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Abstract: The stomatal compensation point of ammonia (χs) is a key factor controlling 

plant-atmosphere NH3 exchange, which is dependent on the nitrogen (N) supply and 

varies among plant species. However, knowledge gaps remain concerning the effects 

of elevated atmospheric N deposition and ozone (O3) on χs for forest species, resulting 

in large uncertainties in the parameterizations of NH3 incorporated into atmospheric 

chemistry and transport models (CTMs). Here, we present a leaf-scale χs for hybrid 

poplar clone ‘546’ (Populusdeltoides cv. 55/56 x P. deltoides cv. Imperial) growing in 

two N treatments (N0, no N added; N50, 50 kg N ha-1 yr-1 urea fertilizer added) and two 

O3 treatments (CF, charcoal-filtered air; E-O3, non-filtered air plus 40 ppb) for 126 days. 

Our results showed that χs was significantly reduced by E-O3 (36%) but was not 

significantly affected by elevated N. Elevated O3 significantly reduced the light-

saturated photosynthetic rate (Asat) and chlorophyll (Chl) content and significantly 

increased intercellular CO2 concentrations (Ci), but had no significant effect on gs. By 

contrast, elevated N significantly influenced Asat but not the remaining three 

photosynthetic parameters. Overall, χs was significantly and positively corrected with 

Asat, gs and Chl, whereas a significant and negative relationship was observed between 

χs and Ci. Our results suggest that O3-induced changes in Asat, Ci and Chl may affect χs. 

Interactions of N and O3 on χs as well as all photosynthetic parameters were not 

significant. Our findings provide a scientific basis for optimizing parameterizations of 

χs to respond to environmental change factors (i.e., elevated N deposition and/or O3) in 

the future. 
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1. Introduction 

Atmospheric ammonia (NH3) is the primary alkaline trace gas in the atmosphere 

and plays a vital role in many biogeochemical and atmospheric processes (Behera et al., 

2013). It neutralizes atmospheric acids to yield ammonium (NH4
+) aerosols, which 

resulting in increased mass loadings of fine atmospheric particulate matter (PM2.5, 

aerodynamic diameter ≤ 2.5) (Xu et al., 2016, 2017), thereby reducing visibility and 

adversely impacting ecosystem and human health (Gu et al., 2014). By contrast, 

atmospheric deposition of reduced N (NH3 and NH4
+) can cause soil acidification (Du 

et al., 2015), eutrophication (Pareman et al., 2016) and loss of biodiversity (Erisman et 

al., 2007) in sensitive ecosystems. 

  Plants can be either a source or a sink of atmospheric NH3, depending on the 

difference between atmospheric NH3 concentration and the so-called canopy NH3 

compensation point (Massad et al., 2010). As a major component of canopy NH3 

compensation point, Ammonia stomatal compensation point (χs) is defined as the 

atmospheric NH3 concentration for which there is no exchange between the leaf and the 

atmosphere in dry conditions (Flechard et al, 2013). Theoretically, χs is also the air 

concentration in the leaf sub-stomatal cavity that is in equilibrium with ammonium 

concentration in the apoplast (Husted and Schjoeering, 1995). It plays a vital role in 

controlling the magnitude and the direction of NH3 exchange between the canopy and 

the atmosphere (Sutton et al., 1995). Specifically, if atmospheric NH3 concentrations 

exceed χs then NH3 deposition from the atmosphere to vegetation will occur, while with 

atmospheric NH3 concentrations below χs, there will be a net uptake of NH3 by plants. 

χs depends directly on the plant nitrogen (N) status, developmental stage, and 

environmental conditions (N fertilization or atmospheric N deposition), with larger 

values generally observed under conditions of N supply and at senescence (Massad et 

al., 2009; Schjoerring et al., 1998).  

χs can be derived from simultaneous measurement of vertical fluxes and 

concentrations of NH3 by using micrometeorological flux techniques over large fields 

(Hansen et al., 2017; Nemitz et al., 2001; Personne et al., 2015), or in cuvettes by 



finding the concentration at which the total flux is zero (Hill et al., 2001; Massad et al., 

2009; Wang et al., 2011). In addition, the bioassay approach has also been developed 

for assessing χs and it is based on the determination of the leaf apoplastic NH4
+ 

concentration and pH by mean of apoplast extraction (Husted and Schjørring, 1995). 

These two methods are complementary. Apoplast extraction is more appropriate for leaf 

and cell scale processes whereas chamber/micrometeorological measurements tend to 

be more appropriate for flux measurements at an entire plant/canopy scale (Massad et 

al., 2009; Sutton et al., 2009).  

Forests represent a major uncertainty in quantification of regional NH3 fluxes and 

parameterization of bi-directional NH3 exchange in atmospheric chemistry and 

transport models (CTMs) such as AURAMS (A Unified Regional Air-quality 

Modelling System, Zhang et al., 2010) and CMAQ (Community Multiscale Air-Quality 

Modeling System, Fu et al., 2015). This is not only due to the large land area of forests 

but also because of the wide range of forest types and management practices. In 

conditions of bi-directional NH3 exchange, forests are of particular interest. For 

example, temperate deciduous forests are potentially a natural source of NH3 (Hansen 

et al., 2013, 2017; Neirynck and Ceulemans, 2008), leading to impact of forests on the 

atmospheric NH3 level. In contrast, tropical humid forest and temperate coniferous 

forest can acts as net NH3 sinks (Bertolini et al., 2016; Duyzer et al., 2005), resulting in 

the impact of atmospheric NH3 on the ecological functioning of forests.  

χs is one of the key parameters for parameterizations of NH3 incorporated into 

CTMs (Massad et al., 2010). Based on published data on χs in relation to different plant 

species, growth stages, N supply etc., Massad et al. (2010) derived a new operational 

parameterization for integrating bi-directional NH3 exchange into CTMs, However, 

uncertainties still exist for its parameterization, partially due to the following two 

drawbacks: 1) measurement of χs for different ecosystems, specific to forests, is very 

sparse and is only considered for a single growth stage of plants; 2) the relationships 

established between N fertilizer application and χs remain uncertain due to a lack of co-

measurement of χs with different organic fertilizer (manure, slurry and urea) application 

rates. In addition, the actual parameterization of NH3 exchange models requires large 



databases accounting for the variability of χs. To our knowledge, there is only one 

process-based model developed by Riedo et al. (2002) for grasslands which accounts 

for the plants N nutrition and growth stage in calculating χs. However, as χs is not only 

driven by N input to the ecosystem and plant growth stage, it may be a strongly 

regulated process that depends on environmental changes such as elevated ground-level 

O3.  

Ground-level O3 can be considered as the most phytotoxic air pollutant due to 

visible injury to a variety of plants and the rising concentrations in different regions of 

the world (Cooper et al., 2014; Feng et al., 2014). It affects photosynthetic parameters 

(e.g., stomatal conductance (gs), light-saturated CO2 assimilation rate (Asat), 

intercellular CO2 concentration (Ci) and chlorophyll (Chl) content) of forest species to 

a varying extent (Li et al., 2017). In contrast, atmospheric N deposition represents an 

important nutrient from the environment for plants (Liu et al., 2010). In N-limited 

ecosystems (e.g., forest) N deposition might enhance photosynthetic activity (i.e. 

photosynthetic enzyme activity) and net primary productivity (N fertilization effect) 

(Liu et al., 2011). In the context of N-saturation, However, N deposition may render 

plants more susceptible to pollutants and natural environmental stressors (Cardoso-

Vilhena and Barnes, 2001). Such O3 and N induced changes in the growth and 

metabolism of plants may affect the χs of plants due to a clear link between χs and 

photosynthetic parameters. For example, Mattssone and Schjoerring (1996) showed 

that leaf NH3 emission from Hordeum vulgare L. cv. Golf plants showed a consistent 

diurnal pattern of photosynthesis but the opposite trend with gs. Furthermore, 

Schjoerring et al. (1998) found that NH3 emission from leaves of Brassica napus L 

plants increased with Chl degradation. Such results demonstrate that there are 

corresponding influences of those parameters on χs, which positively impacts leaf NH3 

emission (Massad et al., 2010). In this context, understanding the effects of elevated O3 

and N as well as their-driven the plant physiological controls on χs is important for 

prediction of χs. Unfortunately, the relevant information for different forest species is 

still unknown, significantly restricting the optimization of the χs parameter in CTM 

models. 



Poplars are widespread deciduous plants in temperate and boreal forests. In China, 

poplar is a native species, with a cultivated area of more than 10 million ha (Yuan et al., 

2016). We designed an experiment to investigated for the first time the individual 

effects of elevated N deposition (with controlled application of urea) and O3 and their 

interactions on χs of hybrid poplar clone ‘546’ (Populusdeltoides cv. 55/56 x P. deltoides 

cv. Imperial). In addition, we estimated the relationships between photosynthetic 

parameters (gs, Asat, Ci and Chl) and χs, and discussed how N and O3, as well as their-

driven modifications in photosynthetic parameters (gs, Asat, Ci and Chl), respectively 

affect χs.  

2. Materials and methods 

2.1. Experimental site and plant materials 

The study was conducted in Yanqing Field and Experimental Basin, Tangjiapu 

village, Yanqing District (40°29′N, 115°59′E, 500 m.a.s.l.), about 74 km northwest of  

Beijing city centre. When the winds come from the north or northwest, this basin is 

located  upwind of the Beijing urban area. The site is characterized by a continental 

monsoon climate, with mean annual temperature of 9 oC and mean annual precipitation 

of 400-500 mm. 

Rooted cuttings of hybrid poplar clone ‘546’ (Populusdeltoides cv. 55/56 x P. 

deltoides cv. Imperial) were cultivated in individual 20 L circular plastic pots on 7 May 

2017. The plots were filled with local light loamy farmland soil, which was excavated 

at 0-10 cm depth, sieved out by a 0.3 mm pore mesh and then thoroughly mixed for 

homogeneity. Plants with similar height and basal stem diameter were selected and pre-

adapted to open-top chambers (OTCs, octagonal base, 12.5 m2 of growth space and 3.0 

m height, covered with toughened glass) for 10 days before ozone fumigation. All 

seedlings were manually irrigated at 1-2 day intervals in order to keep moisture to field 

capacity. 

2.2. O3 and N treatments 

The experiment was conducted in six OTCs with two O3 treatments: charcoal-

filtered ambient air (CF) in which ~80% of ambient O3 was removed, and elevated O3 



(E-O3, non-filtered air with targeted O3 addition of 40 ppb during fumigation). Each 

treatment had three OTC replicates, and six potted plants were randomly distributed in 

each OTC. The O3 fumigation was performed from 10 June to 22 September 2017 with 

day length of 10 h (from 08:00 till 18:00), except rainy days. During the fumigation 

period, the averaged O3 concentrations in CF and E-O3 were 24.0 and 80.6 ppb, 

respectively, and AOT40 (accumulated hourly O3 concentration above a threshold of 

40 ppb) was 2.4 and 41.6 ppm h, respectively (Fig. 1). Ozone was generated from pure 

oxygen using an electrical discharge O3 generator (HY003, Chuangcheng Co., Jinan, 

China) and mixed with ambient air using a fan. Ozone concentrations inside the OTCs 

were continuously monitored at approximately 10 cm above the plant canopy using an 

ultraviolet (UV) absorption O3 analyzer (Model 49i-Thermo, Thermo Scientific, 

Massachusetts, USA). The analyzers were calibrated monthly with a 49iPS calibrator 

(Thermo Scientific) during the experiment.  

In addition to the O3 treatments, two N treatments were applied with three 

replicates: control (N0, no N added), and moderate N, (N50, 50 kg N ha-1 yr-1). For N50, 

N additions were applied five times (13 June, 29 June, 16 July, 1 August, 17 August) to 

the soil with dilute urea solutions by using a 50 mL plastic bottle and the control pots 

received equal amounts of pure water. In total, N50 received 0.245 g N (i.e. 0.526 g 

urea) throughout the experiment.  

2.3. Measurements of physiological parameters 

Measurements of gas exchange, leaf temperature and chlorophyll content were 

performed during two periods, i.e., at the end of July and August, 2017 (on 30 and 31 

July, and on 29 and 31 August, respectively). For all plants, middle leaves were selected 

as targeted leaves, which were 11th to 13th fully expanded leaves from the apex and 

comprised the main part of the leaves on each plant. A portable photosynthetic system 

fitting with a 6400-40 leaf chamber fluorometer (LI-6400-40, LI-COR Co., USA) was 

used to measure gas exchange and leaf temperature from one middle leaf between 9:00 

and 12:00 h. For the measurements, the photosynthetic photon flux density was set at 

1200 µmol m-2 s-1, the CO2 concentration of air entering the leaf at 400 µmol mol-1 and 



the relative humidity at 50-60%. The measured parameters were Asat, gs, and Ci. During 

the entire experimental period, a total of 72 leaf samples were measured.  

Immediately after measurements of gas exchange and leaf temperature, two leaf 

discs were sampled from the targeted leaf and then extracted with 2 mL 95% ethanol 

solution in the dark for at least 72 h at 4 °C. The Chl content in the extract was 

determined using the specific absorption coefficients (Lichtenthaler, 1987). 

2.4. Determination of apoplastic NH4
+ and H+ concentration 

A slightly modified version of the vacuum infiltration technique developed by 

Husted and Schjoerring (1995) was employed to determine apoplastic NH4
+ and H+ 

concentration. Immediately after measurements of physiological parameters, the 

targeted leaf was cut and washed with high-purity water (18.2 Ω), in order to avoid any 

contamination from air pollutants (e.g., particulate NH4
+). The leaf was then blotted dry 

with clean absorbent paper towel and the central petiole was removed. The leaves were 

separated into three replicates and then weighted, infiltrated with 280 mM sorbitol 

solution using a 60 mL plastic syringe with a series of vacuum/pressure for 5 min. The 

vacuum/pressure process was automatically applied with an intercellular fluid extractor 

(NS-AFE-1, Pulanta Co. Suzhou, China). The infiltrated leaves were quickly rinsed 

with high-purity water, blotted dry and re-weighted. The leaves were then rolled, 

inserted into tubes and centrifuged at 9000 r min-1 for 10min at 4°C to collect the 

apoplastic solution. Cytoplasmic contamination of the apoplast during the extraction 

procedure was checked by performing the extraction using a buffered solution (0.1 M 

Ntris[hydroxymethyl]methyl-2-aminoethanesulphonic acid, 2 mM dithiothreitol and 

0.2 mM EDTA), and comparing the activity of Malate Dehydrogenase (MDH) in the 

apoplastic extracts to its activity in bulk tissue extracts as described by Husted and 

Schjørring (1995). The contamination was less than 1.2 ± 1.1% of MDH activity in 

apoplast extract relative to bulk tissue extract. The extracted solution was then frozen 

and stored at -20 °C prior to chemical analysis. 

The NH4
+ concentrations in the apoplastic extracts were measured with an AA3 

continuous-flow analyzer (BranCLuebbe GmbH, Norderstedt, Germany). The 



detection limit of NH4
+ was 0.01 mg N L-1. The pH of the extracted solution was 

measured with an InLab micro electrode (Mettler Toledo, Udorf, Switzerland). The 

dilution of the apoplastic solution was determined spectrophotometrically at 

wavelength 492 nm for the sorbitol, which allowed the calculation of a dilution factor 

(Hove et al., 2002). The concentration of apoplastic NH4
+ and H+ was corrected for 

dilution during the extraction procedure by multiplication with the dilution factor (Fdil). 

The aqueous volume of the apoplast (Vapo, mL g-1 leaf fresh weight (LFW)) was 

estimated using the equation (Hove et al., 2002): 

,               (1) 

where Vi is the infiltration volume which was calculated by assuming a leaf density 

of 1 g cm-3 the difference in weight before and after infiltration, Fd,sorb is the dilution 

factor of sorbitol. 

                 (2) 

where Vair is the air volume inside the leaf (cm3 g-1 LFW) which was measured by 

infiltrating leaves with low-viscosity silicone oil (10 mPa s). Based on the increase in 

weight and oil density (0.93 g cm-3), the Vair was estimated to be approximately 0.16 

mL g-1 throughout the experiment. 

2.5. Determination of the leaf tissue NH4
+ concentration 

The leaf segments were cut into small pieces, frozen in a ceramic mortar with 

liquid N (-210 oC), and quickly ground into a homogenous powder using a ceramic 

pestle. The weighed samples (approximately 1.0 g per sample) were put into a 5 mL 

centrifuge tube with 4 mL of high-purity water, followed by centrifugation at 2000 g 

(4oC) for 10 min (Loubet et al., 2002). The supernatant was then decanted and filtered 

through a syringe filter (0.45 µm, Tengda Inc., Tianjin, China) to remove large plant 

tissues. The filtered solution was frozen and stored at -20 oC until analysis for NH4
+ 

using an AA3 continuous-flow analyzer as mentioned before. 

2.6.  Calculation of NH3 stomatal compensation point 

The stomatal compensation points were derived using the apoplast pH and NH4
+ 



concentrations (Loubet et al., 2002) according to the equation: 

χ M K K 10       (3) 

where χ  is the stomatal compensation point in μg NH3 m-3, MNH3 is the molecular 

mass of NH3 in g mol-1, The ratio of apoplast NH4
+ to apoplast H+ concentration, called 

the emission potential (expressed as Γs), is temperature independent and dimensionless 

(Massad et al., 2010). KH is the Henry constant and KD is the dissociation constant. The 

product KHKD depends on temperature and was calculated following the method of 

(Hill et al., 2001): 

K K 10
.

          (4) 

where Tleaf is leaf temperature in Kelvin. 

2.7.  Statistical analysis 

Data of each investigated variable from three plants per OTC were averaged and 

then used as the statistical unit (N=3). Prior to analysis, all data were tested for 

normality using the Shapiro-Wilk's W-test and for homogeneity of variance using 

Levene’s-test to determine whether data should be transformed to be satisfied in 

application. A three-way analysis of variance (ANOVA) with a mixed linear model was 

then conducted to examine the effects of O3, N, measurement dates and their 

interactions on physiological parameters and χs as well as other parameters using JMP 

software (SAS Institute, Cary, NC, USA). Tukey’s Honestly Significant Difference 

(HSD) test was applied to examine the significant differences. Analysis of covariance 

(ANCOVA) was performed to test the significance of difference in the slopes of the 

linear relationship between χs and physiological parameters using SPSS software 

(version 11.5; SPSS Inc., Chicago, IL, USA). Statistically significant differences were 

set at P<0.05. All the data were shown as mean ± standard deviation (SD) of three OTC 

replicates. 

3. Results 

For all investigated variables, similar and non-significant responses to E-O3 and 

N50 were calculated between the two measurement dates, i.e., July and August (Figs. 



3 and 4). Based on integrated analysis of all data from all N and O3 treatments and the 

two measurement dates, the main results are presented below. 

 

3.1. Photosynthetic parameters 

The individual effects of N, O3 and measurement date, and their interactions on 

Asat, gs, Ci and Chl of the poplar clone 546 are shown in Fig.2 and Table 1. For all 

investigated variables, the interactions of O3 and N were not significant, but the 

individual effects of them were significant for most variables (Table 1). E-O3 relative 

to CF significantly reduced Asat by 55%, whereas N50 relative to N0 significantly 

increased Asat by 6% (Fig. 2a and Table 1). Asat significantly decreased (by 24%) in 

August relative to that in July, when averaged across all treatments. The effects of N 

and O3 on gs were both not significant, whereas measurement date significantly affected 

gs (Table 1, Fig. 2b). Similar to Asat, gs significantly decreased by 30% in August 

compared with that in July. 

 Ozone significantly influenced Ci and Chl whereas N had no significant effects 

on them (Table 1, Fig. 2c, d). Ci was significantly increased by E-O3 (+7%) compared 

with CF, and also was significantly higher (6%) in August than in July. Conversely, Chl 

was significantly reduced by E-O3 (-30%), and significantly decreased (by 57%) in 

August. 

  

3.2. Leaf apoplastic NH4
+ and pH, and leaf tissue NH4

+ 

Fig. 3a-c shows the responses of leaf apoplastic NH4
+ concentration and pH, and 

leaf tissue NH4
+ concentration to E-O3 and N50. The interactions between O3 and N 

and/or measurement dates were not significant for all those three variables (Table 1). 

However, individual effects of them on apoplastic NH4
+ concentrations and pH all 

reached statistically significant levels. Similarly, leaf tissue NH4
+ concentration was 

significantly influenced by both O3 and measurement dates, but not by N.  

Averaged apoplastic NH4
+ concentration was significant reduced (by 15%) in E-

O3 plants compared with CF plants (Fig. 3a, Table 1). By contrast, the mean 

concentration was significantly increased (by 27%) in N50 plants compared with that 



in N0 plants. A significant increase (14%) of the mean occurred in August relative to 

July. As for apoplastic pH, two small but significant reductions (both 4%) of the mean 

were found in E-O3 and N50 plants compared with those in CF and N50 plants, 

respectively (Fig. 3c, Table 1). Also, the mean pH was significantly lower (15%) in 

plants grown in August than in July.  

In contrast to apoplastic NH4
+, the mean tissue NH4

+ concentration significantly 

increased (by 15%) in E-O3 plants relative to that in CF plants, whereas a small and 

non-significant difference in the mean was found between N0 and N50 plants (Fig. 3b, 

Table 1). The mean concentrations decreased significantly (on average by 6%) in 

August relative to July.  

 

3.3. Emission potential (Γs) and stomatal compensation point (χs) 

As presented in Table 1, both O3 and measurement dates significantly affected Γs, 

whereas N had no significant effect on it. Also, no significant interactions between O3, 

N and/or measurement dates were observed. E-O3 treatment relative to CF significantly 

reduced Γs by 39% (Fig. 3d). Γs was significantly reduced (by 85%) in August 

compared with that in July.  

Similar to Γs, χs was significantly lower in E-O3 than in CF (0.29 ± 0.29 and 0.48 

± 0.45 μg NH3 m-3), and also in August than in July (0.07 ± 0.05 and 0.70 ± 0.29 μg 

NH3 m-3) (Fig. 4). However, it is noteworthy that the effect of N and its interaction with 

O3 on χs were marginally significant (both P=0.059) (Table 1).   

 

3.4. Correlations between stomatal compensation point (χs) and photosynthetic 

parameters 

χs was positively and significantly correlated with Asat, gs and Chl (Fig. 5a, b,d), 

whereas a negative and significant correlation between χs and Ci was observed (Fig. 

5c). ANCOVA results did not show significant differences in the slope of the regression 

lines for the individual O3 or N treatments. 

 

 



4. Discussion 

4.1. Effect of N application  

The application rate of urea fertilizer in the present experiment (50 kg N ha-1 yr-1) 

is approximately 2.3 and 3 times higher than the averages of N deposition over China 

(16 kg N ha-1 yr-1 in 2008-2012 period, Zhao et al., 2017) and in China’s forests (22 kg 

N ha-1 yr-1 in 1995-2010 period, Du et al., 2014), respectively. It is also approximately 

1.7-5.0 times greater than reported values during recent years in the N deposition 

hotspots of western Europe (20.0 to 28.1 kg N ha-1 yr-1, Vet et al., 2014), and North 

America (10.0 to 20.0 kg N ha-1 yr-1, Li et al., 2016). According to Liu et al. (2013), N 

deposition increased by approximately 8 kg N ha-1 yr-1 between the 1980s and the 2000s 

in China. Also, total N deposition is expected to have a 5%-10% increase in the year 

2050 relative to 2005 (Kanakidou et al., 2016). In view of the above, the level of N 

addition in this study is sufficient to assess the ecological effects of enhanced N 

deposition expected in the future.  

Apoplastic NH4
+ concentration is one of the key factors in controlling χs, which is 

associated with the status of leaf N and external N supply (e.g., N fertilization and 

atmospheric deposition) (Herrmann et al., 2009; Massad et al., 2008). The apoplastic 

NH4
+ concentrations measured for the N0 and N50 treatments (but without E-O3) were 

0.10 ± 0.01 and 0.13 ± 0.01 mM, respectively (Fig. 3a). To our knowledge published 

data on apoplastic NH4
+ concentrations in leaves of poplar 546 is unavailable, making 

a direct comparison with other studies impossible. However, our measured value for 

N0 treatments were close to that reported for Fagus sylvatica growing in July and 

August (0.11 mM, Wang et al., 2011). Compared with agricultural crops, our measured 

value for N0 treatments was higher than that reported for barley (0.04 mM, Mattsson et 

al., 1998), and was close to the value of 0.10 measured for oilseed rape (Massad et al., 

2009) both growing on N0. The value for plants grown on N50 was similar to that 

measured for oilseed rape (0.18 mM with 6 mM NO3
-, Schjoerring et al., 2002), and 

was lower than the value of 1.9 mM observed for barley grown on 5 mM NH4
+ 

(Mattsson et al., 1998). As expected, enhanced N input (N50) significantly increased 

the apoplastic NH4
+ concentration (Fig. 2, Table 1), probably due to increased soil N 



availability. This result is similar to the findings of Massad et al. (2009) that the NH4
+ 

concentrations in leaf apoplast of oilseed rape increased significantly with rising N 

treatments (aside from NO3
- supply).  

Besides apoplastic NH4
+ concentration, the pH of the apoplast may be the most 

important factor determining χs. There is evidence that NH4
+-fed plants have reduced 

apoplastic pH compared to NO3
--fed plants, e.g., sunflower (Hoffmann et al., 1992), 

soybean (Kosegarten and Englisch, 1994) and barley (Mattsson et al., 1998), probably 

due to a root rather than shoot assimilation of N (Pearson et al., 1998). Application of 

urea fertilizer in the present experiment probably enhanced soil NH4
+ level via urea 

hydrolysis, which further significantly increased apoplastic NH4
+ concentrations (Fig. 

3a) via root assimilation and the subsequent transport of NH4
+ to the foliar apoplast in 

the xylem (Mattson et al., 1998). This behaviour, along with NH4
+ uptake-induced 

acidification may offer an explanation for lower apoplastic pH (ranging from 4.6 to 6.0, 

Fig. 3c) of poplar 546 compared with those reported for most plant species (between 

5.0 and 6.5, Grignon and Sentenac, 1991). 

Enhanced N input significantly increased both apoplastic NH4
+ and H+ 

concentration with a similar significant level (Figs. 3a,c and Table 1) This may partly 

explain why N has no significant effect on χs. This, together with the relatively low 

calculated χs throughout, especially in August (Fig. 4), suggest that χs appears to be pH-

driven in this study. The apoplastic pH of Phaseolus vulgaris has been found to become 

alkalinized during photosynthesis (Raven and Farquhar, 1989). Similarly, we found that 

the N load significantly increased Asat of poplar 546 (Fig. 2a, Table 1), which 

significantly positively correlated with apoplastic pH (Fig. 6a) but had no significant 

relationship with apoplastic NH4
+ concentration (R2=0.09, P=0.141). These results 

provide an explanation for a significant and positive relationship observed between Asat 

and χs (Fig. 5a). Although such an increase in apoplastic pH occurred due to increased 

Asat by N load, it is insufficient to offset NH4
+ uptake-induced apoplast acidification, 

leading to relatively low χs. 

 

4.2. Effect of O3 application  



According to monitoring results for the 2014-2016 period in 187 Chinese cities, 

the mean daily 8-h O3 concentrations peak in summer reached up to 114.30 ± 23.78 ppb 

(Li et al., 2017). Obviously, the O3 level in E-O3 was within the range of current O3 

levels in China and was also in the range of future expected concentrations in warm and 

sunny areas of the world at the end of this century (The Royal Society 2008; IPCC 

2013). The dose of O3 (41.6 ppm h in AOT40, Fig. 1) in E-O3 by far exceeded the O3 

exposure limit of 5 ppm h for forest protection (CLRTAP, 2015) and 12 ppm h for poplar 

protection (Hu et al., 2015). As anticipated, O3-induced injuries to poplar 546 were 

detected in E-O3 despite N fertilization (e.g., reduction of Asat and Chl, Fig. 2a, d), thus 

confirming that poplar 546 is a very sensitive species to O3 (Shang et al., 2017). 

E-O3 significantly increased Ci and decreased Asat and Chl, respectively, but did 

not significantly affect gs (Figs. 2 and Table 1). These results are consistent with the 

findings of Shang et al. (2017) for polar 546. Similarly, a previous study showed that 

O3 can substantially reduce Asat in most plants, and also detected an uncoupled 

relationships between Asat and gs (Zhang et al., 2012). This can be explained by the fact 

that the O3-induced reduction in Asat is largely ascribed to non-stomatal factors, i.e. 

impaired physiological activity of mesophyll cells (Akhtar et al., 2010; Feng et al., 

2016).  

We found that E-O3 significantly reduced the calculated χs (Fig. 4). This is most 

likely related to a decline in apoplastic pH resulting from O3-induced changes in 

photosynthetic parameters, i.e., decreased Asat and Chl, and increased Ci (Fig. 2a,c,d, 

Table 1). This is because in addition to Asat, both Chl and Ci correlated  significantly 

with χs and apoplastic pH (Figs. 5c,d and 6c,d). In addition, there was a large response 

of apoplastic NH4
+ to photosynthesis (Mattsson and Schjoerring, 1996), mainly due to 

the fact that NH3 assimilation by plants requires carbon skeletons generated from 

photosynthesized carbohydrates for the synthesis of amino acids (Huppe and Turpin, 

1994). In this regard, a significant reduction in Asat  can also give rise to declines in 

apoplastic NH4
+ concentration. Similar to N, ozone has a greater impact on apoplastic 

pH than on apoplastic NH4
+ concentration, as demonstrated by the significant reduction 

of Γs by O3 (Fig. 3d, Table 1); this therefore led to a significant reduction in χs (Fig. 4, 



Table 1). 

  

4.3. Dependence on measurement date 

χs can be influenced by plant developmental stage since leaf apoplastic NH4
+ 

concentration and pH varies among leaves of different ages (Hill et al., 2002). Mattsson 

and Schjoerring (2003) reported that, for ryegrass (Lolium perenne), both apoplastic 

and tissue NH4
+ concentrations were 2-3 times higher in intact leaves (with visual 

symptoms of senescence) compared with green leaves. The present study shows that 

leaf apoplastic NH4
+ concentrations significantly increased in August compared with 

those in July, whereas a significant reduction was found for leaf tissue NH4
+ 

concentration (Fig. 3a, b). In addition, a negative and marginally significant (P=0.053) 

relationship was observed between NH4
+ concentrations in apoplast and in tissue (Fig. 

6d). These results together indicated that NH4
+ is actively transported from the leaf 

tissue to the apoplast. This explanation is supported by evidences from earlier studies 

showing that apoplastic fluid in leaves constitutes a highly dynamic NH4
+ pool, to 

which NH4
+ is constantly supplied via NH3 efflux from the mesophyll cells (Nielsen 

and Schjoerring, 1998; Schjoerring et al. 2000).  

Regarding apoplastic pH, the values measured in August were significantly 

reduced compared to July, and almost all were <5 (Fig. 3c, Table 1), for which an 

explanation is the combined effect of NH4
+ uptake-induced acidification (see Sect. 4.1) 

and O3-accelerated leaf senescence (Gao et al., 2017). As reported by Mattsson and 

Schjoerring (2003), leaf aging from green leaves to yellow tips resulted in a pronounced 

decrease of pH by more than 1 unit. Thus, a significantly lower Asat in August resulting 

from accelerated leaf senescence (Fig. 2a, Table 1) also contributed to lower apoplastic 

pH due to the existence of apoplast alkalinizion during photosynthesis as mentioned 

earlier.  

χs was significantly reduced in August compared with July (Fig. 4). This is likely 

due to the greater impact of measurement date on apoplastic pH than on apoplastic 

NH4
+ concentration as indicated by their respective significant level (Table 1). The 

change in stomatal opening is an important control mechanism for the regulation of 



influxes and outfluxes of NH3 into or out of the leaves because the conductance for 

diffusion of NH3 is affected (Schjoerrin et al., 1998). We found that gs significantly 

decreased in August (Fig. 2b, Table 1). Also, a positive and significant relationship was 

observed between gs and χs (Fig. 5b); this is mainly caused by measurement date as 

both E-O3 and N did not significantly affect gs. These results together suggested that a 

significant reduction of gs also contributed to a reduction in χs. 

 

4.4. Uncertainty and recommendations 

In the present study, χs is calculated based on direct measurements of leaf 

apoplastic NH4
+ concentration and pH by means of extraction of the apoplastic fluid 

with successive vacuum infiltration/centrifugation technique (Husted and Schjørring., 

1995). Although this technique has been successfully applied to several plant species 

in the field (Herrmann et al., 2009; Mattsson et al., 2009), it is subject to uncertainties 

regarding potential regulation of apoplastic NH4
+ concentration and pH by the plant 

during the infiltration and buffering effects (Massad et al., 2009). For example, Nielsen 

and Schjørring (1998) showed that apoplastic NH4
+ concentration in Brassica napus L. 

appeared to be regulated during infiltration. However, Hill et al. (2001) did not detect 

such a homeostasis for apoplastic NH4
+ concentration in Luzula sylvatica (Huds.) Gaud. 

Following the method of van Hove et al. (2002), Fdil, calculated based on determination 

of Vair and Vapo (Equ. 2), was applied to correct apoplastic concentrations. Vapo values 

obtained in the present work varied from 0.06 to 0.23. These values fit well into the 

range found by other researcers for different plant species (Van Han et al., 2001, 2002). 

The measured Vair (0.16 ml g-1 LFW) was also comparable to values (0.21 mL g-1 LFW) 

reported for Lolium perenne L. (Van Han et al., 2002). These results indicate that the 

value for Fdil determined in the present study was acceptable. However, due to a lack of 

information regarding infiltration of poplar 546, use of Fdil might also result in some 

uncertainties in apoplastic NH4
+ concentrations and pH, and probably in χs if there is a 

potential difference in the buffering capacity between them. 

The vacuum infiltration/centrifugation method is also subject to some uncertainty 

due to the strong possibility of cytoplasmic contamination of the apoplast during the 



extraction procedure (Lohaus et al., 2001). We estimated the error in this method by 

assaying the contamination of the apoplast by MDH activity. The cytoplasmic 

contamination in the present work was about 1.2%.  

χs obtained in the current study was calculated at the leaf scale and only for the 

middle leaf position. However, χs may differ significantly depending on leaf position 

(e.g., upper, middle and lower ) due to difference in the N status of the leaves. Thus, the 

resulting effects of enhanced N and O3 on χs are not enough to represent the 

characteristics of the entire-plant. Furthermore, the present experiment was designed 

based on OTC chambers. However, OTCs have effects of their own, such as differences 

in microclimate (e.g., air temperature andhumidity), fixed gas flow and limited space, 

which could over-estimatedor under-estimate the effects of O3 on plants (Feng et al., 

2010). Note that χs is shown to be influenced by air temperature, partly by affecting the 

amount of NH3 dissolved in the apoplast, and partly by affecting the leaf tissue NH4
+ 

generation (or assimilation)-associated physiological processes (Schjoerring et al. 

1998). To more accurately assess the effects of N, O3 and/or plant growth stage on χs, 

at least the two following developments are recommended in future work: 1) to employ 

open-air fumigations (O3-FACE systems, Paoletti et al., 2016), and 2) to investigate 

vertical profile of χs at plant scale 

. 

4.5. Implications  

For forest ecosystems, χs is commonly expected to increase considerably with input 

of the different types of N fertilizer applied (nitrate, ammonium or ammonium nitrate) 

(Massad et al., 2010). We demonstrate that urea addition did not significantly affect χs 

of forest species (i.e., poplar 546) (note however that the resulting reduction reached 

marginal significant level, P=0.059) (Fig. 4, Table 1). χs is affected by the plant’s 

development stage and may peak at senescence, which is especially true for 

agricultural crops (Hill et al., 2002; Mattsson and Schjoerring, 2003). We find that 

there is a significant reduction of χs for forest species (i.e., poplar 546) in the context 

of O3-accelerated senescence. Based on these findings, we propose that current 

parameterizations of χs in chemical transport models should be inoptimized to partially 



respond to changes in environmental conditions (e.g., elevated N and/or O3). In 

addition, χs is a highly variable parameter, influenced by a range of physiological 

conditions (Schjoerrin et al., 1998). We found that Asat, gs and Chl significantly and 

positively corrected with χs, whereas a significant and negative relationship was 

observed between Ci and χs (Fig. 5). Understanding these physiological controls of χs 

is essential for modeling its dynamic behaviour.  

Our selected poplar 546 belongs to deciduous broadleaf species. To preliminarily 

assess whether Chinese deciduous broadleaf forests (Fig. 7a) act as a source or a sink 

for atmospheric NH3, we compared the calculated χs for elevated N and O3 treatment 

(N50*E-O3) in July (average 0.54 μg NH3 m-3) and August (average 0.03 μg NH3 m-3) 

with modeled atmospheric NH3 concentration in July (Fig. 7b) and August (Fig. 7c) 

during 2008-2012 period (which was modeled using the GEOS-Chem model and fitted 

well with the surface NH3 measurements, see details in Zhao et al. (2017)). The results 

of the comparison show that the modeled NH3 concentrations over approximately 91% 

and 100% of total land area exceeded the corresponding χs in July and August, 

respectively. It should be noted that such percentages are considered to be approximate 

estimates, as χs may vary among different forest species, and the current atmospheric 

NH3 concentration cannot represent future NH3 levels. Nevertheless, we may conclude 

that under the current ambient NH3 concentrations in China the canopy of deciduous 

broadleaf forests is unlikely to be a major source of NH3 emission during summertime. 

 

5. Conclusions  

This study is the first time to investigate the combined effects of O3 exposure and 

N load on χs of forest species. Our results demonstrated that elevated O3 significant 

reduced χs, in tandem with Asat, Ci and Chl, while use of urea as N load had no 

significant effect on χs. The interaction of O3 exposure and N load on χs were not 

significant. These results provide underpinning data for optimizing the 

parameterizations of χs in the CTMs, allowing response to global change variables (i.e., 

atmospheric N deposition and O3). 
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Figure captions 

Figure 1. The 10 h (8:00-18:00) mean O3 concentrations (ppb) and AOT40 (ppm h) 

from 10 June to 22 September 2017 in charcoal-filtered air (CF) and elevated O3 (E-O3) 

treatments. 

Figure 2. Effects of ozone (CF, charcoal-filtered ambient air, and E-O3, elevated O3) 

and Nitrogen (N0, no N added, and N50, 50 kg N ha-1 yr-1) on light-saturated 

photosynthesis (Asat), stomatal conductance (gs), intercellular CO2 concentration (Ci) 

and chlorophyll (Chl) contentof hybrid poplar clone ‘546’ (Populusdeltoides cv. 55/56 

x P. deltoides cv. Imperial). Data shown are the mean ± standard deviation of three-

OTC measurements. The letters on top of the bars are based on the Tukey test across 

the two measurements, with different letters indicating significantly different from each 

other at P<0.05. 

Figure 3. Effects of ozone (CF, charcoal-filtered ambient air, and E-O3, elevated O3) 

and Nitrogen (N0, no N added, and N50, 50 kg N ha-1 yr-1) on apoplastic NH4
+ 

concentration, tissue NH4
+ concentration, apoplastic pH and emission potential (Γs) of 

hybrid poplar clone ‘546’ (Populusdeltoides cv. 55/56 x P. deltoides cv. Imperial). Data 

shown are the mean ± standard deviation of three-OTC measurements. The letters on 

top of the bars are based on the Tukey test across the two measurements, with different 

letters indicating significantly different from each other at P<0.05. 

Figure 4. Effects of ozone (CF, charcoal-filtered ambient air, and E-O3, elevated O3) 

and Nitrogen (N0, no N added, and N50, 50 kg N ha-1 yr-1) on the stomatal 

compensation point (χs)   

Figure 5. Correlation between the stomatal compensation point (χs) and light-saturated 

photosynthesis (Asat), stomatal conductance (gs), intercellular CO2 concentration (Ci) 

and chlorophyll (Chl) content across all ozone and nitrogen treatments. Green, red, blue 

and pink dots represent charcoal-filtered ambient air (CF)*N0 (no N added), CF*N50 

(50 kg N ha-1 yr-1), elevated O3 (E-O3)*N0 and E-O3*N50 treatment, respectively. As 



ANCOVA did not show significant differences in the slope of the regression lines for 

the individual O3 or N treatments, one single line is shown. 

Figure 6. Correlations between apoplastic pH and light-saturated photosynthesis (Asat), 

chlorophyll (Chl) content, and intercellular CO2 concentration (Ci), and correlation 

between apoplastic NH4
+ concentration and leaf tissue NH4

+ concentration across all 

ozone and nitrogen treatments. Green, red, blue and pink dots represent charcoal-

filtered ambient air (CF)*N0 (no N added), CF*N50 (50 kg N ha-1 yr-1), elevated O3 

(E-O3)*N0 and E-O3*N50 treatment, respectively. As ANCOVA did not show 

significant differences in the slope of the regression lines for the individual O3 or N 

treatments, one single line is shown. 

Figure 7. Actual forest distribution in China (a) (adopting from Li et al. (2017)) and 

atmospheric NH3 concentration over deciduous broadleaf forests in July (b) and August 

(b) modeled using the GEOS-Chem model. 
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Figure 7 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Table 1. ANOVA results (P values) for the individual effects of interactions of O3 (CF 

and E-O3), N (N0 and N50), and sampling data (July and August) on light-saturated 

rate of CO2 assimilation (Asat), stomatal conductance (gs), intercellular CO2 

concentration (Ci), chlorophyll content (Chl), apoplastic pH, apoplastic NH4
+, leaf 

tissue NH4
+, potential emission (гs), and stomatal compensation point (χs).   

 O3  N Date (D) O3*N O3*D N*D O3*N*D 

Asat  <0.001 0.034  <0.001 0.980 0.518  0.064  0.104  

gs 0.432  0.503  <0.001 0.189 0.071  0.905  0.692  

Ci  <0.001 0.150  <0.001 0.099 0.072 0.621 0.542 

Chl <0.001 0.674 <0.001 0.810 0.405 0.373 0.631 

Apoplast pH 0.001  0.003  <0.001 0.080 0.103  0.777  0.482  

Apoplast NH4
+  0.002  <0.001 0.011  0.958 0.688  0.294  0.820  

Leaf tissue NH4
+ <0.001 0.119  <0.001 0.107 0.199  0.848  0.527  

Γs  0.009 0.982 <0.001 0.347 0.062 0.175 0.326 

χs  <0.001 0.059  <0.001 0.059 0.103  0.454  0.470  

CF: charcoal-filtered ambient air; E-O3: elevated O3; N0: no N added; N50: 50 kg N 

ha-1 yr-1; Statistically significant effects (P<0.05) are marked in bold. 
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