direction for a range of surface wind 

speeds (see colour legend in Figure 21). 

As expected at the LP site (as for any exposed site in the UK) the dominant wind direction is 

from the western quadrant (~35% of the time), consistent with Blackpool’s location on the west 

coast of the UK mainland and exposed to the Atlantic mid-latitude storm track. This is also the 

direction from which the strongest winds are observed (red and dark red colours in Figure 22), 

typically coinciding with the passage of mid-latitude cyclones over the UK mainland. Within this 

westerly quadrant, the dominant wind speed is between 6-12 m/s (dark red colours), with 

extremely strong winds peaking up to 20 m/s in very rare storm conditions (<0.5% of the time). 

This has important implications for the local baseline. The position of the LP site near to the 

Blackpool shoreline means that winds bringing air from the Atlantic may typically be expected 

to carry relatively well-mixed and background airmasses to the LP measurement site. In this 

context, a background can be conceived to be an airmass relatively unaffected by local or 

regional pollution sources, broadly representative of the average composition of Northern 

Hemispheric air at the time. These airmasses often represent the Northern Hemispheric seasonal 

average concentrations of greenhouse gases especially, as these gases are relatively inert on the 

time and spatial scales of advection across the Atlantic in mid-latitude cyclones. As these 

airmasses dominate the statistical climatology at the LP site, the baseline for this wind direction 

provides a very useful background from which to assess future local changes in pollution sources 

in the immediate upwind vicinity. The position of the LP site just 300 m directly to the east of 

the Cuadrilla site makes the dominant westerly wind direction highly favourable for any future 

operational comparative assessment. 

Winds from the south-east were also frequent, accounting for 22% of the period, while northerly 

and easterly wind directions were less frequent, representing <20% in each quadrant over the 

course of the 12-month baseline. Wind speeds for these quadrants (all other than westerlies) were 

also typically much lighter (dominated by light breeze winds in the range 2-4 m/s). This is due to 

a number of factors: 1) that winds from these directions are moderated by passage over the 

mainland UK land surface, and 2) that winds from these directions usually represent flow in less 

frequent high-pressure regimes to the north and east or from low-pressure systems to the south 

and west. Light winds from these directions will typically carry airmasses that have spent a 
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significant time in dynamic contact with the surface of the UK mainland and may also represent 

air that has passed over Western Europe. These airmasses may be expected to typically contain 

pollution added to the surface air as they pass over a range of anthropogenic (manmade) and 

biogenic (natural) sources of greenhouse gases and other pollution upwind of the measurement 

site; such as cities, landfill, industry, transport, agriculture etc. This air may be a mix of both 

local (<10 km distant), regional (UK mainland) and more distant (Western Europe) pollution 

sources, making it difficult to deconvolve the relative inputs of each. However, the frequency 

and duration of transient enhancements seen in trace gas concentration data offers important 

clues on the proximity (and type) of pollution source, as regionally impacted airmasses will 

typically display broad (longer timescale) and more invariant enhancements relative to 

background westerly airmasses, while local inputs are often seen as sharper and shorter-lived 

enhancements. This will be discussed further in the following sections, making use of additional 

airmass history tools such as back-trajectory analysis. 

 

Figure 22. Wind rose for the LP site, showing wind speed and direction statistics for the 

period 1 Feb 2016 – 30 Jan 2017. The radius defines the percentage of total time in each of 

12 wind direction cones (30 degree span), while the colour scale defines the wind speed 

(redder colours indicating strong wind speeds > 6 ms
-1

 and yellower and pale colours 

indicate light or stagnant winds, respectively). © University of Manchester, 2017 

4.7 GREENHOUSE GAS BASELINE 

In this section, we present the statistical analysis of the greenhouse gas baseline dataset for LP 

and mobile vehicle surveys of nearby greenhouse gas sources in turn. We interpret this in the 

context of sources of emission and background using meteorological (and other) data to aid 

analysis. We conclude each sub-section by discussing the authors’ recommendations on the 

appropriate use of the baseline dataset for each site and how this concerns future monitoring for 

future comparative assessments. 

4.7.1 Fixed measurement site climatology 

Figure 23 illustrates the measured ambient CO2 and CH4 ambient concentrations at LP as a 

function of time across the full baseline period sampled at the fixed measurement site. Figure 24 

and Figure 25 go on to illustrate how the measured concentrations relate to their coincidently-
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measured wind direction for each greenhouse gas, while Figure 26 and Figure 27 show the same 

information but also display the relationship between measured concentration and wind direction 

as a function of time. When interpreted together, these figures distil several important and 

internally-consistent summary features, which can be seen in the baseline dataset when 

comparing salient concentration features with wind direction: 

● There are clear periods of what can be defined as a “background” (accounting for 50% of 

the period) - where CO2 and CH4 concentrations appear relatively flat at around 400 parts 

per million (ppm) and 2 ppm, respectively (as seen in Figure 23). These periods coincide 

with times of westerly winds seen in Figure 24 and Figure 25, and as the orange and red 

colours in the times series of Figure 26 and Figure 27; and represent a typical seasonally-

variant Northern Hemispheric average concentration. 

● There are prolonged periods (several consecutive days) of marginally enhanced CO2 and 

CH4 (between 400-450 ppm and 2-4 ppm, respectively). These periods coincide most often 

with moderate south-easterly winds as seen in Figure 24 and Figure 25, when comparing 

with Figure 26 and Figure 27 (where green and yellow colours indicated easterly and 

south-easterly wind directions). These features are consistent with an interpretation that 

these episodes represent regional pollution inputs from cities to the south and east such as 

Manchester, and the cities of Central and Southern England. 

● There are short-lived (less than a few hours) but large enhancements (often referred to as 

“spikes”) in the time-series data (greater than 4 ppm CH4 and 500 ppm CO2). These 

coincide most often with light easterly and south-easterly and northerly wind directions 

seen in Figure 24 and Figure 25, compared with Figure 26 and Figure 27 (where easterly 

winds are seen in green colours). These features in the data, often superimposed on the 

regional increment describe above, are expected to represent local (<10 km upwind) 

sources such as nearby agricultural activities, roads, and landfill. 

● That, for most of the time (>90% of the period), CO2 and CH4 display common patterns, in 

that both gases are often seen at their respective background concentrations, or are 

mutually enhanced with a scalable linear relationship (as shown in Figure 28 and discussed 

further below). 

 

Figure 23. Time series of carbon dioxide (red) and methane (grey) in units of ppm 

measured at LP between 1 Feb 2016 and 31 Jan 2017. Note: “d” refers to the water-

vapour-corrected (or dry) measurement by the UGGA instrument. © University of 

Manchester, 2017 
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Interpreting this further, it can be seen that westerly wind directions invariably bring relatively 

unpolluted air to the LP site. Other wind directions deliver more complex airmasses likely 

comprising a wide mix of pollutant sources upwind, both local and regional, requiring additional 

interpretation (see below). 

 

Figure 24. Concentrations (as per colour scale) in air as a function of wind direction for 

methane (units of ppm), as measured at LP in the baseline period. © University of 

Manchester, 2017 

 

Figure 25. Concentrations (as per colour scale) in air as a function of wind direction for 

carbon dioxide (units of ppm), as measured at LP in the baseline period. © University of 

Manchester, 2017 
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Figure 26. Methane concentration time series, colour-coded for wind direction as per 

legend as measured at LP in the baseline period. © University of Manchester, 2017 

 

Figure 27. Carbon dioxide concentration time series, colour-coded for wind direction as 

per legend (in degrees) as measured at LP in the baseline period. © University of 

Manchester, 2017 

Figure 28 illustrates the correlation between simultaneously-measured CO2 and CH4 

concentration in air, colour-scaled for sampling density (each count representing a one-minute 

data interval). Warmer colours indicate more frequent sampling. Clear correlations between the 

concentrations of the two greenhouse gases seen in plots of this type delineate so-called mixing 
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lines. Such correlations (or mixing lines) often correspond to specific airmass types where co-

emission from specific sources, or common airmass chemistry, may be active. 

In Figure 28, we see that there are two broad correlations and one dominant feature, seen, as 

follows: 

1. A dominant mixing line (traced by red and yellow colours) with a relationship of 

[CO2]=132.1[CH4]+386.5 ppm – representing co-emission (or bulk mixing) of nearby CO2 

and CH4 sources upwind to the east and north east (based on understanding of how such 

concentrations relate to wind direction in Figure 25 to Figure 28). 

2. A weaker but clear mixing line with a relationship of [CO2]=7.5[CH4]+386.5 ppm - 

representing co-emission (or bulk mixing) of CO2 and CH4 regional UK and longer-range 

sources upwind to the east and south east. 

3. A dominant red cluster centred at ~400 ppm CO2 and 2 ppm CH4 – this represents the 

dominant and frequent background signal seen in westerly Atlantic airmasses (Figure 24 and 

Figure 25). Note that the darkest red colours in this cluster correspond to >40 total days of 

measurement each within the baseline period. 

 

Figure 28. Coincident CO2 and CH4 concentrations measured at LP. Colours indicate the 

frequency density of sampling (number of coincident measurements). One count refers to a 

one-minute period of data. © University of Manchester, 2017 

Mixing lines such as these are a powerful differentiator of source types, especially at the regional 

and national scale. When temporally averaged (as in Figure 28), they characterise airmasses that 

have passed over a large fetch of similar pollution source types and where the airmass has had 

time to mix internally. The two dominant mixing modes seen in Figure 28 are seen to correspond 

to the less frequent easterly, southerly, and south-easterly wind directions. Considering the 

location of LP, these wind directions represent air that has passed over the Pennines and the 

cities of Manchester, Leeds and Sheffield in the case of easterlies, and the cities of Birmingham 

and London in the case of south easterlies. While cities and infrastructure are a principal source 

of UK pollution (including greenhouse gases), biogenic sources of greenhouse gases, such as the 

biosphere, landfill and agriculture would also be expected to feature in the fetch of such 

airmasses when upwind of the LP site. The summative mix of these longer-range pollution types 

upwind for easterly and south-easterly wind directions gives rise to the dominant mixing line 

observed as the red and yellow trace in Figure 28 and described in summary point 2 above. 
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To interpret more local sources of pollution (within ~10 km), we must focus in detail on the 

more transient features in the high temporal resolution dataset. To do this on an event-by-event 

basis for a year of data would be meaningless (and impractical) in the context of the baseline 

analysis here, though event-led (case study) analysis may well be advisable during any 

operational monitoring. However, it is possible to interpret the relative role of proximal pollutant 

sources to the overall baseline by considering short-lived but significant excursions from the 

average baseline and comparing these with wind speed and direction.  

Figure 29 and Figure 30 illustrate a polar bivariate representation of the relationship between 

both wind speed and direction and greenhouse gas concentration. The colour scale in Figure 29 

highlights the wind speed and wind direction conditions that dominate the overall concentration 

average seen at the measurement site (as a weighted mean of concentration x frequency of 

occurrence). The red areas seen in both panels (CO2 and CH4) in Figure 29 correspond to light 

winds (0–2 m/s) from the south-east indicating a well-constrained local source for both gases. 

Figure 30 shows how the absolute measured concentration relates to wind direction and wind 

speed, which again shows the dominant south-easterly origin of elevated CH4 concentrations, but 

also demonstrates a subtly different origin of the greatest enhancements in CO2, which appear 

from both the south and south-east. Given the site’s location, these local CH4 sources to the 

south-east are likely to be the nearby dairy farm (on which the site is located) and the nearby 

A583 main road, while the southerly dominance in CO2 is likely mostly associated with passing 

traffic on the A583 main road. The fact that the red area does not extend to higher wind speeds in 

the south-east is consistent with an interpretation that longer-range sources of pollution may not 

contribute significantly to periods where the greatest enhancements in concentrations are 

sampled at the site, i.e. that local sources dominate the strongest enhancements. The role of 

longer-range (regional, national and continental) sources is therefore to add a smaller increment 

to the much larger local emission sources that dominate periods of enhancement in south-easterly 

wind conditions. The lighter blue areas seen in Figure 29 to the west indicate a long-range and 

diffuse source of the greenhouse gases, which is consistent with longer-range transport of 

moderately enhanced airmasses, from Ireland and in intercontinental transport from the United 

States, although this source’s relative contribution to the baseline is very much weaker than those 

upwind sources when airmasses are received from the south-east. 

 

Figure 29. Polar bivariate representation of methane (left) and carbon dioxide (right) as a 

function of wind direction. The colour scale represents the fraction of total measurement 

time weighted for concentration enhancement relative to the global mean (as scaled for 

colour in units of ppm) and wind speed (defined by the radial component - each contour 

representing 5 m/s). See text for further details. © Univ Manchester, 2017 



 

 31 

 

Figure 30. Polar bivariate representation of methane (left) and carbon dioxide (right) as a 

function of wind direction and wind speed. The colour scale represents the absolute 

measured concentration (as scaled for colour in units of ppm) and wind speed (defined by 

the radial length component - each contour representing 5 m/s). See text for further details. 

© University of Manchester, 2017 

To differentiate the role of local, regional and more distant (long-range inter-continental) 

pollution sources further, we now examine the airmass history, which can be interpreted using 

Lagrangian back trajectories. Back trajectories are a useful indicator of the path that air has taken 

in the atmosphere up to and over the previous 5 days. Beyond this time, the accuracy of 

hindcasted trajectories degrades rapidly due to numerical and meteorological uncertainty 

associated with Lagrangian transport models and the accuracy of reanalysed meteorological data. 

Put simply, back trajectories attempt to trace back the path of neutrally buoyant single particles 

in the atmosphere as they are carried on the wind (this is known as Lagrangian advection). Back-

trajectory models use wind fields from meteorological reanalyses (hindcasted winds calculated 

by forecast models that use assimilated measured data). 

In this analysis, we have used the Hybrid Single Particle Lagrangian Integrated Trajectory Model 

(HYSPLIT) and hourly United States National Centre for Environmental Prediction Global 

Forecast System reanalysis meteorological data at a spatial resolution of 0.5°x0.5°. We have then 

calculated 5-day back trajectories with endpoints at the location of the LP site at 6-hourly 

intervals across the measurement period (~1200 trajectories in total between 1 Feb 2016 and 31 

Jan 2017). 

Figure 31 shows the airmass history of air sampled at LP throughout the baseline period. This 

statistical representation of the history of air can be interpreted as a surface “footprint”, 

illustrating a surface area over which air measured at LP has been influenced by potential surface 

sources. Figure 31 shows the frequency (as a fraction of total time, in this case as a percentage of 

the 12-month baseline period) that air has passed near to the surface in a latitude-longitude grid 

with a 1-degree spacing. The red colours indicate that air received at LP is most characterised by 

air that has previously passed over Ireland and the Atlantic Ocean. It also shows less frequent 

contact with the near-surface to the north. 
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Figure 31. 5-day airmass history surface footprint statistics for the period 1 Feb 2016 to 31 

Jan 2017, as seen from the LP site at a spatial resolution of 1 x 1 degree. Frequency refers 

to the fraction of the total trajectories passing over each lat/long grid cell. © University of 

Manchester, 2017 

Figure 32 shows the same trajectories but sub-sampled by meteorological season. This figure 

illustrates that for all but the winter season, airmasses arriving at LP in the baseline period 

display a variety of upwind histories from all directions (dominated by the Atlantic region to the 

west). In the winter season, we see that airmasses originate (within the past 5 days) almost 

exclusively from latitudes to the south of the LP site. This is not to say that airmasses in winter 

have no longer-range history in more northern latitudes, simply that contact with the near-surface 

over the preceding 5 days before sampling at LP is dominated by latitudes south of the LP site, 

i.e. that longer-range (>5 day) airmass histories may well be seen further to the north before 

being advected over the UK mainland in westerly (or other) flow regimes. This pattern is 

consistent with the analysis and conclusions drawn about the local meteorology discussed earlier 

and suggests that land-based long-range sources of pollution from the east (over the UK and 

mainland Europe) are experienced relatively infrequently compared to maritime air received 

from the west and the Atlantic at LP. 

To investigate further the nature of the 4 broad airmass types arriving at LP identified earlier, we 

now examine the temporal patterns and airmass history for each airmass classification. To 

achieve this, the polar bivariate data seen in Figure 11 have been used to categorize the baseline 

dataset into four principal clusters by the method of K-means clustering. The resulting clusters 

can be seen in Figure 33, which illustrate (as defined zones) the dominant relationships between 

concentration, wind direction, and wind speed, which we have discussed earlier. Each zone can 

be thought of as representing an internally consistent subsample of the data based on the 

correlation between gas concentration, wind speed and wind direction. 

For methane (Figure 33 left), we see the dominant westerly airmass (Cluster 1 - green), a less 

frequent background airmass from the north-west (Cluster 4, yellow), a regionally (enhanced 

GHG concentration) airmass (Cluster 2 - blue) and a highly enhanced airmass (Cluster 3 - 

orange). For carbon dioxide, we see similar features for clusters 1, 2, and 3, but with the more 

dominant southerly zone cluster (Cluster 2 in Figure 33 right - shown in purple). 

 



 

 33 

 

Figure 32. 5-day airmass history surface footprint statistics for the period 1 Feb 2016 to 31 

Jan 2017 by meteorological season (e.g. DJF refers to Dec, Jan and Feb), with trajectory 

endpoints at the LP site at a spatial resolution of 1 x 1 degree. Frequency refers to the 

fraction of the total trajectories passing over each lat/long grid cell. © University of 

Manchester, 2017 

 

Figure 33. Derived 4-mode K-means clusters of dominating wind-concentration 

relationships for: left (methane); and right: carbon dioxide as sampled at LP. Radial 

direction indicates wind direction, while radial length defines wind speed. © University of 

Manchester, 2017 

We have used this clustering approach to sub-sample the dataset to investigate airmass histories 

corresponding to each zone (or cluster) by calculating back trajectories for meteorological 

conditions at the time of measurement of each data point inherent to each cluster. This is 

illustrated in Figure 34, which shows the trajectory climatology for each cluster corresponding to 

methane. When illustrated in this way, the difference between the 4 airmass classification origins 

can be observed readily as distinct surface footprints over different upwind areas. The westerly 

and northerly zones (clusters 1 and 4 in Figure 33 left) define Atlantic maritime origins (seen as 

the blue and purple trajectories in Figure 34, consistent with our earlier conclusion that air 

received at LP from these locations broadly represents a Northern Hemispheric average 
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composition. The regionally enhanced (elevated concentration) cluster is seen in the green 

trajectories, which pass over the UK mainland to the west and continental Europe. The highly 

elevated trajectories (seen as orange in Figure 34) show an Atlantic and English Channel 

footprint, which further reinforces our conclusion that the observed elevations associated with 

this wind direction are associated with more localised (<10 km upwind) emission sources (added 

to a smaller UK mainland increment), as the longer-range airmass history would otherwise 

deliver cleaner airmasses than from Clusters 1 and 4. The mean trajectory path for each cluster is 

shown in Figure 35, which illustrates the divergent nature of each cluster in terms of their long-

range airmass histories. Figure 35 also shows the percentage of time over the baseline period 

associated to each cluster, further reflecting the conclusions discussed using the simpler wind 

rose analysis described for Figure 24 to Figure 27 earlier. 

 

Figure 34. 5-day back trajectories ending at LP corresponding to the time of each data 

point associated with the 4 principal clusters identified in Figure 14 left for methane. © 

University of Manchester, 2017 

 

Figure 35. Mean path of 5-day back trajectories seen in Figure 15, ending at LP for each of 

the 4 principal airmass clusters. The percentage associated with each mean trajectory path 

defines the fraction of time (as fraction on 12 months in the baseline period) that airmasses 

arriving at LP are classified within each principal cluster defined in Figure 14 
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We can now examine the temporal patterns associated with measured concentrations within each 

of these principal clusters. The diurnal, weekly, and seasonal variability observed for each 

cluster can give additional clues as to the nature of sources and their proximity to the receptor 

site. Figure 36 shows this for methane. The top panel shows the mean diurnal pattern and 

statistical variability (at the 95% confidence level of sampled variability around the calculated 

mean) in methane concentration as a function of time of day (and day of week) for each cluster 

(represented as an average over the entire baseline period). When illustrated in this way, we can 

clearly observe very different diurnal behaviour for cluster 3 (the most elevated airmass) 

especially, relative to clusters 1, 2, and 4. In particular, we see a consistent and repeatable diurnal 

minimum at around midday on every day of the week across the whole year. This diurnal 

minimum on Cluster 3 is best observed in Figure 36 (bottom left), which shows the average over 

all days of the year. We also see a marked increase in late winter months for Cluster 3. This 

pattern is consistent with the ventilation of the local boundary layer, as the height of the 

planetary boundary layer is lifted by convection in daylight hours (enhanced in summer months 

relative to winter), further indicating a dominant role for local sources, which might be expected 

to accumulate overnight before being diluted and detrained in daytime. Clusters 1, 2 and 4 do not 

display such a minimum, suggestive of longer-range origins where the timescales of diurnal 

boundary-layer ventilation (24 hours) are shorter than the timescales of advection (many days) 

between regional and distant sources and the baseline receptor site. 

 

Figure 36. Temporal statistics of methane climatology at LP by time and day of week (top 

panel), time of day over all days (bottom left), month of year (bottom middle), and day of 

week (bottom right). © University of Manchester, 2017 

We now examine Clusters 1 and 4 for methane in more detail. These clusters represent the 

background airmasses from the west and north and therefore might be expected to display a more 

seasonal pattern associated with biospheric respirational activity across the Northern 

Hemisphere. This is illustrated in  

Figure 37. Same as Figure 36, but rescaled to illustrate temporal variability for less-

enhanced clusters 1 and 4 for methane concentration patterns. © Univ Manchester, 2017 
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, which is essentially the same as Figure 36 but rescaled to illustrate the variability of methane 

concentration better for these (less enhanced) airmass clusters. Several salient features emerge: 

1) that both clusters display a diurnal maximum at midday (the opposite of that seen in cluster 3); 

2) that there is evidence for a mid-week maximum; and 3) that there is a summer minimum. 

Together, these features suggest that these clusters represent the northern hemispheric methane 

summertime minimum (as methane is oxidised by photochemistry), and that there may be a role 

for mid-week enhancements associated with long-range anthropogenic emissions (perhaps 

associated with intercontinental transport in westerlies from the United States). It should be 

noted that these much longer-range enhancements are very small (just 20 ppb peak-to-peak) 

relative to those in Cluster 3, which are up to 2 orders of magnitude (100 times) higher for more 

local sources. 

 

Figure 37. Same as Figure 36, but rescaled to illustrate temporal variability for less-

enhanced clusters 1 and 4 for methane concentration patterns. © Univ Manchester, 2017 
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Repeating this analysis for CO2 (seen in Error! Reference source not found. and Figure 39), 

we see similar diurnal patterns due to boundary layer ventilation (Fig 19 top panel) for all 

clusters except cluster 4, which represents the relatively clean northerly airmass type seen in 

Figure 33. The largest diurnal variability is seen for cluster 4, which represents the southerly 

airmass, linked earlier to local CO2 emission sources and the nearby main road. However, unlike 

methane, a clear seasonal minimum is observed in August in all clusters. This feature is typical 

and expected to be due to the summer minimum in northern hemispheric CO2 concentration due 

to biospheric respiration (uptake), which peaks in the summer months. This is seen for all 

clusters simply because the relative change in the seasonal background CO2 concentration is 

significant when compared with the signal due to even very nearby CO2 emission sources, unlike 

CH4 (by virtue of the very small absolute mean global concentration of CH4 around 2 ppm, 

which means that small mass fluxes of CH4 can contribute a much greater relative signal on this 

much lower background). In the case of CO2, clusters 1 and 4 represent more background (less 

elevated conditions) from westerly and northerly origins, respectively. These are shown in more 

detail in Figure 39.  While clusters 1 and 4 are seen to have very similar seasonal trends, there 

are some marked differences, especially in the diurnal variability (Figure 39 bottom left) and 

when comparing weekday with weekend (Figure 39 bottom right). Cluster 4 (northerly and 

north-westerly origin) does not display a clear diurnal signal and also appears to peak on 

Saturdays and Sundays relative to weekdays. The lack of a diurnal signal is consistent with an 

absence of local sources for this cluster. However, the weekend peak is suggestive of something 

quite different. Often, weekend signals may indicate a change in human social behaviour (e.g. 

increased traffic flow to recreational destinations). This could indicate weekend traffic 

movements to the town of Blackpool, which is to the north west of the baseline site. However, 

we might expect this to manifest in a daytime (or rush hour) maximum, which is not observed. 

We may speculate that the night-time weekend economy of the Blackpool area may explain the 

lack of such a diurnal trend on weekend days. However, this may be at the risk of over-

interpreting the data available. Moreover, clusters 1 and 4 for CO2, like clusters 1 and 2 for 

methane, represent only small enhancements compared with their more elevated clusters and 

therefore such a signal is small compared with the role of more local emission sources. 

Figure 38. Temporal statistics of carbon dioxide climatology by time and day of week (top 

panel), time of day over all days (bottom left), month of year (bottom middle), and day of week 

(bottom right), averaged for the whole baseline period. © Univ Manchester 2017 
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Figure 39. Same as Figure 38, but rescaled to illustrate temporal variability for less-

enhanced clusters 1 and 4 for carbon dioxide concentration patterns. © University of 

Manchester, 2017 

To investigate the nature of local methane emission sources (biogenic and anthropogenic) in 

cluster 3 in Figure 34, the results from the mobile vehicle surveys are discussed in the following 

Section. 

4.7.2 Little Plumpton mobile vehicle surveys of methane emission sources 

Maps of the area sampled by the mobile vehicle campaign in March 2016 can be seen in Figure 

42 and Figure 43, colour-coded for sampled CH4 concentration. The same, but for the July 2016 

survey, can be seen in Figure 44 and Figure 45. The March campaign is summarised in the 

Figure 40 Keeling plot with individual source plumes identified by both surveys in Figure 41 a-f. 

A summary of the findings is given in Table 5. 

The main persistent methane plume in the Fylde region is the landfill at Fleetwood, which was 

detected on all measurement days despite different wind directions and detected up to 3 km from 

source across the River Wyre estuary. Concentrations up to 2.5 times the atmospheric 

background level were recorded peripheral to site. This has a distinctive isotopic signature of -57 

‰ (Table 5), which is typical of all active landfills measured to date by the RHUL group. The 

Clifton restored landfill gave a signature of -55 ‰, within the range of -56 to -53 ‰ measured 

for other pre-gas extraction landfill cells. Composting at -52 ‰ and natural gas leaks at -41 ‰ 

were detected during the March Fylde campaign but not during the July campaign (Figure 44 and 

Figure 45). 

Ruminant emissions (dairy cows) were measured during both campaigns. During March, these 

were mostly emissions from barns, which formed sharp but narrow (<50 m wide) plumes with 

excess more than 50% above background. During July the cows were dispersed across fields, 

resulting in broad (>100 m wide) plumes with excess less than 20% above background. When 

the cows are in barns, the isotopic signature represents a mixture of emissions from breath and 

slurry (-60 ‰), whereas the breath source is much more predominant when the cows are in the 

fields and the waste liquids are partly absorbed by the ground (-64 ‰). Two cow barns emitting 

methane are close to the proposed well pad, at Plumpton Hall and Moss House. In July, outside 

of milking time, these cows were dispersed throughout neighbouring fields. The strong inversion 

on the morning of July 28 resulted in background methane at 2.2 ppm (Figure 45), which 

dispersed only after 11:00 am. Background samples were collected throughout this period, and a 
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resulting Keeling plot for these suggests that the mixed source emissions entering Fylde from the 

south have a signal of -61 ‰ indicating dominance of ruminant and landfill emissions. 

  

Figure 40. Summary Keeling plots of 1/CH4 ppm vs measured δ
13

C for all major methane 

sources located during the March 2016 campaign, highlighting the difference in line slope. 

© Royal Holloway Univ London, 2017 

 

 a)         b) 

 

c)         d) 

 

e)         f) 

Figure 41. Keeling plots of 1/CH4 ppm vs measured carbon-13 for each major methane 

source identified in the Fylde region in March and July 2016: a) Cows in fields, b) Cows in 
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barns, c) Active landfills, d) Restored landfill, e) Composting and sewage, f) Gas leaks. 

Sources observed in both campaigns show March in Black and July in Red (where 

observed). © Royal Holloway Univ London, 2017 

 

Table 5. Summary of bag sampling in the Fylde region. Source methane excess and carbon 

isotopic signatures identified from Keeling plot analysis 

Source (bag samples) Max. excess over background 

(ppm) 

δ
13

C signature (‰) 

Gas Leaks 1.3 -41 

Composting and sewage 3.3 -52 

Restored landfill 1.7 -55 

Active landfill 2.4 -58 

Cow barns 2.4 -59 

Cows in fields 0.4 (2.9 within 2m of a cow) -64 (-70) 
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Figure 42. Survey route for March 9 2016, starting at Charnock Richard services. The 

largest methane plume observed was emanating from the Jamieson landfill at Fleetwood. © 

Crown Copyright and/or database right 2018. Licence number 100021290 EUL. © Royal 

Holloway Univ London, 2017 
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Figure 43. Survey route for 10 March 2016, ending in Preston. The largest methane plumes 

observed were from gas leaks and cow barns (see inset). © Crown Copyright and/or 

database right 2018. Licence number 100021290 EUL. © Royal Holloway Univ London, 

2017 
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Figure 44. Survey route for 27 July 2016, starting in Preston. The largest methane plumes 

observed were from landfill and cows. © Crown Copyright and/or database right 2018. 

Licence number 100021290 EUL. © Royal Holloway Univ London, 2017 
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Figure 45. Survey route for 28 July 2016, starting in Kirkham. The largest methane plumes 

observed were from landfill and cows. A well-developed inversion resulted in a high 

methane background until late morning as shown by the green colours along the route 

track. © Crown Copyright and/or database right 2018. Licence number 100021290 EUL. © 

Royal Holloway Univ London, 2017 
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4.7.3 Summary 

The summary features of the greenhouse gas baseline at LP can be defined broadly as follows. 

 There are clear periods of what can be defined as a “background” (accounting for 50% of 

the period) - where CO2 and CH4 concentrations appear relatively flat at around 400 parts 

per million (ppm) and 2 ppm, respectively (Figure 23). These periods coincide with times 

of westerly winds seen in Figure 24 and Figure 25, and as the orange and red colours in 

the times series of Figure 26 and Figure 27. They represent a typical seasonally-variant 

Northern Hemispheric average concentration. 

 There are prolonged periods (several consecutive days) of marginally enhanced CO2 and 

CH4 (between 400-450 ppm and 2-4 ppm, respectively. These periods coincide most 

often with moderate south-easterly winds as seen in Figure 24 and Figure 25, when 

comparing with Figure 26 and Figure 27 (where green and yellow colours indicated 

easterly and south-easterly wind directions). These features are consistent with an 

interpretation that these episodes represent regional pollution inputs from cities to the 

south and east such as Manchester, and the cities of Central and Southern England.  

 There are short-lived (less than a few hours) but large enhancements (often referred to as 

“spikes”) in the time-series data (greater than 4 ppm CH4 and 500 ppm CO2). These 

coincide most often with light easterly and south-easterly and northerly wind directions 

seen in Figure 24 and Figure 25, compared with Figure 26 and Figure 27 (where easterly 

winds are seen in green colours). These features in the data, often superimposed on the 

regional increment described above, are expected to represent local (<10 km upwind) 

sources such as nearby agricultural activities, roads, and landfill.  

 For most of the time (>90% of the period), CO2 and CH4 display common patterns, in that 

both gases are often seen at their respective background concentrations, or are mutually 

enhanced with a scalable linear relationship (as shown in Figure 28). 

The climatological annualised GHG statistics for the LP site are shown in Table 6. The mean 

concentrations of CO2 and CH4 are slightly elevated (4.5% in the case of CO2, and 18.4% for 

CH4) compared with the Northern Hemispheric tropospheric average for 2016 (~400 ppm and 

~1850 ppb, respectively). This is expected due to the position of LP on land and exposed to 

sources of emission both locally and regionally. The one-standard-deviation variability around 

the mean is large (4.8% for CO2 and 29.5% for CH4), reflecting the variable airmasses that 

impact the site. The higher CH4 variability is suggested to be linked to the nature of local sources 

(such as agriculture and landfill identified in the mobile surveys discussed in Section 4.7.2). The 

interquartile and interdecile ranges for both gases are constrained to 6.5% for CO2 and 17% for 

CH4 relative to the mean, while the extremes (99th percentiles), extend to 16% and 215% of the 

mean for CO2 and CH4, respectively. This demonstrates that for the vast majority of the period 

(80%), concentrations do not vary by more than ~20% at most). However, shorter-period, 

extreme events (accounting for 1% of the baseline period), can see concentrations of CH4 double 

that of the mean climatological concentration. Such periods are identified with episodic local 

emissions, lasting for a few hours at most. 

In all cases, it must be stressed that the levels of greenhouse gas concentrations seen at this site 

do not represent any known hazard to human health and are well within the typical range seen 

for any land-based measurement site. Even the largest transient enhancements seen in the 

collected dataset are in what would be considered to be a normal modern range and the 

conclusions drawn in this report on the existing sources of local pollution in our opinion do not 

represent any cause for local concern. 

The statistics defined in the baseline period can be used in the following ways when comparing 

to analogous datasets collected in the future or during periods of new localised activity: 

 The background (hemispheric average concentrations) seen in airmasses associated with 

westerly and south-westerly origins lend themselves optimally to assessment of any 
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incremental signal due to hydraulic fracturing in Little Plumpton. This is because the 

location of the baseline site directly to the east of the field where Cuadrilla holds an 

exploratory licence, which means that any significant fugitive emission should be readily 

observable against the otherwise very flat and clean signal seen for this wind direction in 

the baseline dataset. This will allow future work to positively identify (but not quantify 

mass flux for) the source of emissions on site as a function of time, linking such 

emissions (should they exist) to site activity and phases of production.  

 The observed statistics concerning pre-existing sources of nearby and regional pollution 

allow any shale-gas-linked emission (in future, should analogous data be collected for 

comparison) to be compared numerically with concentration statistics in the baseline for 

other (more elevated pre-existing) wind directions and emission source origins. This 

allows for a contextual comparison - where any localised elevations due to shale gas can 

be quantified statistically, as a fraction of the contribution to atmospheric composition 

due to non-local emission sources. 

To summarise, the purpose of this analysis was to establish the baseline climatology for the area 

to allow future comparative interpretation. In the context of greenhouse gases, this concerns the 

future quantification of greenhouse gas mass flux to atmosphere (fugitive emissions) from shale-

gas operations. 

 

Table 6. Summary climatological statistics evaluated over the baseline period for GHG 

concentrations measured at the baseline site at LP 

   CO2 (ppm) CH4 (ppb) 

Mean 417.91 2191.04 

Std Dev 20.17 646.10 

Q0.1 387.21 1864.75 

Q1 390.56 1893.93 

Q10 397.75 1923.52 

Q25 405.67 1942.68 

Q50 412.04 2004.45 

Q75 426.63 2202.35 

Q90 444.25 2566.38 

Q99 485.64 4730.81 

Q99.9 542.37 9546.12 
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4.8 AIR QUALITY BASELINE 

This section reports the Air Quality (AQ) baseline for the LP site. The statistical analysis of the 

AQ baseline dataset will be presented and interpreted in context of sources of emissions using 

meteorological data to aid analysis. The analysis provides information on the annual climatology 

of air pollution along with representative insight into shorter-term variability in air pollution. The 

baseline analysis is framed specifically with reference to the attainment of EC Directive air 

quality standards and this uses a range of metrics including annual, 1 hour and 8 hour means.  

4.8.1 The baseline dataset 

The dataset used in this report was from data collected for the first full year of monitoring (to 31 

January 2017).  The dataset includes local meteorology (2 m above ground), nitrogen oxides 

(NO and NO2, collectively NOx), particulate matter in a number of aerodynamic size ranges 

(PM), ozone (O3) and speciated non methane hydrocarbons (NMHCs).  The data are archived 

and publicly-accessible at the NERC Centre for Environmental Data Analysis (CEDA) at 1-

minute intervals, except NMHCs, which are reported as weekly values.  Data are available via 

the following link: http://browse.ceda.ac.uk/browse/badc/env-baseline. 

The environmental baseline is examined and then compared with other similar regional UK 

monitoring sites operated by Defra and other agencies. 

4.8.2 Results and discussion 

Managing and improving air quality in the UK is driven by European (EU) legislation on 

ambient air-quality standards and also commitments to limit transboundary emissions, through 

the National Emissions Ceiling Directive and the Gothenburg Protocol.  The 2008 Ambient Air 

Quality Directive (2008/50/EC) sets legally binding limits for outdoor air pollutants that impact 

on human health, and includes NO2, O3, benzene, 1,3 butadiene, PM10 and PM2.5. All these 

species have been measured as part of the baseline project.   

Within the UK, ambient air quality is controlled with the aspiration that all locations meet either 

the prescribed Limit Values or Target Values depending on the species.  EU Limit Values are 

legally binding concentrations that must not be exceeded. There are prescribed averaging times 

associated with each pollutant and for some, a number of exceedances are allowed in each year.  

Target values are meant to be attained where possible by taking all necessary measures not 

entailing disproportionate costs, often reflecting natural impacts on those pollutants that can lie 

outside of regulatory controls. 

All EU directives are listed on http://ec.europa.eu/environment/air/quality/standards.htm. 

The national air-quality objectives for data parameters measured as part of the AQ baseline are 

shown in Table 7. 

Table 7. Air Quality EU directives for parameters measured at the baseline sites. 
a
Conversion based on EC conversion (temperature 20 °C and pressure 1013 mb) 

 

Pollutant Concentration Averaging 

period 

Legal 

nature 

Permitted 

exceedances 

Approx 

conversion to 

ppb
a 

Fine 

particles 

(PM2.5) 

25 μg/m
3 

1 year Limit value none n/a 

Nitrogen 

dioxide 

200 μg/m
3 

 

1 hour Limit value 18 104.7 ppb 

http://browse.ceda.ac.uk/browse/badc/env-baseline
http://ec.europa.eu/environment/air/quality/standards.htm
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(NO2) 40 μg/m
3 

 

1 year Limit value none 20.9 ppb 

PM10 50 μg/m
3
 24 hours Limit value 35 n/a 

40 μg/m
3
 1 year Limit value none n/a 

Benzene 5 μg/m
3
 1 year Limit value none 1.88 ppb 

Ozone 120 μg/m
3
 Maximum 

daily 8 hour 

mean 

Target value 25 days 

averaged over 

3 years 

60.1 ppb 

 

4.8.2.1 SUMMARY STATISTICS OF ANNUAL MEANS OF AIR POLLUTANTS AT LP 

Table 8 shows a summary of the annual means of various air pollutants at LP and a restatement 

of the annual directive limit value. An important immediate conclusion that can be drawn by the 

baseline study over the first year is that in terms of annual mean values, none of the monitored 

air pollutants exceeds annual mean Limit Values. For planning guidance, air-quality issues must 

be taken into account when ambient air pollution concentrations approach 75% of the Limit 

Values. No air pollutants at either site reach this threshold. 

 

Table 8. Summary of annual statistics for LP for various air pollutants and comparison 

against annual mean limit values. 

Pollutant Annual mean at LP Annual mean Limit value 

Ozone 19.6 ± 10.1 ppb 60.1 ppb 

PM2.5 9.3 ± 7.8 μg/m
3
 

 

25 μg/m
3
 

PM10 7.9 ± 8.9 μg/m
3
 40 μg/m

3±
 

NO 2.5 ± 6.4 ppb No limit value 

NO2 6.1 ± 6.6 ppb 20.9 ppb 

NOx 8.9 ± 12.1 ppb No limit value 

Benzene 0.2 ±  0.01 ppb 1.88 ppb 

 

Thresholds with short-term mean values exist for some pollutants. These are listed in Table 9, 

along with the amount of times these values were exceeded. A threshold value of 75 % was used 

when calculating all exceedances. 
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Table 9. Summary of statistics for LP short-term mean values for various air pollutants 

and comparison against short-term mean limit values, where these apply 

Pollutant Number of 8-hours exceedances LP 8-hour limit 

Ozone 1 (25 allowed per year, averaged over 3 years) 60.1 ppb 

 Number of 24-hours exceedances LP 24 hour limit 

PM10 0 50  μg/m
3
 

 Number of 1-hours exceedances LP  

NO2 0 200 μg/m
3
 

 

The O3 exceedance in July 2106 was when temperatures in the UK were high, resulting in 

photochemical production of O3. 

4.8.2.2 LITTLE PLUMPTON DETAILED ANALYSIS 

Metrics 

Table 10 reports metrics by individual wind sector. As is common in the UK, easterly and south-

easterly air masses are often the most polluted since these bring air from south-east England and 

continental Europe. The lowest concentrations of air pollutants are typically observed during 

periods of westerly airflow. The LP site also has the influence of the major road to the south and 

its influence can be clearly seen in the NOx and PM measurements from those wind sectors. 

Table 10. LP metrics by wind sector 

 N NE E SE S SW W NW 

O3 (ppb) 22.4 20.2 18.3 13.2 13.8 19.8 23.8 24.7 

NO (ppb) 1.2 1.6 2.6 5.3 4.6 2.2 0.7 0.8 

NO2 (ppb) 3.6 4.9 4.0 12.1 10.4 5.4 2.3 2.4 

NOx (ppb) 4.9 6.5 5.1 18.1 15.7 8.0 3.1 3.1 

PM2.5 (μm/m
3
) 4.8 5.5 10.5 13.8 10.6 5.8 5.4 4.8 

PM10 (μm/m
3
) 7.9 10.0 17.9 18.0 13.8 9.6 9.7 8.6 

 

Diurnal variation of air pollution (Figure 46) 

The O3 diurnal concentration is lowest at night and peaks just after midday, as expected in the 

general context of UK oxidative air chemistry; this is a combination of boundary-layer height 

and photochemical production during the day and surface loss at night. 

Both NOx and PM display similar diurnal cycles. The fact that these are similar in shape is an 

indication that they have similar sources. The diurnal variation is heavily influenced by road 

traffic. The NOx diurnal shows NO and NO2 increasing in the morning, which is probably due to 

the boundary-layer height and local traffic sources. The mid-afternoon peak relates to the effect 

of the late afternoon/evening rush hour. 
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(a)  
 

(b)   
 

(c)  

  

Figure 46. Diurnal variations at LP for (a) O3 (b) NOx and (c) PM. © Univ York, NCAS, 

2017 

(a)  

 

(b) 

 

(c) 

 

Figure 47. Hebdomadal cycles for at LP for (a) O3, (b) NOx and (c) PM. © Univ York, 

NCAS, 2017 

Hebdominal variation of air pollution (Figure 47) 

The working week (Mon–Fri) is clear in the O3 and NOx measurements, with NOx being highest 

during the week and decreasing at the weekend. By contrast, O3 is highest at the weekend due to 
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reduced titration from NO. There is a slight anomaly mid-week when the NOx appears to reduce. 

The reason for this difference is currently unclear. 

Annual variation of air pollution (Figure 48) 

These show typical cycles in the context of UK air quality. Annual cycles for the in-situ air 

quality parameters are shown in Figure 48. As in previous plots, the NOx and PM show similar 

cycles; the influence of Preston New Road is seen in the results. 

 

(a)  (b)   

 
(c) 

 

Figure 48. Annual cycles at LP for (a) O3, (b) NOx and (c) PM. © Univ York, NCAS, 2017 

Source apportionment 

Figure 49 shows percentile roses for the in-situ air quality parameters split by season. A 

percentile rose places the data into 5 bands (the colour-scale) and then plots each by wind 

direction (radial axis) and concentration. The grey line is the mean for the data set. The plots are 

separated into season: Spring (March, April, May), Summer (June, July, August), Autumn 

(September, October, November) and winter (December, January, February). 

Figure 50 shows polar plots for the same pollutants, with concentrations (colour scale), wind 

direction (radial scale) and wind speed. 
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(a)  (b)  

(c)  (d)  

(e)  (f)  

Figure 49. Percentile rose to show the 5th, and 95th percentiles for (a) O3, (b) PM2.5,(c) 

PM10, (d) NO, (e) NO2, (f) NOX at LP, limited data is available for Summer 2016 due to 

instrument failure. © Univ York, NCAS, 2017 
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(a)  (b)  

(c)  
(d)  

(e)

 

(f)

 

 

Figure 50. Polar plots for LP (a) O3, (b) PM2.5,(c) PM10, (d) NO, (e) NO2, (f) NOX,  limited 

data is available for Summer 2016 due to instrument failure. © Univ York, NCAS, 2017 

We experienced instrument problems during Summer 2016 and so the NO, NO2 and NOx 

measurements are not continuous. 

Ozone (O3) concentrations are highest concentrations in the spring, arising when the wind speed 

is at its highest and from the west. This is likely due to peak of the Northern Hemispheric and 

North Atlantic O3 and the impact of efficient long-range transport of this air to each site. 

Elevated O3 is indicative of an aged air mass as it is not a primary emission but produced 
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through chemical reactions in the air mass. It is observed easily at the LP site due to its position 

on the west and clean background air observed from the west. The influence of the Atlantic Air 

is also shown in the PM measurements, which are all enhanced in the higher-wind-speed 

westerly air masses, particularly in the coarser fraction arising from maritime aerosols. 

Local influence is also seen with the less frequent winds from the south and the east bringing a 

mix of locally and regionally polluted air masses to site. The major trunk road running alongside 

the site has been mentioned previously and is the source of local NOx and PM. 

4.8.2.3 NON METHANE HYDROCARBONS 

Non methane hydrocarbon (NMHC) samples have been taken weekly at the site. A summary of 

NMHC for LP is shown in Table 11. NMHCs are able to give an indication of air-mass origin, in 

areas of oil and gas production, higher lighter alkanes such as ethane and propane may be due to 

fugitive emissions. 

 

Table 11. Summary of NMHC measurements at KM, N =34. All NMHC have an 

uncertainty of <10 % 

Hydrocarbon Annual mean(ppb) Minimum Value 

(ppb) 

Maximum Value 

(ppb) 

Ethane 2.75 0.77 12.59 

Ethene 0.69 0.15 2.93 

Propane 1.17 0.16 5.99 

Propene 0.17 0.03 0.85 

Isobutane 0.36 0.03 2.03 

Nbutane 0.94 LOD 5.94 

Isopentane 0.28 LOD 1.13 

Npentane 0.21 LOD 0.95 

Benzene 0.19 0.02 0.41 

Toluene 0.32 LOD 3.65 

 
The only NMHC currently regulated is benzene and the annual mean benzene concentration is 

well below the Limit Value for the UK at both sites. 

4.8.3 Summary 

The atmospheric composition work package has shown the importance of establishing a baseline 

before any future activities in a region. From an air-quality perspective, it is essential that this 

baseline cover at least a whole year. This is highlighted not only in the O3 measurements which 

have a photochemical dependence, but also the PM measurements which show strong seasonal 

differences. The dataset also highlights the need for continuous measurements where possible to 

enable a full analysis of sources in the region. 
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5 Seismicity 

5.1 BACKGROUND 

The primary aim of the seismicity work package is to deploy a network of seismic sensors to 

monitor background seismic activity in the vicinity of proposed shale-gas exploration and 

production in the Fylde, Lancashire. The data collected will allow reliable characterisation of 

baseline levels of natural seismic activity in the region. This will facilitate discrimination 

between any natural seismicity and induced seismicity related to future shale-gas exploration and 

production. A further aim is to make recommendations for a suitable traffic-light system to 

mitigate earthquake risk. The initial design requirement for the seismic monitoring network was 

reliable detection and location of earthquakes with magnitudes of 0.5 and above in the area of 

two potential sites for shale gas exploration at Preston New Road and Roseacre Wood. 

5.2 NETWORK PERFORMANCE 

The seismic monitoring network consists of six near-surface sensors (red squares in Figure 51). 

We also receive real-time data from 4 stations installed and operated by Liverpool University. 

The latter were installed independent of this project and data from these is not guaranteed. 

Continuous data are transmitted in near real-time to the BGS office in Edinburgh, where the data 

are processed and archived. The completeness of these data can be checked easily to gain an 

accurate picture of network performance. The completeness levels are shown in Figure 52. 

All BGS stations show high levels of data completeness for the time period 1/4/2017 to 30 

/6/2017, with over 96% available from all stations except AQ10, installed in May 2017. 

Figure 51. Ordnance Survey map of the Fylde peninsula overlain by superficial geology. 

Red squares show UK array sensors and the orange squares show the locations of Liverpool 

University sensors. The green star shows the location of the site of possible hydraulic 

fracturing at Preston New Road. © Crown Copyright and/or database right 2018. Licence 

number 100021290 EUL 
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The Liverpool stations show significantly lower levels of completeness. 

The level of data completeness is an improvement on the values between 1/4/2016 and 

31/3/2017. A value of over 95% is extremely good for data transmitted in near real-time using 

mobile phone networks and is better than many of the BGS permanent monitoring stations that 

use similar technology. Data losses result from failure of outstation hardware, communications 

problems, or failure of central data processing. The data acquisition is able to recover from short 

breaks in communications links to outstations by re-requesting missing packets of data from 

local data buffers, but failure of outstation hardware requires intervention by local operators or 

maintenance visits. No maintenance trips were required in the period 1/4/2017 to 30/6/2017. 

5.3 STATION NOISE AND PERFORMANCE 

We use power spectral density (PSD), calculated from one-hour segments of continuous data, to 

characterize noise levels at a range of frequencies or periods for each of the stations. A statistical 

analysis of the PSDs yields probability density functions (PDFs) of the noise power for each of 

the frequency bands at each station. Figure 53

 

Figure 53 shows the median noise levels calculated at each BGS station. These stations are 

noisier than most other stations in the BGS network and noisier than those in the Vale of 

Pickering network. This is because the Fylde Peninsula is densely populated, with many sources 

 

Figure 52. Data completeness for the stations on the Fylde Peninsula 1/4/2017 to 30/6/2017; 

AQ10 was installed on 4/5/2017. 
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of cultural noise, while also having no bedrock near the surface. Rather, the near-surface geology 

comprises clays that are extremely poor transmitters of cultural noise. The permanent station 

ESK is given for comparison: this is one of the ‘quieter’ stations in the UK network. The only 

way to improve the signal-to-noise properties of this network would be to re-site some of the 

stations within boreholes. 

 

Figure 53. Median noise levels at all BGS stations on the Fylde Peninsula. ESK is a quiet 

national network station included for comparison. 

Noise analysis has shown that: 

 In general, all of the stations in Lancashire are noisier than those established in the Vale 

of Pickering, Yorkshire due to increased industrial noise and population density. 

 There is a noticeable seasonal variation at all sites at low frequencies due to storm noise 

in the winter. 

 The most prominent and pertinent feature for this study is the diurnal difference which is 

observed in both summer and winter. The day-time anthropogenic noise in the high-

frequency range (5–45 Hz) can cause an increase in the mode of the station noise of over 

20 dB at some sites, although it is more generally between 8 and 15 dB variation. This 

increase in the noise level could cause problems for the detection of small events since 

they will fall within this frequency range. 

5.4 DATA PROCESSING AND ANALYSIS 

Continuous data from all stations are transmitted in real-time to the BGS offices in Edinburgh 

and have been incorporated in the data acquisition and processing workflows used for the 

permanent UK network of real-time seismic stations. A simple detection algorithm is applied to 

the data from the Fylde Peninsula stations to detect possible events. All detections are then 

reviewed by an experienced analyst. Apart from teleseisms, only one event was detected in the 

period from 1/4/2017 to 30/6/2017.  This was a 1.7ML earthquake at Kents Bank in Cumbria, 

approximately 41 km north of the Preston New Road site. 

5.5 DATA AVAILABILITY 

Helicorder plots showing 24 hours of data from each station are available online and can be 

found on the BGS Earthquake Seismology Team web site at 

http://www.earthquakes.bgs.ac.uk/helicorder/heli.html. 

http://www.earthquakes.bgs.ac.uk/helicorder/heli.html
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5.6 REGIONAL SEISMICITY 

Figure 54 shows recorded seismicity within a 100 km square centred on the Preston New Road 

site. The Fylde Peninsula is an area of low seismicity even for the UK. Apart from the seismicity 

related to hydraulic fracturing operations at Preese Hall in 2011, most of the nearby seismicity is 

offshore in the Irish Sea. For example, a magnitude 2.5 ML earthquake occurred 5 km south-

west of Blackpool in 1970. 

 

A magnitude 3.3 ML earthquake was recorded in the Irish Sea on 25/08/2013 at 09:58, with an 

epicentre approximately 25 km west of Fleetwood, Lancashire. This event was preceded by a 

magnitude 2.5 ML foreshock in the same location at 05:37 and followed by a magnitude 2.8 ML 

aftershock on 31/08/2013. These were the largest earthquakes to have occurred in the Irish Sea 

since a series of three earthquakes, with magnitudes ranging from 3.8 to 5.0, on 16 and 17 March 

1843. 

BGS received over 60 reports from members of the public who felt the earthquake. Almost all of 

these came from inhabitants of the Lancashire coast at distances of up to 40 km from the 

epicentre. 

The epicentres were immediately east of the Bains gas field, leading to speculation that these 

earthquakes could have been related to hydrocarbon production. However, the Bains field ceased 

Figure 54. Recorded seismicity within a 100 km square centred on the Preston New Road 

site (yellow star). Grey circles show earthquakes prior to 1970. Red circles show 

earthquakes recorded between 1970 and 31/03/2017. Yellow circles show earthquakes 

from 1/4/2017. 
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production in 2009, and although there is a long history of induced earthquakes related to gas 

extraction in places such as Groningen, The Netherlands, the historic earthquakes in the area 

show that natural seismicity predates any production. 

A magnitude 0.9 ML earthquake in the Irish Sea was recorded on 5/4/2017. This was 

approximately 45 km west of the Preston New Road well site. It was not detected by the stations 

on the Fylde Peninsula. 

The magnitude 3.7 Ulverston earthquake on 28 April 2009 was also felt in Lancashire. 

Historically, the largest earthquake in the region was a magnitude 4.4 earthquake near Lancaster 

in 1835 with a maximum intensity of 6 EMS. 
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6 Ground Motion 

6.1 INTRODUCTION 

There is speculation about whether the potential exists for shale-gas operations at depth to cause 

surface ground deformation. Conventional oil and gas operations have on rare occasions been 

shown to result in subsidence above compacting oil and gas reserves (Geertsma, 1973) and a 

recent study suggests that surface uplift in eastern Texas was due to fluid injection, which was 

distinguished using satellite remote sensing (Shirzaei et al., 2016). These studies do not imply 

that shale-gas operations at depth will cause ground motion. Nevertheless, undertaking objective 

and authoritative monitoring of the ground surface at operation sites and surrounding regions is 

advisable (a) to determine if there are any impacts on the ground surface and (b) to reassure the 

public that appropriate independent monitoring of all potential environmental impacts is being 

undertaken. Knowledge regarding the baseline ground motion conditions, compared with the 

current situation, would enable the provision of impartial and objective information on whether 

shale-gas operations have affected the status of the landscape. 

Firstly, it is necessary to define ‘ground motion’ in the context of this baseline monitoring study. 

The first clarification is that the term does not refer to seismicity, which is the frequency, 

intensity and distribution of earthquakes (induced or otherwise) in an area. We use ‘ground 

motion’ to mean the motion of the surface of the landscape upwards (uplift), downwards 

(subsidence) or sideways (lateral motion). The motion is measured as the average velocity per 

year (in millimetres) along with profiles of motion at each point/pixel for each time period a 

measurement was captured. The measurements are derived by processing satellite radar data 

using the Interferometric Synthetic Radar (InSAR) technique, with the motion generally 

described in terms of Line of Sight (LOS) from the satellite or as absolute motion (vertical/ 

horizontal displacement). Satellite-based InSAR interrogates the differences in phase from a 

series of radar images to generate results of surface motion. The motion we measure does not 

take account of ground acceleration, i.e. peak ground acceleration (PGA). 

The key monitoring question is whether shale-gas operations are altering the earth-surface 

processes and stress conditions that are operating at the site. We cannot assume that an area is 

stable prior to shale-gas operations. When considering a monitoring system, it is important to 

account for the dynamic nature of the earth’s surface i.e. there may be some pre-existing 

displacement due to either natural or induced factors. Therefore, a baseline survey is vital to 

determine the pre-existing conditions of the site including displacement such as upwards motion 

(uplift), downwards motion (subsidence) or horizontal/lateral motion, and ongoing monitoring 

during any operations is required to characterise the current situation. 

The investigation in this work package is designed to monitor surface ground motion 

(subsidence, uplift or stability) of the target area using LOS InSAR prior to any permitted 

unconventional gas production in Lancashire. InSAR is considered an appropriate technique for 

ground motion monitoring because: 

a) archive radar data (acquired by satellites since 1992) are available and can be utilised to 

ascertain a baseline of motion (or lack of motion) prior to any permitted gas operations; 

b) data from currently-orbiting satellites such as Sentinel-1 can be analysed to acquire 

information about the ongoing surface ground motion conditions in a region; 

c) the analysis produces  measurements over areas measuring up to thousands of square 

kilometres rather than at a point location, which other techniques such as GNSS provide. 

InSAR can provide millimetric measurements of surface ground motion from satellite platforms 

such as ENVISAT, ERS1&2, RADARSAT, Sentinel-1A/B, TerraSAR-X and CosmoSKY-Med. 

The technology has been validated by the British Geological Survey (BGS) in projects such as 
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TerraFirma and was used by BGS in projects including PanGeo, SubCoast and EVOSS to 

develop and demonstrate viable services (e.g. Cigna et al., 2015; Jordan et al., 2017). InSAR has 

also been successfully used in CO2 sequestration monitoring projects in locations such as In 

Salah where Mathieson et al. (2011) stated that “perhaps the most valuable, and initially 

surprising, monitoring method so far has been the use of satellite based Interferometric synthetic 

aperture radar (InSAR) to detect subtle ground deformation”. 

Table 12 provides a guide to the advantages and limitations of remote and in-situ systems for 

ground motion monitoring. 

 

Table 12 Comparison of remote and in situ ground surface motion monitoring systems 

Monitoring 

technique 

Advantages Limitations 

InSAR Measurements are made 

remotely (non-invasive) 

Measurements can be made 

using historic data to gain a 

baseline prior to operations. 

Imagery can cover a large area 

simultaneously. 

Entire deformation field can be 

imaged, rather than isolated 

points. 

Conventional techniques have difficulty 

in vegetated areas. 

High magnitudes of motion (greater than 

the satellite detected phase difference) 

cannot be measured. 

Temporal and spatial resolution is 

limited by satellite set up and orbital 

parameters. 

Affected by steep topography (shown 

not be an issue in most of the UK). 

GNSS High precision. 

Does not require line of sight 

between benchmarks. 

Continuous site can operate 

without frequent human 

interaction. 

Equipment can be stolen / vandalised / 

damaged. 

Sampling of deformation field is limited 

to individual points; several points are 

required. 

Requires at least 4 satellites in view 

simultaneously. 

Tiltmeters High precision. 

Does not require line of sight 

between benchmarks. 

Continuous site can operate 

without frequent human 

interaction. 

Equipment can be stolen / vandalised / 

damaged. 

Sampling of deformation field is limited 

to individual points. 

Complex installation (e.g. in boreholes) 

– several tiltmeters are required. 

Total Stations High precision. 

Continuous sites can operate 

without frequent human 

interaction. 

Requires line of sight between 

benchmarks. 

Generally they are operated manually, 

requiring repeat site visits to operate the 

system. 
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To date, the InSAR process has not been applied to monitoring energy operations in the UK 

because of the challenge of gaining coherence over non-urban areas. To resolve this challenge, 

we processed the data using the conventional SBAS (small baseline subset) process to gain 

precise results over urban areas and subsequently utilised the ISBAS (intermittent small baseline 

subset) process to acquire results over the non-urban areas (Cigna and Sowter, 2017). 

BGS has experience of applying InSAR to several ground surface monitoring applications in the 

UK e.g. utilising 55 ERS-1/2 images between 1992 and 1999 to investigate ground motion 

linked to ceased mining operations in south Wales (Bateson et al., 2015). The deliverable in this 

ground motion work package is to provide “an analysis of satellite (InSAR) data”. In order to 

achieve this, the following steps were followed: 

 Obtain stacks of satellite SAR data; 

 Process the data using the SBAS InSAR techniques, thereby deriving results primarily for 

urban areas; 

 Process the data to ISBAS level, thereby extending the results to non-urban areas; 

 Provide an analysis of the InSAR results. 

The work package utilised the ISBAS technique of InSAR analysis as it has been found to 

provide results in non-urban areas where other InSAR techniques fail. The conventional SBAS 

technique requires that the target shows coherence in every image of the stack, while the ISBAS 

technique utilises coherence that is intermittent throughout the stack. Both SBAS and ISBAS 

processing and analysis was undertaken on each stack of radar images to provide results in urban 

and non-urban areas. 

6.2 DATA SELECTION 

This BGS-funded research project utilised archive radar images from the ERS-1/2 satellite for 

the period 1992–2000 (Table 13) to assess the efficacy of InSAR for ground motion monitoring 

as part of an integrated baseline monitoring programme. The stack of radar data consisted of 63 

images that were analysed using SBAS and ISBAS InSAR techniques, i.e. two sets of analyses 

were undertaken and completed within this ground motion work package. Data from the 

ENVISAT and Sentinel satellites (covering the time period from 2007 to the present day) have 

not yet been utilised in this study. 

Table 13. ERS-1/2 image metadata 

Track No. of scenes Dates of image acquisition 

T409 63 04/07/1992–11/07/2000 

6.2.1 Ancillary data 

A selection of ancillary datasets (listed below) were utilised in order to interpret the InSAR 

process i.e. to determine / understand the potential causes for the motion: 

1. Bedrock geology (incl faults) 

2. Surficial geology (incl. compressible ground) 

3. Historic mining information/plans 

4. Seismic records 

5. Groundwater abstraction records 

6. Borehole records 

7. Geohazard information (e.g. landslides and shrink/swell) 

8. Landcover information 

9. Historic topographic maps 
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10. Aerial photography 

11. Digital elevation models 

12. Digital terrain models. 

6.3 DATA PROCESSING 

All of the InSAR processing was undertaken by the BGS Earth Observation Team. Our approach 

to acquiring, processing and interpreting the InSAR data is briefly outlined in this section. The 

methodology to effectively undertake the monitoring programme of ground-motion conditions 

using InSAR techniques is illustrated in Figure 55 with the associated actions listed below.  

1. Search of catalogue satellite radar data to confirm that suitable stacks of images were 

available for the study area; 

2. Download the stack of image datasets covering the geographic area and the time 

period(s) of interest; 

3. Process the imagery for the region using SBAS and ISBAS InSAR technique(s); 

4. Ensure that the outputs from the InSAR processing match the quality required e.g.: 

a. Suitable density of spatial coverage in the area of interest 

b. Suitable temporal coverage in the area of interest 

c. Assess output statistics to gauge if the results are fit-for-purpose; 

5. Interpretation of the InSAR outputs. This is a key stage because the outputs from the 

InSAR image processing are dependent on the quality of the interpretation. There are two 

fundamental components; 

a. Ensure that interpretation is undertaken by sufficiently-experienced personnel. 

For shale gas applications the interpretation should be done by experienced 

geoscientists who compile and integrate a suite of geoscientific information 

b. The interpretation was reliant upon access to a comprehensive range of ancillary 

data, listed in the section above. 
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Figure 55. Flowchart of the approach and data utilised for the ground motion InSAR 

monitoring work package 

6.4 RESULTS OF FYLDE INSAR ANALYSIS 

The processing of the InSAR data has provided the first baseline assessment of land-surface 

deformation in the region. The analysis has not covered the full time period from 1992 to the 

present day as this was a preliminary study. In the Fylde, the ERS-1/2 radar data have been 

analysed to produce InSAR results for urban and non-urban areas. The results indicate a 

maximum velocity of +15.8 mm/year and a minimum velocity of -13.6 mm/year. The SBAS 

InSAR analysis comprises 140k points while the ISBAS analysis comprises 890k points. 

The results of the ERS-1/2 InSAR analysis for SBAS and ISBAS are shown for the regional area 

in Figure 56 and Figure 57 respectively. Green areas are considered stable, red are subsiding on 

average over the time period, and blue are undergoing uplift. 

A larger area than the Fylde was processed; the results highlight the potential for InSAR to 

detect the range of motion in the region including discrete areas of subsidence and uplift, as well 

as confirming the stability of large areas (Figure 58, Figure 59). 

Outside the Fylde, the discrete area of uplift (blue points) north-west of Salford is likely due to 

the rise in groundwater levels following cessation of water pumping in abandoned coal mines. 

Minewater pumping data have not been evaluated to assess this hypothesis. There is an area of 

subsidence to the south-west of the uplift, in the Bickershaw-Goldborne-Leigh region. This is 

likely due to mining activity in the three collieries including water abstraction (Arrick, 1995), 

and formation of the Pennington Flash, illustrated in Figure 60. 
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Figure 56. InSAR processing using SBAS technique of ERS-1/2 data from 1992 to 2000. 

The red box outlines the extents of the Fylde study area 

NEXTMap Britain elevation data from Intermap Technologies  
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Figure 57. InSAR processing using ISBAS technique of ERS-1/2 data from 1992 to 2000. 

The red box outlines the extents of the Fylde study area. © Crown Copyright and/or 

database right 2018. Licence number 100021290 EUL 

A detailed view of the InSAR results for the Fylde are seen in Figure 60. The results in this time 

period (1992–2000) contain discrete areas of subsidence indicating that the Fylde area is 

undergoing some ground motion. Sufficient resources were not available in this preliminary 

study to validate these with ground surveys. 
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Figure 58. Areas of subsidence identified (in red) on the InSAR data in Leigh (outside of 

the Fylde study area) between 1992 and 2000. Black circle outlines the detailed time series 

results in Figure 59. © Crown Copyright and/or database right 2018. Licence number 

100021290 EUL 

 

 

Figure 59. Time-series profiles of motion for 1996 to 2000 
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Figure 60. Areas of subsidence identified (in red) on the InSAR data in Blackpool between 

1992 and 2000. Black circle indicates the location of boreholes in Error! Reference source not 

ound.. © Crown Copyright and/or database right 2018. Licence number 100021290 EUL 

These areas of subsidence correspond to an area of ‘peat and blown sand’ on the published 

geological maps. Boreholes from the area indicate the presence of ‘sand and peat’ at the top of 

the stratigraphy (Figure 4), suggesting that the subsidence may be caused by the existence of 

compressible ground. 

Additional processing of more recent satellite imagery (as conducted for the Vale of Pickering 

area) would provide a more complete representation of the baseline of ground motion prior to or 

during hydraulic fracturing operations. 

6.5 DISCUSSION OF RESULTS 

The preliminary Fylde ground motion InSAR analysis entailed processing one stack of ERS-1/2 

(covering the period from 1992 to 2000) using SBAS and ISBAS techniques (i.e. two levels of 

analysis in total). The assessment indicates that zones within the wider region covered by the 

satellite image stack underwent both uplift and subsidence, while the majority of the region was 

stable. It is suggested that the uplift and subsidence in the Manchester area may be related to coal 

mining, while the subsidence in the west of the Fylde is thought to be related to compressible 

ground. These examples provide an indication of the ground motion which this monitoring 

technique can detect. Work has not yet been undertaken to confirm the cause of the motion. 
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The recently launched Sentinel-1A and 1B constellation is now orbiting the Earth and acquiring 

data every six days. These satellites offer the opportunity to extend ground motion monitoring 

for the Fylde from 2015 onwards, once a sufficient stack of data become available. Preliminary 

InSAR results have been obtained from these satellites for the Vale of Pickering baseline study. 

They indicate that higher concentrations of measurement points can be achieved using both the 

SBAS and ISBAS techniques when compared to ERS and ENVISAT InSAR results. 

6.6 SUMMARY 

It was apparent at the public engagement event in the Fylde (and the Vale of Pickering) that there 

is some confusion between seismic activity and ground motion. Many of the attendees link the 

two and presume that if there is seismic activity there must be ground motion and vice versa. It is 

therefore important to communicate the situation regarding baseline ground deformation and also 

provide evidence regarding the opportunities for monitoring in order to address public concerns. 

Part of this is the establishment of ground motion baselines along with monitoring of the 

situation throughout any shale-gas operations. This baseline allows an understanding of how the 

natural (and anthropogenic) processes lead to small-scale ground motions. The baseline provides 

evidence that small-scale motions are occurring continually and may not normally impact on 

day-to-day life. It also offers comfort to the public that there is a record of the existing conditions 

so that if operations start, there is a baseline with which to compare the up-to-date information. 

The unique characteristics of satellite-based InSAR have proven it to be a valuable technique in 

the establishment of a baseline of ground motion for the Fylde prior to any exploitation of shale 

gas. There are three main benefits of using InSAR to derive ground motions: 

1. In common with most remote sensing techniques, InSAR offers a regional view of the 

phenomena being measured. Ground deformation points are generated for the entire radar 

scene; this offers the opportunity to not only focus on ground motions for the immediate 

area surrounding the shale gas site, but also the wider area. This wider view allows an 

understanding of the processes, which drive the movement of the ground. 

2. C-band satellites have been orbiting the Earth, and imaging the UK, since 1992–1993. 

These data have been archived. It is therefore possible to process the archive data and 

‘look back in time’ and retrospectively establish the patterns of ground motion for an 

area. This is simply not possible with other techniques such as GNSS where the survey 

equipment must be located onsite with knowledge of the phenomena to be measured. 

3. InSAR processing results in a dense network of opportunistic measurement points. For 

techniques such as SBAS the greatest densities are found over urban areas where the built 

environment acts as a good radar scatterer. However, recent advances in processing such 

as ISBAS increase the density of measurements, especially in rural areas, such as the 

Fylde. Each measurement point has an average velocity but also a time series. This offers 

the opportunity to understand how the ground at that point has moved through time, 

thereby enabling the interpretation. 
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7 Soil Gas 

7.1 INTRODUCTION 

The soil gas element of the project sought to establish baseline conditions for the concentrations 

of gases in the soil, flux of key gases from the soil to the atmosphere and near-ground 

atmospheric levels of gases. There is therefore some overlap with the atmospheric monitoring 

and, since radon was measured at a subset of the surveyed locations, there is also some linkage to 

the additional radon work (see Section 8). 

Baseline soil gas measurements, like those for the other parts of the project, provide a basis 

against which to assess any future changes that might result from shale-gas activities. Although 

of low probability, there is the potential for gas to escape from depth along geological pathways 

(faults, fractures and other higher permeability zones) or man-made features, especially wells 

(either pre-existing or drilled for shale gas exploration, evaluation or development). 

Whilst large faults may be known from existing geological maps and/or data acquired during 

hydrocarbon exploration (e.g. 3-D seismic data), or become apparent from seismicity or ground 

motion studies, smaller faults and fractures may be present but unknown. The completion 

(plugging and abandonment) of existing deep boreholes could be of variable quality depending 

on the age of the well; there are wells in the Fylde that are more than 50 years old. New wells 

also represent a potential pathway. 

It is very difficult to predict where fluid migration from depth might reach the surface whether it 

follows natural or man-made pathways. Natural seepage of gas along faults tends to occur at 

limited sites, metres to tens of metres across, along only a very small proportion of the fault 

length (e.g. Annunziatellis et al., 2008; Johnson et al., 2017; Ziogou et al., 2013). Borehole leaks 

can occur at the wellhead or, if fluid escapes from the annulus of the well, can reach the surface 

up to several kilometres away (e.g. Allison, 2001). 

7.2 MONITORING SITE SELECTION AND SUPPORTING INFORMATION 

The general principles of the approach were set out in the Site Selection report (Smedley et al., 

2015). The aim was to acquire a representative dataset that reflected the spatial and temporal 

variability of baseline soil gas conditions in the Fylde in the vicinity of the proposed shale gas 

activity at both Preston New Road and Roseacre Wood. This was carried out within the 

constraints of logistical requirements and budgetary limits. For example, landowner permissions 

are needed for access and continuous monitoring needs to be in secure locations, safeguarded 

against human or animal interventions, where mains power is an advantage. 

This soil gas study included field measurement of methane, CO2 (which could be produced from 

methane oxidation or present in reservoir gas), O2 (useful in helping determine the source of CH4 

and CO2) and Rn (a possible tracer of gas migration pathways). The trace gases H2S and H2, 

were also included. 

A mix of survey mode (single point and mobile) and continuous measurements at selected sites 

was carried out. Surveying large areas for discrete surface gas outlets is conducted best with 

mobile equipment to identify locations of specific interest. However, due to dilution in air, 

sensitivity is reduced. Single-point measurements provide the highest sensitivity as the gas is 

extracted from the soil or soil surface where concentrations are highest, and a sufficient number 

of analyses over a site provides a good indication of the range of baseline conditions. Continuous 

measurements at a small number of sites provide information on temporal variations (e.g. diurnal 

or seasonal changes). 

It was the intention to supplement field measurements with a subset of duplicated laboratory 

determinations of soil gas concentrations. This would have provided information on additional 

gases, such as other light hydrocarbons, and verified field determinations with higher precision 
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data. However, this would have significantly reduced the amount of field data, through diversion 

of effort and has therefore not yet been undertaken. 

7.3 MONITORING AND DATA PROCESSING ACTIVITIES: 

The study included: 

 detailed coverage of near-ground atmospheric methane and CO2 using mobile open path 

lasers; 

 broad-scale grids of point measurements of soil gas (CO2, CH4, O2, H2, H2S, Rn) and flux 

(CH4 and CO2) in the field with closer spaced coverage to investigate a major fault at one 

of the sites; 

 at one specific location, continuous measurements using eddy covariance techniques to 

derive local CO2 flux where other atmospheric measurements are being undertaken. 

The soil gas surveys (mobile and point measurements) were carried close to the two proposed 

shale gas sites near Preston New Road and Roseacre Wood (Figure 61). They included areas of 

glacial till, peat and minor tidal flat deposits on Triassic mudstones (Kirkham and Breckells 

Mudstone Formations) and also the inferred surface location of a major NE–SW to NNE–SSW 

fault near Roseacre Wood. 

An eddy covariance system was installed at Preston New Road (Site 1) to provide continuous 

CO2 flux information in conjunction with the atmospheric monitoring. 

7.4 RESULTS 

7.4.1 Spatial surveys 

Two separate surveys were carried out in the Fylde in August 2015 and September 2016. In 

general, the soil was dry at these times enabling soil gas data to be obtained at most sites except 

for a few low-lying waterlogged locations at Preston New Road. 

Equipment availability and some instrument problems meant that obtaining full datasets was not 

possible with all techniques on each visit. Additional instruments were available in 2016, which 

widened the range of measurements possible significantly, especially of CH4 concentration and 

flux but also to include mobile laser measurements of both CH4 and CO2. The data obtained from 

all the baseline surveys is summarised in Table 14. 

Table 14. Summary of survey soil gas data acquisition. 

Technique Survey period 

 August 2015 September 2016 

Mobile CH4 laser   

Mobile CO2 laser   

CH4 in soil gas   

CO2 etc. in soil gas   

Rn in soil gas   

CH4 flux   

CO2 flux   
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Figure 61. Soil gas study areas within the red circles with solid geology (top) and drift 

geology (below). Site 1 is Preston New Road and Site 2 is Roseacre Wood. Includes 

mapping data licensed from Ordnance Survey; © Crown Copyright and/or database right 

2017. Licence number 100021290 EUL 

The soil gas and flux results are summarised in Figure 62. The CO2 flux data show general 

seasonal trends with higher fluxes due to enhanced biological activity in the summer compared 

with the autumn. There were also a greater number of outlying values in August 2015, 

predominantly at Site 2. Outliers aside, there was little difference in flux between the two sites 

on each visit. 

The soil gas concentrations of CO2 were generally higher in September 2016. This could be the 

result of higher soil moisture inhibiting the (relatively low) flux from the soil and creating a 
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build-up of gas in the soil pores. The Rn concentrations were lower in 2016 although similar 

between the two sites. Both moisture and temperature affect CO2 biological production in the 

soil. Thus, under moist conditions more CO2 is generated in the soil but may be retained if the 

soil is capped by a relatively wet surface layer. Concentrations of CO2 above 10% are at the 

higher end of values for biogenic CO2 in soil but not outside the observed range. 

 

 

Figure 62. Boxplots summarising soil-gas data for the two sites in August 2015 and 

September 2016 (data for CH4 from September 2016 only) 

Methane in the soil showed a narrow range of concentrations in September 2016 with little 

difference between the two sites (Figure 62) and an upper limit below 3 mg/kg except for one 

value of 6.5 mg/kg at Site 1. Methane fluxes were very low with maxima of 0.013 and 0.008 

g/m
2
/d at sites 1 and 2 respectively. The median methane concentration was below the 

atmospheric level of 1.9 mg/kg. Taken together this suggests limited methane exchange with the 

atmosphere and that any methane being produced is being oxidised to CO2. 

Spatial variations in soil gas and flux are compared in Figure 63 to Figure 66. Whilst there are 

broad patterns of relatively high and low CO2 concentrations in the different areas of 

measurement (Figure 63), individual points do not tend to match well between surveys with a 

few exceptions. The precise re-sampling of the same site is not possible and points could differ 

by a few metres between surveys. Thus the differences seen probably reflect small-scale 

variations of the soil in terms of biological production as well as physical properties such as 

permeability and moisture content superimposed on seasonal effects. There is a suggestion, from 

the highest CO2 concentrations for the 2015 survey, that the inferred fault at Site 2 might lie 

some 60–130 m to the west. However, this is not corroborated by the 2016 data. 

There appears to be little consistency in the spatial patterns of CO2 flux (Figure 64) between 

visits, but the 2015 survey data are affected by a small number of very high values. Direct 

comparison between sites for the two surveys shows very little correlation (r
2
 of 0.0015 for Site 1 

and 0.0052 for Site 2).  
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The one potentially anomalous methane concentration measurement occurs on the northern edge 

of Site 1 in a lower-lying area close to a stream or drainage ditch. This site also had a high CO2 

concentration (17.4%). The higher gas concentrations may be related to the relative wetness of 

the site. There were also higher CO2 concentrations along the northern margin of Site 1 in 2015. 

This part of Site 1 generally has low Rn concentrations. 

Radon values (Figure 66) also show little consistency between the two surveys (r
2
 of 0.0409 for 

the 32 points common to both surveys) despite not being affected by seasonal biological effects. 

They may however be subject to small-scale variability and are known to be influenced by soil 

moisture and temperature, atmospheric pressure and wind speed (e.g. Klusman, 1993). 

 

 

Figure 63. Spatial plots of CO2 in soil gas for the different surveys 
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Figure 64. Spatial plots of CO2 flux from the soil for the different surveys 
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Figure 65. Methane concentrations in soil gas for September 2016 
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Figure 66. Radon in soil gas for August 2015 (top) and September 2016 (below) 

The mobile laser data for CH4 (Figure 67) generally have a similar range of values to the soil gas 

with an upper limit only marginally above the base atmospheric level of 1.9 mg/kg. The CO2 

laser data (Figure 68) also show a fairly restricted range with maxima around 530 mg/kg, only a 

little above the global atmospheric average of around 400 mg/kg. Apparent spatial variability 

probably reflects diurnal changes and is more likely temporally than spatially controlled. This is 

suggested by gradual changes as the traverses progressed from one end of a field to the other. 

Seepage of gas through the soil, of geological or anthropogenic origin, is typified by relatively 

rapid short-term changes in gas concentration over the scale of seconds to a few minutes, at 

particular locations, rather than such longer-period variations. No such features were seen in 

either of the datasets. 

Gas ratios can be a useful tool in source attribution, especially CO2/O2 and CO2/N2 plots. These 

have been used successfully in a number of studies related to geological CO2 storage (Beaubien 

et al., 2013; Jones et al., 2014; Romanak et al., 2012; Romanak et al., 2014; Schroder et al., 

2016). Examples from the Fylde are shown in Figure 69. This shows points plotting close to the 

ideal biogenic CO2 line (where one mole of O2 is consumed for every mole of CO2 produced) but 

with scatter, most likely caused by dissolution of a proportion of CO2 into soil pore water, more 

apparent at Site 2. The Site 1 data show less scatter and define a trend somewhat to the leakage 

side of the biogenic line. The well-defined trend (r
2
 of 0.8622) suggests a slight departure from 

perfect calibration of the instruments rather than a component of deep CO2. The smaller number 

of data points from site 1 in 2015 that had reliable O2 data (the O2 sensor failed on one 

instrument) lay on the biogenic trend, supporting this conclusion. 

Other possible methods of source attribution include the use of stable or radiogenic carbon 

isotopes in CO2 and CH4, or noble gas isotopes. These approaches have yet to be applied to our 

baseline soil gas studies in Lancashire. 
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Figure 67. Mobile open-path laser data for CH4 for Site 1 (top) and Site 2 (below) from 

September 2016 
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Figure 68. Mobile open-path laser data for CO2 for Site 1 (top) and Site 2 (below) from 

September 2016 
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Figure 69. CO2/O2 ratio plot for soil gas data for Site 1 (top) and Site 2 (below) from 

September 2016. 

7.4.2 Eddy covariance 

A CO2 eddy covariance system was installed at the Preston New Road atmospheric monitoring 

site in January 2016 and has recorded data continuously (with minor breaks) for over 18 months. 

The Eddy Covariance (EC) system collects meteorological information and CO2 observations. 

Post-processing allows CO2 flux to be determined and the covariance of vertical and horizontal 
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wind statistics and CO2 flux to be calculated. The system ran continuously from the 19
th

 Jan 

2016 to the present with a short down-period between 4
th

 May 2016 and 19
th

 May 2016. 

From the data it appears that CO2 concentration broadly mirrors temperature which in turn 

follows diurnal and seasonal trends (Figure 70, Figure 71). Biological controls on natural CO2 

production give rise to concentration ranges from 210 to over 600 mg/kg although the majority 

of readings fall between 350 and 450 mg/kg. It is likely that the extreme concentrations are 

generated from non-local natural and anthropogenic sources, transported to the EC by the wind. 

Although it is not possible to distinguish natural and anthropogenic sources using the EC, the 

fully mixed concentration (around 370 mg/kg) can be considered close to the natural background 

for the site (see Figure 72). 

Using wind direction plotted against CO2 concentration, there is a broad tendency for increased 

CO2 concentrations when the wind is from the east and lower concentrations from the west 

(Figure 73). This is likely due to the proximity of the coast to the west of the Preston New Road 

site, where there are fewer potential biological or anthropogenic sources and relatively clean 

oceanic air reaches the instrument (see also atmospheric monitoring section). As with the CO2 

concentration, CO2 flux shows clear diurnal and annual trends consistent with natural biological 

processes (Figure 74). CO2 flux increases during the summer months, and during this period 

there is also the greatest spread in flux values. 

 

 

Figure 70. Atmospheric temperature at the Preston New Road site 

 

Figure 71. CO2 concentration (ppm; mg/kg) from EC data at the Preston New Road site 
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Figure 72. Fully mixed (background) atmospheric CO2 concentration at the Preston New 

Road site, determined by plotting CO2 concentration against wind speed from EC data. 

 

 

Figure 73. Atmospheric CO2 concentrations from EC data related to wind direction. 

Easterly winds tend to give higher concentrations while westerly winds are associated with 

lower concentrations 

 

 

Figure 74. Atmospheric CO2 flux calculated from EC data at the Preston New Road site 
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7.5 SUMMARY 

Seasonal variability is evident in the soil gas and flux results from the Fylde. Meaningful data are 

best obtained under the relatively dry soil conditions from spring to autumn. Soil gas 

concentrations can be higher under wetter conditions, due to surface capping, making them more 

difficult to interpret. The optimal time for soil-gas surveys in the UK during shale gas operations 

would seem to be in the autumn, when biological activity (plant and microbial) is reduced but 

before the soil becomes saturated in the winter. In the autumn, gas concentrations and fluxes are 

more restricted in range, making any anomalous values easier to detect. Because there is still 

some plant growth, the effects (visually detectable or through remote sensing techniques) of any 

gas leakage on the vegetation should still be apparent. The lack of vegetation in harvested arable 

fields, or those ploughed prior to re-seeding, removes any visual clues of the impact of any gas. 

This is also true when there is frost or snow cover. Ideally a soil gas survey needs to be carried 

out under stable conditions with dry soil and no significant rainfall. 

In the two Fylde surveys, soil CO2 concentrations covered a wide range, up to almost 18%, 

although a high proportion was below 2% in August 2015. Soil conditions were inferred to be 

damper in September 2016 such that probable surface capping caused the majority of readings to 

be between 3 and 8%. CO2 flux was generally below 40 g/m
2
/d

 
in August 2015 and 30 g/m

2
/d

 
in 

September 2016. There was a small number of much higher measurements in the August visit 

(up to around 180 g/m
2
/d

 
at Site 2), whilst the maximum was around 50 g/m

2
/d

 
in the September 

survey, consistent with reducing biological activity in the autumn. 

Methane concentrations were low in September 2016, both in the soil gas and atmosphere, 

except for one low-lying wetter site. Radon was relatively variable spatially and temporally. In 

the autumn it should, therefore, be possible to detect relatively small additional gas emissions 

through the soil, particularly for CH4, despite this being readily oxidised to CO2 by soil microbes 

unless flux rates are relatively high. 

Continuous eddy covariance monitoring data show clear diurnal and seasonal trends as well as 

the influence of meteorological events. Wind direction affects the CO2 concentration with 

cleaner air from over the sea contrasting with more contaminated air from landward sources. 

Once a reasonable body of soil gas baseline data have been collected, a fuller geostatistical 

analysis will be possible. This would allow optimization following the principles set out by 

Marchant and Lark (2007) (i) to support reliable characterization of space-time mean 

concentrations and fluxes and their spatio-temporal variation and (ii) to allow the development of 

a statistical model of the variability of the measurements which can be used to support decisions 

on sampling requirements for operational monitoring beyond the baseline phase of the project. 
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8 Radon monitoring 

8.1 INTRODUCTION 

In 2014, Public Health England (PHE) published a review of the potential public health impact 

of possible chemical and radiological pollutants resulting from shale-gas extraction (PHE-

CRCE-009). Although it was concluded that any exposures from radon released were not 

expected to add significantly to existing radon exposures, it was recommended to determine 

initial radon concentrations in areas where shale-gas extraction is planned to take place. 

A PHE-funded programme of indoor and outdoor monitoring in Lancashire is currently 

underway, based on the experience gained in the Vale of Pickering, N. Yorkshire, but reflecting 

the known differences in radon potential in the Fylde area. 

The area of Fylde in Lancashire is not considered to be a Radon Affected Area (see Figure 75). 

This means that fewer local areas are needed for both indoor and outdoor radon monitoring 

compared with the Vale of Pickering programme. For Lancashire, outdoor monitoring focuses on 

two areas: around the Preston New Road (PNR) site where shale-gas extraction is planned, to 

about 2–3 km from the site; and a control site on the Fylde, at least 10 km from PNR and with 

similar characteristics in terms of overall housing density. The indoor radon monitoring includes 

also an area around Roseacre Wood, which is another site where shale-gas extraction is being 

considered. 

 

Figure 75. Radon potential in the Fylde. © Crown Copyright and/or database right 2018. 

Licence number 100021290 EUL 

8.2 OUTDOOR RADON MONITORING  

Two sites have been selected for outdoor radon monitoring in the Fylde: 

 Area around Little Plumpton at about 2 km from the Preston New Road (PNR) site - 9 

sampling points; 

 Area around Woodplumpton at about 10 km from the PNR site, control site - 10 sampling 

points. 
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8.2.1 Results from the first 3- month period (March to May 2017) 

There are two small aluminium-wrapped plastic pots at each sampling point, which contain 

four 3-month and four 1-year passive detectors to record radon concentration. The estimated 

average radon concentrations at each sampling point in the areas around Little Plumpton and 

Woodplumpton are presented in Figure 76a and b. 

The analysis of the detectors for the first 3-month period indicates that the average radon 

levels were the same around the PNR and control sites: 

 4 ± 1 Bq/m
3
 
for the area around Little Plumpton; 

 4 ± 1 Bq/m
3
 
for the local control area around Woodplumpton. 

The above results are similar to those measured in previous studies (Wrixon et al 1988). It should 

be noted that the 3-month results are close to the detection limit for the passive radon detection 

technique. 

 

 

Figure 76. Average radon concentrations at the sampling points around Little Plumpton 

and Woodplumpton 

8.3 INDOOR RADON MONITORING 

8.3.1 Results from the first 3-month period (May to July 2017) 

Three areas were selected for indoor radon monitoring in the Fylde: the area around Little 

Plumpton, (at about 2–3 km from the PNR extraction site), the area around Roseacre Wood and 

the area around Woodplumpton, a control site. The control site was chosen to be situated within 

a similar distance of both the PNR site and Roseacre Wood site. In early April 2017, 600 

invitation letters were sent to householders in the areas around Little Plumpton, Woodplumpton 

and Roseacre Wood. There were 135 positive replies (23 % response rate). 

In early May 2017, detectors were sent to householders who agreed to monitor radon in their 

homes in the target areas around Little Plumpton, (51 houses), Roseacre Wood (47 houses) and 

Woodplumpton (37 houses). Each participating householder was sent a pack containing 4 

detectors, two for the living area and two for the bedroom. One set was to be placed for 3 months 

and one set for a year. By the end of August 2017, 111 householders had returned their three-

month detectors. The analysis of the 110 results for the first 3-month monitoring period (May to 

July 2017) is included in this report. Reminder letters were sent to participants who had not 
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returned their detectors. The second set of back-to-back 3-month detectors was sent to 140 

householders (5 joined later) at the beginning of August 2017. 

 

 

 
 

 

Figure 77. Reported indoor radon concentrations in the areas around Little Plumpton, 

Woodplumpton (control area) and Roseacre Wood 
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The annual average radon concentrations were calculated employing seasonal correction factors 

as outlined in the PHE Validation scheme (Howarth and Miles, 2008). Distribution parameters 

were calculated for each area, assuming log-normality. The results for the homes around Little 

Plumpton, Roseacre Wood and Woodplumpton are consistent with the expected low radon 

potential for this area. 

 

Table 15. Range and distribution of reported annual average radon concentrations 

Area 

(number of 

homes) 

 First 3-month results (May–July 17) (Bq/m
3
) 

Range Arithmetic 

mean(AM) 

Geometric 

Mean(GM) 

Geometric 

Standard Deviation 

(GSD) 

Little Plumpton 

(36) 

6-92 40 33 1.9 

Woodplumpton 

(34) 

8-92 29 25 1.7 

Roseacre 

Wood (40) 

10-77 30 26 1.7 

 

Local radon distributions for the first 3-month test in homes in and around Little Plumpton, 

Woodplumpton (control area) and Roseacre Wood are given in Figure 77 a, b and c, 

respectively. 

8.4 MONITORING AT PRESTON NEW ROAD SITE 

Data from an AlphaGUARD radon detector, placed in an enclosure at the Preston New Road site 

for periods March–June 2017, are plotted in Figure 78. The background of the instrument was 

taken into account when the data were processed. The radon data, taken at 1-hour intervals, are 

log-normally distributed. The distribution parameters for the above monitoring period are given 

in Table 2. The average radon concentration measured with the passive detectors in the enclosure 

was 7 ± 2 Bq/m
3
. The value is in good agreement with the arithmetic mean of the distribution, 6 

Bq/m
3
, in Table 16. Time series of the measured radon (without background correction) are 

given in Figure 79. 

 

Figure 78. AlphaGUARD data from the enclosure of Preston New Road site 
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Table 16. Range and distribution of AlphaGUARD radon measurements. See Table 1 for 

key. 

Period of monitoring Bq/m
3
 

Range AM GM GSD 

March–June 2017 1–35 6 5 1.9 

 
 

 

Figure 79. Time series of radon concentrations recorded by AlphaGUARD at Preston New 

Road between March and June 2017 

 

9 Concluding remarks 

This report details the activities being carried out by BGS and Partners to establish the baseline 

environmental conditions in the Fylde before any shale-gas exploration begins. The project 

activities are independent of operations at the Preston New Road site and of environmental 

regulation and regulators. The research is ongoing and the project team will continue in its remit 

to acquire and report data and evidence for the characterisation of baseline conditions. We are 

also committed to continuing environmental monitoring through any exploration stage, including 

during hydraulic fracturing, should this take place. Update reports will be provided as the project 

progresses, including through the BGS website: www.bgs.ac.uk/lancashire. 
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