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Abstract A new drag law for irregularly shaped particles is presented here. Particles are described by a
shape factor that takes into account both sphericity and circularity, which can be measured via the most
commonly used image particle analysis techniques. By means of the correlation of the drag coefficient versus
the particle Reynolds number and the shape factor, a new drag formula, which is valid over a wide range
of Reynolds number (0.03–10,000), is obtained. The new model is able to reproduce the drag coefficient of
particles measured in terminal velocity experiments with a smaller scatter compared to other laws commonly
used in multiphase flow engineering and volcanology. Furthermore, the new formula uses only one
equation, whereas previous models, to insure validity over an ample range, made use of a step function that
introduces a discontinuity at the switch of equations. Finally, this drag law works in the whole range of
variation, from extremely irregular particles to perfect sphere. A code of the iterative algorithm for the drag
coefficient calculation and terminal velocity is included in the supporting information both as a Fortran
routine and a Matlab function.

1. Introduction

Aerodynamic drag is an important parameter controlling the transport and settling velocity of solid particles in
static andmoving fluids (Crowe, 2006). In fact, in amultiphase flow, the fluid-particle drag force Fd is defined as

Fd ¼ 1
2
ρf CdAp vp � vf

�� �� vp � vf
� �

(1)

where ρf is the fluid density, Cd is the particle drag coefficient, Ap is the particle surface area, and vp and vf are
the particle and fluid velocity, respectively (see Table 1 for notation).

Furthermore, a particle falling in a static fluid eventually reaches a constant settling velocity, known as terminal
velocity wt, which is calculated by means of the well-known Newton’s impact formula (Dellino et al., 2005):

wt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4gdp ρp � ρf

� �
3Cdρf

vuut
(2)

where g is the gravitational acceleration, dp is particle size, and ρp and ρf are the particle and fluid density,
respectively. If particles are spherical, well-established relationships linking Cd with the particle Reynolds
number Re exist, each having a different accuracy and range of applicability (e.g., Clift & Gauvin, 1971;
Haider & Levenspiel, 1989). The particle Reynolds number is defined as

Re ¼ ρf wtdp
μf

(3)

with μf being the fluid viscosity. These correlations, however, are not valid for nonspherical, irregularly
shaped particles, for which Cd is a function of both particle Reynolds number and shape. This is a topic of high
interest in a wide range of research fields and applications, from industrial (e.g., chemical engineering and
hydraulics) to natural processes (sedimentology, volcanology, etc.). In volcanology and Earth sciences in gen-
eral, the shape-dependent aerodynamic drag is crucial in controlling the transport and deposition of non-
spherical solid particles in dust storms (e.g., Doronzo et al., 2015; Kok et al., 2012), rivers and lakes (e.g.,
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Zhu et al., 2017), pyroclastic flows (e.g., Dellino et al., 2008; Dioguardi &
Dellino, 2014), eruptive columns (e.g., Cerminara et al., 2016; Folch
et al., 2016), and distal ash clouds (e.g., Beckett et al., 2015;
Bonadonna et al., 2012; Bonasia et al., 2010; Costa et al., 2012, 2006).
Therefore, a major effort has been posed to find reliable shape-
dependent drag laws that work on the widest possible range of fluid
dynamic regimes quantified by Re (Alfano et al., 2011; Bagheri &
Bonadonna, 2016; Chhabra et al., 1999; Chien, 1994; Dellino et al.,
2005; Dioguardi et al., 2017; Dioguardi & Mele, 2015; Ganser, 1993;
Haider & Levenspiel, 1989; Hölzer & Sommerfeld, 2008; Loth, 2008;
Pfeiffer et al., 2005; Swamee & Ojha, 1991; Tran-Cong et al., 2004;
Wilson & Huang, 1979). These drag laws are a function of different
shape descriptors, among which sphericity Φ is the most widely used.
Reviews and discussions on shape descriptors and quantification meth-
ods can be found in Bagheri et al. (2015) and Liu et al. (2015). More
recently, Dioguardi et al. (2017) showed the potentialities of X-ray
microtomographic analyses in this research field and proposed two
new drag laws as functions of new tridimensional shape descriptors.

In this work we present a new shape-dependent drag formula, which
has been obtained by 304 terminal velocity measurements carried
out on 143 volcanic ash and lapilli particles with a wide range of size,
density, and shape, falling through fluids of different densities and visc-
osities. In this law, particle shape is quantified by means of the shape
factor Ψ first introduced by Dellino et al. (2005) and later used in
Dioguardi et al. (2014) and Dioguardi and Mele (2015). The new drag
law has the capability to work in a wide range of fluid dynamic regimes,
almost covering all regimes that can be encountered in the aforemen-
tioned natural processes, and of particle shapes, from extremely irregu-
lar particles to perfect spheres. Results here presented demonstrate an
improved performance of predicting the drag of highly irregular parti-
cles (like volcanic ash and lapilli) when compared with other drag laws
commonly employed in volcanology. The improvement is observed in
a very wide Re range and especially at the very low Re, which is crucial
for predicting the fine ash settling from distal ash clouds and plumes.

In the following sections, the shape descriptor and the experiments are
briefly recalled, the new drag law is presented, and results from its
application are discussed.

2. Particle Shape and Aerodynamic
Drag Characterization
2.1. Terminal Velocity Experiments

In order to find the new drag law here presented, we took into account and reviewed the database of experi-
mental measurements presented in Dioguardi and Mele (2015). This database originally included 340 mea-
surements of the aerodynamic drag Cd,meas obtained by terminal velocity measurements of 143 irregular
solid particles. The samples used came from the volcanic deposits of explosive eruptions at Vesuvius and
Campi Flegrei (Italy) (Dellino et al., 2005). The experimental setup consisted of a vertical 1.5 m high glass cylin-
der with an inner radius of 5 cm. The terminal velocity measurements were carried out in four different fluids:
distilled water (ρf = 1,000 kg m�3, μf = 0.00102 Pa s at 20°C), ethylic alcohol (ρf = 810 kgm�3, μf = 0.00172 Pa s
at 20°C), a solution of glycerin diluted by 13.5% volume of distilled water (ρf = 1,235 kg m�3, μf = 0.2088 Pa s
at 19°C), and another solution of glycerin diluted with 40% of distilled water (ρf = 1,172 kg m�3,
μf = 0.01499 Pa s at 22°C). This allowed us to explore a very wide range of Reynolds number Re, from 0.03
to ~10,000. The settling velocity was measured by frame-by-frame tracking of particle fall velocity with a

Table 1
Notation

Symbol Description Unit

Amp Particle maximum projection area m2

Ap Particle surface area m2

Asph Surface area of the equivalent sphere m2

Cd Drag coefficient -
Cd,calc Recalculated drag coefficient -
Cd,meas Measured drag coefficient -
Cd,sphere Drag coefficient of the sphere -
Dl Longest particle principal axis m
Dm Medium particle principal axis m
dp Particle size m
Ds Short particle principal axis m
dsph Diameter of the volume equivalent sphere m
e Particle elongation —
f Particle flatness —
Fd Drag force N
FN Newton form factor —
FS Stokes form factor —
g Gravitational acceleration m s�2

KN Newton drag corrector —
KS Stokes drag corrector —
m Particle mass kg
Pc Perimeter of the circle equivalent to

the maximum projection area
m

Pmp Particle maximum projection parameter m
r Correlation coefficient —
Re Particle Reynolds number —
RMSE Root mean squared error —
vf Fluid velocity m s�1

vp Particle velocity m s�1

wt Particle terminal velocity m s�1

wt,calc Recalculated particle terminal velocity m s�1

wt,meas Measured particle terminal velocity m s�1

α2 Function of the particle to fluid density ratio —
β2 Function of the particle to fluid density ratio —
μf Fluid viscosity Pa s
εp Particle volumetric concentration —
ρ0 Particle to fluid density ratio —
ρf Fluid density kg m�3

ρp Particle density kg m�3

φ Particle aspect ratio —
Φ Particle sphericity —
ϕ Particle size in phi units phi
Χ Particle circularity —
Ψ Particle shape factor —
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high-definition video camera (720 × 1,280 pixels) using a recording rate of up to 50 frames s�1. The terminal
velocity measurements were repeated for each run, in particular when particles showed secondary
movements that could potentially lead to an alteration of the measured terminal velocity due to wall
effects.

The original database of Dioguardi and Mele (2015) was revised to ensure the smallest possible error in the
determination of settling velocities. As explained in Dioguardi et al. (2017), this error depends on the settling
velocity itself and the number of frames considered for calculating the terminal velocity; in particular, the
slower the particle, the higher the number of frames (i.e., the time between two particle positions’ determina-
tions) necessary for keeping the error within acceptable ranges (~±5%) and vice versa. With this new concept,
which was not yet developed and applied in the first version of the database, the number of measurements of
the database originally presented in Dioguardi and Mele (2015) was reduced from 340 to 304.

2.2. Particle Shape Characterization

As a shape descriptor, the shape factor Ψ, defined by Dellino et al. (2005), was used. It is the ratio between
sphericity Φ and circularity X:

Ψ ¼ Φ
Χ

(4)

Sphericity Φ is defined as the ratio of the surface area of the equivalent sphere Asph and the particle surface
area Ap, and it quantifies the difference of particle shape from a perfect sphere (for which Φ = 1):

Φ ¼ Asph
Ap

(5)

Asph is calculated by means of the diameter of the volume equivalent sphere dsph:

dsph ¼
ffiffiffiffiffiffiffi
6m
πρp

3

s
(6)

where m and ρp are the mass and density of particle, respectively, which can be determined by the use of a
high precision scale and a standard Gay-Lussac picnometer.

Since measuring the particle surface area Ap of irregular particles is not straightforward with image particle
analysis technique, this parameter is usually estimated by approximating the particle shape to that of a sca-
lene (or triaxial) ellipsoid:

Ap ¼ 4π
Dl
�
2

� �z Dm
�
2

� �z þ Dl
�
2

� �z Ds
�
2

� �z þ Dm
�
2

� �z Ds
�
2

� �z
3

 !1
z=

(7)

where Dl, Dm, and Ds are the three principal axes of the particle and z = 1.6075 (Dellino et al., 2005).

Circularity, X, is defined as

X ¼ Pmp

Pc
(8)

where Pmp and Pc are the maximum projection perimeter and the perimeter of the circle equivalent to the
maximum projection area Amp of a particle. Unlike sphericity, circularity is greater than 1, being 1 for a perfect
circular contour.

The three perpendicular axes Dl, Dm, and Ds; the maximum projection area Amp, which is the one containing
Dl and Dm; and the maximum projection perimeter Pmp can be measured by image-analysis techniques on
high-resolution digital photographs of particles mounted on a goniometric universal stage. To measure
shape parameters of differently sized particles without introducing a scaling error (Dellino & La Volpe,
1996), it is suggested that particle area is in the range 2,500–5,000 pixels, irrespective of the physical particle
size. Here a graphical example of calculation is shown on Figure 1 where shape parameters, namely, the three
axes, particle area, and particle perimeter, are calculated by means of the free image analysis software ImageJ
(https://imagej.nih.gov/ij/). The resulting sphericity, circularity, and shape factor are 0.53, 1.24, and
0.43, respectively.
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Recently employed techniques like X-ray microtomography make it possible to directly estimate Ap and dsph,
hence particle sphericity Φ, with the only limitation of the machine resolution (Dioguardi et al., 2017). This
technique has the advantage to allow a precise estimation of Φ in particular for medium to fine ash particles,
whose massm (necessary for dsph; see equation (6)) is very difficult to measure and which are very difficult to
handle under a microscope for determining the three principal axes. Furthermore, it has the potential to pro-
vide a fast estimate of the circularity as well and therefore of the particle shape factor. This will be the object
of future investigations. Concerning this work, the shape measurements of the database apply to the above
approximation, which is widely employed since it provided robust results, despite the simplification, and it is
therefore recommended if it is not possible to employ expensive methods like X-ray microtomography.

All the experimental data and particle parameters are listed in the Excel file “2017JB014926-ds01.xls” avail-
able in the supporting information.

3. The New Shape-Dependent Drag Law: Formulation and Results From
Intercomparison Analysis
3.1. The New Drag Law

In order to extract the new shape-dependent drag law from our database, we followed an approach different
from Dellino et al. (2005) and Dioguardi and Mele (2015), who also presented drag laws as a function of the

D
l =

 6.64 m
m

Amp = 19.02 mm2

Pmp = 19.24 mm

Dm = 5.03 mm

D
s 
=

 3
.6

9 
m

m

Dl = 6.64 mm

Figure 1. Example of shape parameter (the three main principal axes, particle area, and maximum circle perimeter)
determination with image particle analysis carried out with ImageJ on two pictures of particles mounted on a goniometric
stage. The first picture above shows the maximum cross section, the second the minimum cross section. Edited by
Daniela Mele (University of Bari). Copyright © 2017.
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shape factorΨ. Those drag laws were obtained by power law fittings of
the experimental data (limited to the experimental Re range) and did
not ensure the convergence to the drag of a perfect sphere in the limit-
ing caseΨ = 1 over the whole investigated Re range. The Dioguardi and
Mele law, thanks to the addition of new settling experiments, repre-
sented a significant advance in respect to Dellino et al. (2005), in parti-
cular for predicting the drag of irregular particles at very low Re.
However, a stepwise function was introduced that can potentially pre-
vent the calculation from converging to a value of Cd when Re was
close to the critical value (see section 3.2). The new formulation had
therefore to satisfy the following requirements: be valid over the whole
investigated Re range (~10�2 to 105), avoid stepwise functions, and be
equal to the standard drag curve of spheres in limiting case Ψ = 1.

As the reference law for spheres, the formulation of Haider and
Levenspiel (1989) was chosen:

Cd;sphere ¼ 24
Re

1þ 0:1806 Re0:6459
� �þ 0:4251

1þ 6880:95
Re

(9)

We then analyzed the difference between the measured drag Cd,meas in our database and the drag of a
hypothetical sphere Cd,sphere falling at the same Re. Equation (9) can be rearranged into the sum of three parts:

Cd;sphere ¼ 24
Re

þ 24
Re

0:1806 Re0:6459
� �þ 0:4251

1þ 6880:95
Re

(10)

It is well known in the literature of multiphase flow physics that the aerodynamic drag of irregular particles is
larger than Cd,sphere at any given Reynolds number (Crowe, 2006). This was further verified by our experi-
ments, as can be observed in Figure 2.

The measured drag (black dots) is always higher than Cd,sphere (solid grey line), with a difference that
increases as Re becomes larger. Some points are, however, very close to the grey line; these points corre-
spond to particles whose shape factor was very close to 1. From these observations we followed the hypoth-
esis about the existence of functions of particle shape that can be applied separately to the three parts of (10)
to obtain a fitting law that best interpolates the measured points and allows predicting Cd:

Cd;calc ¼ 24
Re

f1 Ψð Þ þ 24
Re

0:1806 Re0:6459
� �

f2 Ψð Þ þ 0:4251
1þ 6880:95

Re

f3 Ψð Þ (11)

We then searched for these three functions with the following constraint:

f1 Ψ ¼ 1ð Þ ¼ f2 Ψ ¼ 1ð Þ ¼ f3 Ψ ¼ 1ð Þ ¼ 1 (12)

as to ensure that the shape-dependent drag law (11) becomes equal to (10) in the limiting case of a spherical
particle (Ψ = 1). The three functions were obtained by analyzing the difference between Cd,meas and Cd,sphere,
focusing on the three parts separately. The assumption has been made that the ratio between each part of
Cd,sphere and the total Cd,sphere was equal the ratio between each part of Cd,meas and the total drag for the irre-
gular particles. Thanks to this assumption, f1, f2, and f3 were searched separately by correlating each part of
Cd,calc with Ψ and Re with the aim at minimizing the error when predicting the experimentally measured
terminal velocities wt,meas. It was found that the three functions satisfying the constraints were

f1 Ψð Þ ¼ 1�Ψ
Re

þ 1
	 
 exp

1 (13a)

f2 Ψð Þ ¼ Ψ� Reexp2ð Þ (13b)

f3 Ψð Þ ¼ Ψ exp3 (13c)

The values of the three exponents exp1, exp2, and exp3 were obtained by iteratively searching for the values
that allowed the best fit of the experimental data; this was carried out by means of a Matlab script. The best
values of exp1, exp2, and exp3 were found to be 0.25, 0.08, and 5.05, respectively.

Figure 2. Cd versus Re log-log plot showing the measured aerodynamic drag of
particles in the database (black dots) Cd,meas and the standard drag curve
for a sphere as defined by Haider and Levenspiel (1989) (solid grey line).
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Substitution in (11) leads to the new drag formulation:

Cd;calc ¼ 24
Re

1�Ψ
Re

þ 1
	 
0:25

þ 24
Re

0:1806 Re0:6459
� �

Ψ� Re0:08ð Þ

þ 0:4251
1þ 6880:95

Re Ψ�5:05 (14)

Figure 3a shows Cd,calc (black squares) as a function of Re, together with
Cd,meas (grey dots). A very good agreement can be inferred over the
whole investigated range of Re. This can be further verified by looking
at the scatterplot in Figure 3b, which displays the terminal velocity cal-
culated with (14) wt,calc versus the measured terminal velocity wt,meas.

Despite some scatter, the quality of the fitting is very good, considering
not only the high correlation coefficient (0.96) but also the correlation
line, which almost coincides with the perfect equality y = x, being the
slope 1.001.

Like all the drag laws that explicitly depend on Re, an iterative proce-
dure must be employed for calculating Cd, since Re depends on wt,
which, in turn, depends on Cd. The iterative procedure consists in the
following steps:

Given a guessed value of the particle Reynolds number Re*, Cd is calcu-
lated by equation (14).

From Cd, the terminal velocity wt can be computed with the Newton’s
impact law (equation (2)).

With this terminal velocity, a new value of Re is calculated (3), and the
operations restart from point (1) and are repeated until the difference
between the latest updated value of Re and that of the previous steps
drops within a certain tolerance prescribed by the user. A FORTRAN
(“wt_calculator.f90”) and a Matlab code (“wt_calculator.m”) are avail-
able in the supporting information in order to provide the reader with
programs that allow direct calculation of the terminal velocity of irregu-
lar particles; these pieces of code could be easily implemented in other
models like multiphase models and ash dispersion models.

3.2. Comparison With Other Shape-Dependent Drag Laws
Commonly Used in Volcanology

In order to quantify the ability of the new drag law to predict the drag and terminal velocity of irregular par-
ticles, we compared its performance with that of other laws from the literature whose shape descriptors are
available in our database. In particular, the following drag laws were selected: Dellino et al. (2005), Pfeiffer
et al. (2005), Ganser (1993), Dioguardi and Mele (2015), and Bagheri and Bonadonna (2016). In the attached
supplementary file “2017JB014926-ds01.xls” results from comparisons with other drag laws found in the
literature (Chien, 1994; Haider & Levenspiel, 1989; Swamee & Ojha, 1991) are also available in the sheet
“Models comparisons.” Here we show results from this intercomparison with formulas that are most relevant
to volcanology. They are recalled in the following:

Dellino et al. (2005)

Cd;calc ¼ 0:9297
Ψ1:6 Re0:0799

(15)

Pfeiffer et al. (2005): it is a modification of the original law of Walker et al. (1971) andWilson and Huang (1979).

Cd;calc ¼ 24
Re

φ�0:828 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
1� φ

p
Re≤1021� 1� Cd;calc Re ¼ 100ð Þ

900
103 � Re
� �

102 < Re≤1031 Re > 103
�

(16)

where φ = (Dm + Ds)/2Dl is the particle aspect ratio.

Figure 3. (a) Cd versus Re scatter log-log plot comparing the measured aerody-
namic drag of particles in the database (grey dots) Cd,meas and the calculated
aerodynamic drag of the same particles (black squares) Cd,calc with the new drag
law (14). (b) Scatter log-log plot comparing the terminal velocity calculated with
the new drag law (14) wt,calc and the corresponding measured values for the
particles in our database, wt,meas. The solid black line is the best fit line of type
y = ax. The correlation coefficient r is also reported.
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Ganser (1993)

Cd;calc ¼ 24
Re

K1K2 1þ 0:1118 ReK1K2ð Þ0:6567
h i

þ 0:4305
1þ 3305

Re K1K2
(17)

where K1 and K2 are functions of particle sphericity Φ:

K1 ¼ 1
3
þ 2

3

	 

Φ�0:5

� �0:1

(17a)

K2 ¼ 101:8148 � logΦð Þ0:5743 (17b)

in the case of isometric particles.

Bagheri and Bonadonna (2016)

Cd;calc ¼ 24Ks

Re
1þ 0:125 Re

KN

KS

	 
2=3
" #

þ 0:46KN

1þ 5330
Re

KN
KS

(18)

in which Ks and KN are complex functions of particle shape and particle to fluid density ratio ρ0:

KS ¼ F1=3S þ F�1=3
S

2
(18a)

KN ¼ 10α2 � logFNð Þβ2 (18b)

FS ¼ fe1:3
d3
sph

DlDmDs

 !
(18c)

FN ¼ f2e
d3
sph

DlDmDs

 !
(18d)

α2 ¼ 0:45þ 10
exp 2:5 logρ0 þ 30ð Þ (18e)

β2 ¼ 1� 37
exp 3 logρ0 þ 100ð Þ (18f)

f and e are the particle flatness and elongation, defined as Ds/Dm and Dm/Dl, respectively.

Dioguardi and Mele (2015)

Cd;calc ¼ Cd;sphere

Re2
Ψ Re�0:23 Re

1:1883

	 
 1
0:4826 Re < 50

Cd;sphere

Re2
Ψ Re0:05 Re

1:1883

	 
 1
0:4826 Re > 50

8><
>: (19)

where Cd,sphere was calculated using the drag law of Clift and Gauvin (1971):

Cd;sphere ¼ 24
Re

1þ 0:15 Re0:687
� �þ 0:42

1þ 42500
Re1:16

(20)

On Figure 4 the drag coefficients calculated with the laws above (black squares) are represented together
with Cd,meas (grey dots) in the standard Cd versus Re plot. It is to note that the models’ performances are eval-
uated basing on the specific data set of particle shapes and terminal velocities here presented; consequently,
the following considerations are not intended as general statements on the accuracy of the models. Dellino
et al. (2005) are not able to reproduce the measured drag coefficients at Re < 100; this is not surprising and
highlighted by the authors themselves (Dellino et al., 2005, 2012), due to the original database from which
the fitting law was extracted, which consisted of drag measurements at Re > 60. The drag law performs very
well in the fluid dynamic regime for which it was designed, with a good overlap between the calculated and
the measured drag coefficients (see plots “Dellino et al. (2005) reduced” in the sheet “Model comparisons” in
the attached supplementary “2017JB014926-ds01” Excel file).

The drag law of Pfeiffer et al. (2005) captures the variation of Cd with Re in all the investigated regimes. It
underestimates Cd at very low Re and at Re> 1000; additionally, in the latter range, it is not able to reproduce
the scatter of the measured drag coefficients induced by the shape variation; that is, it neglects the influence
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of particle shape at high Re numbers using the constant drag value of 1 in this range (equation (16)). Much
better performance is obtained with Ganser (1993), with an underestimation of Cd,meas at Re < 0.1 and an
overestimation of the particle shape-induced scatter at high Re, together with a tendency to slightly
overestimate Cd in this regime. Bagheri and Bonadonna (2016), on the other hand, show a general
tendency to underestimate the drag coefficient in the whole Re range. This tendency is in particular
significant at very low and high Re. To insulate the reason of this tendency in such a complex drag law is
not straightforward; however, a possible explanation could be that, by definition, the shape parameters in
this law (flatness and elongation) do not take into account the small-scale surface irregularities, which play
a fundamental role in the case of very irregular volcanic ash and lapilli particles. This is why Dellino et al.
(2005) introduced the shape factor Ψ and Dioguardi et al. (2017) used new 3-D shape parameters, all more
capable to capture the small-scale surface irregularities. Neglecting surface roughness leads to an
underestimation of the drag force, hence of the drag coefficient, which is indeed the general tendency
obtained when applying Bagheri and Bonadonna (2016) to our database that is composed of rough
volcanic particles only. Dioguardi and Mele (2015) and the new drag law here presented (equation (14))
have the best performance, also at very low Re, which proved to be problematic for the other laws but
crucial for volcanological applications like ash dispersion modeling. Going deeper into detail, it can be
seen that (14) further improved the performance at very low Re and in the range 10–100, which is the
most problematic for Dioguardi and Mele (2015); this was not surprising, since this range includes the
critical value Re = 50 at which there is the switch between the two parts of the law (see equation (19)).
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Figure 4. Cd versus Re scatter log-log plots comparing the measured aerodynamic drag of particles in the database
(grey dots) Cd,meas and the calculated aerodynamic drag of the same particles (black squares) Cd,calc for six selected drag
laws: Dellino et al. (2005), Pfeiffer et al. (2005), Ganser (1993), Bagheri and Bonadonna (2016), Dioguardi and
Mele (2015), and (14).
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In Figure 5 a montage of scatterplots comparing the terminal velocities calculated with the corresponding
drag laws (wt,calc) and those measured in the experiments (wt,meas) is presented. The best fit line is also dis-
played, together with the equation and the correlation coefficient r. Note that the equation is always of a line
of the type y = ax, since we wanted to judge the performance of the law not only from the value of r but,
more importantly, based on the ability to reproduce the measured terminal velocities; the best case would
be a very high r with a value of the line slope a = 1. The resulting performances reflect those of the recalcula-
tion of the drag coefficients. Dellino et al. (2005) have the poorest agreement, with a strong overestimate of
the velocities for slow particles. All the other laws apparently have a very similar performance, but a closer
inspection reveals important differences. Despite its simplified approach at high Re, Pfeiffer et al. (2005) show
one of the best performances, with a = 1.065, meaning a tendency to slight overestimate terminal velocities.
Ganser (1993) shows the opposite, the value of the slope being 0.95, which could be attributed to the ten-
dency to overestimate the drag coefficient (=underestimation of terminal velocity) at very high Re that is
not counter balanced by the evident tendency to overestimate the terminal velocity at very low Re.
Bagheri and Bonadonna (2016) had the poorest performance after Dellino et al. (2005), with a value of the

slope of 1.261, meaning a general tendency to overestimate terminal
velocities, which, in turn, is the result of the drag underestimation in
the whole investigated Re range. Finally, Dioguardi and Mele (2015)
and the new drag law ((14) had the best performances, being a equal
to 0.99 and 1, respectively. A closer inspection reveals that the new
law better fit the points at terminal velocities between 0.01 and
0.1 m s�1 than Dioguardi and Mele (2015).

These findings are further corroborated by the values of the
terminal velocity calculation errors. In particular, we evaluated the
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Figure 5. Scatter log-log plots comparing the terminal velocity calculated with six selected drag laws wt,calc and the
corresponding measured values for the particles in our database, wt,meas. The drag laws are Dellino et al. (2005), Pfeiffer
et al. (2005), Ganser (1993), Bagheri and Bonadonna (2016), Dioguardi and Mele (2015), and (14). The solid black line is the
best fit line of type y = ax. The correlation coefficient r is also reported.

Table 2
RMSE of Terminal Velocity Recalculation With Different Drag Models

Model RMSE

Pfeiffer et al. (2005) 16.07%
Ganser (1993) 14.49%
Bagheri and Bonadonna (2016) 24.66%
Dioguardi and Mele (2015) 13.49%
This work (equation (14)) 12.76%
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root-mean-square error RMSE for each drag law by applying the fol-
lowing formula:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

i¼1

wt;calc;i�wt;meas;i

wt;meas;i

� �2
�100

N

vuut
(21)

where N = 308 is the number of terminal velocity measurements in our
database (298 in the case of Ganser (1993), since values of sphericity
were not available for five particles used in 10 experiments). Table 2
summarizes the results from error analysis.

Here we neglect the RMSE error obtained with Dellino et al. (2005),
since the drag law is not valid over the whole Re range as already
explained. The smallest error is obtained with the new drag law, which
slightly improves the performance of the Dioguardi and Mele (2015)
law. The highest error is related to the Bagheri and Bonadonna (2016)
law. While the improvement in performance of (14) in respect to
Dioguardi and Mele (2015) could seem negligible, it has to be stressed

that with (14), one can avoid the major drawback of the Dioguardi and Mele law, that is, the stepwise func-
tion, together with an additional one linked to the range of applicability that will be discussed in the next sec-
tion. From several applications of this drag law, in fact, it was observed that in some cases in which Re is very
close to the critical value of 50, the iterative procedure fails to converge to a specific value of Re and Cd.

Figure 6. Cd versus Re line plot comparing the trend obtained with the new law
(14) (solid golden line) and that with Dioguardi and Mele (2015) (solid blue line).
The dashed black line represents the limit of the stepwise function of the
Dioguardi and Mele formulation, Re = 50.

Figure 7. Line plots of particle terminal velocity as a function of grain size for different values of particle shape factor Ψ:
Ψ = 0.2: green solid line; Ψ = 0.4: red solid line; Ψ = 0.6: blue solid line; Ψ = 0.8: yellow solid line; Ψ = 1 (sphere): black
solid line. The black dotted lines represent constant Re values. (a) The complete grain size range (�3ϕ to 8ϕ) is displayed.
(b) Focus on grain size range �3ϕ to 3ϕ. (c) Focus on grain size range 3ϕ to 6ϕ. (d) Focus on grain size range 6ϕ to 8ϕ,
with a further zoom on the range 7ϕ to 8ϕ.
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Figure 6 presents a line plot of the Cd versus Re curve for a particular
value of the particle shape factor (Ψ = 0.5); the golden line corresponds
to Dioguardi andMele (2015), the blue line to equation (14). The effect of
the stepwise function is evident, with a jump of Cd of about 1.5, which is
significant at this regimes; in fact, the terminal velocity in air at ground
level (ρf = 1.2 kg m�3) of a 100 μm-sized particle with a density of
2,500 kg m�3 would be in 3.71 m s�1 and 2.8 m s�1, if Cd is taken equal
to 3.5 and 2, respectively. The new drag law, instead, is a continuous
function, hence permitting to avoid any convergence issue and any
jump of the calculated Cd values. Also, unlike Dioguardi and Mele
(2015), (14) always predicts the drag of a sphere in the limiting caseΨ=1.

Finally, curves of terminal velocities as a function of particle size and
shape were traced, in order to verify the capability of the drag law to
correctly predict the increase/decrease of terminal velocity as the parti-
cle shape factorΨ increases/decreases. In the line plots of Figure 7, par-
ticle size (here presented inϕ units defined asϕ = � log2dp, where dp is
measured in mm) ranges from �3 to 8ϕ, that is, from coarse lapilli to
very fine ash. Five curves are drawn, each one corresponding to a fixed
value of particle shape factor (0.2, 0.4, 0.6, 0.8, and 1 for the sphere). The
dotted lines are isolines of constant values of Re. Figure 7a is the plot
with the whole grain size range, and Figures 7b–7d display zooms of
restricted size ranges (�3 to 3ϕ, 3 to 6ϕ, and 6 to 8ϕ, respectively).

From inspecting these plots, one can appreciate that the terminal velocity follows the correct expected
trend, with decreasing values as the particle size decreases and increasing values as particle shape factor
increases. Additionally, the difference of terminal velocity between the curves increases as the particle
size/Re increases, as expected. Finally, for very fine particles, the influence of shape on terminal velocity
decreases until it seems to vanish for very fine ash, but still, there is a difference between irregular and
spherical particles.

4. Discussion and Conclusion

We derived a new drag law for irregularly shaped nonspherical particles, based on a series of settling experi-
ments with real volcanic ash and lapilli particles at different fluid dynamic regimes. Our new lawwas obtained
from a database where Re ranges from 0.03 to 10,000 and the particle shape factorΨ from 0.335 to 0.943, thus
guaranteeing applicability to a very wide range of fluid dynamic regimes and particle shapes. The new drag
law is represented by a single equation, hence circumventing the need of a stepwise equation when model-
ing the terminal velocity of solid particulate material. It is a function of the particle shape factor Ψ, a shape
parameter that proved to be a robust descriptor of the irregular shape of volcanic particles and that can
be measured by means of the most commonly used image particle analysis techniques and more recent
X-ray microtomography analyses. We acknowledge that measuring Ψ is not always straightforward and that
more data of sphericityΦ are available in the literature. For this reason, a first-order approximate relationship
(see sheet “Shape comparison” in supporting information Data Set S1)

Ψ ¼ 0:83Φ (22)

The regression line has a correlation factor r of 0.83 due to some scatter between the points; however, it is
significantly different from 0, that is, the case of no correlation, as results from the Student t test carried
out on r (see supporting information). Furthermore, an analysis of variance on the correlation law was con-
ducted and further confirms that themodel (22) provides a significantly good approximation ofΨ ifΦ is avail-
able (and vice versa).

We evaluated the performance of the new drag law when recalculating the experimentally measured term-
inal velocities and compared it with that of other shape-dependent drag laws selected from the multiphase
fluid dynamics and volcanological literature, based on the availability of the shape descriptors used in these
laws in our database. Focusing on the drag laws developed and used in volcanology, the performance of the
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Φ = 0.6. The new drag law (blue line), Ganser (1993) (red line), and Dioguardi and
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new drag law is significantly improved for the presented database, in particular at very low Re, a fluid dynamic
regime that is of interest for applications like the fine ash dispersion and settling modeling. Furthermore,
results show that the effect of particle shape cannot be neglected even at very low Re, which, in volcanolo-
gical processes, translates to very small particles. This has important implications for the simulation of the dis-
tal ash dispersal, meaning that the use of realistic values of the shape parameters is recommended also in
such applications. As a further verification, the distances travelled by hypothetical particles falling from
20 km height in a uniform cross wind of 10 m s�1 were calculated. This was achieved by calculating the par-
ticle terminal velocity (the new drag law (14), Ganser (1993) (17), and Dioguardi and Mele (2015) (19) were
selected) and, subsequently, the falling time; the distance travelled was then estimated by assuming that
the particle was fully coupled to the horizontal cross-flow, hence by multiplying the falling time by the wind
speed. For simplicity, air density and viscosity were assumed to be constant and equal to the height-averaged
values over the first 20 km from sea level of the International Standard Atmosphere, that is, 0.47 kg m�3 and
1.54 Pa s, respectively. Particle density and shape factor were set to 2,500 kg m�3 and 0.5, respectively.
Particle sphericity needed for using (17) was set to 0.6, as estimated by means of (22). The case of a perfect
sphere was also considered, with the aerodynamic drag calculated by the model of Haider and Levenspiel
(1989) (equation (9)). Different values of particle size dp were considered: 10, 25, 50, 75, and 100 μm.
Results of this exercise are shown in Figure 8.

All the models predict an increasing distance as particle size decreases. Excluding the case of a perfect
sphere, there are no significant differences when dp > 75 μm, as was expected in this fluid dynamic regime
(0.5 < Re < 2) where these drag laws showed very similar performances (see Figure 4). For a 50 μm particle,
the distances start to become significantly different, especially Dioguardi and Mele (2015), which predict the
lowest terminal velocity, hence the largest distance. The differences increase as particle size decreases,
becoming very important at dp = 10 μm between the new drag law (14) and that of Ganser (17)
(~8,000 km). It is to note that the drag law of Dioguardi and Mele (2015) failed to converge for this grain size
at very low Re (<0.001), not surprisingly since this empirical drag law was designed to work in the range
0.01 < Re< 10,000. These differences, though obtained from a highly simplified test case, demonstrate that,
at very low Reynolds numbers, the apparently small differences in performance between the different drag
laws translate into significant difference when computing the distance travelled by very fine particles in the
atmosphere. The relevance of these findings for ash dispersion modeling is evident and justifies additional
research aimed both at further populating the volcanological databases of drag measurements of volcanic
particles at very low Reynolds numbers and quantifying the shape parameters of fine ash particles.

Thanks to its wide range of applicability both considering the fluid dynamic regime and the particle shape
irregularity, the new drag law can be applied to any kind of multiphase flowmodeling of the transport of solid
irregular particles in a Eulerian-Lagrangian fashion. In particular, the new drag law can be applied to different
volcanological processes, spanning from the simulation of particles settling from volcanic plumes and distal
clouds in plume and ash dispersion models to the transport of volcanic ash and lapilli in particle-laden gravity
flows (e.g., pyroclastic density currents). The next steps include the compilation of a unified database of par-
ticle shape and drag measurements that can be made available to the multiphase flow and volcanological
community and the upscaling of the new knowledge gained on the drag of single irregular particle tomixture
of particles, a step that is important for multiphase flow modeling at large scale and significant solid
particle concentrations.
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