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Abstract Using data covering the years 2005–2009, we study the linear and nonlinear responses of log10
relativistic electron flux measured at geosynchronous orbit to ultralow frequency (ULF) Pc5, very low
frequency (VLF) lower band chorus, and electromagnetic ion cyclotron (EMIC) waves. We use regression
models incorporating a quadratic term and a synergistic interaction term. Relativistic electron fluxes respond
to ULF Pc5 and VLF chorus waves both linearly and nonlinearly. ULF Pc5 waves contribute both to electron
enhancement (at midrange wave activity) and loss (at high levels of wave activity). Nonlinear effects of VLF
chorus are positive (i.e., cause acceleration), adding to the positive linear effects. Synergistic interaction
effects between high levels of VLF chorus and midrange values of ULF Pc5 waves result in more electron
acceleration than would be predicted by a simpler additive model. Similarly, the negative effect of EMIC
waves (losses) is more influential than would be predicted by a linear model when combined with either VLF
chorus or ULF Pc5 waves. During disturbed conditions (high Kp), geostationary electron flux responds more
strongly to the same levels of ULF Pc5 and VLF chorus waves. This flux also responds more to ULF Pc5 and
chorus waves during southward Bz conditions. Unstandardized regression coefficients for models
incorporating nonlinear and synergistic effects of waves are presented for use in future modeling.

1. Introduction

At geosynchronous orbit, the level of relativistic electron flux is in part controlled by wave-particle interactions.
Flux enhancement follows both enhanced ultralow frequency (ULF) Pc5 wave activity (2–7 mHz; Borovsky &
Denton, 2014; Degtyarev et al., 2009; Lam, 2017; Mathie & Mann, 2000; Mann et al., 2004; O’Brien et al.,
2003; Rostoker et al., 1998; Simms et al., 2016; Su et al., 2015) and very low frequency (VLF) lower band chorus
wave activity (0.1–0.5 fce, the electron cyclotron frequency) (Horne et al., 2005; Iles et al., 2006; Meredith et al.,
2002, 2003; Miyoshi et al., 2003, 2007; O’Brien et al., 2003; Spasojevic & Inan, 2005; Thorne et al., 2013; Turner
et al., 2013, 2014). EMIC (electromagnetic ion cyclotron) waves contribute to electron loss through pitch angle
scattering (Blum et al., 2015; Clilverd et al., 2007, 2015; Engebretson et al., 2015; Gao et al., 2015; Z. Li et al., 2014;
Miyoshi et al., 2008; Rodger et al., 2008; Summers & Thorne, 2003; Turner et al., 2014; Usanova et al., 2014).

Co-occurring ULF Pc5 waves and a VLF chorus wave proxy have been observed to increase relativistic
electron flux additively at lower L shells (L ~ 4.5), although ULF Pc5 effects on flux dominated over the VLF
proxy at geosynchronous orbit (O’Brien et al., 2003). However, previously, we have found that VLF chorus
L4 satellite observations from DEMETER (Detection of Electro-Magnetic Emissions Transmitted from
Earthquake Regions) correlate) well with enhanced flux at geosynchronous orbit. VLF chorus acts
additively in combination with ULF Pc5 effects to produce flux enhancements (Simms et al., 2018). There
has also been speculation that any loss processes associated with VLF and EMIC waves combine in their
effects (Mourenas et al., 2016; Summers & Ma, 2000). Observational evidence supports this theory of additive
action by VLF and EMIC waves in their ability to scatter ultrarelativistic electrons (Zhang et al., 2017).

However, the combined effect of several wave types on flux may not be simply a matter of adding their influ-
ences together. They could act synergistically, with each factor having more or less influence at varying levels
of the other. This can be tested with an interaction term in multiple regression. By multiplying the factors
together and entering this new variable into the analysis, the hypothesis that these factors do more than
act additively can be tested.
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In addition to these interactions (represented by a multiplicative factor in regression), wave effects may not
be linear over their whole range. Nonlinear effects can be explored with the addition of a squared term,
thereby creating a quadratic model.

Using regression techniques, we produce prediction models using wave parameters from observed data
inputs, incorporating both interaction terms and quadratic terms. In this study, we use autoregressive (AR)
models, to account for the high persistence of relativistic electron flux from day to day. We use data only from
the day previous to the flux measurement (“lag 1”), where wave effects are strongest, and analyze only two
wave types in each model so as to be able to present them graphically. In our previous analyses (Simms et al.,
2018), predictor variables averaged over the day previous to that on which flux was measured (“lag 1”)
correlated better with relativistic electron geostationary flux; we therefore use lag 1 predictor data for our
models here. As in our previous paper, we also add an AR term: the flux on lag 1. For example, the model
incorporating ULF Pc5 and VLF chorus would be represented as

Log Fluxt ¼ b0 þ bAR�Log Fluxt�1 þ b1�ULFt�1 þ b2�ULF2t�1 þ b3�Chorust�1 þ b4�Chorus2t�1

þ b5�ULFt�1�Chorust�1 (1)

where b0 is the intercept of the predicted regression line, bAR the dependence of flux on its own value the
day before (the autoregressive term), b1 and b2 the slopes of the relationship between the linear and quad-
ratic (nonlinear component) ULF Pc5 terms with flux, b3 and b4 the parameters describing the dependence
on the linear and quadratic values of chorus, and b5 the coefficient describing the synergistic interaction
effect of combined waves. This equation can be calculated by the ordinary least squares method (Neter
et al., 1985).

We analyze all available data with this model then break the data into quiet times and disturbed times for
separate analyses. We also break the data into southward and northward Bz, based on the Bz daily average.

2. Data and Methods

Over the years 2005–2009, we used daily averaged log10 electron fluxes (log (electrons/(cm2/s/sr/keV))) for
relativistic electrons in four energy channels: 0.7–1.8, 1.8–3.5, 3.5–6.0, and 6.0–7.8 MeV. Flux data come from
the Los Alamos National Laboratory (LANL) Energetic Spectrometer for Particles (ESP) instruments located at
geosynchronous orbit. ULF Pc5 was obtained from a ground-based ULF index covering local times
0500–1500 in the Pc5 range (2–7 mHz) obtained from magnetometers stationed at 60–70°N corrected
geomagnetic latitude (nT2/Hz; Kozyreva et al., 2007). VLF lower band chorus (0.1–0.5 fce) daily averaged
intensity (log (μV2/m2/Hz)) is from the Instrument Champ Electrique (ICE) on the DEMETER satellite
(Berthelier et al., 2006). We use L 4 (4.0–4.99), the highest L shell for which there is good data coverage, aver-
aged over the dayside passes of the satellite (LT 10:30). We use prenoon (dayside) chorus because it is found
over a broader range of latitudes than premidnight (nightside) chorus (L. Y. Li et al., 2009; Thorne, 2010;
Tsurutani & Smith, 1977).

Daily averages of interplanetary magnetic field (IMF) Bz and the Kp index are from the Omniweb database.
Quiet times are defined as the lowest 75% of Kp measurements (Kp < 2.3, corresponding to the canonical
Kp of <2+, 75% of the data points or 1146 days). Disturbed time is the highest 25% of Kp (Kp > 2.3 (>2+),
25% of the data points or 387 days). The southward Bz category contains those days on which average
Bz < �0.3 (lower third, 511 days), while northward contains days where average Bz > 0.5 (upper
third, 511 days).

EMIC wave power data are from the Halley, Antarctica, British Antarctic Survey (BAS) ground station located at
L 4.6. We use the number of hours per day during which there was high EMIC activity (>10�3 nT2/Hz) in the
<1-Hz band. Broadband activity was excluded.

For each of the four relativistic electron flux channels, using two wave types at a time, we perform multiple
regressions with a linear and a squared term for each predictor, along with an interaction term derived from
multiplying the two predictors together. The squared term fits a quadratic model to the data for each vari-
able, while the interaction term tests the ability of one variable to influence the action of the other. As pre-
dictor data from 1 day previous (“lag 1”) correlates better with relativistic electron geostationary flux
(Simms et al., 2018), we use lag 1 predictor data in these models. We also add an AR term: lag 1 flux. This
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reduces the autocorrelation in the time series analysis so that the assumptions of regression analysis are not
violated, as well as removing the effect of flux persistence so we can clearly see the effects of waves. We use
unstandardized regression coefficients to produce the figures in order to show the influence of each variable
on its own measurement scale. Graphs of the fitted regression equations (e.g., equation (1)) derived from
observed data are shown in the figures. Note that the z axis (log10 flux) varies between each panel. Putting
them on the same scale would have obscured any patterns due to the wide variation in flux associated
with each variable at each energy level. However, the color scale (showing the log10 flux levels) is the
same across all panels and figures.

Statistical analyses were performed in IBM SPSS Statistics, IDL, and MATLAB. Statistically significant regression
coefficients (p value < .05 as reported in the results) mean that we have reasonable confidence that there is
an actual association between the variables. The p value gives the probability that the null hypothesis is true
(i.e., no association) given the distribution of the data. Thus, a low p value gives us reason to reject the null
hypothesis and accept that there is an association between variables. Nonsignificant results (p value
>0.05) mean we do not have enough evidence to reject this correlation between parameters (Neter et al.,
1985). The setting of 0.05 as the arbitrary level for statistical significance is well established (e.g., Cowles &
Davis, 1982, provide a historical perspective).

3. Results

Figure 1 shows the regression analyses for all available data. Four separate energy channels are shown on
each row, with row A depicting the response of the LANL log10 relativistic electron fluxes to variations in
VLF chorus and ULF Pc5 wave intensity. In order to reduce congestion in the plots the units of each

Figure 1. Linear, nonlinear, and synergistic effects between pairs of wave types. (A) ULF Pc5 and VLF chorus, (B) ULF Pc5 and EMIC, and (C) EMIC and VLF chorus.
Autoregressive lag 1 models include squared and multiplicative terms that test the nonlinearity and interactive effects, respectively, for ULF Pc5 power (nT2/Hz),
lower band VLF chorus intensity (log (μV2/m2/Hz)), and EMIC (the number of hours per day during which there was high EMIC activity (>10�3 nT2/Hz) in the <1 Hz
band) waves on relativistic electron flux (z axis: Log (electrons/(cm2/s/sr/keV). ULF = ultralow frequency; VLF = very low frequency; EMIC = electromagnetic ion
cyclotron.
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parameter are not added to the plot labels (but are defined in section 2 above). Row B compares the influence
of EMIC and ULF Pc5 waves on the log10 electron fluxes, while row C compares EMIC and VLF chorus waves.

The influence of ULF Pc5 does not follow a linear trend over its whole observed range (Figures 1A and 1B and
Tables 1 and 2). The peak influence occurs at midrange powers (~60 nT2/Hz; letter a of Figure 1A. These
trends are also visible in Figure 1B but are not labeled). Above this midrange, the influence of ULF Pc5
decreases, with the lowest influence at the highest levels of the index (b). This is described by the negative
quadratic term and is strongest in the lowest three energy channels (Table 1, the coefficients of the ULF
Pc52 term). However, because the positive linear effect leading to increased flux is smaller above 6.0 MeV,
the major factor at this highest energy is the negative quadratic effect, resulting in a low predicted flux at
the highest ULF power range (c). Below 30 nT2/Hz, ULF Pc5 influence on the lower-energy flux channels
grows approximately linearly (d). The negative quadratic term describing the influence of the upper range
of ULF Pc5 is more pronounced when this wave is paired with VLF chorus in the analysis (Figure 1A).

Increased VLF chorus has a positive influence on flux which is more pronounced when paired with EMIC
waves (Figures 1A and 1C and Tables 1 and 3; letter e). When paired with ULF Pc5 waves, the positive VLF
chorus effect on higher energies is explained mostly by the squared (nonlinear) term as shown by the signif-
icant effects of Chorus2 in Table 1 compared to the nonsignificant linear effects of Chorus.

EMIC waves show an increasingly negative, mostly linear effect at higher flux energies (Figures 1B and 1C;
letter f). Quadratic effects of EMIC waves are not statistically significant except at the lowest energy and when
paired with ULF Pc5 (EMIC^2 term of Tables 2 and 3).

Waves interact synergistically in some situations. ULF Pc5 and VLF chorus mutually increase their effects (ULF
Pc5 X Chorus terms of Table 1). This interaction is statistically significant at higher flux energies (3.5–7.8 MeV;
terms where p< .05). ULF Pc5 and EMIC waves tend to depress the other’s effect at the two lower channels of
flux (Table 2: negative ULF Pc5 X EMIC interaction term at 0.7–1.8 and 1.8–3.5 MeV). In Figure 1B EMIC waves
act to reduce low-energy electron fluxes in the presence of high ULF Pc5 wave intensities. They appear to act
in synergy with ULF Pc5 waves at the highest-energy electron channels (3.5–7.8 MeV), but this effect is not

Table 1
Unstandardized Regression Coefficients of the ULF Pc5 X Chorus Model

Predictors 0.7–1.8 MeV 1.8–3.5 MeV 3.5–6.0 MeV 6.0–7.8 MeV

Intercept 0.166390* �0.239262* �0.405719* �0.358266*
ULF Pc5 0.014519* 0.020247* 0.018550* 0.006877*
Chorus 0.052503 0.102895 0.038928 0.017680
ULF Pc52 �0.000106* �0.000160* �0.000176* �0.000069*
Chorus2 �0.019033 0.004751 0.035591* 0.016232*
ULF Pc5 X Chorus 0.000611 0.001900 0.004420* 0.001946*
Lag1 Flux (AR term) 0.774144* 0.788388* 0.896287* 0.829303*

Note. All predictors are lag 1 (measured 1 day before flux). N = 1,534 days. ULF = ultralow frequency; AR = autoregressive.
*Effect is statistically significant (p < 0.05).

Table 2
Unstandardized Regression Coefficients of the ULF Pc5 X EMIC Model

Predictors 0.7–1.8 MeV 1.8–3.5 MeV 3.5–6.0 MeV 6.0–7.8 MeV

Intercept �0.074965* �0.452816* �0.349185* �0.320530*
ULF Pc5 0.022413* 0.028532* 0.016394* 0.005195*
EMIC 0.019205* 0.009558 �0.035587* �0.011929*
ULF Pc52 �0.000141* �0.000164* �0.000079* �0.000020*
EMIC2 �0.002066* �0.001424 0.001171 �0.000083
ULF Pc5 X EMIC �0.000802* �0.000976* �0.000111 0.000145
Lag1 Flux (AR term) 0.811735* 0.816074* 0.917664* 0.844721*

Note. All predictors are lag 1 (measured 1 day before flux). N = 1,475 days. ULF = ultralow frequency;
EMIC = electromagnetic ion cyclotron; AR = autoregressive.
*Effect is statistically significant (p < 0.05).
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statistically significant (ULF Pc5 X EMIC terms of Table 2). In Figure 1C the EMIC waves act to quench the posi-
tive influence of increasing VLF chorus intensities, although this quenching action becomes less effective in
the higher energy channels (negative EMIC X Chorus terms of Table 3).

3.1. Wave Effects During Quiet Versus Disturbed Times

To study whether wave effects during geomagnetically quiet days are different than on disturbed days, we
performed the same regression analyses as above, but with data separated into low Kp (<2.3 (2+), lowest
75th percentile of daily averages) versus high Kp (>2.3 (2+), highest 25th percentile of daily averages)
(Figures 2–4). The effects of wave intensity variations during quiet times are less influential. This may in part
be because of a lower range of observed intensities during low Kp. In less disturbed times the ULF Pc5 index
varies from 0 to 40 nT2/Hz instead of 0–125 nT2/Hz at high Kp. VLF chorus also exhibits a lower dynamic range
during quiet periods to a range of �2.5 to 1 log (μV2/m2/Hz) versus �2 to 1.75 during high Kp. However, the
range in the number of hours high power EMIC waves are observed is higher during quiet periods, with EMIC
activity occurring up to 14 hr/day instead of up to 11 hr/day during high Kp. These differences in predictor
ranges may affect the response of flux, most dramatically to the expanded ULF Pc5 range during disturbed
times. However, it is also possible that this reflects changes in the ionosphere which influences detection
of EMIC waves in the ground-based data.

Table 3
Unstandardized Regression Coefficients of the EMIC X Chorus Model

Predictors 0.7–1.8 MeV 1.8–3.5 MeV 3.5–6.0 MeV 6.0–7.8 MeV

Intercept 0.505595* 0.243309* 0.055587* �0.186412*
EMIC �0.026310* �0.038423* �0.044165* �0.008977
Chorus 0.208823* 0.329763* 0.280662* 0.111863*
EMIC2 �0.000858 �0.000390 0.001046 �0.000287
Chorus2 �0.008829 0.025636* 0.067326* 0.030831*
EMIC X Chorus �0.020428* �0.019829* �0.006749 �0.000572
Lag1 Flux (AR term) 0.784324* 0.805480* 0.918211* 0.843477

Note. All predictors are lag 1 (measured 1 day before flux). N = 1,375 days. EMIC = electromagnetic ion cyclotron;
AR = autoregressive.
*Effect is statistically significant (p < 0.05).

Figure 2. Linear, nonlinear, and synergistic effects of ULF Pc5 and VLF chorus waves during (A) quiet� low Kp (<2.3, lower 75th percentile) and (B) disturbed� high
Kp (>2.3, upper 25th percentile). Autoregressive lag 1 models include squared and multiplicative terms that test the nonlinear and interactive effects. ULF = ultralow
frequency; VLF = very low frequency.
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The response of flux at low Kp to ULF Pc5 waves is always positive (e.g., letter a, Figures 2 and 3), while at high
Kp electron flux peaks during midrange ULF Pc5 values as it does in the full data set (b). However, the greater
range of ULF Pc5 under high Kp conditions is not entirely responsible for the higher flux response. In the low-
est energy channel (0.7–1.8 MeV) the response of flux to ULF Pc5 is higher even in the 0–40 nT2/Hz range of
the ULF Pc5 index when Kp is high.

At low Kp, when VLF chorus is paired with ULF Pc5, the linear flux response is mostly positive over the energy
levels (e.g., Figure 2, letter c), but a negative square term (quadratic effect) causes a leveling off of the
response (a downward trend) as VLF chorus increases (e.g., letter d of Figure 2). This response is most visible
at 0.7–1.8 MeV. However, at high Kp, while the response to VLF chorus is linear at the lower energies (e), the

Figure 3. Linear, nonlinear, and synergistic effects of ULF Pc5 and EMIC waves during (A) quiet � low Kp (<2.3, lower 75th percentile) and (B) disturbed � high Kp
(>2.3, upper 25th percentile). Autoregressive lag 1 models include squared and multiplicative terms that test the nonlinear and interactive effects. ULF = ultralow
frequency; EMIC = electromagnetic ion cyclotron.

Figure 4. Linear, nonlinear, and synergistic effects of EMIC and VLF chorus waves during (A) quiet� low Kp (<2.3, lower 75th percentile) and (B) disturbed� high Kp
(>2.3, upper 25th percentile). Autoregressive lag 1 models include squared and multiplicative terms that test the nonlinear and interactive effects.
EMIC = electromagnetic ion cyclotron; VLF = very low frequency.
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positive square term (quadratic) at the higher energies becomes more influential (f), describing a more
intense response to VLF chorus. This same general pattern is seen when VLF chorus is paired with EMIC waves
(Figure 4).

At low Kp, the negative response of electron flux levels to EMIC waves is weak, with lower energies even
showing a positive response (Figures 3 and 4, letter g).

The high Kp response for all three wave types is close to that seen in the full analysis. Most of the effect of
waves in the full analysis is thus due to what occurs during disturbed conditions, but analyzing the
high Kp days separately shows an even stronger flux response to wave effects. The lowest energy channel
(0.7–1.8 MeV) shows a high flux at high Kp even at the lowest wave activity. This indicates that higher fluxes
in this energy range are mainly due to additional processes occurring during disturbed times and not neces-
sarily to these waves alone.

3.2. Wave Effects During Southward Vs. Northward Bz

As EMIC waves do not show dramatic nonlinear or interactive effects, we present only the ULF Pc5 X VLF
Chorus model split by southward versus northward daily averaged interplanetary magnetic field Bz
(Figure 5). Under conditions of more southward Bz, ULF Pc5 waves are more effective at enhancing flux in
the lowest energy channels. This effect drops off at the higher energies. Even high values of ULF Pc5 result
in increased flux at the lowest energy as the negative quadratic effect does not contribute appreciably.
However, midrange values of ULF Pc5 wave intensity increase higher-energy flux more than the highest
values of ULF Pc5 intensity. During northward Bz, the nonlinear negative effect of ULF Pc5 is stronger than
during southward Bz. Increases in ULF Pc5 result in lowering of flux.

Increased VLF chorus results in increased flux at all energy levels during southward Bz, with the increases
becoming more nonlinear with increased electron energy. During northward Bz, there is little effect of VLF
chorus when ULF Pc5 is weak. However, as in our previous analysis, when the ULF Pc5 wave intensity is
~60nT2/Hz VLF chorus waves act to increase electron flux levels, particularly for the lower energy channels.

4. Discussion

In a previous paper, we studied the combined linear effects of ULF Pc5, VLF chorus, and EMIC waves on log10
flux of geosynchronous orbit relativistic trapped electrons (Simms et al., 2018). In the present paper, we
further this exploration by investigating the nonlinear effects of these waves, as well as possible synergistic
interactions between pairs of wave types.

Figure 5. Linear, nonlinear, and synergistic effects of ULF Pc5 and VLF chorus waves during (A) southward Bz (daily average of Bz < �0.3) and (B) northward Bz
(daily average Bz > 0.5). Autoregressive lag 1 models include squared and multiplicative terms that test the nonlinear and interactive effects. ULF = ultralow
frequency; VLF = very low frequency.
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At all four of the energy levels studied, ULF Pc5 power is most influential when its index is at midrange values.
Its influence on flux levels falls off at the highest values of the index as the negative nonlinear quadratic term
in the regression model becomes more influential. At the lower flux energies in particular (0.7–3.5 MeV), the
nonlinear response of flux to ULF Pc5 waves could mean that a strictly linear model would find no observed
correlation with flux if a wide range of ULF Pc5 values are considered. Positive correlations with flux may only
be found if ULF Pc5 waves are restricted to the lower to midrange values. This could account for conflicting
results in correlations of ULF Pc5 waves with flux in earlier studies.

ULF Pc5 waves have been predicted to contribute to electron loss by outward radial diffusion during shock
events (Brautigam & Albert, 2000; Degeling et al., 2008; Hudson et al., 2014; Loto’aniu et al., 2010; Shprits
et al., 2006; Ukhorskiy et al., 2009; Zong et al., 2012). Although linear regression models in our previous paper
only showed evidence of flux enhancement by ULF Pc5 waves and no loss (Simms et al., 2018), the nonlinear
terms in our present study show that the upper range of ULF Pc5 intensities leads to reduced flux, in accord
with the above studies. In our present study, ULF Pc5 induced loss is most prominent at energies >3.5 MeV.
Acceleration is mainly accomplished by moderate ULF Pc5 activity (~60 nT2/Hz in this study), and mostly into
energies between 0.7 and 3.5 MeV.

Nonlinear effects of VLF chorus are more modest, but positive. This results in more flux at the highest inten-
sity ranges of chorus than would be expected from a strictly linear model. This has been predicted by test-
particle modeling investigating the effect of large amplitude chorus (Bortnik et al., 2008; Cattell et al.,
2008). VLF chorus appears more influential when ULF Pc5 is not also included in the model. This may be
due to chorus (when ULF Pc5 is not present) representing the ULF Pc5 effects due to the high correlation
between the two wave types. VLF chorus is most influential on the lower-energy relativistic electrons. Its
reduced effect on higher energies may result from chorus also driving the compensating effect of precipita-
tion of the most energetic electrons (Bortnik et al., 2006; Bortnik & Thorne, 2007; Hikishima et al., 2010; Lam
et al., 2010; Lorentzen et al., 2001; Millan & Thorne, 2007; Orlova & Shprits, 2010).

Ozeke et al. (2017) have postulated that VLF chorus does not contribute to increased flux, as their model,
using ULF wave diffusion, can adequately explain flux levels on the basis of ULF Pc5 waves alone. Jaynes
et al. (2015) argued that chorus is the primary driver, at least after a depletion event. Our results show that
both waves contribute to flux enhancements. Although one or the other may dominate as the primary driver
in individual events, in general, we find that enhancements are driven by both waves in combination, both
additively, and, at the higher energy levels, synergistically. Previous work has shown that VLF chorus and
ULF Pc5 effects at geostationary orbit may add to enhance electron flux (O’Brien et al., 2003). However, the
significant interaction term we see in our regression models shows that their combined action is not just
additive but synergistic as well. Higher chorus levels result in more effective enhancement by midrange
ULF Pc5, and vice versa. The highest flux levels are seen at high chorus intensity levels and midrange ULF
Pc5 index levels. This may be the result of ULF Pc5 waves, through radial diffusion, preaccelerating electrons
to subrelativistic energies. Once these electrons are at this energy level, VLF chorus waves are more effective
at accelerating them to relativistic speeds.

The nonlinearity of the ULF Pc5 influence may be responsible for differing conclusions in the literature about
its effectiveness relative to VLF chorus. Our results show that if ULF Pc5 occurs at low to moderate levels in a
given study, a positive linear relationship between it and flux will be found. However, the inclusion of the
upper range of ULF Pc5 levels in another study could lead to the conclusion that there is a negative relation-
ship or none at all, leaving VLF chorus as the only likely seeming driver. It is also noteworthy that combining
ULF Pc5 and VLF chorus in the same model results in a stronger negative effect of high intensity ULF Pc5 in
the higher energy ranges. Thus, the addition of VLF chorus allows the observation of the negative ULF Pc5
quadratic effect. This demonstrates that the correlations and interactions between wave types means that
studying one in isolation may not lead to valid physical interpretations of its effects. Models of these wave
effects on flux on flux may benefit from using several waves as predictors and including the nonlinear quad-
ratic effects as well as the synergistic effects between the waves.

For themost part, EMIC waves show both a less pronounced linear influence and a smaller nonlinear effect on
flux. However, they do show a negative interaction with both ULF Pc5 and chorus at the lower energy levels.
This negative synergism results in a larger decrease in flux when both EMIC and either ULF Pc5 or chorus
waves are at high levels. Modeling work has suggested that loss processes associated with chorus could
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act most effectively in conjunction with EMIC waves (Mourenas et al., 2016; Summers & Ma, 2000). There is
also observational evidence that the EMIC and chorus/hiss waves act additively to decrease flux (Zhang
et al., 2017). The negative interaction found in our regression models shows that the combined effect of
EMIC and VLF chorus waves is not just additive. High levels of one enhance the negative action of the other.
We have also found that loss due to ULF Pc5 (at high levels) is enhanced in the presence of EMIC waves in a
multiplicative and not just additive manner.

The effect of all types of waves during quiet times (Kp < 2.3) is modest, while that during disturbed times
more closely follows the patterns seen overall. Thus, most of the effects in the full analysis are due to the dis-
turbed condition response. Some of the response difference between quiet and disturbed geomagnetic
activity levels is due to different ranges of wave intensity present in these differing times. In particular, the
negative nonlinear response to high levels of ULF Pc5 cannot be observed during quiet times because this
wave type does not show the same high level of activity as it does during disturbed conditions. However,
the initial linear slope of the low intensity ULF Pc5 effect at high Kp is steeper than that during low Kp; thus,
the effect of the same level of ULF Pc5 activity is greater during disturbed times. The same is true for VLF
chorus. Chorus also shows a leveling off of effect at higher activity (>0 log (μV2/m2/Hz)) during quiet times.
This may indicate that precipitation due to chorus is a larger factor during quiet times.

Ground stations detect EMIC waves at a large range of L shells due to ionospheric ducting. Thus, ground data
from Halley (L = 4.6) is useful in this study because it includes wave activity at geosynchronous orbit
(Anderson et al., 1992; Kim et al., 2010, 2011). However, long-distance ionospheric ducting of EMIC waves
is disrupted during disturbed times. These waves are less likely to be observed on the ground during these
periods (Engebretson et al., 2008). Our study confirms this: ground-observed EMIC waves (at Halley) occur
over more hours (up to 14 hr/day) during quiet times than they do during disturbed conditions (only up to
10 hr/day). Satellite observations, on the other hand, show a positive association between disturbed times
and increased EMIC activity (Keika et al., 2013). This may complicate interpretations of correlations between
ground-based EMIC observations and electron flux at geosynchronous orbit.

At high Kp, flux is high in the lowest energy channel (0.7–1.8 MeV) even without wave enhancements. It is
likely that substorm and magnetic activity alone are responsible for much of the flux enhancements during
disturbed times.

VLF chorus has a positive effect during southward Bz, but a negative effect during northward Bz. This agrees
with previous findings that VLF chorus ismore effective at accelerating electrons up to relativistic energies dur-
ing southward Bz (Miyoshi et al., 2013). We have found the same to be true of ULF Pc5 which is more effective
at enhancing flux during southward Bz conditions. Southward Bz, when reconnection is occurring, appears to
be a necessary condition for the action of both VLF chorus and ULF Pc5 waves on high-energy electron flux.

5. Summary

We have undertaken a nonlinear regression analysis of the LANL geostationary trapped log10 relativistic elec-
tron fluxes (0.7–7.8 MeV) in order to determine the influence of ULF Pc5, VLF, and EMIC wave intensities
lagged by 1 day. We find the following:

1. The response of relativistic electron flux levels to both ULF Pc5 and VLF chorus waves can be nonlinear as
well as linear. A quadratic model, therefore, may better predict flux response to these waves.

2. ULF Pc5 waves contribute both to electron enhancement (at midrange wave activity) and loss (at high
levels of wave intensity). The negative (nonlinear) response at high levels of wave activity could lead to
the conclusion that ULF Pc5 waves do not contribute to electron enhancement in more simplistic regres-
sion models.

3. Nonlinear effects of VLF chorus are positive. Electron flux response at high levels of chorus intensity is
higher than would be predicted by a strictly linear model.

4. Synergistic interaction effects between some wave types are shown to be important. High levels of VLF
chorus intensity and midrange values of ULF Pc5 wave power result in more electron acceleration than
would be predicted by an additive model.

5. The negative effect of EMIC waves on flux (linked to flux decreases) is more pronounced than would be
predicted by an additive linear model when combined with either chorus or ULF Pc5 waves.
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6. Flux response to ULF Pc5 and VLF chorus waves varies by geomagnetic activity (Kp). During disturbed
conditions, flux responds more strongly to the same level of wave intensity. In the lowest energy channel
(0.7–1.8 MeV) flux at high Kp is at a high level even without wave activity enhancement.

7. Flux response to ULF Pc5 and VLF chorus waves is stronger during southward Bz conditions.
8. Unstandardized regression coefficients for models incorporating these nonlinear and synergistic effects

are presented (Tables 1–3) for use in modeling.
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