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Abstract: The point spread function (PSF) effect exists ubiquitously in real remotely sensed data 18 

and such that the observed pixel signal is not only determined by the land cover within its own 19 

spatial coverage but also by that within neighboring pixels. The PSF, thus, imposes a fundamental 20 

limit on the amount of information captured in remotely sensed images and it introduces great 21 

uncertainty in the widely applied, inverse goal of spectral unmixing. Until now, spectral unmixing 22 

has erroneously been performed by assuming that the pixel signal is affected only by the land cover 23 

within the pixel, that is, ignoring the PSF. In this paper, a new method is proposed to account for 24 

the PSF effect within spectral unmixing to produce more accurate predictions of land cover 25 

proportions. Based on the mechanism of the PSF effect, the mathematical relation between the 26 

coarse proportion and sub-pixel proportions in a local window was deduced. Area-to-point kriging 27 

(ATPK) was then proposed to find a solution for the inverse prediction problem of estimating the 28 

sub-pixel proportions from the original coarse proportions. The sub-pixel proportions were finally 29 

upscaled using an ideal square wave response to produce the enhanced proportions. The 30 

effectiveness of the proposed method was demonstrated using two datasets. The proposed method 31 

has great potential for wide application since spectral unmixing is an extremely common approach 32 

in remote sensing. 33 

 34 

Keywords: Land cover, Spectral unmixing, Soft classification, Point spread function (PSF), Area-35 

to-point-kriging (ATPK). 36 

 37 

 38 

1. Introduction 39 

 40 

Mixed pixels exist unavoidably in remotely sensed images. Mixed pixels cover more than one 41 

land cover class such that the observed spectrum is a composite of the individual spectra for the 42 

constituent land cover classes (also termed endmembers). Spectral unmixing is the goal of 43 

predicting the areal proportions of the land cover classes within mixed pixels and it has been 44 

investigated over two decades. It is beyond the scope of this paper to review explicitly the existing 45 

methods for spectral unmixing, but several reviews exist (Bioucas-Dias et al., 2012; Quintano et 46 

al., 2012). The linear spectral mixture model (LSMM) (Heinz & Chang, 2001; Keshava & Mustard, 47 

2002) underpins the development of most of the existing spectral unmixing methods, with benefits 48 



 

 

2 

including its clear physical interpretation and mathematical simplicity. LSMM assumes that the 49 

spectrum of a mixed pixel is a linear weighted sum of the endmembers. 50 

The point spread function (PSF) effect exists ubiquitously in remotely sensed data. It is caused 51 

mainly by the optics of the instrument, the detector and electronics, atmospheric effects, and image 52 

resampling (Huang et al., 2002; Schowengerdt, 1997). The PSF is usually expressed as a 2-D 53 

function (i.e., in both the across-track and along-track directions) (Campagnolo & Montano, 2014; 54 

Radoux et al., 2016). Due to the PSF effect, the signal attributed to a given pixel is a weighted sum 55 

of contributions from not only within the spatial coverage of the pixel, but also that for neighboring 56 

pixels (Townshend et al., 2000; Van der Meer, 2012). Such an effect leads to a fundamental limit 57 

on the amount of information that remote sensing images can contain (Manslow & Nixon, 2002). 58 

Fig. 1 shows an example illustrating the PSF effect on observed coarse proportions. Both visual 59 

and quantitative evaluation shows that when affected by the PSF, the observed coarse proportions 60 

in Fig. 1(c) are obviously different from the actual coarse proportions in Fig. 1(b). The PSF can 61 

brighten dark objects (e.g., increase the actual proportion of zero to a larger value) and darken 62 

bright objects (e.g., decrease the actual proportion of one to a smaller value) (Huang et al., 2002). 63 

In the ideal coarse proportion images, produced with a square wave response, the original boundary 64 

between different land cover classes on the ground always results in a boundary of intermediate 65 

proportions whose width is only one coarse pixel, as shown in Fig. 1(e). Because of the PSF, 66 

however, the width of coarse boundary can be larger than one coarse pixel, shown in Fig. 1(f). 67 

Therefore, the PSF can introduce great uncertainty in proportion estimation based on spectral 68 

unmixing. 69 

 70 

(a) (b) (c) (d) 

    
(e)                                                                                (f) 71 

0 0.020 0.143 0.143 0.041 0 0 0 

 

0.001 0.056 0.213 0.223 0.079 0.001 0 0 

0 0.143 1 1 0.286 0 0 0 0.002 0.213 0.815 0.852 0.301 0.006 0 0 

0 0.143 1 1 0.286 0 0 0 0.002 0.236 0.903 0.944 0.333 0.006 0 0 

0 0.143 1 1 0.286 0 0 0 0.002 0.236 0.903 0.944 0.333 0.006 0 0 

0 0.143 1 1 0.286 0 0 0 0.002 0.236 0.903 0.944 0.333 0.006 0 0 

0 0.143 1 1 0.286 0 0 0 0.002 0.229 0.876 0.916 0.323 0.006 0 0 

0 0.061 0.429 0.429 0.122 0 0 0 0.001 0.105 0.400 0.418 0.148 0.003 0 0 

0 0 0 0 0 0 0 0 0 0.003 0.013 0.014 0.005 0.001 0 0 

 72 

Fig. 1. An example to illustrate the PSF effect on observed land cover proportions. (a) The simulated 1 m spatial 73 

resolution image of the rectangle target (with target in pure white and background in pure black) on the ground (image 74 

of 56 by 56 pixels). (b) The ideal 7 m coarse spatial resolution proportion image for the target (image of 8 by 8 pixels). 75 

(c) The 7 m coarse spatial resolution proportion image observed using a sensor with a Gaussian PSF (the standard 76 

deviation is half of the coarse pixel size). (d) The relation between the ideal and observed 7 m proportion images in (b) 77 

and (c). (e) and (f) are the corresponding matrices of the proportion images in (b) and (c) (the blue values represent the 78 

boundary cells of the object). 79 

 80 

It is of great interest to develop methods to consider the PSF effect to produce more accurate 81 

proportions in spectral unmixing. The method needs to consider the impact of spatially neighboring 82 
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pixels on the center pixel and eliminate it. It is widely acknowledged that spatial information is 83 

important in spectral unmixing and various methods have been developed on this basis. Shi & 84 

Wang (2014) provided a comprehensive review of existing methods that incorporate spatial 85 

information in spectral unmixing. These methods mainly incorporate spatial information in 86 

endmember extraction, selection of endmember combinations and abundance estimation. However, 87 

very few methods consider the PSF effect from the viewpoint of the physical mechanism. That is, 88 

very few studies focus on how the neighboring pixels affect the center coarse pixel based on the 89 

PSF effect and consider how to eliminate such an effect. Townshend et al. (2000) and Huang et al. 90 

(2002) proposed a deconvolution method to reduce the influence of the PSF in proportion 91 

estimation. This method quantifies the contributions from neighbors on the basis of coarse pixel-92 

level information and treats all sub-pixels locations in a coarse neighbor equally. However, 93 

different sub-pixel locations in the coarse neighbor have different spatial distances to the center 94 

coarse pixel and can have different influences on the center coarse proportion. Therefore, it is 95 

necessary to develop methods to consider the impact of neighbors at the sub-pixel scale. 96 

In this paper, we propose a new method to account for the PSF effect in spectral unmixing and 97 

produce more accurate proportion predictions. The method predicts the land cover proportions at 98 

a finer spatial resolution inversely from the original coarse proportions before predicting the 99 

enhanced proportions (i.e., the final predictions at the same coarse spatial resolution with the 100 

original proportions, but the PSF effect is reduced). Section 2 first introduces the mechanism of the 101 

PSF effect on spectral unmixing and deduces the mathematical relation between the coarse 102 

proportions and sub-pixel proportions of both the coarse center pixel and its coarse neighbors. 103 

Based on the deduced relation, the area-to-point kriging (ATPK) method is then introduced to 104 

predict the sub-pixel proportions from the original coarse proportions. For validation of the method, 105 

Section 3 provides and analyzes the experimental results for two datasets. The method is further 106 

discussed with several open issues in Section 4. A conclusion is provided in Section 5. 107 

 108 

 109 

2. Methods 110 

 111 

2.1. The effect of the PSF on spectral unmixing 112 

 113 

Suppose VS  is the spectrum of coarse pixel V, ( )kR  is the spectrum of class endmember k (k=1, 114 

2, …, K, where K is the number of land cover classes), and ( )VF k  is the proportion of class k within 115 

coarse pixel V. Based on the classical linear spectral mixture model, the spectrum of a coarse pixel 116 

is a linearly weighted spectra of endmembers, where the weights are class proportions within the 117 

coarse pixel: 118 

1

( ) ( )
K

V V

k

k F k


S R .                                                         (1) 119 

Due to the PSF effect, the spectrum of coarse pixel V can be considered as a convolution of the 120 

spectra of sub-pixels 121 

V v Vh S S                                                                 (2) 122 

in which vS  is the spectrum of sub-pixel v, * is the convolution operator and Vh  is the PSF. The 123 

spectrum of sub-pixel v can be characterized as 124 
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1

( ) ( )
K

v v

k

k F k


S R                                                            (3) 125 

where ( )vF k  is the proportion of class k in sub-pixel v. Substituting Eq. (3) into Eq. (2), we have 126 

 
1 1

( ) ( ) = ( ) ( )
K K

V v V v V

k k

k F k h k F k h
 

 
   
 
 S R R .                                    (4) 127 

Comparing Eqs. (1) and (4), we can conclude 128 

( ) ( )V v VF k F k h  .                                                          (5) 129 

This means that the predicted coarse proportion (e.g., based on the classical linear spectral mixture 130 

model) within each coarse pixel, ( )VF k , is a convolution of the sub-pixel proportions.  131 

In theory, the true (i.e., ideal) coarse proportion (denoted as ( )VT k ) is identified as the average 132 

of all sub-pixel class proportions ( )vF k  within the center coarse pixel. That is, for ( )VT k , the PSF 133 

(denoted as 
Vh  ) is an ideal square wave filter 134 

1
, if ( , ) ( , )( , )

0, otherwise
V

i j V i jh i j 

    


.                                               (6) 135 

In Eq. (6),   is the areal ratio between the pixel sizes of V and v, (i, j) is the spatial location of the 136 

sub-pixel and ( , )V i j  is the spatial coverage of the coarse pixel V in which each sub-pixel located 137 

at (i, j) falls. Eq. (6) means that based on the square wave filter, only the sub-pixels within the 138 

coarse pixel V will affect the coarse pixel and, moreover, all of them will exert the same effect. The 139 

relation between ( )VT k  and ( )vF k  is expressed as 140 

( ) ( )V v VT k F k h   .                                                          (7) 141 

In reality, the PSF Vh  in Eq. (5) is different to the ideal square wave PSF 
Vh   in Eq. (7) (i.e., 142 

V Vh h  ). The spatial coverage of Vh  is generally larger than a coarse pixel extent and different 143 

sub-pixels may have different effects on the coarse pixel. For example, the PSF is often assumed 144 

to be a Gaussian filter (Huang et al., 2002; Townshend et al., 2000; Van der Meer, 2012) 145 

2 2

2 2

1
exp , if ( , ) ( , )

( , ) 2 2

0, otherwise

V

i j
i j V i j

h i j  

   
         
 

                               (8) 146 

where   is the standard deviation (i.e., the width of the Gaussian PSF) and ( , )V i j  is the spatial 147 

coverage of the local window centered at coarse pixel V ( ( , )V i j  is larger than ( , )V i j  in Eq. (6)). 148 

Based on the Gaussian PSF, ( )VF k  is actually a convolution of the sub-pixel proportions in the 149 

local window centered at the coarse pixel V, rather than being restricted to only the sub-pixel 150 

proportions within the coarse pixel V. Moreover, the sub-pixels with different spatial distances to 151 

the center coarse pixel will exert different effects on it. Thus, due to the PSF effect, ( )VF k  is 152 

actually contaminated by the sub-pixels surrounding the coarse pixel V. 153 

Evidently, the difference between Vh  and 
Vh   makes the predicted coarse proportion ( )VF k  154 

different to the ideal coarse proportion ( )VT k . The spectral unmixing predictions ( )VF k  can, 155 

however, be enhanced by considering the PSF effect. To produce more accurate coarse proportions 156 
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(i.e., predictions that are as close to ( )VT k  as possible), the sub-pixel proportions ( )vF k  need to be 157 

predicted. As seen from Eq. (5), just as ( )VF k  is obtained from spectral unmixing, ( )vF k  can be 158 

predicted inversely once the PSF Vh  is known. 159 

 160 

2.2. Area-to-point kriging (ATPK) for enhancing the original coarse proportions 161 

 162 

The key in the inverse prediction problem of estimating a sub-pixel proportion ( )vF k  from 163 

coarse proportion ( )VF k  is to account for the PSF Vh  which introduces the contributions of 164 

neighboring pixels to the coarse proportion of center pixel V. This process involves downscaling. 165 

ATPK is a powerful choice for downscaling, which can account for the PSF effect explicitly in the 166 

scale transformation (Kyriakidis, 2004). In this paper, it is used to downscale the coarse proportions 167 

to the finer spatial resolution proportions ( )vF k . 168 

Based on ATPK, the sub-pixel proportion is calculated as a linear weighted sum of the 169 

neighboring coarse proportions 170 

1 1

ˆ ( ) ( ), s.t. 1
i

N N

v i V i

i i

F k F k 
 

                                                    (9) 171 

in which i  is the weight for the ith coarse neighbor iV  and N is the number of neighbors. The N 172 

weights are calculated according to a kriging matrix, where the semivariograms at different spatial 173 

resolutions account for the PSF in scale transformation. Details on the kriging matrix and 174 

semivariograms can be found in Wang et al. (2015, 2016a). 175 

ATPK has the appealing advantage of honoring the coarse data perfectly. This means that when 176 

the ATPK predictions ˆ ( )vF k  are convolved with the PSF Vh , exactly the original coarse 177 

proportions ( )VF k  are produced (Kyriakidis, 2004) 178 

ˆ( ) ( )V v VF k F k h  .                                                        (10) 179 

By comparing Eqs. (5) and (10), we can consider the ATPK predictions ˆ ( )vF k  as a reliable solution 180 

to the inverse prediction problem of estimating the sub-pixel proportions ( )vF k . 181 

The final coarse proportion for class k is calculated as a convolution of ˆ ( )vF k  with the ideal 182 

square wave filter 
Vh   183 

ˆ ˆ( ) ( )V v VT k F k h   .                                                        (11) 184 

That is, for each coarse pixel, the final proportion for class k is predicted as the average of ˆ ( )kF v  185 

within it. Fig. 2 describes the process of predicting ( )VT k  from the original coarse proportion 186 

( )VF k . 187 



 

 

6 

ˆ ( )vF k( )VF k

ATPK

ˆ ( )VT k

Spatial resolution
Coarse Fine

ˆ ( ) ( )v V VF k h F k 

ˆ ˆ( ) ( )V v VT k F k h  

 188 
Fig. 2. Flowchart of transforming the original coarse proportion ( )VF k  to ( )VT k . 189 

 190 

The implementation of the proposed ATPK-based method that accounts for the PSF in spectral 191 

unmixing is not affected by the specific form of PSF and the method is suitable for any PSF. Once 192 

the PSF is known or predicted, it can be used readily in the method. 193 

 194 

 195 

3. Experiments 196 

 197 

The proposed method for considering the PSF effect in spectral unmixing was demonstrated 198 

using two datasets, including a land cover map and a multispectral image. As the estimation of the 199 

PSF of sensors remains open and the proposed method is suitable for any PSF, the coarse data 200 

(coarse proportions or multispectral image) were synthesized by convolving the available fine 201 

spatial resolution land cover map or multispectral image, using the widely acknowledged Gaussian 202 

PSF in Eq. (8) (Huang et al., 2002; Townshend et al., 2000; Van der Meer, 2012). The width of the 203 

PSF was set to half of the coarse pixel size. The strategy can help to avoid the uncertainty in PSF 204 

estimation and concentrate solely on the performance of proportion prediction. Moreover, the 205 

coarse proportions are known perfectly and can be used as reference data for evaluation. 206 

The root mean square error (RMSE) and correlation coefficient (CC) were used for quantitative 207 

evaluation between the proportion predictions and real proportions. To emphasize the increase in 208 

accuracy of the predictions of the proposed method over the original ones contaminated by the PSF, 209 

an index called the reduction in remaining error (RRE) (Wang et al., 2015) was also used. Details 210 

on the calculation of RRE can be referred to Wang et al. (2015). 211 

 212 

3.1. Experiment on the land cover map 213 

 214 

A land cover map (with a spatial resolution of 0.6 m) covering an area in Bath, UK was used in 215 

this experiment, as shown in Fig. 3. The map has a spatial size of 360 by 360 pixels. Four classes 216 

were identified in the land cover map, including roads, trees, buildings and grass. The map was 217 

degraded by a factor of 8 and a square wave PSF, generating four actual proportion images at a 218 

spatial resolution of 4.8 m, as shown Fig. 4(a). Similarly, the four original coarse proportion images 219 

produced by spectral unmixing were simulated using a factor of 8 and a Gaussian PSF (the width 220 

of the PSF was set to 2.4 m), as shown Fig. 4(b). 221 

Fig. 5(a) shows the scatter plots between the actual proportions and original proportions 222 

contaminated by the PSF. A visual check of both Figs. 4 and 5 reveals that due to the PSF effect, 223 

the original proportions are obviously different from the actual proportions. For example, some 224 

actual proportions of 0 are inaccurately predicted as a larger value (for grass, the value can reach 225 

0.3, as shown in Fig. 5(a)) and some actual proportions of 1 are inaccurately predicted as a much 226 
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smaller value (e.g., some of the trees proportions are incorrectly predicted as 0.7, see Fig. 5(a)). 227 

Fig. 4(c) shows the enhanced proportions produced using the proposed method that considers the 228 

PSF effect. Compared with the original proportion images in Fig. 4(b), the enhanced proportion 229 

images in Fig. 4(c) are visually closer to the reference in Fig. 4(a). For example, the enhanced 230 

proportion images are clearly much brighter than the original proportion images. The scatter-plots 231 

between the actual proportions and enhanced proportions accounting for the PSF are shown in Fig. 232 

5(b). Compared with Fig. 5(a), the distribution of points for all four classes in Fig. 5(b) is more 233 

compact and closer to the line of y =x, suggesting that the enhanced proportions are closer to the 234 

actual proportions. 235 

 236 

 237 

 238 
Fig. 3. The land cover map used in the first experiment. 239 

 240 

(a) 241 

    242 
(b) 243 

    244 
(c) 245 
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    246 
 247 

0                       1 248 

Fig. 4. The proportion images for the land cover map. (a) Reference produced by convolving the the 0.6 m land cover 249 

map with an ideal wave square PSF and a degradation factor of 8. (b) Original proportion images produced by 250 

convolving the 0.6 m land cover map with a Gaussian PSF and a degradation factor of 8. (c) Enhanced proportions 251 

using the proposed method that considers the PSF effect in spectral unmixing. From left to right are the results for 252 

roads, trees, buildings and grass. 253 

 254 

(a) 255 

 256 
(b) 257 

 258 
Fig. 5. (a) Relation between the actual proportions and original proportions in Fig. 4(b). (b) Relation between the actual 259 

proportions and enhanced proportions in Fig. 4(c). From left to right are the results for roads, trees, buildings and grass. 260 

 261 

Table 1 lists the accuracies of the proportions before and after considering the PSF effect. It is 262 

seen that by considering the PSF effect, the enhanced proportions have larger CCs and smaller 263 

RMSEs than the original proportions. More precisely, the RMSEs decrease by around 0.03, 0.04, 264 

0.04 and 0.06 for roads, trees, buildings and grass, and the RREs are 69.55%, 61.11%., 65.14% 265 

and 63.53%. Correspondingly, the RREs for CCs of the four classes are 88.06%, 81.20%, 83.33% 266 

and 82.21%, revealing that the errors are greatly reduced by considering the PSF effect. 267 

 268 

Table 1 Accuracy of the proportions for the land cover map 269 

  Roads Trees Buildings Grass 

RMSE 

Original 0.0440 0.0576 0.0591 0.0924 

Enhanced 0.0134 0.0224 0.0206 0.0337 

RRE 69.55% 61.11% 65.14% 63.53% 

CC 
Original 0.9866 0.9867 0.9844 0.9792 

Enhanced 0.9984 0.9975 0.9974 0.9963 
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RRE 88.06% 81.20% 83.33% 82.21% 

 270 

The performance of the proposed method for different PSF width (i.e., 0.25, 0.5, 0.75 and 1) is 271 

shown in Fig. 6. It is clear that the enhanced proportions have consistently larger CCs than the 272 

original proportions for all three cases and all four land cover classes. Moreover, the accuracy gains 273 

become larger when the width increases. For the width of 0.25, the CCs of original and enhanced 274 

proportions are very close (both close to 1, with difference about 0.001), but the difference increase 275 

to be larger than 0.04 for the width of 1. It is worth noting that the accuracies of both original and 276 

enhanced proportions decrease as the width increases. 277 

 278 

 279 

 280 

 281 

(a)                                                            (b) 282 

        283 
 284 

(c)                                                            (d) 285 

        286 
 287 

Fig. 6. The CC of the original and enhanced proportions in relation to the width of the Gaussian PSF (in units of coarse 288 

pixel). (a)-(d) are results for roads, trees, buildings and grass, respectively. 289 

 290 

3.2. Experiment on the multispectral image 291 

 292 

To ensure the perfect reliability of the reference (i.e., actual proportions), a synthesized 293 

multispectral image was used in this experiment. Specifically, the image was created from a six-294 
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band (bands 1-5 and 7) 30 m Landsat-7 Enhanced Thematic Mapper plus (ETM+) image acquired 295 

in August 2001, as shown in Fig. 7(a). The study area has a spatial size of 240 by 240 pixels and 296 

covers farmland with four main land cover classes (marked as C1–C4) in the Liaoning Province, 297 

China. The corresponding manually digitized land cover map is shown in Fig. 7(b). Referring to 298 

the land cover map in Fig. 7(b), the mean and variance of each land cover class in the original six-299 

band 30 m Landsat image were calculated. According to the land cover in Fig. 7(b), a six-band 30 300 

m multispectral image was synthesized based on the random normal distribution and the mean and 301 

variance of the classes. Finally, the synthesized 30 m multispectral image was degraded with a 302 

factor of 8 and a Gaussian PSF to create a 240 m multispectral image, see Fig. 7(c). 303 

The task of this experiment is to predict the 240 m coarse proportions from the synthesized 240 304 

m multispectral image. The actual 240 m proportions (i.e., reference) were produced by convolving 305 

the 30 m land cover map in Fig. 7(b) with an ideal square wave PSF and a degradation factor of 8. 306 

Fig. 8 shows the 240 m actual proportions, the original proportions produced without considering 307 

the PSF effect and the enhanced proportions produced using the proposed method. It is visually 308 

clear that the enhanced proportions are closer to the reference than the original proportions. This is 309 

also supported by the scatter-plots in Fig. 9. The quantitative assessment is shown in Table 2. By 310 

considering the PSF effect based on the proposed method, the RMSEs for C1–C4 are reduced by 311 

0.03, 0.04, 0.03 and 0.02, and the RREs in terms of CC for C1–C4 are 38.38%, 60.68%, 76.92% 312 

and 52.27%, respectively. 313 

(a)                                          (b)                                          (c) 314 

   315 
Fig. 7. The multispectral image used in the second experiment. (a) Original 30 m multispectral image (bands 432 as 316 

RGB). (b) 30 m land cover map produced by drawing manually from (a) (blue, red, yellow and green represents C1–317 

C4). (c) 240 m coarse image produced by degrading the synthesized 30 m multispectral image with a Gaussian PSF 318 

and a degradation factor of 8. 319 

 320 

(a) 321 

    322 
(b) 323 
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    324 
(c) 325 

    326 
 327 

0                       1 328 

Fig. 8. The proportion images for the multispectral image. (a) Reference produced by convolving the 30 m land cover 329 

map in Fig. 7(b) with an ideal square wave PSF and a degradation factor of 8. (b) Original proportion images produced 330 

by spectral unmixing of the 240 m coarse multispectral image in Fig. 7(c), without considering the PSF effect. (c) 331 

Enhanced proportions using the proposed method that considers the PSF effect in spectral unmixing. From left to right 332 

are the results for C1–C4. 333 

 334 

(a) 335 

 336 
(b) 337 

 338 
Fig. 9. (a) Relation between the actual proportions and original proportions in Fig. 8(b). (b) Relation between the actual 339 

proportions and enhanced proportions in Fig. 8(c). From left to right are the results for C1-C4. From left to right are 340 

the results for C1–C4. 341 

 342 

Table 2 Accuracy of the proportions for the multispectral image 343 

  C1 C2 C3 C4 

RMSE 
Original 0.0873 0.0950 0.0517 0.0529 

Enhanced 0.0613 0.0540 0.0229 0.0331 
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RRE 29.78% 43.16% 55.71% 37.43% 

CC 

Original 0.9703 0.9766 0.9844 0.9692 

Enhanced 0.9817 0.9908 0.9964 0.9853 

RRE 38.38% 60.68% 76.92% 52.27% 

 344 

 345 

4. Discussion 346 

 347 

After hard land cover classification, spectral unmixing is one of the most common approaches 348 

in remote sensing, and has been applied widely in various domains (Somers et al., 2011), such as 349 

climate change monitoring (Melendez-Pastor et al., 2010), terrestrial ecosystem monitoring (Hestir 350 

et al., 2008), precision agriculture (Pacheco and McNairn, 2010), natural hazard risk assessment 351 

(Eckmann et al., 2010), geological mapping (Bedini, 2009), and urban environment mapping 352 

(Weng et al., 2004). In the last five years, more than 1000 papers were published on spectral 353 

unmixing (indexed in Web of Science). The experimental results reveal that spectral unmixing can 354 

be enhanced by considering the PSF effect through the proposed ATPK-based method. The method 355 

for enhancing the proportions is, thus, expected to have widespread applications in practice. For 356 

example, the global Vegetation Continuous Field (VCF) product has been generated annually from 357 

the Moderate Resolution Imaging Spectroradiometer (MODIS) since 2000, which contains the 358 

percentage of vegetative cover within each MODIS pixel (DiMiceli et al., 2011). MODIS data have 359 

also been used for crop area estimation based on spectral unmixing (Pan et al., 2012). The VCF 360 

products and crop area estimation can be potentially enhanced by accounting for the PSF effect. 361 

Sub-pixel mapping (Atkinson 1997; Wang et al., 2016b) has been developed for decades, which 362 

is a post-processing analysis of spectral unmixing. It creates a thematic map at a finer spatial 363 

resolution based on the spectral unmixing predictions as inputs. Specifically, under the proportion 364 

coherence constraint and starting with the coarse proportions, sub-pixel mapping divides each 365 

mixed pixel into sub-pixels and predicts their land cover class. When the PSF effect is considered 366 

in the coarse proportions, more reliable inputs and proportion constraints can be provided for sub-367 

pixel mapping to create more accurate finer spatial resolution land cover maps. 368 

According to the relation in Eq. (5), the proposed ATPK-based method can predict sub-pixel 369 

proportions (i.e., a by-product) inversely from the coarse proportions. The by-product has a finer 370 

spatial resolution than the original proportions and is also expected to have great application value. 371 

For example, Gu et al. (2008) produced finer spatial resolution proportion images from input coarse 372 

proportion images and the results (e.g., Fig. 10(f) in Gu et al., 2008) showed that aircraft can be 373 

observed more clearly from the sub-pixel proportion images. For sub-pixel mapping, the by-374 

product can be hardened to create a finer spatial resolution land cover map, under the proportion 375 

coherence constraint from the enhanced coarse proportions. This is also the core idea of the recently 376 

developed soft-then-hard sub-pixel mapping algorithm (Wang et al., 2014), which predicts sub-377 

pixel proportion images first and then hardens them to land cover maps. The by-product, along 378 

with the enhanced proportions, opens new avenues for future research. 379 

In our previous research, the PSF effect was considered directly in the post SPM process (Wang 380 

and Atkinson, 2017) to produce more accurate sub-pixel resolution land cover maps. Different to 381 

Wang and Atkinson (2017), this paper aims to produce more accurate coarse proportions. As 382 

discussed above, the coarse proportions have more general applications, including not only in the 383 

post SPM process, but also in practical applications such as in large scale crop area and VCF 384 

estimation. The by-product of sub-pixel proportions also imposes extra value. It would be 385 

interesting to conduct a comparison for SPM predictions based on the method in Wang and 386 
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Atkinson (2017) and the enhanced coarse proportions produced using the proposed method in this 387 

paper. 388 

The PSF width (i.e., standard deviation of the Gaussian PSF in this paper) determines how 389 

greatly the observed pixel signal is affected by its neighboring pixels. It is a crucial factor affecting 390 

the accuracy of spectral unmixing predictions. When the width increases, more neighbors 391 

contaminate the center pixel and the uncertainty in predicting the proportions increases as a result, 392 

and vice versa. Thus, the accuracy of the proportions (either original or enhanced) decreases as the 393 

width increases, as reported in Fig. 6. It is worth noting that in Fig. 6, the accuracies of both original 394 

and enhanced proportions for the width of 0.25 are nearly the same and both values are close to the 395 

ideal value. This reveals that a very narrow PSF (e.g., less than 0.5 pixel) on a discrete grid (i.e., 396 

pixel) has little effect. It should be noted that each senor has its own PSF width. For example, based 397 

on the assumption of the Gaussian PSF, Radoux et al. (2016) found that the width for the Landsat 398 

8 red band is 0.72 pixel and ranges from 0.71 to 0.94 pixel for the Sentinel-2 bands. The 399 

consistently greater accuracy of the proposed method for different widths suggests its great 400 

application value for different sensors. 401 

In this paper, a Gaussian PSF was assumed for convenience in the experimental validation. It 402 

should be noted that the PSF may not be the Gaussian filter in reality, especially for sensors with a 403 

scanning mirror which will ensure that the shape has a directional component (Tan et al., 2006). 404 

However, this paper aims to find a solution to account for the PSF effect to enhance spectral 405 

unmixing predictions. We did not focus on the specific form of the PSF (e.g., specific form of the 406 

function and related parameters), as the proposed method is suitable for any PSF. In practice, once 407 

the PSF is available, it can be used readily in the proposed ATPK-based method. 408 

It is assumed that the endmembers are scale-free and that the same endmembers can be 409 

considered for the coarse and fine spatial resolution spectra in Eqs. (1) and (3). This assumption is 410 

more reliable when the landscapes are homogeneous or the intra-class spectra variation is small, 411 

such that slight differences exist between the endmembers at different spatial resolutions. However, 412 

intra-class spectral variation is a common problem in spectral unmixing that remains open 413 

(Drumetz et al., 2016; Somers et al., 2011). It would be worthwhile to investigate the relation 414 

between the endmembers at different spatial resolutions, or to consider endmember extraction in a 415 

local window and the use of multiple endmembers to characterize each land cover class. 416 

The proposed ATPK-based method is shown to be effective in considering the PSF effect, based 417 

on the assumption that the ATPK predictions ˆ ( )vF k  are a reliable solution to the inverse prediction 418 

problem of estimating sub-pixel proportion ( )vF k  from ( )VF k . However, this inverse prediction 419 

problem is ill-posed, and multiple solutions may meet the coherence constraint in Eq. (10). In future 420 

research, it would be interesting to design an appropriate model to incorporate additional 421 

information (e.g., prior spatial structure information for each land cover class at the fine spatial 422 

resolution) into the ATPK method to reduce the solution space and produce more reliable sub-pixel 423 

proportions. 424 

 425 

 426 

5. Conclusion 427 

 428 

A new method was proposed for considering the PSF in spectral unmixing and increasing the 429 

accuracy of land cover proportion predictions. Based on the ubiquitous existence of the PSF effect 430 

in real remotely sensed images, spectral unmixing predictions are made as a convolution of the 431 

sub-pixel proportions of both the coarse center pixel and coarse neighbors. ATPK is proposed to 432 
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predict the sub-pixel proportions inversely from the coarse proportions and the sub-pixel 433 

proportions are then convolved with the ideal square wave PSF to produce the final predictions. 434 

The experimental results on two datasets suggest that the proposed method provides a satisfactory 435 

solution for reducing the PSF effect in spectral unmixing. 436 

 437 
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