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Sea ice dynamics across the Mid-Pleistocene
transition in the Bering Sea
H. Detlef 1, S.T. Belt 2, S.M. Sosdian 1, L. Smik2, C.H. Lear1, I.R. Hall 1, P. Cabedo-Sanz2, K. Husum 3 &

S. Kender4,5

Sea ice and associated feedback mechanisms play an important role for both long- and short-

term climate change. Our ability to predict future sea ice extent, however, hinges on a greater

understanding of past sea ice dynamics. Here we investigate sea ice changes in the eastern

Bering Sea prior to, across, and after the Mid-Pleistocene transition (MPT). The sea ice

record, based on the Arctic sea ice biomarker IP25 and related open water proxies from the

International Ocean Discovery Program Site U1343, shows a substantial increase in sea ice

extent across the MPT. The occurrence of late-glacial/deglacial sea ice maxima are con-

sistent with sea ice/land ice hysteresis and land−glacier retreat via the temperature−pre-

cipitation feedback. We also identify interactions of sea ice with phytoplankton growth and

ocean circulation patterns, which have important implications for glacial North Pacific

Intermediate Water formation and potentially North Pacific abyssal carbon storage.
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Sea ice plays a key role in both long-term1,2 and abrupt
millennial-scale3 climate change as a result of its far-
reaching climate feedbacks, including the ice albedo effect,

ocean-atmosphere gas/moisture exchange and ocean circulation
patterns. However, it is only through the identification of long-
term sea ice dynamics that our understanding of the role of sea
ice for climate change can improve and hence our ability to
predict future sea ice extent.

In modern times, sea ice in the Bering Sea forms in the
Chukchi Sea and in polynyas along the southward facing coast-
lines on the eastern Bering Sea shelf. Thereafter, sea ice is
advected south-westward4, reaching its maximum extent
approximately at the shelf edge (Fig. 1). Nutrient-release during
the spring sea ice melting, eddy-driven upwelling and shelf edge
processes sustain a diverse ecosystem with high primary pro-
ductivity, especially along the eastern Bering Sea slope, often
referred to as the ‘Green Belt’5,6,7. In general, the subarctic North
Pacific sea ice regime plays an important role in North Pacific
Intermediate Water (NPIW) formation as a result of brine
rejection during sea ice freezing. Today, NPIW is formed in the
Sea of Okhotsk, whereas glacial NPIW (GNPIW) was at least
partly formed in the Bering Sea8–11. Increased ventilation and
extent of GNPIW during cold phases11,12 demonstrates the
importance of the Bering Sea for glacial oceanic circulation pat-
terns in the North Pacific realm and beyond12. Investigating the
interactions of sea ice dynamics with ocean circulation and pro-
ductivity patterns and identifying the role of sea ice for major
climate transitions is critical for our understanding of Arctic and
sub-Arctic climate. One such climate transition during the
Quaternary Period is the Mid-Pleistocene transition (MPT, 1.2
−0.7 Ma).

The MPT marks a fundamental shift in frequency and
amplitude of northern hemisphere glaciations from 41 ka glacial/
interglacial (G/IG) cycles to quasi-periodic glaciations at 100
ka13–16, yet the change in G/IG frequency occurs without any
attributable change in orbital forcing. Thus, the MPT marks a
shift in the response of the climate system to orbital forcing, likely
caused by internal climate mechanisms. Conceptual modelling

has identified potential key feedback mechanisms involving sea
ice, such as the so-called ‘sea ice-switch’ hypothesis (SIS)1,2,17,
which suggests that sea ice can modify the climate state, switching
it between a growing and a retreating land glacier mode, via a
temperature−precipitation feedback. This hypothesis makes two
critical predictions. First, the SIS invokes a gradual deep ocean
cooling and change in ocean vertical mixing as the underlying
cause for increased high-latitude sea ice extent during the
MPT1,2,17. Second, the SIS proposes a land versus sea ice hys-
teresis, with large sea ice extent across early deglaciations2. Recent
modelling studies also suggest that the periodicity of G/IG cycles
is linked to changes in the interhemispheric pattern of sea ice
growth18. However, while modelling studies clearly suggest the
likely importance of sea ice for controlling climate change across
the MPT1,2,17,18, complementary high-resolution proxy-based
reconstructions of sea ice dynamics are yet to be reported.

Recent advances in the development of source-specific bio-
markers for paleoenvironmental reconstructions, including IP25
(Ice Proxy with 25 carbon atoms)19, a proxy for seasonal Arctic
sea ice, together with those indicative of open water conditions20

and in combination with proxies for primary productivity21, such
as the mass accumulation rate of biogenic opal (MARopal), enable
high-resolution reconstructions of past sea ice dynamics. The IP25
biomarker is a mono-unsaturated highly branched isoprenoid
(HBI) lipid produced by certain sea ice diatoms during
spring22,23, providing proxy evidence for past seasonal sea ice. To
date, IP25 has been readily identified within sediments dating
back to the Plio-Pleistocene boundary24 and has even been
detected in sediments of Miocene age25, albeit from different
locations. Sedimentary IP25 abundance has been found to reliably
reflect variations in seasonal sea ice extent, while absent/low IP25
is normally considered to reflect ice-free or extended sea ice cover
regimes26–32. Consistent with these interpretations, IP25 is present
in surface sediments from sites in the sub-polar North Pacific that
experience seasonal sea ice cover during modern times, but is
absent from year-round ice-free locations32. Further, elevated
concentrations of a tri-unsaturated HBI biomarker (HBI III),
shown recently to be produced by certain diatoms in polar
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Fig. 1 Overview map of the study location. Map of the Bering Sea showing the location of IODP Site U1343 (red star), U1342 and ODP Site 882 (red dots),
together with additional sediment cores (light blue dots) where sea ice reconstructions were performed across Termination I (SO201-2-12KL, SO201-2-
77KL, SO201-2-85KL, SO201-2-101KL, SO201-2-114KL21, 67, HLY0202-51JPC44). The pink solid line represents the present day winter sea ice edge, the red
dashed line is the Last Glacial Maximum (LGM) coastline68, and the blue arrows show the cyclonic surface circulation in the Bering Sea. The Alaskan
Stream enters the Bering Sea in the south through several Aleutian passes to form the Aleutian North Slope Current (ANSC) that feeds into the Bering
Slope Current (BSC), which in turn feeds into the East Kamchatka Current (EKC) (modified from Stabeno et al.60). Eddy formation along the eastern Bering
slope (blue circles) brings nutrients to the surface resulting in high primary productivity, called the ‘Green Belt’7. Map created with Ocean Data View69
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environments33, reflect the spring ice-edge bloom within the open
waters of the marginal ice zone (MIZ), at least within the Barents
Sea20, which has a similar annual sea ice cycle to the Bering Sea.
In contrast, lower abundances of HBI III20 and variable abun-
dances of other phytoplankton biomarkers, including brassicas-
terol34, are found in year-round ice-free settings of the Barents
Sea and Norwegian Sea. However, lower abundances of phyto-
plankton biomarkers also generally occur under perennial sea ice
conditions, similar to IP25. Measurement of MARopal provides an
alternative means of distinguishing these two extremes in sea ice
cover, especially as siliceous phytoplankton are the most impor-
tant primary producers in the Bering Sea today35. In the subarctic
North Pacific, MARopal represents first-order changes in primary
productivity36, such that extended sea ice cover leads to decreased
productivity in the region36. Previously, Méheust et al.21 used the
sedimentary biogenic opal content in the western Bering Sea
across the Last Glacial Maximum to Holocene transition (Ter-
mination I), in order to distinguish between different sea ice
states.

Additionally, beyond looking at the absolute biomarker con-
centrations, the nature of the correlation between IP25 and HBI
III can also provide insight into seasonal sea ice dynamics,
although these relationships are not yet fully understood. Thus,
observational surface sediment calibration studies20,37 and
downcore records20,38 have shown that a weak or inverse rela-
tionship between IP25 and HBI III is associated with a strong
seasonal sea ice cycle, whereas a positive in-phase relationship
likely reflects a fluctuating sea ice margin, with reduced season-
ality, and smaller changes in the position of the winter and
summer sea ice edge. Other biomarkers, including brassicasterol,
are also indicative of open water settings29, although the com-
plication of other potential sources (e.g. riverine input and
potentially sea ice algae39), somewhat limits their use beyond a
qualitative indication of general phytoplankton production.
However, the relationship between IP25 and brassicasterol can
provide context with respect to phytoplankton production in the
high-productivity region of the eastern Bering Sea slope6.

At present, the only reconstruction of sea ice variability from
the subarctic North Pacific spanning the MPT is based on sea ice
diatoms from International Ocean Discovery Program (IODP)
Site U134340 (Supplementary Fig. 1), which is located off the
eastern Bering slope, close to the present day winter sea ice
margin (57°33.4′N, 176°49.0′W; 1950m, Fig. 1)41. While this
study suggests an overall increase in sea ice extent across the
MPT, its low temporal resolution (~15 ka), precludes a robust
evaluation of sea ice dynamics on G/IG timescales. Here, we
address this gap by presenting a high-resolution sea ice recon-
struction for the MPT, between 1.22 and 0.8 Ma, from IODP Site
U1343. We further examine our MPT findings by comparisons
with data obtained from the same core (Site U1343) corre-
sponding to the pre-MPT 41 ka (~1.53−1.36Ma) and late Pleis-
tocene 100 ka (0.50−0.34Ma) G/IG cycles to test previous
hypotheses of a strong causal link between sea ice and the
changing nature of G/IG cycles. Our reconstruction is based on
IP25 from Site U1343, together with HBI III and MARopal

36.
Building on the approach of Méheust et al.21, we utilise MARopal

with threshold concentrations of IP25 and HBI III (see Methods)
in order to provide a classification of the sea ice states recorded at
Site U1343. We identify a substantial increase in sea ice in the
Bering Sea and the appearance of transient late-glacial/deglacial
sea ice maxima across the MPT, in support of land glacier retreat
via a temperature−precipitation feedback mechanism. Together
with existing regional and global climate records, we additionally
propose that sea ice extent in the eastern Bering Sea plays an
important role for GNPIW formation and potentially North
Pacific carbon storage.

Results
Marine isotope stages 51 to 44. Marine isotope stages (MIS) 51
to 44 represent the time interval from 1.53 to 1.36Ma and thus
precede the onset of the MPT at around 1.2 Ma. The benthic
foraminifera oxygen isotope (δ18Ob) record from Site U1343 is of
low temporal resolution between 2.4 and 1.2 Ma (~10 ka).
Wavelet analysis of the U1343 δ18Ob

42, however, shows sig-
nificant 41-ka periodicity from 1.5Ma in accordance with the
global δ18Ob (LR04) stack16. Although the relative timing of sea
ice changes in comparison to G/IG cycles is uncertain, resulting
from the low resolution of the U1343 δ18Ob record prior to 1.2
Ma (Fig. 2), it is nonetheless clear that this interval is within the
late Pleistocene as indicated by biostratigraphy, magnetostrati-
graphy, and tuning of long-term U1343 δ18Ob

42 to the
LR04 stack16.

IP25 was identified in 26 out of 32 samples analysed during MIS
51 to 44 (Fig. 2), demonstrating the presence of seasonal sea ice in
the eastern Bering Sea prior to the MPT. Periods of absent IP25
were accompanied by variable MARopal values indicative of both
ice-free (high MARopal) and perennial sea ice (low MARopal)
conditions (Fig. 2, Supplementary Fig. 1). Concentrations of HBI
III were generally low, indicating that a spring ice edge bloom
associated with the retreating MIZ most likely did not occur in
the vicinity of Site U1343 during this interval. Further, a weak
positive relationship between IP25 and HBI III (IP25-HBI III:
rxy = 0.47 with 95% Student’s t confidence intervals [0.176; 0.688],
n = 32) is indicative of a fluctuating sea ice margin, with
smaller changes in the position of the summer and winter sea
ice edge.

Marine isotope stages 36 to 20. Our most detailed interval spans
MIS 36 to 20 (1.22−0.8 Ma), thus covering the onset and the
majority of the MPT (1.2−0.7 Ma). Wavelet analysis of Site U1343
δ18Ob indicates dominant 100-ka periodicity of G/IG cycles from
0.7 Ma42.

IP25 was identified in 71 out of the 78 samples analysed,
demonstrating the presence of seasonal sea ice in the eastern
Bering Sea throughout most of the MPT, consistent with the
observations from MIS 51 to 44. IP25 concentration exhibits
distinct variability on G/IG timescales, with increased values
throughout most glacial intervals (Fig. 2), indicative of regionally
enhanced sea ice cover. Low IP25, HBI III and MARopal values
during MIS 35, 26/25 and 22 collectively suggest extended sea ice
cover at the eastern Bering slope during these intervals (Fig. 2,
Supplementary Fig. 1). In contrast, low IP25 and HBI III
concentrations, together with a relatively high MARopal during
MIS 31 and 33, suggest ice-free conditions (Fig. 2, Supplementary
Fig. 1). However, the biomarker values at ~0.85Ma (MIS 21) and
~1.18Ma (early MIS 35) (Table 1) do not convincingly fall within
the proposed sea ice state classifications (Table 2), largely as a
result of relatively high HBI III content (>0.7 ng g−1 dry sediment
(sed)). The reasons for this are unclear, but potentially indicate
the influence of occasional MIZ sedimentation.

A pronounced increase in peak glacial IP25 values is observed
consistently across all glacial periods studied post MIS 28 (~1.0
Ma) concomitant with a shift in the timing of the glacial IP25
maximum from the mid-glacial to the late-glacial/deglacial
(Fig. 2), with exception of MIS 22. IP25 maxima throughout the
entire interval are accompanied by low MARopal values in Site
U1343 (Fig. 2), indicating reduced primary productivity as a
result of seasonally increased sea ice cover. HBI III concentration
is relatively low prior to MIS 31, before increasing thereafter
(Fig. 2). In fact, the highest HBI III concentrations throughout all
three intervals are observed from MIS 28 to MIS 26. Although the
timing of the HBI III peaks throughout G/IG cycles is variable,
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higher values are generally observed during glacial intervals
(Fig. 2).

Notably, the correlation of IP25 and HBI III changes to one that
is in-phase between 1 and 0.95 Ma (Fig. 3) (rxy = 0.665 with 95%
Student’s t confidence intervals [0.145; 0.897], n = 17), indicating
a more fluctuating sea ice margin with predominantly MIZ
conditions. This is framed by intervals of no apparent correlation
between these two biomarkers from 1.22 to 1.0 Ma, MIS 36 to 29
(rxy = −0.016 with 95% Student’s t confidence intervals [−0.296;
0.267], n = 26) and 0.95−0.8 Ma, MIS 24 to 20 (rxy = −0.174 with
95% Student’s t confidence intervals [−0.438; 0.117], n = 35)

(Fig. 3) more consistent with a stronger seasonal cycle and a
pronounced advance and retreat of the sea ice margin, as seen in
the modern setting and for most other Arctic marginal seas32,43.

Marine isotope stages 13 to 10. The youngest interval in this
study (MIS 13 to 10; 0.5−0.34Ma) represents two G/IG cycles
during the post-MPT quasi-100 ka climate variability.

IP25 was quantified in 26 out of 32 samples analysed for
biomarkers. A broad gradual increase of IP25 and HBI III,
accompanied by a high MARopal, occurs during cooling phases of
the interglacial intervals, indicative of seasonal sea ice of
increasing duration, with predominantly MIZ conditions (Fig. 2,
Supplementary Fig. 1). Biomarker data at 0.5 Ma (MIS 13) do not
conform to the suggested sea ice state classification (Table 1,
Table 2) as a result of relatively high HBI III concentrations
(>0.7 ng g−1 sed), yet low IP25 content (Table 1). However, a high
MARopal is indicative of ice-free conditions (Table 1, Supple-
mentary Fig. 1). Maximum IP25 values are reached during early
glacial MIS 12 and MIS 10 (Fig. 2). Absent or very low IP25 across
the MIS 12/11 transition is accompanied by low HBI III
concentrations, and low/high MARopal values, indicating
extended sea ice cover across the late-glacial/deglacial, and ice-
free conditions during the interglacial MIS 11 from ~425 ka
(Fig. 2, Supplementary Fig. 1). No change is observed in HBI III
concentration during late MIS 12 and across the MIS 12/11
transition potentially due to the rapid transition from perennial
to ice-free conditions across the termination. The relationship
between IP25 and HBI III shows no correlation across G/IG cycles
(rxy = 0.236 with 95% Student’s t confidence intervals [−0.525;
0.787], n = 32) consistent with the late MPT interval (0.95–0.8
Ma).

Discussion
Variations in sea ice (IP25) and phytoplankton (HBI III) bio-
markers, together with previously reported MARopal from Site
U1343, demonstrate major changes in sea ice dynamics in the
eastern Bering Sea during the past 1.5 Ma, especially across the
interval covering the MPT (Fig. 4). Three broad intervals of sea
ice change are identified corresponding to the early-mid Pleis-
tocene (1.22−1.0 Ma), an interim state (1.0−0.95Ma), and the
mid-to-late Pleistocene (0.95−0.8 Ma and 0.5−0.34Ma).

During the early-mid Pleistocene (1.22−1.0 Ma) IP25 and HBI
III concentrations are de-coupled (Fig. 3), indicating a pro-
nounced seasonal advance and retreat of the sea ice margin
(Fig. 5), as per modern conditions. This contrasts the preceding
interval (MIS 51 to 43) where IP25 and HBI III concentrations
exhibit a weak positive correlation indicative of a fluctuating sea
ice margin38 and relatively small changes in the position of the
winter and summer sea ice edge during 41-ka climate cycles,
potentially as a result of less extreme climate variability (Fig. 2).

Fig. 2 Bering Sea biomarker patterns across the three studied Pleistocene
intervals. Overview of the three time intervals analysed for biomarkers. a
0.34−0.5Ma, b 0.8−1.22Ma and c ~1.36–1.53Ma. Sedimentary mass
accumulation rate of biogenic opal (MARopal) in Site U1343 is in purple36.
IP25 (violet) and HBI III (blue) in Site U1343 are expressed in ng g−1 dry
sediment (sed). The benthic foraminiferal oxygen isotope record of Site
U134342 is in black together with the LR04 stack16 in grey. The light grey
vertical bars indicate glacial intervals and the white bars characterise
interglacials (numbers at the top correspond to MISs, MIS boundaries from
Lisiecki and Raymo16). The yellow asterisk indicates the first glacial interval
where a late-glacial/deglacial sea ice maximum is observed (MIS 28)
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At ~1.0 Ma, an increase in IP25 and HBI III, together with a
shift to a statistically significant in-phase relationship between
these two biomarkers (Fig. 3), indicates a return to a more fluc-
tuating sea ice margin38 and the onset of an interim state in sea
ice dynamics. Highest HBI III concentrations within the entire
record (Fig. 4) indicate that MIZ conditions likely prevailed close
to Site U1343 (Fig. 5). Additionally, the temporal profile of sea ice
increase across glacial periods changes during the interim state,
such that sea ice reaches its maximum during the late-glacial/
deglacial, compared to the mid-glacial IP25 peaks of the early-
MPT interval (1.22–1.0 Ma) (Fig. 4). The gradual early glacial
increase in sea ice during the interim state is followed by a pro-
nounced maximum in IP25 concentration, first observed during
MIS 28 (Fig. 4). Determination of the exact duration of late-
glacial/deglacial sea ice maxima is limited by variable sample
resolution, although the best resolved maximum during late MIS
26/early MIS 25 has a duration of ~4.8 ka. These transient late-
glacial/deglacial sea ice maxima, even though of variable resolu-
tion (one to four data points), are observed during MIS 28, 26, 24
and 12. Compared to the sea ice maxima observed across the

MPT interval, however, the sea ice maximum during late MIS 12
is characterised by a prolonged period (~33 ka) of extended sea
ice cover, as shown by the low MARopal values (Fig. 4, Supple-
mentary Fig. 1). This potentially points towards an intensification
of late-glacial/deglacial sea ice maxima between the MPT G/IG
cycles and the quasi-100 ka cycles of the late Pleistocene, though a
continuous sea ice record, spanning at least the last 1.5 Ma, is
needed, to confirm this suggestion. Nevertheless, in support of
our interpretation, it has been reported previously that perennial
sea ice dominated the western Bering Sea21 and the Umnak
Plateau44 (Fig. 1) until ~15 ka BP across Termination I, with ice-
free conditions not reached until ~11 ka BP (Fig. 5). Studies from
other marginal seas, such as the Barents Sea, the Fram Strait and
the Nordic Seas, also confirm the presence of an extensive sea ice
cover during Termination I3,30,45, suggesting that this could be a
common feature of late Pleistocene climate cycles.

In addition to IP25 and HBI III we measured a third biomarker,
brassicasterol (24-methylcholesta-5,22E-dien-3β-ol), which has a
variety of sources, including marine and lacustrine phytoplankton
and potentially even sea ice algae39. As such, we use brassicasterol
to investigate the importance of sea ice for phytoplankton growth
in the eastern Bering Sea and, indeed, we find a weak positive
relationship (rxy = 0.398 with 95% Student’s t confidence intervals
[0.151; 0.598], n = 58) between IP25 and brassicasterol (Supple-
mentary Fig. 2) from 1.53 to 1.36 Ma and from 1.2 to 1.0 Ma. This
likely reflects production of brassicasterol by sea ice algae or
phytoplankton stimulated by nutrient release during spring sea
ice melting46. From ~1.0 Ma onwards, however, brassicasterol
and IP25 are de-coupled (rxy = −0.005 with 95% Student’s t con-
fidence intervals [−0.288; 0.278], n = 84) (Supplementary Fig. 2),
which is suggestive of additional sources for brassicasterol (e.g.
possibly from non-biogenic entrainment in sea ice) and/or other
mechanisms potentially becoming more important for nutrient
supply to the surface ocean at the eastern Bering Sea slope.
Possible mechanisms include changes in the ocean stratification/
vertical mixing and/or changes in the inflow of nutrient-rich
Pacific waters, specifically the Alaskan Stream47. The abundance
of the marine diatom species Neodenticula seminae40, a proxy of
Alaskan Stream inflow into the Bering Sea, shows a pronounced
decrease in the mean percentage in Site U1343 at the end of the
interim state ~0.95Ma (Fig. 4). This suggests that mid-to-late
Pleistocene glacial periods (at least) are characterised by
decreased influence of North Pacific waters at the core Site as a
result of glacial sea level lowstands40. With respect to nutrient
transport to the surface ocean along the Bering Sea slope, this
indicates that upwelling of nutrient-rich waters via deep-reaching
eddies7 potentially played the most important role for nutrient
supply and phytoplankton growth from at least ~0.95Ma
onwards.

The continued inflow of North Pacific waters (as indicated by
N. seminae (Fig. 4)) into the southern Bering Sea during the
interim state (1.0−0.95Ma) is consistent with the in-phase rela-
tionship between IP25 and HBI III (Fig. 3), suggesting smaller
variations in the position of the summer and winter sea ice
margin. Even though regional climate cooling in the North Pacific
from ~1.15Ma (see below) promoted an increase in the eastern
Bering Sea seasonal sea ice cover, as seen by increased IP25
concentrations, the continued inflow of North Pacific waters
could have counteracted an extensive seasonal expansion of sea
ice and resulted in the observed fluctuating sea ice margin at Site
U1343 across the interim state. Concomitant with the decrease in
Alaskan Stream inflow at ~0.95Ma, as suggested by the abun-
dance of N. seminae in U1343 (Fig. 4), the correlation of HBI III
and IP25 shifts (Fig. 3) to one that is more indicative of a pro-
nounced seasonal cycle in the position of the winter and summer
sea ice margin.

Table 1 Data points that do not fit the sea ice state
classification

Age IP25 HBI III MARopal

(Ma) (ng g−1 sed) (ng g−1 sed) (g cm−2 ka−1)

0.50 0 2.56 7.74
0.85 0.31 3.48 1.26
1.18 0.19 1.66 3.17

Table 2 Boundaries for identification of sea ice states

Sea ice state IP25 HBI III MARopal

(ng g−1 sed) (ng g−1 sed) (g cm−2 ka−1)

Ice free <0.5 <0.7 >4
Extended sea ice <0.5 <0.7 <4
Seasonal sea ice
(within the MIZ)

>0.5 >0.7 Variable

Seasonal sea ice
(outside the MIZ)

>0.5 <0.7 Variable
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The onset of the mid-to-late Pleistocene interval (0.95−0.8 Ma,
0.5−0.34Ma), beginning at MIS 25, is characterised by an ice-free
eastern Bering Sea (Fig. 4), as shown by absent IP25, low HBI III
and high MARopal. Temporal IP25 variability across G/IG cycles is
similar to that of the interim state with higher IP25 concentration
indicative of increased sea ice cover during the late-glacial/
deglacial. Exceptionally, MIS 22 is characterised by lower IP25
values compared to the three preceding glacial periods (Fig. 4).

However, a consistently low MARopal between MIS 23 and late
MIS 21 suggest a persistent seasonal/extended sea ice cover
during this time interval, which may explain the relatively lower
IP25 content during MIS 22.

Overall, our data suggest a twofold change in sea ice dynamics
across the MPT with an increase in sea ice extent from ~1.15Ma
accompanied by a change in the timing of glacial sea ice increase
at ~1.0 Ma. From 1.22 to 1.0 Ma sea ice maxima are encountered
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during mid-glacials (Fig. 4), whereas the studied glacial periods
post ~1.0 Ma show distinct sea ice maxima during the late-glacial/
deglacial (Fig. 4), with the exception of MIS 22.

As previously shown by Gildor and Tziperman17, extensive sea
ice cover during glacial terminations negatively impacts snow
accumulation on continental glaciers via the temperature−pre-
cipitation feedback, limiting evaporation from the polar ocean,

and via the diversion of the winter storm tracks. Model results
suggest a sea ice versus land ice hysteresis with a deglacial sea ice
spike of 5−10 ka2, which is of slightly longer duration than the
best resolved sea ice maximum during the MIS 25/24 transition
(~4.8 ka) recorded at Site U1343 (Fig. 4). Where observed, the
transient sea ice maxima are concomitant with deglaciations
(Fig. 4), as determined from δ18Ob, suggesting that sea ice likely
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aids in the initiation of major terminations. Furthermore, the
overall increase in sea ice extent across the MPT is in accordance
with outcomes from a recent modelling study18, which indicates
that a cooler climate results in larger sea ice extent and an
asymmetric sea ice response between hemispheres, leading to
100-ka G/IG cycles18. However, since there are, as yet, no Ant-
arctic sea ice records available for the MPT, we cannot directly
assess the interhemispheric relationship of sea ice growth.
Nevertheless, proxy data across the MPT demonstrates a sea ice/
land ice hysteresis as predicted by the SIS hypothesis1,2,17. Thus,
despite its variable temporal resolution, our sea ice reconstruction
from Site U1343 highlights the potential for MPT sea ice change
to influence the timing and shape of late Pleistocene climate
cycles. This is not only important with respect to understanding
long-term sea ice and G/IG dynamics, but also offers the
opportunity for improving proxy-model comparisons aimed at
assessing the role of sea ice on climate change. Still, further stu-
dies from different regions and of even higher resolution are
needed, to confirm the presence and duration of sea ice maxima
in the Arctic marginal seas across late-glacials/deglacials during
late Pleistocene G/IG cycles.

With regard to the SIS hypothesis, we also consider the possible
influence of long-term deep ocean cooling on sea ice dynamics1.
To date, two orbitally resolved bottom water temperature (BWT)
records exist across the MPT, one from Deep Sea Drilling Project
(DSDP) Site 607 in the North Atlantic48,49 and another from
Ocean Drilling Program (ODP) Site 1123 in the South Pacific50

(Fig. 4). While both records show divergent trends in BWT his-
tory, with no apparent long-term BWT cooling in Site 1123
across the MPT50, a pronounced decline in BWT from ~1.15 to
0.85 Ma in Site 60748,49 provides some evidence for a link
between deep ocean cooling and sea ice change. The proposed
mechanism for sea ice increase as a result of deep ocean cooling is
decreased surface ocean heat capacity due to increased stratifi-
cation1. Today, mesoscale eddies form along the eastern Bering
slope transporting North Pacific Deep Water (NPDW) to the
surface and promoting vertical mixing. Eddy formation is cor-
related to the strength of the Bering Slope Current7 (Fig. 1),
which in turn is related to Alaskan Stream inflow into the Bering
Sea. Decreased Alaskan Stream inflow during glacial intervals
from 0.95Ma40 could have limited eddy formation, as a result of
less vigorous surface ocean circulation, promoting a more stra-
tified water column. Tziperman and Gildor1 proposed a threshold
response of sea ice to deep ocean cooling, which could explain the
slight lag between the timing of changes in BWT (1.1 Ma) and sea
ice (1.0 Ma). Additionally, the North Atlantic BWT remains low
during the late Pleistocene, which could account for the observed
increase in sea ice extent during glacial intervals from 0.50 to 0.34
Ma. Yet, more regional, orbitally resolved records of Pleistocene
BWT are needed to confirm a long-term deep ocean cooling of
the North Pacific and to investigate leads and lags of BWT versus
sea ice change in the marginal seas of the Arctic Ocean.

In addition to BWT cooling, changes in sea ice dynamics in the
Bering Sea across the MPT are accompanied by regional climate
cooling as observed in North Pacific SST records51 and from
regional glacier advances52. The increase in sea ice extent in the
Bering Sea is consistent with a long-term decrease of North
Pacific SSTs (ODP Site 88251,53, Fig. 4) as a result of the pro-
gressive expansion of North Pacific polar water masses from
~1.15Ma54. Long-term North Pacific SST cooling intensified
around 1.1 Ma, concomitant with BWT cooling observed at Site
607. Lowest North Pacific SSTs are coincident with the sea ice
interim state (1.0−0.95 Ma) (Fig. 4). Brunelle et al.55 argue that
low mean ocean temperatures during glacial intervals lead to a
decreased temperature sensitivity and increased salinity stratifi-
cation in polar and sub-polar regions. A simultaneous decrease in

North Pacific SSTs, recorded in Site 88251, and North Atlantic
BWTs (Site 60748,49) from ~1.1 Ma would support homogenous
cooling and increased salinity stratification during glacial periods
promoting sea ice formation as a result of decreased heat capacity
of the surface ocean. An increase in North Pacific SSTs between
0.95 and 0.85Ma has been attributed to a northward movement
of the North Pacific Polar Front54. However, MIS 12 and 10 show
increased sea ice extent (Fig. 4) even though SSTs from Site 882
remain high from ~0.85Ma onwards and increase even further
from ~0.5 Ma (Fig. 4)51. This indicates that the northward shift of
the North Pacific Polar Front did not propagate into the Bering
Sea as sea ice duration and extent increase throughout the late
Pleistocene interval. The increase in sea ice extent in the Bering
Sea thus paralleled North Pacific SST and North Atlantic BWT
decrease, together with regional glacier advances, suggesting a
response to global climate cooling.

Finally, we investigate the importance of sea ice extent in the
eastern Bering Sea for GNPIW formation. The difference between
benthic foraminiferal carbon isotope records (δ13Cb) recorded at
ODP Site 84956 (0°11.0′N, 110°31.1′W; 3851 m) and IODP Site
U1342 (54°49.7′N, 176°55.0′E, 818 m), Δδ13C(849-U1342), is used as
a proxy for Bering Sea GNPIW formation/ventilation as proposed
by Knudson et al.10 (Fig. 4). Specifically, since the Site 849 δ13Cb

is believed to approximate global oceanic dissolved inorganic
carbon (δ13CDIC) values56, subtraction of site-specific δ13Cb

values enables local influences to be determined10. Site U1342 is
located in the southern Bering Sea on the Bowers Ridge (Fig. 1)
and lies just below the modern depth of NPIW (300−800 m57) at
818 m water depth. Currently, Site U1342 is bathed in NPDW
with very low δ13CDIC

10. During glacial periods, however,
GNPIW was formed in the Bering Sea and reached down to the
seafloor (at U1342), transporting high δ13CDIC surface waters to
greater depth10. Thus high (low) Δδ13C(849-U1342) represents
reduced (enhanced) GNPIW influence at Site U1342 (Fig. 4).
U1343 IP25 and Δδ13C(849-U1342) are inversely correlated (Sup-
plementary Fig. 3), supporting a role of sea ice for GNPIW for-
mation via brine rejection, which is consistent with previous
studies from the western and eastern Bering Sea, indicating
intermediate water formation8,9,57.

Increased sea ice cover during glacial periods also has impor-
tant implications for ocean-atmosphere gas exchange. Presently,
deep reaching eddies bring high-CO2 NPDW to the surface ocean
along the eastern Bering slope7, resulting in occasional CO2

outgassing58. It is possible that increased sea ice extent in the
Bering Sea during late and post-MPT glacial periods aided glacial
atmospheric CO2 drawdown via two mechanisms. First, by car-
bon sequestration during the formation of GNPIW, and second,
by reducing CO2 outgassing via decoupling of the deep and
surface ocean and by acting as a physical barrier. Increased sea ice
extent in the Bering Sea across the Mid-Pleistocene thus has the
potential to aid increased glacial abyssal North Pacific carbon
storage, as proposed by studies from Site 882 during (at least) the
late Pleistocene59. Future work should focus on reconstructing
the depth of GNPIW across the late Pleistocene and its ability for
carbon sequestration, as this would likely have been influenced by
the amount of brine formation and thus sea ice dynamics.
Additionally, future multi-proxy reconstructions of past sea ice
variability in the marginal seas of the North Pacific should be
coupled with investigations of GNPIW ventilation and carbon
biogeochemistry as such studies could help unravel the role of sea
ice for deep ocean carbon storage.

In summary, our sea ice reconstruction from Site U1343 in the
Bering Sea shows a twofold change across the MPT (Fig. 5) with
important implications for the SIS hypothesis, GNPIW forma-
tion, and potentially glacial North Pacific carbon storage. An
increase in sea ice extent from ~1.15Ma, likely a result of regional
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and global climate cooling, was accompanied by the occurrence of
a consistent late-glacial/deglacial sea ice maximum in all but one
studied glacial periods post ~1.0 Ma (Figs. 4 and 5), as predicted
by the SIS hypothesis1,17. This study is an important step forward
in understanding the role of sea ice for the MPT, but will need to
be supplemented by further high-resolution (and continuous)
orbitally resolved sea ice records over the past 1.5 Ma to deter-
mine the exact timing of sea ice build-up across G/IG cycles.
Additionally, sea ice records from other Arctic marginal seas
across the MPT should help confirm the occurrence of deglacial
sea ice maxima in late-to-post MPT glacial periods and to further
understand their implications. Finally, we note that additional
studies of Bering Sea surface ocean chemistry are needed to
determine the role of sea ice for CO2 sequestration and ultimately
deep ocean carbon storage via GNPIW formation.

Methods
Regional settings and chronology. IODP sediment core U1343 (57°33.4′N, 176°
49.0′W, water depth 1950 m) was retrieved off the eastern Bering Sea continental
margin (Fig. 1) on a topographic high, to reduce the impact downslope transport41.
At present day it is bathed in NPDW that enters the Bering Sea through several
deep passes in the Aleutian Island Arc60. The surface circulation in the Bering Sea
forms a cyclonic gyre (Fig. 1). Surface water enters the Bering Sea through the
Aleutian passes and main surface outflow occurs through Kamchatka Strait in the
west (Fig. 1). Some surface water (0.85 Sv61) flows northward and leaves the Bering
Sea through the 50 m deep Bering Strait—the gateway between the Pacific and
Arctic Ocean. Mesoscale eddies developing in the eastern Aleutian basin bring
nutrient-rich waters to the surface and maintain high primary productivity7 in the
eastern Bering Sea. Other shelf edge processes such as tidal mixing and transverse
circulation further enhance the horizontal exchange of nitrate-rich basin waters
and iron-rich shelf waters6 sustaining high primary productivity (175−275 g C
m−2 yr−1; ref. 6) along the continental margin, also called the ‘Green Belt’. The
eastern Bering Sea shelf is characterised by an intensive spring phytoplankton
bloom, as a result of nutrient release during sea ice melting5,62. In recent decades
the Bering Sea has experienced substantial retreat in the winter sea ice margin and
earlier sea ice melting in spring with important implications for the marine eco-
system63, demonstrating the sensitivity of sea ice to climate change. The combi-
nation of Site U1343 being close to the present day winter sea ice margin (Fig. 1)
and the recent sea ice decrease in the Bering Sea makes it an ideal location to study
past sea ice extent and to understand sea ice dynamics in changing climates.

In total five holes were drilled at Site U1343 (A−E) out of which three (A, C, E)
were used to construct a composite depth scale (splice) based on the physical
properties of the cores from 0 to 269.92 m CCSF-A. Below the splice, U1343E cores
with unknown gaps are appended from ~270 to 779 m CCSF-A42. The age model
of U1343 is based on oxygen isotope stratigraphy by correlating the continuous
oxygen isotope record to the global LR04 stack16,42. Oxygen isotope measurements
at Site U1343 are based on seven benthic foraminifera species (Cibicidoides spp.,
Elphidium batialis, Globobulimina pacifica, Nonionella labradorica, Planulina
wuellerstorfi, Uvigerina bifurcata, and Uvigerina senticosa), and normalised to
E. batialis, the most abundant species at Site U134342. Due to sample resolution
this approach yields a highly refined age model for the last 1.2 Ma and a refined age
model between 1.2 and 2.4 Ma42. The age model based on oxygen isotope
stratigraphy is in good agreement with datum events based on bio- and
magnetostratigraphy42.

Extraction and analysis of biomarkers. HBI lipids were extracted from 3 g of
freeze dried homogenised sediments as described in Belt et al.64. Additionally,
removal of elemental sulphur was performed65 and sterol fractions were collected.
Prior to analysis samples were kept in cold storage at 7 °C. Samples were freeze
dried at −45 °C and 0.2 mbar for 48 h using a Thermo Savant Modulyo D freeze
drier and an Edwards K4 Modulyo freeze drier at Plymouth and Cardiff University,
respectively. After freeze drying, samples were homogenised using a dichlor-
omethane (DCM)-cleaned agate pestle and mortar and 3 g of sediment was
weighed into 7 ml glass vials with aluminium-lined polypropylene screw caps. In
addition to the sediment samples, a blank and two samples of standard sediments
with known biomarker concentrations were added to each extraction batch.
Standard sediments are from the Canadian Arctic Archipelago and 0.5 g of sedi-
ment were weighed in per sample. Ten microlitres of 0.01 mgmL−1 9-
octylheptadec-8-ene (9-OHD) and 5 α-androstan-3βol solution were added to each
sediment vial and procedural blank as internal standards for HBI and sterol
quantification, respectively. The samples were extracted three times using a mixture
of DCM (high performance liquid chromatography (HPLC) grade) and methanol
(MeOH, HPLC grade) 2:1 (v/v). Gas chromatography of the first extraction batch
showed high concentrations of elemental sulphur in Site U1343 sediment samples
that interfere with IP25 analysis. Therefore sulphur removal65 using tetra-
butylammonium sulphite reagent was performed for all samples prior to silica

column chromatographic purification of the total organic extracts (TOE)64. During
silica chromatography, non-polar components (HBIs, including IP25) were eluted
with hexane and collected in new pre-labelled 7 mL glass vials (TOE-2), whereas
more polar hydrocarbon fractions (sterols) were eluted using hexane/methyl
acetate (1:4, v/v) and collected in separate pre-labelled 7 mL glass vials (TOE-3).
TOE-2 was dried under N2 flow at 25 °C and re-dissolved in 150 μL hexane before
being transferred to 300 μL GC glass vials, concentrated to 20 μL under N2 flow at
25 °C, and capped with aluminium crimp-top caps and Teflon septa (Chromacol
Ltd., UK). Due to low abundance of HBI lipids and high concentrations of n-
alkanes HBI fractions from the oldest time interval (1.53−1.36 Ma) were addi-
tionally purified using silver-ion chromatography (5:95 AgNO3:SiO2) to remove n-
alkanes. TOE-3 was dried under N2 flow at 25 °C and derivatised using N,O-Bis
(trimethylsilyl)trifluoroacetamide (50 μL, 70 °C; 1 h). All samples were analysed
by gas chromatography-mass spectrometry (Agilent 7890A GC coupled to a
5975 series mass selective detector fitted with an Agilent HP-5ms column) at
Plymouth University using the operating conditions specified in Belt et al.64. The
identification of individual lipids was based on their characteristic retention times
and mass spectra and quantification was achieved by integrating the peak area of
selected ions (m/z 350 (IP25); 346 (HBI III); 470 (brassicasterol)) in comparison to
the peak area of the internal standards added to each sample64. Quantification of
individual lipids also considers an instrumental response factor obtained from
known concentrations of biomarker lipids in the standard sediments64.

Defining sea ice boundary conditions. In order to reconstruct different sea ice
states, we use a combinatory approach of IP25 (indication of seasonal sea ice), HBI
III (most prominent in the MIZ), and the mass accumulation rate of biogenic opal
(MARopal, first-order changes in export productivity)36, measured in IODP Site
U1343 in the eastern Bering Sea. IP25 and U1343 MARopal are weakly anti-
correlated (IP25-MARopal: rxy = −0.235 with 95% Student’s t confidence intervals
[−0.420; −0.031], n = 142), consistent with the interpretation, that an increased sea
ice cover leads to decreased primary productivity as a result of light limitation in
the surface ocean.

Here, we build on the approach outlined in Méheust et al.21, who used
threshold values for IP25 and sedimentary biogenic opal content in the western
Bering Sea to identify sea ice regime shifts over the past 20 ka BP. Site U1343 is
located on a topographic high off the eastern Bering slope, which reduces the
influence of downslope transport. However, to avoid potential siliciclastic dilution
effects, we used the MARopal

36, rather than the sedimentary biogenic opal content
(wt. %). Here we developed a multi-proxy classification, where threshold values of
IP25, HBI III and the MARopal are used to identify four different sea ice states
(Table 2). The threshold values of IP25 and HBI III represent 10% of the total range
of the respective biomarker (total range of IP25: 0–5 ng g−1 sed, total range of HBI
III: 0–7 ng g−1 sed) and are summarised in Fig. 4, Supplementary Fig. 1, and
Supplementary Fig. 4, while the corresponding value in the MARopal is based on the
past 20 ka. Sea ice reconstructions using IP25 and sea ice diatoms from the western
Bering Sea21 and the Umnak Plateau44, respectively, indicate a change from a more
extended sea ice cover to seasonal sea ice/ice-free conditions around 15 ka BP
across Termination I, suggesting that this is a common feature of sea ice dynamics
in the Bering Sea. The MARopal value in Site U1343 at 15 ka is 4 g cm−2 ka−1

(Supplementary Fig. 5), which is used as the threshold value to distinguish between
an extended sea ice cover and more seasonal sea ice/ice free conditions (Table 2). In
contrast to the western Bering Sea21, seasonal sea ice conditions in the eastern
Bering Sea (as indicated by increased IP25) are characterised by variable MARopal

values. This could be a result of the dynamic high productivity region overlying the
core Site of U1343, indicating that sea ice concentration, even though of major
importance, might not be the only influence on primary productivity along the
eastern Bering slope. Only three data points do not fit with our overall sea ice state
classification (Table 1), as they have low IP25, but HBI III values outside of our
threshold for the extended/ice-free states. The reasons for this are unclear, but
potentially indicate predominantly ice-free/perennial sea ice conditions with
occasional MIZ sedimentation. For these data points, the MARopal can be used to
distinguish between ice-free and extended ice cover scenarios (Table 1, Table 2).
The outcomes of the sea ice state classification, as applied to samples from Site
U1343 are illustrated in Supplementary Figs. 1 and 4.

Statistical analysis. For calculating Pearson’s r correlation coefficients, the soft-
ware package PearsonT366 was used. PearsonT3 automatically performs mean
detrending of the data and estimates the persistence time of both variables. Per-
sistence is a common feature in climate records; however, it reduces the effective
data size. As the data size (n) is small to begin with, confidence intervals are quite
large. Ninety-five per cent confidence intervals are estimated using equi-tailed
bootstrapping and are of the type Student’s t.

Data availability. All data generated during this study supporting its findings are
supplied via the NERC Polar Data Centre (UK-PDC), doi:10.5285/9caf74c4-7054-
4539-81b8-d4f942afc358.
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