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Abstract The southward freshwater flux through Nares Strait is an important component of the Arctic’s
freshwater budget. On short time scales, flow through the strait is dominated by the tides, and tidal
dynamics may be important for the magnitude of the freshwater flux over longer periods. Here we build
upon our existing knowledge of the tides in the region by exploring their propagation and vertical structure
using data from four bottom-mounted Acoustic Doppler Current Profilers deployed in Nares Strait between
2003 and 2006. We observe that propagating barotropic semidiurnal tidal waves interact to create a
standing wave pattern, explaining the abnormally large tidal amplitudes that are observed in this region.
In the along-strait direction, semidiurnal tidal currents exhibit strong variations with depth. In contrast,
the diurnal tides propagate northward through the strait as progressive waves, and the tidal currents are
broadly depth invariant. Proximity of Nares Strait to the semidiurnal critical latitude and the topographical
restriction imposed by the steep side wall of Ellesmere Island are primary drivers behind the observed
vertical variability. In the upper part of the water column, baroclinic activity increases the tidal current
amplitude by up to 25%. In the across-strait direction, a two-layer structure exists in both the diurnal and
semidiurnal tidal flow, with a phase lag of approximately a quarter of a tidal cycle across the strait for the
semidiurnal tide. Our results suggest that strong vertical motion exists against the side walls of Nares Strait,
as the across-strait flow interacts with the steeply sloping bathymetry.

Plain Language Summary The flow of freshened seawater through Nares Strait, a narrow channel
to the west of Greenland, plays an important role in the global climate system. Understanding the processes
that are important for setting its strength is therefore critical. The tides in Nares Strait, which are generally
much stronger than those found elsewhere in the Arctic Ocean, are one such process. Here we explore how
the tides propagate through the region and how their strength varies with depth. We observe that the
strong tides result from a standing wave that forms in the center of Nares Strait for the semidiurnal (twice
daily) tides, and we show that the strength of these semidiurnal tides varies greatly with depth. In contrast,
we see that the strength of the diurnal (once daily) tide is relatively depth invariant. In the across-strait
direction, the tides form a two-layer structure, and there is strong vertical flow against the steep
side walls of the channel. Our results have important implications for modeling tidal flow in narrow
channels such as Nares Strait, and take a vital step toward understanding how the tidal flow affects the
freshwater flux through the region.

1. Introduction

Nares Strait, a narrow channel to the west of Greenland, forms one of the two major conduits within the Cana-
dian Arctic Archipelago (CAA) through which freshened seawater and sea ice flow from the Arctic Ocean to
the North Atlantic (Figure 1a). This freshwater is delivered to the Arctic through a combination of excess pre-
cipitation over evaporation, riverine input, and inflow through Bering Strait (Haine et al., 2015; Woodgate,
2018). Variability in the freshwater flux through Nares Strait reflects the changing freshwater content of the
Arctic Ocean as well as changes in land ice and sea ice cover (Copland et al., 2007; Rabe et al., 2014; Stroeve
et al., 2012). The freshwater is exported directly into the Labrador Sea, where it has the potential to disrupt
deep convection and the formation of North Atlantic Deep Water, a key component of the Atlantic Meridional
Overturning Circulation. As the Atlantic Meridional Overturning Circulation is responsible for approximately 1
petawatt (1015 W) of northward heat transport at 25∘N (e.g., Johns et al., 2011), changes in the export of fresh-
water through Nares Strait may significantly impact the climate of northwestern Europe. The velocity field in
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Figure 1. (a) Bathymetry of Nares Strait from the International Bathymetric Chart of the Arctic Ocean and (b) its location
in the Canadian Arctic Archipelago. The location of the mooring array deployed across Kennedy Channel between 2003
and 2006 is marked with a black line in (a). (c) Cross section looking north through Kennedy Channel at the location of
the mooring array showing the observed bathymetry (black solid line) and the positions of the ADCP moorings
discussed in this paper.

Nares Strait, however, is dominated by the tides. Indeed, observations show that variability in the strength of
the depth-averaged tidal current can exceed variability in the subtidal geostrophic flow by more than 100%
(Münchow et al., 2006; Rabe et al., 2012). Therefore, understanding the nature and dynamics of the tide, and
any interplay that may exist between the tides and the subtidal flow in the region, is critically important.

Measuring the tidal and oceanic fluxes through Nares Strait is particularly challenging, however (Melling, 2000;
Melling et al., 2008). Proximity to the Magnetic North Pole limits the use of the geomagnetic field in providing
a reference for flow direction, while the presence of thick sea ice year-round makes access by ship very diffi-
cult and presents significant “snagging” hazards to shallow oceanographic moorings. In addition, the internal
Rossby deformation radius for the surface freshwater layer is approximately 10 km, much narrower than the
“dynamically wide” Nares Strait. Indeed on average, the width of the strait exceeds the deformation radius by
a factor of 4 (Münchow et al., 2006; Rabe et al., 2010).

Nevertheless, a long-term monitoring array deployed across Nares Strait between 2003 and 2009 over-
came many of these challenges. Using data from this array, Münchow and Melling (2008) showed that, in
a depth-averaged sense, the tidal flow is aligned with the along-strait direction and is dominated by the
major semidiurnal (M2 and S2) and diurnal (K1) tidal constituents. The magnitude of these major constituents
increases with distance across the strait from Ellesmere Island to Greenland, and the major semidiurnal tides
exhibit a greater sense of clockwise rotation. For the lower-frequency subtidal flow, the mean volume trans-
port through Nares Strait between 2003 and 2006 was 0.71 ± 0.09 Sv (1 Sv ≡ 106 m3 s−1), increasing to 1.03 ±
0.11 Sv between 2007 and 2009 (Münchow, 2016). The volume flux is driven primarily by the along-channel
pressure gradient (r2 = 0.68). Relative to a salinity of 34.8, the liquid freshwater flux reached 32 ± 5.7 mSv
between 2003 and 2006, increasing to 54 ± 9.3 mSv between 2007 and 2009. The liquid freshwater flux (i.e.,
excluding ice) is highly correlated with the total volume transport. Southward advection of ice through the
strait adds an additional 8 ± 2 mSv to the total freshwater flux (Münchow, 2016). Overall, the flux of fresh-
water though Nares Strait accounts for around 45% of all the freshwater that is exported through the CAA
(Beszczynska-Möller et al., 2011; Curry et al., 2014).
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Sea ice in Nares Strait is typically landfast for several months of the year between January and July, and rapidly
drifting during August through December (Agnew, 1998; Samelson et al., 2006). When the sea ice is mobile,
local winds contribute to driving the flow through Nares Strait, explaining 60% of the variance in the fresh-
water flux (Münchow, 2016). The 65% increase in the total freshwater export through Nares Strait between
2003–2006 and 2007–2009 has been attributed to the almost year-round mobile ice conditions seen dur-
ing the latter period (Münchow, 2016; Shroyer et al., 2015). These year-round mobile ice conditions resulted
in a longer period each year during which thick Arctic sea ice was able to flow south through the strait, and
strengthened both ice and ocean velocities by increasing the efficiency of atmosphere-ocean momentum
transfer (especially during winter when landfast ice would typically isolate the ocean from atmospheric forc-
ing). Surface waters also became fresher as the sea ice flowing south through the strait partially melted during
transit (Münchow, 2016). The systematic changes observed between the two periods highlights the important
dynamical effect of the sea ice regime in Nares Strait.

In spite of this recent progress, we still know little about the dynamic processes which act to limit the volume
and freshwater fluxes through the region, and this is hampering our ability to understand to what extent they
may be affected by the rapidly changing conditions throughout the Arctic. Possible processes include lateral
eddies and friction against the steep side walls of Nares Strait, internal wave drag, turbulence associated with
the substantial tidal boundary layers, baroclinic tidal activity, and hydraulic control over the shallow sill in
Kane Basin. Here we focus on the region’s strong tides. We acknowledge that we cannot directly address how
the tidal flow may impact the freshwater flux in Nares Strait due to the lack of hydrographic (temperature
and salinity) observations on tidal time scales. Instead, our goal is to build upon the existing depth-averaged
analysis of tides by Münchow and Melling (2008) by documenting the vertical structure of the flow through
Nares Strait on tidal time scales. This is important as we need to have quantified and understood both tidal
and lower-frequency variability in Nares Strait before we can begin to explore how they might interact. In
section 3 we examine the nature of tidal propagation in Nares Strait and explain why the tides in this region are
particularly strong compared to much of the Arctic Ocean. In sections 4 and 5 we explore the vertical variability
of the major tidal constituents and the structure of the across-strait tidal flow, highlighting the considerable
variability observed in their magnitude, rotation, and across-strait structure. Finally, we summarize our results
in section 6. By developing a fuller understanding of the nature of the tides in the region, we are providing a
basis from which future studies can explore the relevant dynamics in more detail, and begin to understand
the wider role of the tides in the climatically important freshwater flux through Nares Strait.

2. Data and Methods
2.1. Kennedy Channel Mooring Array
As part of the long-term monitoring array deployed across Nares Strait between 2003 and 2009, four
bottom-mounted 75-KHz Long Ranger Teledyne RD Instruments Acoustic Doppler Current Profilers (ADCPs)
were deployed across Kennedy Channel at 80.5∘N between 2003 and 2006 (Figure 1). We only use this initial
period of the complete 2003–2009 data set here, as this was the limit of the processed data available at the
time this study was conducted. The ADCPs made measurements of the average current velocity every half
hour over 8-m bins between approximately 15 m above the seabed and 35–40 m from the surface (Mün-
chow & Melling, 2008). All four ADCPs returned complete 3-year data records, with mooring KS02 located 2.6
km from the coast of Ellesmere Island, and moorings KS10, KS12, and KS14 located 14.7, 8.9, and 4.1 km from
the coast of Greenland, respectively (Figure 1c). Throughout this paper, the data locations will be primarily
referred to by their mooring names.

As ADCPs rely on scatterers in the water column to estimate the current velocity through the Doppler shift,
there were periods, primarily during the polar night as well as for short periods each day due to the diel ver-
tical migration, where low scatterer abundance meant it was not possible to determine the current velocity.
Velocity data near the surface were also not obtained during periods of significant ice motion (i.e., during
the summer and autumn mobile ice period), when the high ambient noise levels drowned out the weaker
echoes. In addition, the influence of surface reflections meant that no velocity data could be recovered within
the upper 35–40 m of the water column (Münchow & Melling, 2008; Münchow, 2016). Nevertheless, by fol-
lowing the method developed independently by Melling et al. (1995) and Visbeck and Fischer (1995), careful
processing of the ADCP data does allow the ice velocity to be recovered and, similar to the approach of Mün-
chow (2016), this can be taken as an estimate of the ocean velocity at the ice-ocean interface. Note that, by
definition, the velocity at the ice-ocean interface is zero during landfast ice seasons.
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To counter the effect of the proximity of Nares Strait to the Magnetic North Pole, each ADCP was mounted on
a torsionally rigid mooring to prevent it from rotating throughout the deployment, and the true geographic
heading of the flow was determined after the moorings were recovered. To determine the true heading,
observations of the tidal currents taken over several tidal cycles from a ship-mounted ADCP in August 2003
(Münchow et al., 2006) were compared with a barotropic tidal model of the Arctic with a 5-km resolution
(Padman & Erofeeva, 2004). Both consistently showed that the depth-averaged tidal current was aligned
with the geographic orientation of Nares Strait at the location of the mooring array (30∘ due east from true
north). Thus, the unknown geographic heading was estimated through vector cross-correlation between the
barotropic tidal model and the observed velocity at the location of each ADCP (Münchow & Melling, 2008).
The along-strait coordinate system throughout this study is defined as 30∘ due east from true north at all
moorings (equivalent to a 60∘ counterclockwise rotation from due east).

We acknowledge that a spatially varying along-channel direction may be warranted, especially close to
Greenland and Ellesmere Island where the orientation of the coastline and/or the bathymetry may become
important for steering the flow. However, as it is challenging to define the orientation of these coastal
and bathymetric features due to their large range of scales, we have opted to use a fixed definition of the
along-channel direction.

To obtain accurate estimates of the phase of the tide at each ADCP, it is necessary to know the exact time
basis for each velocity time series. The nominal sampling period was 1,800 s, but the internal clock within
each ADCP indicated that the instruments were slow by varying degrees (12 to 33 min) at the end of the
deployment. This clock drift was accounted for by assuming it was equally distributed throughout the 3-year
deployment, and a slight offset was added to the nominal sampling period for each ADCP before a new set
of sample times was generated. Each ADCP also contained a pressure sensor that provided a measurement of
the sea bed pressure field on the same time basis as the velocity measurements, and an additional Sea-Bird
Electronic SBE37 temperature salinity recorder measured the hydrographic properties at each ADCP with a
nominal sampling period of 900 s. Clock drift in these instruments was also accounted for in a similar manner.

2.2. Synoptic Hydrographic Sections
In conjunction with the deployment and recovery of the mooring array, full Conductivity, Temperature, and
Depth (CTD) hydrographic sections were taken across Nares Strait during the summer of 2003 and on sub-
sequent cruises in the summers of 2007 and 2009 (heavy ice conditions prevented hydrographic sections
being taken in 2006). Each individual CTD profile sampled from the surface to the seabed, and the horizontal
distance between profiles was typically less than the Rossby deformation radius (2.5–5.0 km).

2.3. Ellipse Parameters and Harmonic Analysis
The vertical structure of the tides in Nares Strait was explored by decomposing the ADCP velocity time series
into the ellipse parameters associated with each major tidal constituent. Given a time series of orthogonal
velocity components u and v, a complete complex tidal vector, R⃗, that contains a contribution from all tidal
constituents as well as any residual flow, can be constructed (Mooers, 1973):

R⃗ = u + iv. (1)

In this complex plane, each individual tidal constituent, k, that contributes to the full tidal response can be
written as the sum of two counterrotating components

R⃗k = R⃗+
k ei𝜔k t + R⃗−

k e−i𝜔k t, (2)

where R⃗k represents the total contribution to the complex tidal vector R⃗ from constituent k, 𝜔k is the radian
frequency of the constituent, and t is time. The vector addition of these two counterrotating circular vectors
defines the shape of a tidal ellipse for each individual tidal constituent. The ellipse represents the path traced
by the velocity vector over a period of Tk = 2𝜋∕𝜔k and is described by four parameters: the semi-major axis
(M), the semi-minor axis (m), the ellipse inclination (𝜓 ), and the phase (𝜙) (see Mooers, 1973 and Figure 1 in
Makinson et al., 2006). The length of the semi-major axis gives the magnitude of the tidal current, while the
sign of the semi-minor axis indicates the sense of rotation of the tidal ellipse (positive for counterclockwise
rotation in time and negative for clockwise rotation in time). The ellipse inclination angle (𝜓 ) gives the ori-
entation of the ellipse and is defined as positive counterclockwise from due east. Therefore, an inclination
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Figure 2. Amplitude of the sea level variability associated with (a) the M2 and (b) the S2 tide in the Arctic Ocean from
the TPXO8-atlas tidal model (Egbert & Erofeeva, 2002). Note the different color scales between the M2 and S2 tide. The
green parallel on each panel marks the location of the critical latitude for the respective tidal constituent.

angle of 60∘ indicates that the ellipse is aligned with the along-strait direction (defined as 30∘ due east from
true north). The phase (𝜙) is interpreted as the time lag between an arbitrary reference time and the maxi-
mum velocity. Although any reference time can be used, here the astronomical argument correction is used
in order to express the phase lags with respect to an absolute time origin. In this way, phase lags for different
tidal constituents at different moorings that have different sample times can be directly compared (Foreman &
Henry, 1989).

The ellipse parameters for each tidal constituent are found through harmonic analysis (Doodson, 1921; Godin,
1972) using the MATLAB Unified Tidal Analysis and Prediction program (UTide; Codiga, 2011). UTide is a
state-of-the-art tidal analysis software package that builds substantially upon the previous work of Foreman,
(1977, 1978) and Pawlowicz et al. (2002). UTide determines the ellipse parameters that minimize the differ-
ence between the observed and modeled complex tidal vector summed over all k = 1,… ,N constituents to
be included in the analysis:

⃗Rmod(t) =
∑

k=1,..,N

(R⃗+
k eiV(t,𝜔k ) + R⃗−

k e−iV(t,𝜔k)) + ⃗̄R + ⃗̇R.t, (3)

where ⃗̄R represents the mean flow (⃗̄R = ū + iv̄), ⃗̇R represents any trend in the data (⃗̇R = u̇ + iv̇), and V(t, 𝜔k)
represents the astronomical argument correction. Any residual between the modeled and observed data is
considered to be a signature of the subtidal flow and other random noise in the data set. For long time series,
which are dominated by tidal signatures, the random noise and subtidal variability are unlikely to have a
significant effect on the estimates of the ellipse parameters. For shorter and/or noisier time series, however,
the random noise and sub-tidal variability may have a larger impact. In these cases, a derivative time series
smoothed by a 48-hr running mean low-pass filter is subtracted from the velocity records prior to the har-
monic analysis, isolating the tidal signature from the lower-frequency variability (i.e., the velocity time series
are effectively high-pass filtered, Codiga, 2011).

To quantify the effect of any remaining noise, 95% confidence intervals for the ellipse parameters are calcu-
lated. For each tidal constituent included in the harmonic analysis, the complex coefficients R⃗+

k and R⃗−
k are

used to compute the four corresponding Cartesian cosine/sine coefficients for the u and v velocity compo-
nents. Using these coefficients the variance-covariance matrix is calculated for each individual constituent,
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Table 1
Observed Phase Difference Between Sea Level Variation and Along-Strait Tidal
Velocity in Nares Strait at the Location of the Mooring Array

KS02 KS10 KS12 KS14

M2 95∘ 89∘ 88∘ 98∘

S2 96∘ 90∘ 89∘ 97∘

K1 72∘ 58∘ 61∘ 48∘

Note. The phase difference represents the lag between the maximum along-strait
velocity and the maximum pressure perturbation associated with each tidal
constituent.

which are then scaled by the auto- and cross-spectral power of the residuals averaged over the frequency
band appropriate for that constituent (Munk et al., 1965). From the scaled variance-covariance matrix and the
known cosine/sine coefficients, 200 random realizations of the ellipse parameters for each constituent are
generated using Monte Carlo uncertainty propagation. Standard errors of the tidal ellipse parameters are then
computed using the median-average-deviation, from which the 95% confidence intervals are calculated. For
more details see Codiga (2011), and references therein.

2.4. Barotropic Tidal Model
To aid our investigation into the nature of tidal propagation in Nares Strait, we use output from Version 8 of
the Oregon State University TOPEX/Poseidon Global Inverse Solution barotropic tidal model (TPXO8-atlas).
This is a recent update to the global inverse model described by Egbert and Erofeeva (2002). TPXO8-atlas is
a global barotropic inverse tidal model which best fits the Laplace tidal equations to along-track-averaged
satellite altimeter data (i.e., TOPEX/Poseidon and more recently the Jason satellites), as well as coastal and
benthic tide gauges. The model has a 1/6∘ resolution in the open ocean, increasing to 1/30∘ in the CAA and
other coastal regions. Tidal energy is dissipated at the seabed through a linear drag law, and the loss of energy
to the baroclinic tide over regions of steep topography is not accounted for (Egbert & Erofeeva, 2002). The
effect of using simple physics in the underlying dynamical model, however, is mitigated by the use of data
assimilation (Egbert & Erofeeva, 2002). The bathymetry data used in the areas of interest to this study are a
blend of the 2008 version of the global General Bathymetric Chart of the Oceans at one arcminute resolution
(Becker et al., 2009), and versions 12.1 and 15.1 of the Smith and Sandwell one arcminute Global Topography
(Smith & Sandwell, 1997).

3. Tidal Propagation in Nares Strait

Tides in the deep central basin of the Arctic Ocean are generally weak (Figure 2). The amplitude of the sea
level variability associated with the major lunar (M2) and solar (S2) semidiurnal tides does not exceed 0.15 m
and 0.05 m, respectively (see also Kowalik & Proshutinsky, 1994). In contrast, in the center of Nares Strait, the
amplitude of the sea level variability associated with the major semidiurnal tides is an order of magnitude
larger (1.2–1.3 m and 0.4–0.5 m for M2 and S2, respectively). No such amplification is seen in the major diurnal
tide in Nares Strait (K1; not shown), or in the major semidiurnal tides in other areas of the CAA.

In shallow seas and narrow channels, the barotropic wave associated with each tidal constituent can take a
number of different forms. The most common form is a progressive wave, which is characterized by a steady
progression of the wave crest, often in the form of a Kelvin wave due to the effect of the Earth’s rotation. In a
progressive Kelvin wave, the maximum velocity and maximum perturbation in the sea surface height occur
at the same time, such that the phase difference between the velocity and the sea surface height variation is
zero. A tidal wave can also take the form of a standing wave. A standing wave does not propagate in space
but rather oscillates in time around nodes and antinodes. At these points, the constructive and destructive
interference of two tidal waves traveling in opposite directions with equal amplitude, phase, and frequency
result in the standing wave having a maximum amplitude and zero amplitude, respectively. In a standing
wave, the maximum velocity will occur when the perturbation in the sea surface height is zero, such that the
phase difference between the two will be 90∘ (Segar, 2012; Sverdrup et al., 1942).

Given these characteristic phase differences, the nature of the barotropic tidal wave associated with each of
the major tidal constituents in Nares Strait can be determined by comparing the phase of the associated pres-
sure perturbation with the phase of the depth-averaged along-strait tidal velocity. For the M2 and S2 tidal
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Figure 3. Phase in degrees for (a) the M2 and (b) the S2 tidal constituent in the Arctic Ocean and Baffin Bay from the
TPXO8-atlas tidal model. Amplitude of the sea level variability in meters (colored contours) and phase in degrees (black
contours) for (c) the M2 and (d) the S2 tidal constituent in Nares Strait from TPXO8-atlas. Note the different color ranges
for the amplitude between (c) and (d).

constituents, the phase difference is close to 90∘ at all ADCPs (Table 1), suggesting that the tidal waves associ-
ated with these constituents have standing wave characteristics. Against the coast of Ellesmere Island (KS02)
and Greenland (KS14), the phase differences are slightly larger (96∘ and 98∘, respectively), indicating that lat-
eral friction/proximity to the coastline may be affecting the propagation of the tidal wave. For the K1 tidal
constituent, however, the phase difference is 60∘ in the center of the strait (KS10 and KS12), increasing to 72∘
at KS02 and decreasing to 48∘ at KS14 (Table 1). This suggests that the tidal wave associated with the major
diurnal constituent has neither purely progressive nor purely standing wave characteristics.

To explain why the M2 and S2 tidal constituents exhibit standing wave characteristics in Nares Strait, we must
examine how the barotropic tides propagate to the north in the central Arctic Ocean and to the south in Baffin
Bay. The TPXO8-atlas tidal model shows that in the central Arctic Ocean and Baffin Bay, the major semidi-
urnal tidal waves propagate as progressive waves counterclockwise from their source in the North Atlantic
(Figures 3a and 3b; Egbert & Erofeeva, 2002; Kowalik & Proshutinsky, 1994). As a result, two individual tidal
waves of equal frequency propagate into Nares Strait: one from the north through Robeson Channel, and one
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Figure 4. Barotropic tidal energy flux from TPXO8-atlas for (a) the M2 and (b) the S2 tidal constituent in Nares Strait.
Colored contours show the magnitude of the energy flux, while the unit vector arrows indicate the direction of the
energy flux. Note the different color ranges for the magnitude between (a) and (b).

from the south through Smith Sound. The phase of these tidal waves as they enter Nares Strait is identical
(110∘ and 150∘ for the M2 and S2 tidal constituents, respectively; Figures 3c and 3d), as is the magnitude of
their barotropic tidal energy flux (Figure 4):

P⃗ = 𝜌gh⟨u⃗bt𝜂⟩, (4)

where 𝜌 is density, g acceleration due to gravity, h water depth, u⃗bt the barotropic tidal vector, 𝜂 sea surface
displacement, and ⟨⟩ indicates a time average. As these two tidal waves travel through Nares Strait, standing
wave characteristics are generated through the constructive interference of the two waveforms, and there is a
convergence of tidal energy in Kane Basin (Figure 4) coincident with the location of the largest semidiurnal sea
surface height tidal amplitudes (Figures 3c and 3d). Thus, it is the formation of this standing wave that results
in the abnormally large semidiurnal tidal amplitudes in Nares Strait compared to the remainder of the CAA
and the wider Arctic Ocean (Figure 2). The production of this standing wave, however, is highly dependent
on the modern day bathymetry and coastal topography funneling the tidal waves into Nares Strait. In the
paleo-past when the bathymetry and coastal topography were significantly altered (e.g., due to an ice sheet
blocking the northern end of the strait, or to more subtle changes in the Arctic Ocean and/or Baffin Bay), the
tides in this region would have been very different (e.g., Wilmes & Green, 2014).

In contrast, a phase difference exists between the progressive K1 tidal wave to the north of Nares Strait in
the Arctic Ocean (which is formed directly in the Arctic Ocean by the astronomical forcing, rather than being
sourced from the North Atlantic, Kowalik & Proshutinsky, 1993; Proshutinsky, 1991), and the K1 tidal wave to
the south of Nares Strait in Baffin Bay (Figure 5a). Consequently, the major diurnal tide in Nares Strait is char-
acterized by the northward progression of a single tidal wave from Baffin Bay to the Arctic Ocean (Figure 5b;
the phase increases with latitude), with a south to north flux of tidal energy through the strait (Figure 5c). The
lack of constructive interference between two identical waveforms means a standing wave cannot form, and
there is no convergence of tidal energy or amplification of the diurnal tide. It is likely that the complex topog-
raphy and bathymetry of the region are the reasons behind the nonzero phase difference (Table 1). Note that
there is a region of enhanced K1 sea surface height tidal amplitude (0.3 to 0.4 m; Figure 5b) to the south of
Smith Sound where Nares Strait meets Baffin Bay (Figure 1). This may be related to formation of shelf waves
as the K1 tide interacts with the nonuniform bathymetry of the continental slope in this region (Kowalik &
Proshutinsky, 1993).
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Figure 5. (a) Phase in degrees of the K1 tidal constituent in the Arctic Ocean and Baffin Bay from the TPXO8-atlas tidal
model. (b) Amplitude of the sea level variability in meters (colored contours) and phase in degrees (black contours) of
the K1 tidal wave in Nares Strait from TPXO8-atlas. (c) Barotropic tidal energy flux from TPXO8-atlas for the K1 tidal
constituent in Nares Strait. Colored contours show the magnitude of the energy flux while the unit vector arrows
indicate the direction of the energy flux. Note the different color range on the amplitude and energy flux panels
compared to Figures 3 and 4.

To test the validity of using a barotropic model to investigate tidal propagation through Nares Strait, the aver-
age phase difference between sea level variation and along-strait tidal velocity in TPXO8-atlas at the location
of the mooring array was examined. The phase differences for the M2, S2, and K1 tidal constituents are iden-
tical within the error bars to the observed values (Table 2). Together with the very high level of agreement
between the observed cotidal lines in Greisman et al. (1986) and those shown in Figures 3 and 5, this sug-
gests that the TPXO8-atlas model is able to accurately reproduce the nature of the tides in Nares Strait. The
previous version of the TPXO model (TPXO7.2), however, cannot accurately reproduce the tidal flow in Nares
Strait, drastically underestimating the phase difference for the semidiurnal tides (Table 2). As TPXO7.2 only
has a 1/4-degree resolution in the Arctic (compared to the 1/30-degree resolution in TPXO8-atlas), this high-
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Table 2
Average Observed and Modeled Phase Difference Between Sea Level Variation and
Along-Strait Tidal Velocity in Nares Strait at the Location of the Mooring Array

Observed TPXO8-atlas TPXO7.2

M2 93 ± 5∘ 91 ± 3∘ 49 ± 8∘

S2 93 ± 4∘ 88 ± 3∘ 52 ± 14∘

K1 60 ± 10∘ 64 ± 5∘ 55 ± 4∘

Note. The phase difference represents the lag between the maximum along-strait
velocity and the maximum pressure perturbation associated with each tidal
constituent.

lights the importance of using a high-resolution grid to resolve the complex bathymetry when modeling the
tides in coastal areas such as Nares Strait (e.g., Chen et al., 2009).

4. Vertical Structure of the Tides
4.1. Ellipse Semi-major and Semi-minor Axes
The vertical structure of the tidal currents in Nares Strait was examined by harmonically analyzing the full
three-year (2003–2006) velocity time series from each depth bin at each ADCP and extracting the ellipse
parameters and associated 95% confidence intervals for the M2, S2, and K1 tidal constituents. Together
these constituents account for approximately 90% of the total tidal variability. No prefiltering was required
to increase the signal-to-noise ratio. Figure 6 shows the vertical structure of the semi-major (M; red) and
semi-minor (m; blue) axes of the tidal ellipse at each ADCP, along with the largest error bars. Each data point
represents the average tidal current amplitude over both ice regimes (mobile and landfast), except for the
surface data point which is representative of mobile ice seasons only. Note that by harmonically analyzing the
full three-year velocity record, we are not considering the possibility of any temporal variability in the verti-
cal structure of M and m. Examination of the ADCP velocity records for evidence of temporal variability in the
tidal constituents (wide error bars on harmonic fits, differences between consecutive 31-day analyses with
inference) has demonstrated, however, that time variation is not an important factor

Against Greenland (KS14; Figure 1c), there is significant variability with depth and between the different
tidal constituents. The semi-major and semi-minor axes of the M2 and S2 tidal constituents exhibit smooth
parabolic-like profiles. For the semi-major axis, the largest values of 30 and 12 cm/s are observed at a depth of
60–70 m for the M2 and S2 constituents, respectively, significantly greater than the amplitude of the barotropic
tide estimated from the TPXO8-atlas tidal model. The amplitude of the semi-major axis decreases toward the
surface and bottom boundaries due to friction. As the surface amplitude reflects only mobile ice seasons, it
appears that the integrated frictional effect of the various different surface boundary conditions during these
seasons (open sea, pack ice in free drift, and pack ice retarded by ice stress) has a noticeable impact on the
amplitude of the tidal current at the surface.

The largest semidiurnal tidal amplitudes coincide with an increasingly negative semi-minor axis, indicating
that the semidiurnal tidal ellipses exhibit a greater sense of clockwise rotation in time with distance from the
top and bottom boundaries. At the top and bottom boundaries, the semi-minor axis is close to zero or even
slightly positive indicating counterclockwise rotation. However, even at the depth of maximum rotation (60
m), the ellipse eccentricity (ratio of the semi-minor axis to the semi-major axis) is still less than 0.2. This indi-
cates that the ellipse is still highly elongated and much closer to being rectilinear than circular (see Figure 8 in
Münchow & Melling, 2008). These low levels of eccentricity for the semidiurnal tides are consistent throughout
Nares Strait. The diurnal constituent (K1) at KS14 is comparatively depth-invariant away from the boundaries,
except for a small peak in the semi-major axis of 17 cm/s at 105 m. The semi-minor axis and ellipse eccentricity
are near zero everywhere, indicating that the K1 tidal ellipse close to Greenland is rectilinear.

Unlike the variability seen between constituents at KS14, the three major tidal constituents at KS02 (adjacent
to Ellesmere Island; Figure 1c) all show broadly the same vertical structure. The amplitude of the semi-major
axis increases with distance from the seabed, reaching an observed maximum at 50 m of 13, 5, and 7 cm/s, for
the M2, S2, and K1 tides, respectively (the tidal current amplitude may continue to increase in the unobserved
portion of the water column). The semi-minor axis for all constituents is close to zero everywhere, indicating
that both the diurnal and semidiurnal tidal flow against the coast of Ellesmere Island is largely rectilinear. This
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Figure 6. Vertical structure of the semi-major (M; red) and semi-minor (m; blue) axes of the tidal ellipse for the M2
(top row), S2 (middle row), and K1 (bottom row) tidal constituents at KS02 (left column), KS10 (middle-left column), KS12
(middle-right column), and KS14 (right column). Each data point represents the average tidal current amplitude over
both ice regimes in Nares Strait (mobile and landfast), except the surface point which is representative of only mobile
ice periods. Semi-minor (blue) data points that lie to the left of the black dashed line in each panel (zero line) indicate
clockwise rotation (i.e., a negative semi-major axis), while semi-minor data points that lie to the right of the black
dashed line indicate counterclockwise rotation (i.e., a positive semi-major axis). The confidence intervals are generally
smaller than the individual data points. The largest confidence interval for both the semi-major and semi-minor axes is
plotted in each panel. The pale red bars indicate the average amplitude of the barotropic tidal current (±1 standard
deviation) at the location of the mooring array from the TPXO8-atlas tidal model, and the solid black line in each panel
marks the depth of the seabed at that mooring.

is in contrast to the rotational nature of the semidiurnal tides observed close to Greenland. In the upper 100
m, the semidiurnal tidal ellipses do exhibit a tendency toward clockwise rotation (m < 0).

At KS10 and KS12 (15 and 10 km from the coast of Greenland, respectively; Figure 1c), the amplitude of the K1

semi-major axis increases rapidly with distance from the seabed, quickly reaching an amplitude equal to that
of the barotropic tide estimated from TPXO8-atlas. In contrast, the amplitudes of the semidiurnal semi-major
axes increase more slowly with distance from the seabed and exhibit thicker boundary layers. In the upper half
of the water column, the semi-major amplitudes of both the diurnal and semidiurnal tides tend to become
greater than the amplitude of the barotropic tide estimated from TPXO8-atlas. The result is that an upper water
column maximum in the amplitude of all the major tidal constituents exists across Nares Strait, although it is
clearer in the semidiurnal tides. The semi-minor axis of the M2 and S2 tides is generally negative throughout
the water column (i.e., exhibiting the same clockwise rotation as seen at KS14), but becomes slightly posi-
tive close to the top and bottom boundaries. In contrast, the semi-minor axis of the K1 tide is close to zero
throughout the water column at both KS10 and KS12, mirroring the same rectilinear nature of the K1 tide that
is observed against each coast.

DAVIS ET AL. 291



Journal of Geophysical Research: Oceans 10.1029/2018JC014122

Figure 7. Vertical structure of the tidal ellipse inclination angle (𝜓 ) for the M2 (top row), S2 (middle row), and K1 (bottom
row) tidal constituents at KS02 (left column), KS10 (middle-left column), KS12 (middle-right column), and KS14 (right
column). Each data point represents an average of both ice regimes in Nares Strait (mobile and landfast), except the
surface point which is an average of only mobile ice periods. 𝜓 is defined as positive counterclockwise from due east,
and therefore an inclination angle of 60∘ (black dashed line) indicates that the tidal ellipse is aligned with the local
along-strait orientation (defined 30∘ due east from true north). The confidence intervals are generally smaller than the
individual data points. The largest confidence interval is plotted in each panel. The solid black line in each panel marks
the depth of the seabed at that mooring.

Although a full investigation of the dynamics that set the observed vertical structure of the tides is beyond the
scope of this study, a number of inferences can be drawn about the processes that are likely to be important.
The characteristic boundary layer depth (𝛿+ and 𝛿−) for each of the rotary components that make up the tidal
ellipse (R⃗+

k and R⃗−
k ; equation (2)) is given by

𝛿+ ≈
(

2Km|𝜔 + f |
) 1

2

(5)

and

𝛿− ≈
(

2Km|𝜔 − f |
) 1

2

, (6)

where Km is the eddy viscosity, and |𝜔 ± f | is the sum or difference between the tidal frequency and the
local rate of rotation given by the planetary vorticity, f . The mooring array lies within a latitude band that is
bounded by the critical latitudes for the M2 (74∘28.30’N; Figure 2a) and S2 (85∘45.90’N; Figure 2b) tides, where
the frequency of the tidal constituent (𝜔) is equal to the Coriolis frequency (f ), and |𝜔− f | tends to zero. There-
fore, at these latitudes, boundary layer friction and resonant enhancement of the clockwise rotary component
(R⃗−

k ) drives a strong depth dependence in the amplitude of the semidiurnal tides (i.e., large semidiurnal tidal
boundary layers) and generates counterclockwise rotation near the boundaries and clockwise rotation in the
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Figure 8. Amplitude of the across-strait tidal flow derived from a three-year harmonic analysis at KS02 (left), KS10
(middle-left), KS12 (middle-right), and KS14 (right) for the M2 (red), S2 (blue), and K1 (black) tidal constituents. The black
solid line in each panel marks the depth of the seabed at that mooring.

interior. In contrast, assuming that the diurnal tide propagates as a Kelvin wave rather than a shelf wave,
diurnal tides are expected to be largely barotropic (i.e., small diurnal tidal boundary layers) and rectilinear
in nature as f is almost twice as large as 𝜔 (Foldvik et al., 1990, 2001; Makinson et al., 2006; Prandle, 1982;
Prinsenberg & Bennett, 1989; Robertson, 2005). Note that as lateral shear can generate time-dependent
relative vorticity that will modify the local rate of rotation given by the planetary vorticity alone (i.e., the
denominator in equations (5) and (6) becomes |𝜔± (f + 𝜁 )|, where 𝜁 is the relative vorticity), the depth of the
different boundary layers may be time dependent.

Aspects of this variability are clearly observed in Nares Strait (Figure 6), leading us to conclude that critical
latitude effects are one of the primary drivers behind the observed vertical variability. The K1 tide is broadly
rectilinear and depth-invariant with small tidal boundary layers. The amplitude of the K1 semi-major axis
quickly reaches the amplitude of the barotropic tide as estimated from the TPXO8-atlas tidal model. In con-
trast, the semidiurnal tides have substantially thicker tidal boundary layers, and show much greater variability
in the vertical. In addition, they also exhibit a strong sense of clockwise rotation in the interior (m < 0) and
counterclockwise rotation (m > 0) near the seabed. At KS02, however, the vertical structure of the tides is
very different to what would be expected from critical latitude theory. All the major tidal constituents show
broadly the same vertical structure, and this is likely related to the topographical restrictions placed on the
flow by the steep side wall of Ellesmere Island (12% gradient compared to 3% against Greenland).

Outside of the tidal boundary layers, the amplitude of the semi-major axes tend toward an upper water
column maximum (and are generally greater than the magnitude of the barotropic tide estimated from
TPXO8-atlas; Figure 6). In this region of the water column, stratification is strong (Rabe et al., 2010). If it is
assumed that tidal flows can be decomposed into a barotropic component, a phase-coherent baroclinic com-
ponent, and a phase-incoherent baroclinic component (Cummins et al., 2001; Dushaw et al., 1995; Kulikov et
al., 2010), then this amplification is likely to be a result of baroclinic processes. Ellipse parameters derived from
the least squares method of harmonic analysis include a contribution from both the barotropic component
and the coherent baroclinic component. Therefore, if we compare the results of harmonic analysis at depths
around 200 m where stratification is weak and the phase-coherent baroclinic component is small, with results
from depths where stratification is strong and the phase-coherent baroclinic component is large (50 to 100
m), we can derive an estimate of the importance of the coherent baroclinic component (Kulikov et al., 2010).
For the M2 tide, phase-coherent baroclinic activity increases the average magnitude of the tidal currents by
13–25% at KS10 and KS12, and by 23–26% for the S2 tide at the same mooring locations. For the K1 tide at
KS10 and KS12, the contribution from coherent baroclinic activity decreases to 13–14%. At KS02 and KS14 it
is harder to define a depth range where the amplitude of the tide is relatively depth invariant, stratification is
weak, and the phase-coherent baroclinic component is small. Therefore, we do not estimate the contribution
of the baroclinic component at these mooring locations. Understanding what controls the magnitude of the
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Figure 9. Schematic showing the different mechanisms through which an across-strait tidal flow can occur: rotation of
the tidal ellipse away from the along-strait direction (60∘ ; a, b), or a “fattening” of the tidal ellipse (c). (a) A rectilinear
tidal ellipse (characteristic of the tidal flow against Ellesmere Island or the K1 tide throughout Nares Strait) with an
inclination angle greater than 60∘ . When the along-strait flow toward the Arctic is at a maximum (green arrow), the
across-strait flow is at a maximum toward Ellesmere Island (180∘ phase difference). (b) A rectilinear tidal ellipse with an
inclination angle less than 60∘. When the along-strait flow toward the Arctic is at a maximum (orange arrow), the
across-strait flow is at a maximum toward Greenland (0∘ phase difference). (c) A “fat” tidal ellipse with a small but
nonzero semi-minor axis (characteristic of the semidiurnal tides away from Ellesmere Island) and an inclination angle
aligned with the along-strait direction. When the along-strait flow toward the Arctic is at a maximum (blue arrow), there
is no across-strait flow. For clockwise rotation (purple arrow), the maximum across-strait flow toward Greenland (red
arrow) lags the maximum along-strait flow by 90∘. For counterclockwise rotation at the boundaries (dashed purple
arrow), the maximum across-strait flow toward Greenland leads the maximum along-strait flow by 90∘ .

baroclinic activity in the upper water column, and why it is in phase with the barotropic component, is worthy
of investigation. Answering these questions, however, lies beyond the scope of this present study.

4.2. Ellipse Inclination Angle
Figure 7 shows the vertical structure of the ellipse inclination angle at each ADCP. Although in a depth-
averaged sense the mean inclination angle of approximately 60∘ (defined as positive counterclockwise from
due east) indicates that the tidal flow is aligned with the along-strait direction (defined as 30∘ due east from
true north; Münchow & Melling, 2008), significant variability exists with depth and between the different
ADCPs. For many ADCPs and tidal constituents, the inclination angle is greater than 60∘ in the lower half of
the water column, reaching a maximum at the bottom boundary. In the upper half of the water column, the
inclination angle is generally less than 60∘, with a minimum observed between 50 and 150 m. At KS12, the
inclination angle reaches an extreme maximum of 90∘ at the seabed. At KS02 there is less evidence of a min-
imum in the inclination angle between 50 and 150 m, and instead the inclination angle generally increases
with depth for all constituents.

4.3. Summary
In summary, the amplitude of the semidiurnal tides (M2 and S2) in Nares Strait is highly depth dependent,
while the diurnal tide (K1) is broadly depth invariant. The exception is against the coast of Ellesmere Island,
where all the major tidal constituents show the same vertical structure. Away from Ellesmere Island (KS10,
KS12, and KS14) the semidiurnal tidal current vectors exhibit predominantly clockwise rotation in time, except
near the top and bottom boundaries where the rotation becomes counterclockwise. For the diurnal tides and
all constituents against the coast of Ellesmere Island, the tidal current vector is largely rectilinear. An upper
water column maximum in the amplitude of both the diurnal and semidiurnal tides is seen across Nares Strait,
although this feature is clearer in the semidiurnal tides. This upper water column maximum is associated with
phase-coherent baroclinic activity.
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Figure 10. Phase difference between the maximum along-strait velocity and the maximum across-strait velocity
wrapped to a range of 0–360∘ at KS02 (left), KS10 (middle-left), KS12 (middle-right), and KS14 (right), for the M2 (red), S2
(blue), and K1 (black) tidal constituents. A phase difference of 180∘ or 0∘ indicates that the maximum in the across-strait
velocity is antiphased with or in phase with the maximum along-strait velocity, respectively, and is associated with a
rotation of the tidal ellipse away from the along-strait direction driving the across-strait flow. A phase difference of 90∘
or 270∘ indicates that the maximum in the across-strait velocity leads or lags the maximum along-strait velocity by 90∘ ,
respectively, and the across-strait flow is driven by counterclockwise or clockwise rotation of the tidal current vector. The
solid black line in each panel marks the depth of the seabed at that mooring.

5. Structure of the Across-Strait Tidal Flow
5.1. Amplitude, Mechanisms, and Vertical Motion
The structure of the across-strait tidal flow in Nares Strait also differs considerably between moorings. Against
the coast of Ellesmere Island (KS02), the amplitude of the across-strait tidal flow below 100 m—where the
tidal ellipses are generally rectilinear—is approximately the same for each of the major tidal constituents
(Figure 8). Above 100 m, where the semidiurnal tides (especially M2) exhibit clockwise rotation, the amplitude
increases to a maximum of 2.5 cm/s. In contrast to the K1 tide, which exhibits a relatively constant across-strait
tidal flow amplitude throughout Nares Strait (black dots in Figure 8), the across-strait amplitude of the M2 and
S2 tides (red and blue dots in Figure 8) increases across the strait toward the coast of Greenland.

Two mechanisms exist through which an across-strait tidal flow can occur: rotation of the tidal ellipse away
from the along-strait direction (which for Nares Strait is 60∘; Figures 9a and 9b), or a fattening of the tidal
ellipse (i.e., a large semi-minor axis; Figure 9c) such that for periods of each tidal cycle the tidal vector has
an across-strait component. The maximum across-strait flow associated with rotation of the tidal ellipse will
occur when the along-strait flow is at a maximum (green and orange arrows in Figures 9a and 9b). In con-
trast, the maximum across-strait flow associated with a fattening of the tidal ellipse (red arrow in Figure 9c)
will occur when the along-strait flow is at a minimum. Thus, by examining the phase difference between the
maximum along-strait flow and the maximum across-strait flow, it is possible to determine the primary mech-
anism through which the across-strait tidal flow occurs. Both mechanisms can of course operate together: the
inclination angle of an ellipse with a nonzero semi-minor axis can deviate from the along-strait direction. In
this case the phase difference will only indicate which mechanism dominates.

In the case of a purely barotropic tide with rectilinear tidal ellipses aligned with the along-strait direction (such
as the diurnal K1 tide throughout Nares Strait; Figure 6), across-strait tidal flow is strictly limited to the Ekman
layer. In Nares Strait an Ekman layer is formed at both the seabed, and at the sea surface under sluggishly
drifting pack ice during mobile ice seasons and stationary pack ice during fast ice seasons. These two Ekman
layers generate a two-layer across-strait diurnal tidal flow, which is clearest at KS02, KS10, and KS12. Close
to the seabed at these locations, the phase difference between the maximum along-strait diurnal flow and
the maximum across-strait diurnal flow is close to 180∘ (Figure 10, black dots). This indicates that the maxi-
mum across-strait flow toward Ellesmere Island (defined as negative) coincides with the maximum northward
along-strait flow (defined as positive), and thus the across-strait flow occurs predominantly through a rota-
tion of the tidal ellipse toward Ellesmere Island (i.e., ellipse inclination angles >60∘; Figure 9a). The ellipse
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Table 3
Average Vertical Displacement Over the Period of the Diurnal and Semidiurnal Tidal
Constituents at KS02, KS10, KS12, and KS14

M2 S2 K1

KS02 16.4 ± 0.0 m 5.6 ± 0.0 m 15.5 ± 0.8

KS10 4.9 ± 0.8 m 2.5 ± 0.8 m 6.8 ± 0.1

KS12 11.3 ± 2.4 m 4.7 ± 0.1 m 12.1 ± 2.0

KS14 9.4 ± 2.6 m 3.3 ± 1.1 m 0.5 ± 0.1

Note. An uncertainty of ±0.0 m indicates that the amplitude of the displacement
derived independently from the temperature and salinity time series agree to
within 0.01 m.

rotation and the antiphasing between the velocity components is consistent with Ekman transport in the bot-
tom boundary layer. Close to the sea surface, the diurnal phase difference tends toward 0∘ (Figure 10). This
indicates that the maximum positive along-strait flow coincides with the maximum positive across-strait flow
toward Greenland (Figure 9b), and is consistent with across-strait flow in an under-ice Ekman boundary layer
(i.e., ellipse inclination angles <60∘; Figure 7).

Our knowledge of the Ekman depth in Nares Strait is speculative as it depends on the poorly constrained eddy
viscosity. However, based on the modeling work of Shroyer et al. (2015) and Huntley and Ryan (2018), it likely
ranges from 20 to hundreds of meters depending on the strength of the stratification. This range is consistent
with our observations. The thickest Ekman layer is observed below 100 m at KS02. Here the interaction of the
bottom Ekman layer with the steeply sloping side wall of Ellesmere Island likely results in the Ekman effects
propagating far into the water column.

Similar Ekman layer behavior is also exhibited by the semidiurnal tides below 100 m at KS02. Here the prox-
imity to the sloping side wall constrains the tidal ellipses to be close to rectilinear, and the phase difference is
close to 180∘. Thus, the across-strait flow occurs through a rotation of the tidal ellipse toward Ellesmere Island.
For the semidiurnal tides throughout the remainder of Nares Strait (and above 100 m at KS02), however, their
baroclinic characteristics become important, and the pattern of across-strait flow diverges from that expected
in a purely barotropic ocean. The phase difference tends toward either 270∘ in the region of the upper water
column maximum, or 90∘ at the boundaries, commensurate with the fattening of the semidiurnal tidal ellipses
and the nonzero semi-minor axes observed at these locations. A phase difference of 270∘ is consistent with
the clockwise rotation seen in the region of the upper water column maximum (negative semi-minor axes
in Figure 6), with the maximum positive across-strait flow toward Greenland lagging the maximum positive
along-strait flow by 90∘ (Figure 9c). In contrast, a phase difference of 90∘ corresponds with the trend toward
counterclockwise rotation of the semidiurnal tidal current vector near the boundaries (the maximum positive
across-strait flow leads the maximum positive along-strait flow; positive semi-minor axes in Figures 6 and 9c).

This pattern of across-strait flow is consistent with critical latitude theory (Prandle, 1982), but might also be
related to the coastal geometry found close to Greenland (Figure 1). Here Nares Strait swings through 60∘ to
tend southward at Cape Jefferson 1 km south of the mooring array, while to the north, Franklin and Crozier
islands obstruct one third of the channel width within 20 km of the array. As a result, the directions of the flood
and ebb tide may not be directly opposite on the Greenland side of the strait, creating “fatter” tidal ellipses
compared to the Ellesmere side. Two notable exceptions to the pattern of across-strait flow for the semidiurnal
tides away from Ellesmere Island are found near the seabed at KS12 and KS14 (Figure 10). Here the phase
difference is close to 180∘, and at KS12 is likely due to the extreme inclination angles observed at the seabed
dominating the across-strait flow (perhaps as a result of the topographic steering discussed above; Figure 7).

Lateral convergence or divergence in the across-strait tidal flow will drive vertical motion at tidal frequencies.
The magnitude of this vertical motion can be calculated by harmonically analyzing the 3-year temperature
and salinity time series recorded at each of the ADCPs and dividing the resulting amplitudes by the average
vertical temperature and salinity gradients at the seabed derived from the summer CTD sections. A running
mean is subtracted prior to the analysis in order to remove all subtidal variability in the temperature and
salinity records with periods longer than 48 hr. The vertical motion for any individual tidal constituent (Table 3)
is greatest at KS02, followed by KS12. This corresponds to the two regions that we have observed in Nares
Strait that exhibit the greatest convergence and divergence. We postulate that the vertical motion at KS02 is
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Figure 11. Schematic showing the dominant direction of the across-strait tidal flow at each ADCP during the four
phases of the semidiurnal tidal cycle: (a) flood (maximum positive along-strait flow); (b) first slack water (zero
along-strait flow); (c) ebb (maximum negative along-strait flow); (d) second slack water (zero along-strait flow), and the
four phases of the diurnal tidal cycle: (e) flood; (f ) first slack water; (g) ebb; and (h) second slack water. TSD is the period
of the semidiurnal tide and TD is the period of the diurnal tide. The ⊗ indicates that the diurnal or semidiurnal tidal
current vector is at a maximum toward the Arctic at that stage of the tidal cycle, while the ⊙ indicates that the diurnal or
semidiurnal tidal current vector is at a maximum toward Baffin Bay. Blue arrows indicate the direction of the across-strait
flow at depths where clockwise rotation of the tidal current vector is observed, red arrows indicate the direction of the
across-strait flow at depths where counterclockwise rotation of the tidal current vector is observed, and green arrows
indicate the direction of the across-strait flow at depths where the tidal current vector is rectilinear. Dots indicate
periods of zero across-strait flow. Black arrows indicate the direction of the flow up and down the slope adjacent to
Ellesmere Island and Greenland.
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driven by the interaction of the across-strait tidal flow with the steeply sloping side wall of Ellesmere Island.
The across-strait flow driven by the highly rotational tidal ellipses in the center of Nares Strait converges at
KS02, and substantial vertical motion is generated as the rotation of the rectilinear tidal ellipses away from
the along-strait direction drives a flow against the steeply sloping side walls. This vertical motion (along with
that at KS12 which is a quarter of a period out of phase) likely drives significant variability in the density field
at tidal time scales, and contributes to maintaining continuity in the across-strait direction.

5.2. Schematic of Across-Strait Tidal Circulation
Figure 11 summarizes the important aspects of the across-strait tidal flow during the four phases of both the
semidiurnal and diurnal tidal cycle: flood (maximum positive along-strait flow; Figures 11a and 11e), first slack
water (zero along-strait flow; Figures 11b and 11f), ebb (maximum negative along-strait flow; Figures 11c and
11g), and second slack water (Figure 11d,h). In general, the semidiurnal across-strait flow shows a two-layer
structure with a phase lag of approximately a quarter of a tidal cycle between flow on the two sides of the
strait, while the diurnal tide shows the same two-layer structure but without the phase lag.

At t = 0 × TSD or t = 0 × TD (i.e., flood; Figures 11a and 11e), the semidiurnal or diurnal tidal current vectors
are at a maximum toward the Arctic, with amplitudes as seen in Figure 6 (red lines). At KS02, the across-strait
flow for both the diurnal and semidiurnal tide is dominated by a rotation of the ellipse inclination angle, and
thus the across-strait flow is at a maximum. Water is moving toward Ellesmere Island below 100 m (ellipse
inclinations angles>60∘; Figure 7), and there is significant upward vertical motion due to the steeply sloping
bathymetry. Above this, the ellipse inclination angles are generally<60∘, and water is moving toward Green-
land. At KS10, KS12, and KS14, the semidiurnal across-strait flow is dominated by a fattening of the tidal ellipse,
and therefore, the across-strait flow is small at this point of the tidal cycle (dots in Figure 11a). In contrast, for
the diurnal tides, rotation of the tidal ellipse dominates the across-strait flow throughout Nares Strait, and
thus the diurnal across-strait flow is at a maximum everywhere.

A quarter of a semidiurnal or diurnal tidal cycle later (i.e., t = 0.25 × TSD or t = 0.25 × TD), the along-strait flow
is close to zero. For the diurnal tide everywhere in Nares Strait, and for the semidiurnal tide against Ellesmere
Island, the across-strait flow is zero due to the rectilinear nature of the tidal currents (Figures 11b and 11f).
Away from Ellesmere Island, the semidiurnal across-strait flow is at a maximum and reflects the same pattern
seen at KS02 a quarter of a cycle earlier. At depths where clockwise rotation of the tidal current is observed
(red arrows), water is moving toward Greenland, while at depths characterized by counterclockwise rotation
(blue arrows), water is moving toward Ellesmere Island.

At the midpoint of the tidal cycle (t = 0.50 × TSD or t = 0.50 × TD; Figures 11c and 11g), the semidiurnal or
diurnal tidal current vectors are at a maximum toward Baffin Bay. The two-layer structure throughout Nares
Strait in the diurnal across-strait flow and at KS02 in the semidiurnal across-strait flow reverses, with water
moving toward Ellesmere Island above 100 m (driving a significant vertical motion down the steeply sloping
bathymetry), and toward Greenland below this. At KS10, KS12, and KS14 the semidiurnal across-strait flow is
small, as the tidal ellipses are aligned with the along-strait direction and the across-strait flow is dominated
by a fattening of the tidal ellipse.

A quarter of a tidal cycle later, however, at the second slack water (i.e., t = 0.25 × TSD or t = 0.25 × TD), the
across-strait semidiurnal flow at KS02 and the diurnal flow everywhere has come to a rest, while the clockwise
rotation of the semidiurnal tidal current vector in the upper water column moves water toward Ellesmere
Island, and the counterclockwise rotation of the semidiurnal tidal current vector in the lower water column
moves water toward Greenland (Figures 11d and 11h). Finally, after a full diurnal or semidiurnal tidal period,
the diurnal and semidiurnal tidal current vectors are pointing again toward the Arctic, and the cycle in the
tidal flow through and across Nares Strait begins again.

6. Summary and Implications

The primary goal of this paper has been a descriptive analysis of the tidal currents in Nares Strait in terms
of their propagation and vertical variability. We have observed that the barotropic semidiurnal tides form a
standing wave in Nares Strait, resulting in significantly stronger tides than would be found in a progressive
tidal wave regime. Observation-model comparisons show that only the most recent generation of barotropic
tidal models can recreate the standing wave behavior we observe.
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This result has important implications when using tidal models in studies that explore, for example, the flow
dynamics through Nares Strait, or the wider rapid environmental change that is occurring throughout the
Arctic Ocean. Indeed, as tidal mixing has been shown to have climatically important impacts by modifying
the distribution of temperature and salinity throughout the water column (Holloway & Proshutinsky, 2007;
Luneva et al., 2015), it is critical to use state-of-the-art tidal models that accurately resolve the propagation
of individual barotropic tidal waves, as well as their interaction with topography that lead to vertical mix-
ing through benthic stresses and shear instabilities in the generated baroclinic tides. By mixing heat to the
surface, tides exert an important influence on the sea ice budget in the CAA and the wider Arctic Ocean (Hol-
loway & Proshutinsky, 2007; Luneva et al., 2015; Rippeth et al., 2015), while vertical tidal mixing of salinity and
density may also place an important constraint on the magnitude of the freshwater flux exiting the Arctic
Ocean. Surface tidal currents are also important for the horizontal movement and fracturing of Arctic sea ice
(Kowalik & Proshutinsky, 1994). Thus, the strong tidal currents in Nares Strait are likely to be important for the
formation/breakup of the landfast ice bridges that form to the north and south of the region in the Lincoln
Sea and Smith Sound (Figure 1; Melling, 2000). As the last of the reservoir of thick, multiyear Arctic sea ice that
drains through Nares Strait is replaced with a new, thinner Arctic sea ice type (Ryan & Münchow, 2017), the
balance between wind stress, tide stress, and ice stress that controls the formation of the landfast ice bridges
(Rallabandi et al., 2017) may be altered to such an extent that ice bridges either no longer form, or only form
sporadically. An example of such an event was observed between 2007 and 2009, with an associated 65%
increase in the total freshwater export through Nares Strait (Münchow, 2016; Shroyer et al., 2015).

The existence of semidiurnal standing waves in Nares Strait and the large sea surface height tidal amplitudes
(Figure 2) is, however, a geographic coincidence. The formation of these standing waves relies on the pro-
gressive semidiurnal tidal waves found to the north in the Arctic Ocean interacting perfectly with the similarly
progressive semidiurnal tidal waves found to the south in Baffin Bay. On geological time scales, if continen-
tal rearrangements or the evolution of local or remote ice sheets closed off Nares Strait, or altered the phase
and/or energy of the progressive tidal waves in the Arctic Ocean and Baffin Bay, then tides in the region would
be substantially different. Indeed, both Griffiths and Peltier (2009) and Wilmes and Green (2014) have shown
that Arctic tides during the Last Glacial Maximum were considerably stronger, with enhanced tidal dissipation
and mixing due to internal waves. However, Nares Strait was closed due to the presence of the Laurentide
Ice Sheet, with substantial impacts on the Arctic freshwater budget. Nevertheless, when the Laurentide Ice
Sheet retreated between 9,000 and 8,000 years ago, strong tides reappeared in Nares Strait (Wilmes & Green,
2014), likely due to the establishment of semidiurnal standing waves in the region. Wilmes and Green (2014)
have also shown that present day Nares Strait tides are sensitive to the position of the Antarctic ice sheet
grounding line in the Ross and Weddell seas, since this affects the position of the amphidromic points in the
North Atlantic. Therefore, any climatically induced future changes in the position of these grounding lines
(e.g., Hellmer et al., 2017) may have significant remote impacts on the tidal circulation and freshwater budget
in Nares Strait and the wider Arctic Ocean.

Our results have shown that there are significant variations both in the vertical structure of the tides geo-
graphically across Nares Strait and between the different diurnal and semidiurnal tidal constituents. While a
full analysis of the dynamics that set the vertical structure of the tides is beyond the scope of this study, aspects
of this variability are similar to observations made in Antarctica (Makinson et al., 2006) and elsewhere in the
CAA under landfast ice (Prinsenberg & Bennett, 1989). These similarities suggest that proximity of Nares Strait
to the semidiurnal critical latitude and friction in the bottom and under-ice boundary layers (Prandle, 1982)
are likely playing leading-order roles in setting the vertical structure of the tides. The critical latitude effects
can account for the depth-invariant nature of the diurnal tides compared to the depth-dependent nature of
the semidiurnal tides, as well as the substantial differences in the shape of the tidal ellipses. Significant diver-
gences from the vertical structure that would be expected from critical latitude effects alone are observed,
however, suggesting that other dynamical processes are also important. In the upper water column, where
stratification is important, there is evidence to suggest that phase-coherent baroclinic activity is enhancing
tidal current amplitudes by up to 25%, and the steep side wall of Ellesmere Island places a strong topograph-
ical restriction on the flow. Here there is significant vertical displacement over each tidal cycle, with likely
impacts for the horizontal density gradients found closer to the surface (Rabe et al., 2010; Shroyer et al., 2015).
This vertical motion may well be responsible for the phase-coherent baroclinic activity that is observed in
the upper water column. Furthermore, by modulating the strength of these density gradients over each tidal
cycle, the tides may be driving a residual transport and a net movement of freshwater through the region,
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impacting the importance of Nares Strait in the pan-Arctic freshwater budget (Beszczynska-Möller et al., 2011;
Curry et al., 2014).

This study has built upon our existing knowledge of tidal flow in Nares Strait (Chen et al., 2009; Münchow &
Melling, 2008), raising additional questions regarding the dynamics responsible for controlling the observed
structure of the tides, and the long-term net effect that tidal dynamics may have on the freshwater flux
through the region. Given the climatic importance of understanding the mechanisms that control the fresh-
water flux through Nares Strait and the wider CAA, it is of critical importance that future studies aim to
understand these high-frequency tidal dynamics.

References
Agnew, T. A. (1998). Drainage of multiyear sea ice from the Lincoln Sea. Canadian Meteorological and Oceanographic Society Bulletin, 26,

101–103.
Becker, J. J., Sandwell, D. T., Smith, W. H. F., Braud, J., Binder, B., Depner, J., et al. (2009). Global bathymetry and elevation data at 30 arc

seconds resolution: SRTM30_PLUS. Marine Geodesy, 32, 355–371.
Beszczynska-Möller, A., Woodgate, R., Lee, C., Melling, H., & Karcher, M. (2011). A synthesis of exchanges through the main oceanic gateways

to the Arctic Ocean. Oceanography, 24, 82–99.
Chen, C., Gao, G., Qi, J., Proshutinsky, A., Beardsley, R. C., Kowalik, Z., et al. (2009). A new high-resolution unstructured grid finite volume

Arctic Ocean model (AO-FVCOM): An application for tidal studies. Journal of Geophysical Research, 114, C08017. https://doi.org/10.1029/
2008JC004941

Codiga, D. L. (2011). Unified tidal analysis and prediction using the UTide Matlab functions. Graduate School of Oceanography, University of
Rhode Island.

Copland, L., Mueller, D. R., & Weir, L. (2007). Rapid loss of the Ayles ice shelf, Ellesmere Island, Canada. Geophysical Research Letters, 34,
L21501. https://doi.org/10.1029/2007GL031809

Cummins, P. F., Cherniawsky, J. Y., & Foreman, M. G. G. (2001). North Pacific internal tides from the Aleutian Ridge: Altimeter observations
and modeling. Journal of Marine Research, 59, 167–191.

Curry, B., Lee, C. M., Petrie, B., Moritz, R. E., & Kwok, R. (2014). Multiyear volume, liquid freshwater, and sea ice transports through Davis Strait,
2004. Journal of Physical Oceanography, 44, 1244–1266.

Doodson, A. T. (1921). The harmonic development of the tide-generating potential. Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 100, 305–329.

Dushaw, B. D., Howe, B. M., Cornuelle, B. D., Worcester, P. F., & Luther, D. S. (1995). Barotropic and baroclinic tides in the Central North Pacific
Ocean determined from long-range reciprocal acoustic transmissions. Journal of Physical Oceanography, 25(4), 631–647.

Egbert, G. D., & Erofeeva, S. Y. (2002). Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology,
19, 183–204.

Foldvik, A., Gammelsrød, T., Nygaard, E., & Østerhus, S. (2001). Current measurements near Ronne ice shelf: Implications for circulation and
melting. Journal of Geophysical Research, 106, 4463–4477.

Foldvik, A., Middleton, J. H., & Foster, T. D. (1990). The tides of the southern Weddell Sea. Deep Sea Research, 37, 1345–1362.
Foreman, M. G. G. (1977). Manual for tidal heights analysis and prediction (Pacific Marine Science Report 77-10). Patricia Bay: Institute of

Ocean Sciences.
Foreman, M. G. G. (1978). Manual for tidal currents analysis and prediction (Pacific Marine Science Report 78-6). Patricia Bay: Institute of

Ocean Sciences.
Foreman, M. G. G., & Henry, R. F. (1989). The harmonic analysis of tidal model time series. Advances in Water Resources, 12, 109–120.
Godin, G. (1972). The analysis of tides. Toronto: University of Toronto Press.
Greisman, P., Grant, S., Blaskovich, A., & van Hardenburg, B. (1986). Tidal propagation measurements in Baffin Bay, Lancaster Sound, and

Nares Strait. Canadian Contractor Report of Hydrography and Ocean Sciences No. 25, Bedford Institute of Oceanography.
Griffiths, S. D., & Peltier, W. R. (2009). Modeling of polar ocean tides at the Last Glacial Maximum: Amplification, sensitivity, and climatologi-

cal implications. Journal of Climate, 22, 2905–2924.
Haine, T. W. N., Curry, B., Gerdes, R., Hansen, E., Karcher, M., Lee, C., et al. (2015). Arctic freshwater export: Status, mechanisms, and prospects.

Global and Planetary Change, 125, 13–35.
Hellmer, H. H., Kauker, F., Timmermann, R., & Hattermann, T. (2017). The fate of the Southern Weddell Sea continental shelf in a warming

climate. Journal of Climate, 30, 4337–4350.
Holloway, G., & Proshutinsky, A. (2007). Role of tides in Arctic ocean/ice climate. Journal of Geophysical Research, 112, C04S06.

https://doi.org/10.1029/2006JC003643
Huntley, H. S., & Ryan, P. (2018). Wind effects on flow patterns and net fluxes in density-driven high-latitude channel flow. Journal of

Geophysical Research: Oceans, 123, 305–323. https://doi.org/10.1002/2017JC012748
Johns, W. E., Baringer, M. O., Beal, L. M., Cunningham, S. A., Kanzow, T., Bryden, H. L., et al. (2011). Continuous, array-based estimates of

Atlantic Ocean heat transport at 26.5∘N. Journal Climate, 24, 2429–2449.
Kowalik, Z., & Proshutinsky, A. Y. (1993). Diurnal tides in the Arctic Ocean. Journal of Geophysical Research, 98, 16,449–16,468.
Kowalik, Z., & Proshutinsky, A. Y. (1994). The Arctic Ocean tides. In O. M. Johannessen, R. D. Muench, & J. E. Overland (Eds.), The polar

oceans and their role in shaping the global environment, Geophysical Monograph Series (Vol. 85, pp. 137–158). Washington, DC: American
Geophysical Union.

Kulikov, E. A., Rabinovich, A. B., & Carmack, E. C. (2010). Variability of baroclinic tidal currents on the Mackenzie Shelf, the Southeastern
Beaufort Sea. Continental Shelf Research, 30, 656–667.

Luneva, M. V., Aksenov, Y., Harle, J. D., & Holt, J. T. (2015). The effects of tides on the water mass mixing and sea ice in the Arctic Ocean.
Journal of Geophysical Research: Oceans, 120, 6669–6699. https://doi.org/10.1002/2014JC010310

Makinson, K., Schröder, M., & Østerhus, S. (2006). Effect of critical latitude and seasonal stratification on tidal current profiles along Ronne
ice front, Antarctica. Journal of Geophysical Research, 111, C03022. https://doi.org/10.1029/2005JC003062

Melling, H. (2000). Exchanges of freshwater through the shallow straits of the North American Arctic. In E. L. Lewis, E. P. Jones, P. Lemke,
T. D. Prowse, & P. Wadhams (Eds.), The freshwater budget of the arctic ocean (Vol. 70, pp. 479–502). Dordrecht, Netherlands: NATO Science
Series: Springer.

Acknowledgments
We would like to acknowledge and
thank Andreas Münchow for his
invaluable contribution to the funding,
deployment, and recovery of the ADCP
instrument array in Nares Strait. We
thank the officers and crew of USCGC
Healy and CCGS Henry Larsen for all
their hard work during deployment and
recovery. We also thank technicians
Peter Gamble, Jonathan Poole, Ron
Lindsay, and Dave Huntley, whose
capabilities were essential to the field
component of this Canadian Arctic
Through-flow Study. Funding for the
operations of and capital equipment
needed for this work was provided by
the National Science Foundation (grant
OPP-0230236) and by the Canadian
Department of Fisheries and
Oceans—staff, institutional support,
and logistical infrastructure. H. L. J. and
P. D. were funded by the Natural
Environment Research Council, grant
NE/H01988X/1. We are also grateful for
the comments from Laurie Padman and
two anonymous reviewers that
significantly improved the manuscript.
The data used in this study can be
found at https://arcticdata.io/catalog/
#view/doi:10.5065/D698854C, and the
TPXO8-atlas data can be downloaded
from http://volkov.oce.orst.edu/tides/
tpxo8_atlas.html.

DAVIS ET AL. 300

https://doi.org/10.1029/2008JC004941
https://doi.org/10.1029/2008JC004941
https://doi.org/10.1029/2007GL031809
https://doi.org/10.1029/2006JC003643
https://doi.org/10.1002/2017JC012748
https://doi.org/10.1002/2014JC010310
https://doi.org/10.1029/2005JC003062
https://arcticdata.io/catalog/#view/doi:10.5065/D698854C
https://arcticdata.io/catalog/#view/doi:10.5065/D698854C
http://volkov.oce.orst.edu/tides/tpxo8_atlas.html
http://volkov.oce.orst.edu/tides/tpxo8_atlas.html


Journal of Geophysical Research: Oceans 10.1029/2018JC014122

Melling, H., Agnew, T. A., & Falkner, K. K. (2008). Fresh-water fluxes via Pacific and Arctic outflows across the Canadian Polar shelf. In R.
R. Dickson, J. Meincke, & P. Rhines (Eds.), Arctic-Subarctic ocean fluxes: Defining the role of the Northern Seas in climate (pp. 193–247).
Dordrecht, Netherlands: Springer-Verlag.

Melling, H., Johnston, P. H., & Riedel, D. A. (1995). Measurements of the underside topography of sea ice by moored subsea sonar. Journal of
Atmospheric and Oceanic Technology, 12, 589–602.

Mooers, C. N. K. (1973). A technique for the cross spectrum analysis of pairs of complex-valued time series, with emphasis on properties of
polarized components and rotational invariants. Deep Sea Research and Oceanographic Abstracts, 20, 1129–1141.

Münchow, A. (2016). Volume and freshwater flux observations from Nares Strait to the West of Greenland at daily time scales from 2003 to
2009. Journal of Physical Oceanography, 46, 141–157.

Münchow, A., & Melling, H. (2008). Ocean current observations from Nares Strait to the west of Greenland: Interannual to tidal variability
and forcing. Journal of Marine Research, 66, 801–833.

Münchow, A., Melling, H., & Falkner, K. K. (2006). An observational estimate of volume and freshwater flux leaving the Arctic Ocean through
Nares Strait. Journal of Physical Oceanography, 36, 2025–2041.

Munk, W. H., Zetler, B., & Groves, G. W. (1965). Tidal cusps. Geophysical Journal of the Royal Astronomical Society, 10, 211–219.
Padman, L., & Erofeeva, S. (2004). A barotropic inverse tidal model for the Arctic Ocean. Geophysical Research Letters, 31, L02303.

https://doi.org/10.1029/2003GL019003
Pawlowicz, R., Beardsley, B., & Lentz, S. (2002). Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Computers

& Geosciences, 28, 929–937.
Prandle, D. (1982). The vertical structure of tidal currents. Geophysical & Astrophysical Fluid Dynamics, 22, 29–49.
Prinsenberg, S. J., & Bennett, E. B. (1989). Vertical variations of tidal current profiles in shallow land fast ice-covered regions. Journal of

Physical Oceanography, 19, 1268–1278.
Proshutinsky, A. Y. (1991). Tidal water and ice dynamics in the Arctic Ocean. In Proceedings of the international conference on the role of the

polar regions in global change vol. 1, Geophysical Institute, University of Alaska Press, pp. 296–303.
Rabe, B., Johnson, H. L., Münchow, A., & Melling, H. (2012). Geostrophic ocean currents and freshwater fluxes across the Canadian polar shelf

via Nares Strait. Journal of Marine Research, 70, 603–640.
Rabe, B., Karcher, M., Kauker, F., Schauer, U., Toole, J. M., Krishfield, R. A., et al. (2014). Arctic Ocean basin liquid freshwater storage trend

1992–2012. Geophysical Research Letters, 41, 961–968. https://doi.org/10.1002/2013GL058121
Rabe, B., Münchow, A., Johnson, H. L., & Melling, H. (2010). Nares Strait hydrography and salinity field from a 3-year moored array. Journal of

Geophysical Research, 115, C07010. https://doi.org/10.1029/2009JC005966
Rallabandi, B., Zheng, Z., Winton, M., & Stone, H. A. (2017). Formation of sea ice bridges in narrow straits in response to wind and water

stresses. Journal of Geophysical Research: Oceans, 122, 5588–5610. https://doi.org/10.1002/2017JC012822
Rippeth, T. P., Lincoln, B. J., Lenn, Y.-D., Green, J. A. M., Sundfjord, A., & Bacon, S. (2015). Tide-mediated warming of Arctic halocline by Atlantic

heat fluxes over rough topography. Nature Geoscience, 8, 191–194.
Robertson, R. (2005). Baroclinic and barotropic tides in the Weddell Sea. Antarctic Science, 17, 461–474.
Ryan, P. A., & Münchow, A (2017). Sea ice draft observations in Nares Strait from 2003 to 2012. Journal of Geophysical Research: Oceans, 122,

3057–3080. https://doi.org/10.1002/2016JC011966
Samelson, R. M., Agnew, T., Melling, H., & Münchow, A. (2006). Evidence for atmospheric control of sea-ice motion through Nares Strait.

Geophysical Research Letters, 33, L02506. https://doi.org/10.1029/2005GL025016
Segar, D. A. (2012). Introduction to ocean sciences (3rd ed.).
Shroyer, E. L., Samelson, R. M., Padman, L., & Münchow, A. (2015). Modeled ocean circulation in Nares Strait and its dependence on

landfast-ice cover. Journal of Geophysical Research: Oceans, 120, 7934–7959. https://doi.org/10.1002/2015JC011091
Smith, W. H. F., & Sandwell, D. T. (1997). Global sea floor topography from satellite altimetry and ship depth soundings. Science, 26,

1956–1962.
Stroeve, J. C., Serreze, M. C., Holland, M. M., Kay, J. E., Malanik, J., & Barrett, A. P. (2012). The Arctic’s rapidly shrinking sea ice cover: A research

synthesis. Climate Change, 110, 1005–1027.
Sverdrup, H. L., Johnson, M. W., & Fleming, R. H. (1942). The oceans: Their physics, chemistry, and general biology (pp. 516–604). New York:

Prentice-Hall.
Visbeck, M., & Fischer, J. (1995). Sea surface conditions remotely sensed by upward-looking ADCPs. Journal of Atmospheric and Oceanic

Technology, 1, 141–149.
Wilmes, S.-B., & Green, J. A. M. (2014). The evolution of tides and tidal dissipation over the past 21,000 years. Journal of Geophysical Research:

Oceans, 119, 4083–4100. https://doi.org/10.1002/2013JC009605
Woodgate, R. A. (2018). Increases in the Pacific inflow to the Arctic from 1990 to 2015, and insights into seasonal trends and driving

mechanisms from year-round Bering Strait mooring data. Progress in Oceanography, 160, 124–154.

DAVIS ET AL. 301

https://doi.org/10.1029/2003GL019003
https://doi.org/10.1002/2013GL058121
https://doi.org/10.1029/2009JC005966
https://doi.org/10.1002/2017JC012822
https://doi.org/10.1002/2016JC011966
https://doi.org/10.1029/2005GL025016
https://doi.org/10.1002/2015JC011091
https://doi.org/10.1002/2013JC009605

	Abstract
	Plain Language Summary
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


