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A Risk Assessment Framework for the Socioeconomic
Impacts of Electricity Transmission Infrastructure Failure
Due to Space Weather: An Application to the
United Kingdom

Edward J. Oughton ,1,8,∗ Mike Hapgood ,2 Gemma S. Richardson ,3

Ciarán D. Beggan ,3 Alan W. P. Thomson ,3 Mark Gibbs ,4 Catherine Burnett ,4

C. Trevor Gaunt ,5 Markos Trichas,6 Rabia Dada,7 and Richard B. Horne 8

Space weather phenomena have been studied in detail in the peer-reviewed scientific litera-
ture. However, there has arguably been scant analysis of the potential socioeconomic impacts
of space weather, despite a growing gray literature from different national studies, of varying
degrees of methodological rigor. In this analysis, we therefore provide a general framework
for assessing the potential socioeconomic impacts of critical infrastructure failure resulting
from geomagnetic disturbances, applying it to the British high-voltage electricity transmission
network. Socioeconomic analysis of this threat has hitherto failed to address the general geo-
physical risk, asset vulnerability, and the network structure of critical infrastructure systems.
We overcome this by using a three-part method that includes (i) estimating the probability
of intense magnetospheric substorms, (ii) exploring the vulnerability of electricity transmis-
sion assets to geomagnetically induced currents, and (iii) testing the socioeconomic impacts
under different levels of space weather forecasting. This has required a multidisciplinary ap-
proach, providing a step toward the standardization of space weather risk assessment. We
find that for a Carrington-sized 1-in-100-year event with no space weather forecasting ca-
pability, the gross domestic product loss to the United Kingdom could be as high as £15.9
billion, with this figure dropping to £2.9 billion based on current forecasting capability. How-
ever, with existing satellites nearing the end of their life, current forecasting capability will
decrease in coming years. Therefore, if no further investment takes place, critical infrastruc-
ture will become more vulnerable to space weather. Additional investment could provide en-
hanced forecasting, reducing the economic loss for a Carrington-sized 1-in-100-year event to
£0.9 billion.
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1. INTRODUCTION

Space weather can cause direct disruption to
critical national infrastructure (CNI), including
electricity transmission, satellite communications
and global navigation satellite systems, aviation, and
rail transportation (Riley et al., 2018). Cascading
failure can indirectly lead to the disruption of other
essential systems. Space weather forecasting is essen-
tial to ensure CNI operators have time to implement
operational mitigation measures to protect critical
systems, reducing potential negative consequences.
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Yet, evidence on our shared global vulnerability to
space weather, the potential socioeconomic impacts
of CNI service disruption, and the effect of different
forecasting capabilities is still limited, despite this
being essential (Schrijver et al., 2015). Internation-
ally, there is now a new push to develop space
weather mitigation strategies, especially in North
America and Europe, as illustrated by President
Obama’s 2016 Executive Order (White House, 2016)
or the U.K. Space Weather Preparedness Strategy
(Cabinet Office & Department for Business,
Innovation & Skills, 2015). This has prompted the
need for increased risk analysis of space weather
threats (North, 2017).

Space weather includes multiple solar erup-
tive phenomena, including coronal mass ejections
(CMEs), solar energetic particles, and bursts of elec-
tromagnetic radiation (also known as “solar flares”).
We focus here on the impact of CMEs, consist-
ing of billions of tons of electrically charged par-
ticles, carrying a magnetic field, ejected from the
Sun into the interplanetary space (Webb & Howard,
2012). Extreme geomagnetic “storms” can arise
when large (1012 kg), dense (100 particles/cm3), and
fast (>500 km−1) CMEs couple with Earth’s mag-
netic field, particularly when the CME carries a
significant southward-pointed direction (“Bz”) mag-
netic field (Balan et al., 2014; Möstl et al., 2015;
Temmer & Nitta, 2015). One significant terrestrial
impact of space weather is that it drives large geo-
magnetic storms and their associated magnetospheric
“substorms,” which produce intense and rapidly
varying ionospheric currents. The generation of ge-
omagnetically induced currents (GIC) that follows
from such rapid changes in Earth’s magnetic field can
pose a risk to the electrical power transmission net-
work as GIC flow from and to grounding points at
transmission substations, leading to the partial satu-
ration of transformers (Boteler & Pirjola, 2014; Kap-
penman, 1996; Molinski, 2002; Viljanen & Pirjola,
1994).

While there has been considerable research pub-
lished in the scientific peer-reviewed literature on the
likelihood and severity of space weather phenom-
ena, few studies have undertaken rigorous and robust
quantification of the socioeconomic impacts of space
weather (Eastwood et al., 2017). This has left many
scientists and other risk analysts feeling dissatisfied
with the level of analysis presented in the gray liter-
ature. Our contribution is to provide a method that
overcomes some of the limitations of previous analy-
ses (Oughton et al., 2016; Oughton, Skelton, Horne,

Thomson, & Gaunt, 2017; Schulte in den Bäumen,
Moran, Lenzen, Cairns, & Steenge, 2014). This in-
cludes properly capturing (i) geophysical risk result-
ing from combined space and solid Earth physics,
(ii) properties of infrastructure assets, and (iii) the
network structure of the high-voltage power grid.
This information is then used to quantify the po-
tential socioeconomic impacts of space weather due
to failure in electricity transmission, under different
space weather forecasting capabilities. Both short-
term power outages due to voltage instability, and
long-term power outages due to transformer damage
from thermal heating, are considered.

The research questions we investigate include:

(1) What is the probability of CNI being affected
by intense magnetospheric substorms?

(2) How vulnerable are specific electrical trans-
mission CNI assets and nodes to GIC exposure
during intense substorms?

(3) What are the potential socioeconomic im-
pacts of electrical transmission CNI failure due
to space weather, under different forecasting
capabilities?

In Section 2, a literature review is undertaken. In
Section 3 the method is articulated, with the results
being presented in Section 4 and discussed in Sec-
tion 5. Final conclusions are provided in Section 6.

2. LITERATURE REVIEW

Space weather is a high-impact, low-frequency
(HILF) event. One of the most notable geomagnetic
storms is known as the “Carrington Event” of
September 1859 and has been the focus of many
scientific studies (e.g., Boteler, 2006; Green &
Boardsen, 2006; Ribeiro, Vaquero, & Trigo, 2011;
Saiz, Guerrero, Cid, Palacios, & Cerrato, 2016;
Silverman, 2006; Siscoe, Crooker, & Clauer, 2006;
Tsurutani, Gonzalez, Lakhina, & Alex, 2003). How-
ever, data from this period are limited, giving rise
to considerable diversity in the estimates of the size
of the event. Within the digital age, the two key
events studied include the March 1989 and October–
November 2003 severe magnetic storms. During the
severe 1989 geomagnetic disturbance (GMD), the
Hydro-Quebéc power grid experienced a voltage
collapse, leaving 6 million customers without power
for almost nine hours before the supply was restored
(Barnes & Dyke, 1990). In July 2012, a very large
and fast CME was observed by spacecraft but missed
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Earth. Estimates indicate this storm could have been
Carrington-sized had it hit Earth (Baker et al., 2013).

2.1. Frequency and Severity

Geomagnetic activity is often studied using ex-
treme value statistics (Lotz & Danskin, 2017; Rodger
et al. 2017; Thomson, Dawson, & Reay, 2011). How-
ever, there are limited time-series data on which to
understand both the frequency and severity of large
events (Hapgood, 2011). Therefore, with only a lim-
ited catalogue of actual events, analysts often rely on
extrapolations of power law or lognormal distribu-
tions to estimate extremes. For example, Riley and
Love (2017) estimate the probability of an extreme
event comparable to Carrington taking place in the
next decade is 10.3% using a power law distribution
and 3% using a lognormal distribution. Analysis by
Kataoka (2013) estimates the probability of occur-
rence of extreme geomagnetic storms as a function of
the maximum sunspot number of a solar cycle, with
the probability of a Carrington-sized storm being 4–
6% over the next decade. Jonas, Fronczyk, and Pratt
(2018) apply a Bayesian model average to the esti-
mates of Riley (2012), Roodman (2015), and Love,
Rigler, Pulkkinen, and Riley (2015) to develop prob-
abilities of space weather events of different intensi-
ties, finding an estimated 37% likelihood for an event
comparable with March 1989 over a 10-year period.
Due to data limitations, estimates for a Carrington-
sized event are far more uncertain, ranging from
approximately 1% to 10% over a 10-year period. Fi-
nally, Thomson et al. (2011) assess horizontal geo-
magnetic field changes, finding that a typical mid-
latitude (55–60° north) European observatory may
experience a one-minute peak rate-of-change in the
field reaching 1,000–4,000 (1,000–6,000) nanoteslas
per minute (nT/min) once every 100 (200) years (ad-
ditional information in Section 3.1 and Supporting
Information Appendix A).

2.2. The Impact of GIC on Electricity
Transmission Infrastructure

GICs are correlated with and well characterized
by the time derivative (rate-of-change, dH/dt) of
the horizontal component (H) of the magnetic
field (Bolduc, Langlois, Boteler, & Pirjola, 1998).
Effective parameterization and prediction of GIC
is challenging, requiring information on ground
conductivity and magnetic field variations in relation
to the exposed power grid structure (Boteler, 2014).
Comprehensive analyses of the current understand-

ing of space weather GIC hazards to power grids can
be found in Gaunt (2016) and Pulkkinen et al. (2017).

The most significant effects of GICs on power
systems derive from the nonlinear magnetic core re-
sponse of a transformer to GIC (Bolduc, Gaudreau,
& Dutil, 2000; Boteler, Shier, Watanabe, & Horita,
1989). As the core is driven into partial saturation
by the low-frequency GIC (with effects similar to
those of direct current), the transformer exhibits
some of the characteristics of an inductor or reactor
in the power circuit; the reactive power drawn by the
transformer increases (approximately in proportion
to its power rating and the GIC present) and a
power frequency current higher than the normal
current flows in the transformer, with three main
effects. First, the heat “generated” by losses inside
the transformer causes its temperature to rise (Marti,
Rezaei-Zare, & Narang, 2013), even to the extent of
initiating damage to the winding conductors or paper
insulation or the breakdown of the oil, with the result
that the automatic protection removes (trips) the
transformer from the system. Second, the increased
current causes the voltage drop in all lines to in-
crease, possibly to the point that the voltage cannot
be sustained by the automatic tap changers on the
transformers, and the system switches off to protect
itself from the abnormally low voltages and high
currents. As the voltages fall, the effectiveness of
shunt capacitors (used for voltage support) falls too,
so the response of the system to the GIC-reactive
power combination is, again, not linear, potentially
leading to voltage collapse. Finally, the increased
current, which has a high harmonic content because
of a transformer’s nonlinear response, can trip an
overcurrent protection relay, or the harmonics may
cause the correct or incorrect operation of other
types of relays, removing important components
from the system, including lines and shunt capacitor
banks. These protection relay operations, includ-
ing the tripping of a damaged transformer, can
cause localized loss of supply and aggravate the
possibility of voltage collapse (Albertson, Thorson,
& Miske, 1974). In addition to these effects, the
harmonic distortion propagates into the distribution
networks and can affect negatively the performance
of customers’ electrical and electronic equipment
(Schrijver, Dobbins, Murtagh, & Petrinec, 2014).

2.3. Space Weather Socioeconomic Impacts

The key dimensions of the literature on the
socioeconomic impacts of space weather have been
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highlighted in Table I. We particularly emphasize
whether different studies include data-derived
ground conductivity risk, asset vulnerability, and
network structure because this has generally been a
limitation.

A frequently referenced study by Lloyd’s of
London (2013) assesses the risk to the North Amer-
ican electricity grid, estimating that the potential
total cost for a scenario where 20–40 million peo-
ple were left without power for 16 days to 1–2
years, could range from $0.6 to $2.6 trillion USD.
In a cost-benefit analysis of the European Space
Agency’s (ESA) Space Situational Awareness
program, PricewaterhouseCoopers (PwC, 2016)
estimated the gross domestic product (GDP) im-
pact of a space-weather-induced blackout to be
approximately €5.7 billion, predicated on a three-day
blackout taking place in three major European
cities.

Within the peer-reviewed literature, Schulte in
den Bäumen et al. (2014) analyzed the global conse-
quences of severe space weather on East Asia, Eu-
rope, and North America, finding that a Quebec-
1989-like event could see a global economic im-
pact of $2.4–3.4 trillion over a year, leading to a
global GDP loss of 3.9–5.6%. In a study focusing just
on the United States, Oughton et al. (2017) estimated
the daily loss from electricity transmission failure for
the United States based on different geomagnetic
storm footprints, finding that it could range from $7
to $42 billion.

Very few studies have assessed the potential
ramifications of space weather forecasting. One rare
example by Teisberg and Weiher (2000) finds that
the net benefits of a satellite warning system are
strongly positive, and having undertaken a sensitivity
analysis, remain positive even if the damage is as
low as $2 billion. Enhanced space weather fore-
casting capability has the potential to (i) increase
the warning time prior to an event taking place,
and (ii) increase the confidence in the forecast,
reducing the probability that the warning will be
ignored (for a discussion of the cost-loss implications
of space weather forecasting, see Henley & Pope,
2017). Three key actions that can be enabled include
implementation of infrastructure operator mitigation
plans, business continuity plans, and local building
and community resilience activities. The key action
in this case is the ability for CNI operators to engage
emergency mitigation plans earlier, helping to pre-
vent both damage to key assets and potential loss of
human life following CNI disruption.

3. METHOD

A general assessment framework is developed
for the United Kingdom. We test specific GMDs,
which are a threat to the system of study, referring
to different variations as GMD1, . . . , GMDz, with
each scenario representing a different level of threat
manifestation (1-in-10-year, 1-in-30-year, and 1-in-
100-year). Specifically, in our study scenario GMDi

signifies that during event i, m extra high voltage
(EHV) transformers (�275 kV) in a transmission
substation node (n) within the network could have
failed due to GIC exposure. Hence, each n node
contains multiple transformers m1, . . . , mz, with each
transformer having a set of technical characteristics
c1, . . . , cz, indicating that each transformer type has
a different level of vulnerability to GIC. Thus, for
a comprehensive vulnerability assessment of each
space weather event GMDi we simulate failure pos-
sibilities in the system, giving rise to a set of failure
scenarios S1, . . . , Sd. The impact of each scenario
is initially measured in terms of the proportion of
directly affected consumers cs1, .., csi and directly
affected labor ls1, .., lsi at each node. Consequently,
the level of disruption is estimated based on elec-
tricity loss for a set of event scenarios S1, .., Sh and
is quantified using lost GDP. Fig. 1 illustrates the
framework applied to the United Kingdom.

3.1. Space Threat

We construct GMD scenarios that are time se-
quences of substorms of differing intensities. These
sequences are based on the auroral electrojet (AE)
geomagnetic activity index measured in nanoteslas
(nT) (Davis & Sugiura, 1966), sourced from the
U.K. Solar System Data Centre. We use data from
October 28 to 29, 2003 to construct a 1-in-10-year
scenario (GMD1) and March 13–14, 1989 to con-
struct a 1-in-30-year scenario (GMD2). In each case
we smoothed the AE data by taking a 31-minute
running median (to suppress short-lived spikes in
the data), and identify substorms as distinct peaks
in the smoothed data. We focus on the most intense
peaks with AE > 1,500 nT, as only these are consid-
ered to have potentially significant impacts, and we
describe these peaks as “very intense substorms.”
For the purposes of this study, we use a conservative
assumption that the potential impact maximizes
if the substorm occurs around 01:00–03:00 local
time at the grid location. This is consistent with the
voltage collapse of the Quebec grid (Bolduc, 2002),
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Fig. 1. Assessment framework.

which occurred during a very intense substorm
around 03:00 local time on March 13, 1989. Support-
ing Information Appendix A provides a detailed
methodological note on this procedure.

To construct a 1-in-100-year scenario (GMD3),
data are adapted from the 1989 storm to match
key features of the Carrington event of 1859, which
comprised two geomagnetic storms, (i) a very large
storm with a sudden storm commencement (SSC)

around 05:00 UTC on September 2, preceded by (ii) a
smaller but still large storm with an SSC around 22:30
UTC on August 28 (Stewart, 1861). These adapta-
tions shift the SSC to the correct time of day and year,
the former being the key change for the purposes of
our analysis since, as discussed above, it determines
when a power grid is in our risk window of 01:00–
03:00 local time. Thus, to represent the September
2 storm, the 1989 AE time series is time shifted so
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that the SSC in that series moves from 01:27 UTC on
March 13 to 05:00 on September 2. Additionally, AE
values are added to represent the August 28 storm
using another copy of the 1989 AE time series, but
instead time shifted so that the 1989 SSC moves to
22:30 on August 28. We then overlay this subset,
without any scaling, onto the first. The net result is a
time series of simulated AE values covering 15 days
around the Carrington event and including variations
that we can consider representative of the two large
storms recorded by Stewart (1861). We then apply
median smoothing and thresholding, as above, to de-
rive a sequence of substorms that we use as our 1-in-
100-year scenario (GMD3).

We map the 1-in-100-year scenario into grid
impacts by assuming, as above, that this maximizes
where the local time is 01:00–03:00 at the time of
the substorm. This leads to major impacts in North
America, consistent with the many reports that the
Carrington event generated intense aurora over
North America (Green & Boardsen, 2006). It also
generates major impacts in Australia, New Zealand,
Japan, China, and parts of Russia. However, it does
not generate very severe impacts over Western
Europe, due to the SSC timing matching the Car-
rington event. The scenario is expanded to consider
a full 24-hour range of SSC times to reflect CMEs
arriving at Earth at different times of day. This is
achieved by varying the SSC in one-hour steps from
0 to 23 hours and varying the footprints westward
by 15° at each step. Thus, we generate 24 different
scenarios for each risk level and can estimate how
many lead to very intense substorms over the United
Kingdom. The results offer evidence for each return
period to answer the first research question, as well
as provide contextual information to inform the
scenario specification.

3.2. Electricity Transmission Infrastructure
Network Model

The British high-voltage transmission power
grid consists of a 275 kV and 400 kV transmission
network (we exclude the higher resistance 132 kV
Scottish lines). A detailed description of the British
high-voltage power network is developed using pub-
lic information from the National Grid Electricity
Ten Year Statement released in 2016, augmented by
an extensive search of online maps and satellite im-
agery. This network model consists of latitude, longi-
tude, and certain electrical characteristics (earthing,
transformer, and line resistances) of each substation

node and line in the network; the 2016 model has 307
grounded nodes and 519 lines. Some connections are
very short, for example, between two transformers
on the same site, while the longest is 189.5 km.
The median line length is 15 km (mean: 22 km). In
the absence of a local distribution network model,
we affiliate the local population to the nearest grid
node, as illustrated in Fig. 2(a). The structure of the
high-voltage networks for Britain is illustrated in
Fig. 2(b), along with the total and EHV-only
transformer assets per node (Figs. 2(c) and 2(d),
respectively).

The statistical data from the Office for National
Statistics (ONS, 2016) are used in this process,
consisting of 7,201 middle output areas for England
and Wales, and 1,279 intermediate data zones for
Scotland. Hence, this leads to a total of 8,480 statis-
tical areas. Employment data are also obtained via
the open-access Business Register and Employment
Survey, and simplified from 18 broad industrial
groups to nine.

3.3. Ground Threat

To generate a realistic representation of the
spatial variation of the geomagnetic field during a
large storm, a model of the largest digitally mea-
sured magnetic field events (October 2003, for the
1-in-10-year storm, and March 1989, for the 1-in-30-
year, or rarer, storm) is constructed based upon mea-
surements from five geomagnetic observatories. Sup-
porting Information Appendix B provides a detailed
method on the GIC estimation and validation proce-
dures utilized.

Using (scaled) magnetic field data and a U.K.-
specific Earth conductivity model, a map of the geo-
electric field is generated for every minute of the
two events. This is then combined with the electricity
transmission infrastructure network model to deter-
mine GIC per node. If the ground resistance is suffi-
ciently high, the low-resistance wires of the network
offer an easier route for GIC to pass through the
earthed neutrals of the connecting transformers, es-
sentially creating a short circuit. In some cases, there
are insufficient data to determine the earthing resis-
tance, so we have assumed this to be 0.5 � (Kelly,
Viljanen, Beggan, & Thomson, 2017). These network
parameters are used to calculate GIC (in amperes)
along power transmission lines according to Lehtinen
and Pirjola (1985):

I = (1 + Y · Z)−1 · J, (1)
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Fig. 2. (a) Population served per substation,
(b) British high-voltage network, (c) total
transformers per substation, and (d) EHV
transformers per substation.

where J is the “perfect earthing” current (the geo-
voltage computed between nodes divided by the
connecting line resistances), Z is the impedance ma-
trix, Y is the network admittance matrix, and I is the
vector containing the estimated GIC at each node.
The input data from the network parameters are
used to calculate Y and Z. The geo-voltage for J
is calculated by interpolating the electric field grid
value onto the power transmission lines and integrat-
ing along the line. The GIC at each node on the grid
are then computed, calculated from the sum of both
the North and East components of the surface elec-
tric field. The method for the calculation of GIC in
the British network has been benchmarked against
Horton, Boteler, Overbye, Pirjola, and Dugan (2012)
in Richardson and Beggan (2017), by ensuring that
the GIC values produced by the model code are con-
sistent for the given grid, and thus are valid.

The Dst index is a measure of the severity of
a GMD based on ring current intensification. For

the 1-in-10-year event we use the Dst magnitude
for 2003 (−383 nT) (Echer, Gonzalez, & Tsurutani,
2008) (GMD1) and for the 1-in-30-year (GMD2) we
use 1989 (−589 nT) (Allen, Sauer, Frank, & Reiff,
1989). These return periods are supported by Jonas
et al. (2018). Since we expect more intense auroral
currents in larger GMDs, GIC values from 1989 may
be scaled to reflect more severe events. The Dst
of the Carrington event was originally estimated as
−1,760 nT (Tsurutani et al., 2003). This estimate was
based on a short-duration (half-width �40 minutes)
dip of 1,600 nT in the horizontal magnetic field in-
tensity measured at Mumbai during the 1859 storm.
Siscoe et al. (2006) reanalyzed these data using
standard procedures for Dst derivation, for example,
hourly averaging, and derived a value of −850 nT for
the minimum Dst of the Carrington event. This latter
value has now been widely adopted in assessments
of the Carrington event (e.g., Pulkkinen, Bernabeu,
Eichner, Beggan, & Thomson, 2012; Riley & Love,
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2017), and produces a scaling factor of ×1.4 for a
1-in-100-year event (GMD3), though Cliver and
Dietrich (2013) propose a range from −850 to
−1050 nT. In this article, we take a conservative
approach and use the −850 nT value derived by
Siscoe et al. (2006). There is a level of uncertainty
in these estimates, as reflected in Jonas et al. (2018);
however, exploring further event sizes is beyond the
scope of this article.

For the vulnerability analysis, we also include ad-
ditional extreme scenarios for exploratory purposes.
This also helps emphasize the uncertainty arising
from extrapolating Dst and the return time. Follow-
ing Jonas et al. (2018, p. 4), a 1-in-500-year event is
estimated to correspond to Dst of −1,400 nT, pro-
ducing a scaling factor of ×2.4, and a 1-in-1,000-year
event has an approximate Dst of −1,800 nT, resulting
in a scaling factor of ×3.1. Finally, Vasyliūnas (2011)
proposes a theoretical upper limit for the largest ge-
omagnetic storm possible corresponding to a Dst of
−2,500 nT, which we utilize as an example of equiva-
lent to a “1-in-10,000-year” event, with a scaling fac-
tor of ×4.2.

3.4. Vulnerability Assessment

In this section, we describe the method for un-
dertaking a vulnerability assessment of transmission
infrastructure assets and nodes to thermal heating
and voltage instability. Regarding thermal heating,
we develop a stochastic simulation model whereby
the probability of transformer failure scales based on
GIC exposure per transformer. Failure is defined as
the complete interruption of part of the electricity
system.

Two routes to failure are considered. First, trans-
former damage can result from thermal heating,
which subsequently prevents the asset carrying out
normal functionality, requiring an inspection and
component replacement, or potentially replacement
with an onsite or offsite spare prior to reconnec-
tion. This route to failure represents a long-term
power outage, whereby assets affected in this way
take weeks to restore to normal service. Second, au-
tomatic or manual protection removes transformer
assets from active operation as a result of voltage in-
stability, requiring a physical inspection before being
returned to service. This route to failure represents
a short-term power outage, whereby assets affected
in this way can be returned to service in a matter
of hours or days. We assume that the instantaneous
peak GIC per node is of sufficient amplitude and

temporal duration to cause transformer asset failure
during each intense substorm. The results generated
are utilized in the scenarios tested later in this article.

After the severe 1989 space weather event,
the U.K. transmission grid operator introduced
improved hardening measures for new transformer
assets capable of being exposed to higher GIC
exposure thresholds, commencing with transformer
procurements made in 1999. However, due to the
asset replacement cycle taking multiple decades,
these protections are not yet fully pervasive. Data
on the transformer fleet characteristics (including
high and lower voltage-side resistances and earthing
arrangements) are commercially sensitive and hence
unavailable for this analysis. Therefore, we reflect
these existing asset-hardening measures by exploring
the sensitivity of transformer failure based on the
random allocation of this unknown parameter. Ex-
pert elicitation interviews with the operator provided
information regarding four heterogeneous trans-
former types, each with a different set of technical
characteristics, in which 50% are c1 and can with-
stand 200 A of GIC in the neutral, 25% are c2 and
can withstand 100 A, 12.5% are c3 and can withstand
50 A, and 12.5% are c4 and can withstand 25 A. The
probability of failure pi for each transformer is thus
scaled between the lower withstand threshold and
a threshold 100 A above, based on the GIC for the
m transformer at each n node. Using the following
scaling equation yields 0 � pi � 1 for transformer
design characteristic types c1, . . . , cz:

pi = GICi − min (cz)
max (cz) − min (cz)

. (2)

The results of this simulation provide a distribu-
tion based on the frequency of transformer failures.
We also examine the frequency of n node failures,
assuming this takes place if more than half of the m
EHV transformers present fail. The simulation is run
for 1,000 iterations and the resulting distributions on
transformer and node failures provide average pop-
ulation and employment characteristics per node un-
der each scenario.

Regarding voltage instability, we again utilize
expert elicitation methods to identify zones at risk.
Voltage instability is stated as being the most likely
impact to the U.K. grid (Cannon et al., 2013). When
large GICs enter and exit power transmission sys-
tems this phenomenon can cause a variety of re-
ported problems, including reactive power surges
and system voltage dips leading to grid instability
(Boteler et al., 1989). If the GICs produced are large
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enough, the system can no longer handle the reac-
tive power being demanded, causing voltage collapse
and a system-wide power outage (Hutchins & Over-
bye, 2011). The system operator considers the largest
voltage instability risks to be present in key urban
conurbations. This is due to the density of trans-
former assets and the losses associated with transmit-
ting reactive power over long distances.

3.5. Resilience Measures

There are a variety of resilience measures for
space weather threats, including both forecasting
and infrastructure “hardening.” Some asset harden-
ing has already taken place in the British grid and
is partially reflected in the vulnerability analysis ar-
ticulated in the previous section via heterogeneous
asset exposure thresholds. However, retrofitting ex-
isting transformers is expensive and not being
contemplated at this stage in the United Kingdom.
Hence, the emphasis of this article is on U.K. space
weather forecasting because it is a recognized re-
silience measure, enabling the advanced implemen-
tation of operational mitigations. This includes in-
creasing generation capacity and reducing power
transfer in heavily loaded lines (Bolduc, 2002).

Increasing total system generation capacity re-
duces generation output below each specific trans-
former’s rated level of operation, reducing normal
operational heating and providing more capacity to
absorb abnormal GIC exposure. This may be ad-
equate to avoid GICs causing or initiating perma-
nent damage to a transformer. Decreasing power
transfer on transmission lines reduces line voltage
drop and diminishes the risk of being exposed to
voltage “instability” or a classic voltage collapse of
the power system. As the level of forecasting ca-
pability has a significant impact on our subsequent
ability to deal with this risk, we therefore describe
how this differs by scenario, using evidence gath-
ered via expert elicitation in collaboration with the
U.K. Met Office’s Space Weather Operations Centre
(MOSWOC). Supporting Information Appendix C
provides a detailed overview of space weather fore-
casting capabilities.

In a no forecast scenario, existing space weather
satellite observing systems are not replaced prior to
the end of their operational life or the scientific mis-
sion for which they were originally intended, leaving
no coronagraphs available from the Solar and Helio-
spheric Observatory (SOHO) or the Solar Terrestrial
Relations (STEREO) assets. This significantly re-

duces the forecasting capability and may in extremis
render forecasting of severe space weather events
useless. At present there are plans under consider-
ation in the United States that may lead to SOHO,
the Deep Space Climate Observatory, and the Solar
Dynamics Observatory being replaced by a mixture
of operational and science missions, but no commit-
ment has been made yet. Similarly, while planning is
in progress within ESA, a decision on whether to re-
place the off Sun–Earth line, side-on view currently
provided by STEREO is not expected until the end
of 2019 at the earliest. Unlike STEREO, this mission
would be permanently located close to the Lagrange
L5 point, 60 degrees behind the Earth in its orbit.
This is the optimal view for operational purposes as
it enables continuous monitoring of solar active re-
gions just before they are positioned to launch CMEs
toward Earth.

The current forecast scenario reflects the present
forecasting capability, based on existing satellites,
allowing forewarning of active regions on the Sun
(three to four days before CME arrival). Once a
CME has launched SOHO and STEREO corona-
graphs are available to support CME forecast arrival
time within ±6 hours, the nonoperational status of
the spacecraft data results in delayed recognition of
the potential threat level. Data gaps degrade the re-
liability and accuracy of forecasts.

The enhanced forecast scenario reflects the stan-
dard that could be achieved if the current observa-
tions were supplemented by satellites on and off the
Sun–Earth line with dedicated L1 and L5 spacecraft.
This would allow a longer (six to seven days) fore-
warning of the complexity of an active region. Coro-
nagraphs, combined with an improved assessment
of background solar wind, would provide a much
higher level of confidence in the CME arrival time
(±4 hours). Moreover, a heliospheric imager would
allow updates to be made to the arrival time dur-
ing CME transit. Table II provides a detailed behav-
ioral description for different forecasting capabilities
by scenario.

In both the current forecast and enhanced fore-
cast capabilities, satellite missions need to be accom-
panied by investment to ensure computer models,
systems, and staff are in place to predict and com-
municate space weather.

3.6. Scenario Specification

Scenario analysis is a foresight tool that enables
the testing of exogenous shocks to a system of study.
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Table II. Detailed Description of Space Weather Forecasting Capability by Scenario

No Forecast Current Forecast Enhanced Forecast

1-in-100 year Very challenging to discriminate
between a minor event and a
significant 1-in-100-year event.
Therefore, infrastructure
operators do not have sufficient
confidence to implement
operational mitigations.

Infrastructure operators
implement their currently
agreed operational mitigations.
While this can help to partially
mitigate the risk, poor
confidence/accuracy in the
forecast means mitigation is
likely to be suboptimal due to
the associated cost of
implementation.

The early identification of a complex active
region allows infrastructure operators to
fully implement a wider range of
operational mitigations. Additional
confidence in the arrival time increases the
perception of the threat, providing a
clearer cost/benefit ratio for operational
mitigations. This partially results from a
lower “false alarm” rate.

1-in-30 year Very challenging to discriminate
between a minor event and a
significant 1-in-30-year event.
Unless there was evidence that
it might be extreme, we assume
that infrastructure operators
decide not to implement
operational mitigations.

Infrastructure operators do not
fully implement currently
agreed operational mitigations
due to the expected levels of
severity. While this can help to
partially mitigate the risk, poor
confidence/accuracy in the
forecast means mitigation is
likely to be suboptimal due to
the associated cost of
implementation.

The additional lead time in identifying a
complex active region allows National
Grid longer to implement a wider range of
mitigating actions. Additional confidence
in arrival time increases the perception of
the threat, providing a clearer cost/benefit
to mitigating actions. This partially results
from a lower “false alarm” rate.

1-in-10 year Very challenging to discriminate
between a minor event and a
significant 1-in-10-year event.
Unless there was evidence that
it might be extreme, we assume
that infrastructure operators
decide not to implement
operational mitigations.

Infrastructure operators do not
fully implement currently
agreed operational mitigations
due to the expected levels of
severity. At this scale of event,
it is envisaged that the risk
would be effectively mitigated,
resulting in only minor impacts.

The early identification of a complex active
region allows infrastructure operators to
fully implement a wider range of
operational mitigations. Additional
confidence in the arrival time increases the
perception of the threat, providing a
clearer cost/benefit ratio for operational
mitigations. This partially results from a
lower “false alarm” rate.

This technique enables the production of compara-
tive analytics that support strategic decision making.
For a review of scenario approaches for risk analysis,
see Tosoni, Salo, and Zio (2017). Where gaps exist in
specifying scenario parameters because traditional
scientific analysis is infeasible or not yet available, we
utilize expert elicitation. This was undertaken based
on information obtained from a co-organized work-
shop, and a set of detailed stakeholder interviews
conducted with organizations responsible for critical
infrastructure and associated risk management activ-
ities. The Space Weather and Critical Infrastructures
workshop was held in Ispra, Italy (see Krausmann,
Andersson, Gibbs, & Murtagh, 2016), co-organized
with Europe’s Joint Research Centre, the Swedish
Civil Contingencies Agency, the U.K. Met Office,
and the U.S. NOAA’s Space Weather Prediction
Centre. Expert elicitation interviews were targeted
with leading individuals across energy (4), aviation
(2), transportation (2), satellite (3), insurance (4),
government (9), and academia (4) to assess current

exposure to space weather (number of interviewees
in parentheses). Interviewees were asked to outline
the key space weather threats they were concerned
about, the expected spatial and temporal impacts of
these threats, and the different mitigation strategies
they currently utilize. Explicit information was
gathered regarding the expected impact resulting
from different levels of space weather forecasting.
We consequently describe a set of evidence-based
scenarios that combine (i) modeled outputs from the
vulnerability assessment, (ii) evidence from the U.K.
National Risk Register, and where data are un-
available (iii) qualitative information obtained from
expert elicitation.

Evidence gathered from the Royal Academy of
Engineering report by Cannon et al. (2013), later
used for the U.K. National Risk Register, states
that thermal heating could damage approximately
13 EHV transformers from a Carrington-sized event.
This is the infrastructure operator’s own assess-
ment, and includes two substations experiencing
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Table III. Scenario Description Based on Event Size and Forecasting Capability

Event Impact Type Dimension No Forecast Current Forecast Enhanced Forecast

1-in-100 year Voltage collapse Spatial National grid
collapse

Three voltage
instability
regions

One voltage
instability region

Temporal Five days Two days One day
Thermal heating Spatial Two nodes Two nodes One node

Temporal 10 weeks
(extended
offsite
transformer
replacement)

Six weeks
(offsite
transformer
replacement)

Four weeks
(expedient offsite
transformer
replacement)

1-in-30 year Voltage collapse Spatial Two voltage
instability
regions

One voltage
instability
region

–

Temporal Two days One day –
Thermal heating Spatial One node – –

Temporal Six weeks – –
1-in-10 year Voltage collapse Spatial One voltage

instability
region

– –

Temporal 12 hours – –
Thermal heating Spatial – – –

Temporal – – –

catastrophic damage, leading to disconnection from
the transmission grid for potentially two to four
months. This estimate is based on the transmission
operator’s own analysis, with full access to asset
vulnerability, existing mitigation, and knowledge of
stockpiled transformers. Using this information, we
consequently scale the restoration periods for differ-
ent event sizes and forecasting capabilities via ex-
pert elicitation with the U.K. MOSWOC. As we do
not explicitly know which nodes are most at risk, we
take the average population and employment char-
acteristics of failed nodes, for each scenario, from
the simulated vulnerability analysis. Additionally,
voltage instability zones are identified using expert
elicitation and are corroborated using transformer
densities from the developed infrastructure model.
Table III provides a description of each scenario by
impact type. We assume a linear temporal restora-
tion process for each scenario.

If no forecasting capability is available and mul-
tiple substorms are experienced, this dramatically
increases the probability of a national voltage col-
lapse. Therefore, we use this as the basis of the
1-in-100-year event if no forecasting capability is
available. This situation would necessitate “Black-
Start” where the grid must be brought back online
via plants capable of using onsite generators, taking

up to five days (Cabinet Office, 2017). Damage is also
caused to two network nodes, requiring transformer
replacement from an offsite location.

If the current forecast is available, interview ev-
idence suggests that mitigation actions for a 1-in-
100-year event would cause blackouts in a limited
number of voltage instability regions. We assume
this takes place in three regions as the AE shifts
equatorward, with one very intense substorm af-
fecting Birmingham, and another affecting both the
Manchester and Yorkshire regions. Two nodes re-
quire transformer replacement from an offsite loca-
tion taking six weeks to complete. In an enhanced
forecast scenario, a 1-in-100-year event may cause
only limited short-term power loss to one volt-
age instability region such as Birmingham and the
West Midlands. Damage from thermal heating could
be limited to only a single node, and expedient
offsite replacement of transformer assets could be
carried out in four weeks. For the 1-in-30-year sce-
narios, the potential effects are limited, with an en-
hanced forecast leading to no impacts. Similarly,
in the 1-in-10-year scenarios a worst case would
involve short-term blackouts in a single voltage in-
stability region if no forecast was available, oth-
erwise no impacts would take place (as is consis-
tent with our current experience of space weather).
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We do not test scenarios for events less frequent
than 1-in-100-years, due to the increased level of
uncertainty.

3.7. Direct and Indirect Impacts

Direct impacts are measured by (i) the pro-
portion of the population without power and (ii)
local employment disruption by broad industrial
group. Voltage instability impacts are calculated
by aggregating population and employment within
voltage instability regions. For thermal heating risk,
we take the average node characteristics from failed
nodes by scenario, over 1,000 simulation runs.

Second, we use the Oxford Economics Global
Economic Model (OEM) to understand the impact
on GDP. This is a widely employed macroeco-
nomic model with users including the International
Monetary Fund and World Bank. Multivariate
forecasts are produced for many economies, but
here we focus only on the United Kingdom. The
modeling approach adopts Keynesian principles
in the short run, and monetarist principles in the
long run. The demand side determines short-run
output, while in the long term supply-side factors
determine output and employment. We quantify
the indirect economic impact as 1-year deviation
from baseline growth starting in Q1-2018, given a
demand-side economic shock due to reduced private
consumption from households being without power.
Private consumption is affected as consumers are
unable to complete daily economic transactions. We
parameterize a private consumption shock csi based
on the population disruption from both thermal
heating PTHit and voltage instability PVSit at time t
in the ith scenario as follows:

csi = (PTHit + PVSit)

P ·
(

w
q

) , (3)

where P is the total population (63.3 million), w is the
number of working days per year (280), and q is the
number of quarterly periods per year. This process is
repeated for a quarterly supply-side labor shock lsi

to represent reduced labor supply, as employees are
unable to travel to work or log in remotely. The sum-
mation of labor disruption from both thermal heating
LTHit and voltage instability LVSit at time t in the ith
scenario is as follows:

lsi = (LTHit + LVSit)

L ·
(

w
q

) , (4)

where the total labor force is represented by L
(30.9 million), w is the number of working days per
year (280), and q is the number of quarterly periods
per year. The analysis focuses on the short-term GDP
impacts, and not on the long-term equilibrium posi-
tion of the economy. Finally, the model output for
each scenario is subtracted from the baseline growth
estimate, to obtain the GDP impact per scenario. The
Global Economic Model utilized is available from
Oxford Economics, obtained here under academic li-
cense, and therefore is accessible for other analysts
wishing to reproduce similar analyses. The model
partially solves rescheduling and input substation ef-
fects over a 1-year period, but a longer-term analysis
would more effectively quantify any rebound effects
associated with postdisaster recovery.

4 RESULTS

4.1. Magnetospheric Substorm Probability

Following the method outlined in Section 3.1,
we construct time sequences of substorms to quan-
tify the uncertainty associated with the rotation of
the Earth, and now report the magnetospheric sub-
storm probability for each of the risk scenarios in
Table IV. This shows how the likelihood of a very
intense substorm over the United Kingdom changes
between different event sizes. For a 1-in-10-year
event there is only an 8% probability of being af-
fected by a single substorm, although this rises to
17% for a 1-in-30-year event. In these circumstances
we would not expect to see more than a single sub-
storm taking place, for which there is a very low prob-
ability.

However, for a 1-in-100-year event the probabil-
ity of being affected increases significantly. For ex-
ample, there is a 50% probability that the United
Kingdom would experience a very intense substorm,
and a 21% probability of two very intense substorms,
taking place across the nation’s geographic area.

4.2. GIC Vulnerability Assessment

We find that the peak GIC per transformer phase
(using one-minute sampled data) ranges from a me-
dian of 2 amperes (A) and maximum of 20 A in the
1-in-10-year scenario, to a median of 11 A and a max-
imum of 156 A in the most extreme 1-in-10,000-year
scenario. The maximum GIC experienced per trans-
former phase is illustrated in Fig. 3(a), showing some
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Fig. 3. (a) Max GIC per EHV transformer
phase and (b) total GIC per substation.



Space Weather Socioeconomic Impacts of Infrastructure Failure 1037

Table IV. Estimated Likelihood of Very Intense Substorms Over the United Kingdom

Number of Very Intense Substorms Over the United Kingdom

Scenario 0 1 2 Total Cases

1-in-10 year 22 (92%) 2 (8%) 0 (0%) 24
1-in-30 year 20 (83%) 4 (17%) 0 (0%) 24
1-in-100 year 7 (29%) 12 (50%) 5 (21%) 24

of the largest asset exposures are in the northeast
and northwest of England. Supporting Information
Appendix D provides detailed simulation summary
statistics.

Fig. 3(b) illustrates the total GIC per node based
on the EHV transformers present. The exposure was
minimal for a 1-in-10-year event with a median of 2 A
and a maximum of 29 A, whereas in the most extreme
event the median was 11 A with a maximum of 245 A.
The difference between the median and the maxi-
mum exposure indicates large GICs flow in partic-
ular “hot spots” at the eastern and western edges of
the network. An interesting finding is that the mag-
nitude of exposure is different between the GIC per
transformer phase and total GIC per node (the for-
mer being of greater importance).

The frequency of failures based on the random
allocation of unknown transformer characteristics is
illustrated in Fig. 4(a). The northeast and north-
west of England had several transformers with a
high frequency of failure, along with East Anglia
and Wales. This is consistent with impacts reported
during the 1989 storm, with transformer failure at
Norwich (East Anglia) and significant transformer
noise at Pembroke, southwest Wales (Smith, 1990).
No transformer damage takes place from a 1-in-10-
year event, along with minimal impacts from a 1-in-
30-year event. For the most probable extreme event,
the 1-in-100-year scenario produced a transformer
failure probability in at-risk nodes up to 5%. This in-
creased to over 50% in the most extreme 1-in-10,000-
year event.

However, a single transformer failure may not
lead to the loss of the whole node. Consequently, we
visualize the simulation results for the frequency of
substation failure in Fig. 4(b). Under these simula-
tion conditions, it illustrates there is a small prob-
ability of power loss due to thermal heating, with
the most vulnerable nodes generally positioned at
the east and west coastal edges of the network. This
probability ranges from 4% for the 1-in-100-year

event up to over 40% for a 1-in-10,000-year event,
with these effects at the eastern and western edges of
the network, particularly at Sizewell, Norwich, and
Pembroke.

4.3. Socioeconomic Impact Results

The direct impacts in the no forecast scenarios
were significantly higher when compared to other
outcomes. In a 1-in-100-year event with no fore-
cast, initial disruption affected over 60 million peo-
ple and almost 30 million workers. This impact is
substantially reduced under the current forecast ca-
pability where direct population disruption dropped
to 13 million and employment disruption dropped
to 6 million. Enhanced forecasting capability re-
duced both population and labor disruption to a
minimal level, particularly in smaller, more frequent
events.

Table V details the level of population and la-
bor disruption on day 1 of each scenario, as well
as the consequential quarterly shock sizes applied
to consumption and labor in the OEM macroeco-
nomic model. We find that in a 1-in-100-year event
with no forecast, the GDP impact reached approxi-
mately £15.9 billion, with this dropping to £2.9 billion
based on the current forecast capability, and £0.9 bil-
lion with an enhanced forecast. For no forecast, in a
1-in-30-year event the GDP impact was £1.9 billion,
decreasing to £0.4 billion under current forecast. Fi-
nally, for a 1-in-10-year event with no forecast the im-
pact was £0.4 billion.

5. DISCUSSION

Estimating the potential socioeconomic impacts
of space weather is a challenge as many areas of un-
certainty exist, both in our current scientific and en-
gineering understanding of this threat, and in current
data and modeling methodologies. In this discussion
we examine the findings of the analysis in relation to
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Fig. 4. (a) Simulated transformer failure fre-
quency and (b) simulated substation failure
frequency.
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Table V. Economic Impact by Scenario

Event
Forecast

Capability

Total Population
Disruption

(Millions) (Day 1)

Total Labor
Disruption

(Millions) (Day 1) OEM Shock Type OEM Shock
GDP Loss

(Billions, GBP)

1-in-100 year No Forecast 62.1 29.4 Consumption 0.9518 15.9
Labor 0.9527

Current Forecast 19.4 8.8 Consumption 0.9911 2.9
Labor 0.9913

Enhanced
Forecast

8.1 3.7 Consumption 0.9974 0.9

Labor 0.9974
1-in-30 year No Forecast 13.3 6.1 Consumption 0.9942 1.9

Labor 0.9944
Current Forecast 5.2 2.4 Consumption 0.9987 0.4

Labor 0.9988
Enhanced

Forecast
– – Consumption – –

Labor –
1-in-10 year No Forecast 5.2 1.4 Consumption 0.9987 0.4

Labor 0.9993
Current Forecast – – Consumption – –

Labor –
Enhanced

Forecast
– – Consumption – –

Labor –

the research questions. Supporting Information Ap-
pendix E discusses the uncertainty associated with
the data and modeling approaches utilized, and areas
for future research.

5.1. What Is the Probability of CNI Being Affected
by Intense Magnetospheric Substorms?

Time sequences of substorms were constructed
to estimate probabilities of geographic impact un-
der different 1-in-10-year, 1-in-30-year, and 1-in-100-
year levels. Over a full 24-hour Earth rotation, the
risk at any particular location is modest for the
1-in-10-year and 1-in-30-year events, but escalates
markedly when we move to a 1-in-100-year event.
Hence, we find that the United Kingdom was unlucky
to experience the very intense substorm that caused
two transformer failures during the 1989 event (the
basis of the 1-in-30-year scenario) as the likelihood
of geographic impact was only 17%, so it was a rel-
atively rare but not improbable occurrence. More-
over, the results suggest it was entirely reasonable
that the United Kingdom experienced no substorm,
and consequently no power grid problems during the
2003 event (the basis of the 1-in-10-year scenario), as
the substorm probability was only 8%.

Finally, we find that a Carrington-class event
(the 1-in-100-year scenario) has a very high prob-
ability (71%) of producing very intense substorms
over the United Kingdom that could disrupt the
power grid, resulting from a 50% likelihood of a
single very intense substorm and a 21% likelihood
of two very intense substorms. In this latter case, the
second event could occur many hours (perhaps 24
hours) after the initial event, thus posing a serious
challenge to recovery efforts. During expert elicita-
tion interviews it was expressed that two very intense
substorms, particularly with no forecast available,
would dramatically increase the probability of signif-
icant power grid difficulties, increasing the likelihood
of a national grid collapse.

5.2. How Vulnerable Are Specific Electrical
Transmission CNI Assets and Nodes to
GIC Exposure?

As detailed data on transformer design charac-
teristics are unavailable, we explored the sensitivity
of transformer and node failure based on the random
allocation of this parameter. Moreover, as there is lit-
tle agreement regarding extreme events, we explore
the sensitivity of the results to increasingly large geo-
magnetic storms.
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Under the simulation conditions tested, the
probability of transformer failure from thermal heat-
ing was generally quite low for more frequent events,
but increased considerably in the more extreme sce-
narios, where the failure rate for some assets ex-
ceeded 50%. This translated to relatively modest im-
pacts when evaluating the probability of node failure,
as it would take more than half of the available EHV
assets to fail for a blackout to be caused by the loss
of a network node. Consequently, no nodes failed in
the smaller, more frequent storm scenarios, but the
failure probability ranged between 2% and 40% in
the more extreme events. However, the actual fail-
ure rate depends on the asset management practices
of the infrastructure operator, as the random alloca-
tion of transformer types introduces uncertainty in
these results. For example, the model may overes-
timate the vulnerability of urban locations that are
likely to have been the focus of previous resilience
efforts, while also underestimating the vulnerability
of more rural substations. Either way, the results of
this analysis provide evidence supporting grid config-
uration policies to place newer, more GIC-resistant
designs at substations that contain transformers with
older, less GIC-resistant designs. Finally, while the
scenarios tested here have emphasized impacts at
higher latitudes within the United Kingdom, such as
the northeast and northwest of England, we must
also avoid complacency about impacts in the south.

5.3. What Are the Potential Socioeconomic Impacts
of Electrical Transmission CNI Failure Due to
Space Weather, Under Different Forecasting
Capabilities?

Space weather forecasting is a recognized miti-
gation for managing the risk posed by space weather,
and CNI operators are dependent on a forecast being
available to take operational decisions to reduce ex-
posure. The results were most concerning for the no
forecast scenario, where the GDP impact reached al-
most £16 billion in the largest event. Given that space
weather forecasting uses data from a limited number
of satellites, some of which are nearing the end of
the expected lifespan, this is concerning. Many exist-
ing satellites are research missions (hence, effectively
nonoperational), and while high-quality data are col-
lected, transmission to Earth may not take place in
an optimal timeframe to support operational space
weather forecasting.

The status quo in terms of forecasting capabil-
ity is unlikely to be maintained. Limited, or no, in-

vestment will see capability decline from today’s skill
levels, increasing the risk of CNI failure and conse-
quential economic loss. Investment in the relevant
space-borne monitoring is expected to lead to op-
erationally reliable data streams that would achieve
the enhanced capability described in Supporting In-
formation Appendix C. Without this investment eco-
nomic losses would be expected to be greater and fall
somewhere between the current and no forecast
capabilities. Based on the analysis presented here,
there is evidence to support investment in main-
taining forecasting capabilities, as well as predic-
tive models and risk communication, as they provide
early warning for the low-probability, high-impact
threats caused by space weather. Importantly, the re-
duced economic impacts associated with better space
weather forecasting capabilities depend on utilities
having effective operational mitigation plans. While
this is the case for the U.K. national grid, it might not
apply in other regions where application of this risk
framework may take place.

6. CONCLUSION

The time-shift analysis of the geomagnetic storm
catalogue suggests that U.K. risk is modest for the
1-in-10-year and 1-in-30-year levels, but significantly
increases for a 1-in-100-year event. Moreover, in a
sensitivity analysis of the vulnerability of transformer
assets, we find the failure probability ranges from be-
low 2% for minor events, to 4% for a Carrington-
sized event approximately 1.4× larger than the 1989
event. The probability of substation failure ranged
from negligible in smaller events, to over 40% based
on the theoretical upper limit proposed by Va-
syliūnas (2011).

We find that for a Carrington-sized 1-in-100-year
event with no space weather forecasting capability,
the GDP loss to the United Kingdom could be as
high as £15.9 billion, with this figure dropping to
£2.9 billion based on current forecasting capability.
However, with existing satellites nearing the end of
their life, current forecasting capability will decrease
in coming years. Therefore, if no further investment
takes place critical infrastructure will become more
vulnerable to space weather. Additional investment
could provide enhanced forecasting, reducing the
economic loss for a Carrington-sized 1-in-100-year
event to £0.9 billion.

Partial information often prevents comprehen-
sive risk assessment. The contribution of this arti-
cle is to provide a general framework for the risk
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assessment of the socioeconomic impacts of space
weather for the United Kingdom. Applying this
to the British high-voltage network forms one of
the first socioeconomic assessments undertaken for
this threat (however, application to other coun-
tries would require further adaptation). Unlike other
analyses undertaken hitherto, we properly address
the general geophysical risk, asset vulnerability, and
CNI network structure. This has required a multi-
disciplinary approach, utilizing methods from space
physics, geophysics, electrical engineering, and eco-
nomics, but provides a step toward the standardiza-
tion of space weather risk assessment. Importantly,
we were conservative in our treatment of the space
and geophysical hazard, estimating potential mini-
mum impacts.

Further research must enhance this simulation
to encompass the relationship between GIC, reac-
tive power demand, and the available capacity (and
critical paths) of spinning reserve under different
forecasting capabilities. Future analyses should at-
tempt to quantify the impact (and financial cost) of
infrastructure “hardening” via retrofitting. Finally,
to capture the true socioeconomic impacts of space
weather, disruption in other interdependent infras-
tructure systems must also be quantified, potentially
increasing the economic impacts presented here.
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