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Abstract Mesoscale convective systems (MCSs) are frequently associated with rainfall extremes and are
expected to further intensify under global warming. However, despite the significant impact of such
extreme events, the dominant processes favoring their occurrence are still under debate. Meteosat
geostationary satellites provide unique long-term subhourly records of cloud top temperatures, allowing to
track changes in MCS structures that could be linked to rainfall intensification. Focusing on West Africa, we
show that Meteosat cloud top temperatures are a useful proxy for rainfall intensities, as derived from
snapshots from the Tropical Rainfall Measuring Mission 2A25 product: MCSs larger than 15,000 km2 at a
temperature threshold of �40°C are found to produce 91% of all extreme rainfall occurrences in the study
region, with 80% of the storms producing extreme rain when their minimum temperature drops below
�80°C. Furthermore, we present a new method based on 2-D continuous wavelet transform to explore the
relationship between cloud top temperature and rainfall intensity for subcloud features at different length
scales. The method shows great potential for separating convective and stratiform cloud parts when
combining information on temperature and scale, improving the common approach of using a temperature
threshold only. We find that below�80°C, every fifth pixel is associated with deep convection. This frequency
is doubled when looking at subcloud features smaller than 35 km. Scale analysis of subcloud features can
thus help to better exploit cloud top temperature data sets, which provide much more spatiotemporal detail
of MCS characteristics than available rainfall data sets alone.

1. Introduction

The frequency of extreme rainfall events is one of the most relevant climatological aspects for societies
worldwide. Torrential rain poses a threat to livelihoods of people, to infrastructure, and to crop yields through
erosion, flooding, and the promotion of diseases. Under global warming, rainfall is expected to further inten-
sify due to the increased moisture-holding capacity of a warmer atmosphere (e.g., Allen & Ingram, 2002; Wu
et al., 2013). The evolution of convective rainfall is of special interest in this context, since it is not only related
to higher local rainfall intensities than stratiform rainfall but also has been found to be highly sensitive to
atmospheric warming, significantly exceeding the Clausius-Clapeyron scaling of 7% per degree temperature
rise (Berg et al., 2013; Lenderink et al., 2017). Even though deep convection does not cause the majority of
extreme rainfall events in all regions of the world, especially where orographic forcing or atmospheric rivers
play a strong role for the atmospheric moisture content (e.g., Ai et al., 2016; Liu & Zipser, 2009; Sohn et al.,
2013), more than 70% of the global rainfall over land originates from systems with deep convection (Xu &
Zipser, 2012).

In West Africa, organized mesoscale convective systems (MCSs) are the dominant rainfall-bearing systems,
contributing about 30–80% of the total rainfall during the West African monsoon season over the south-
north gradient (Roca et al., 2014). They are commonly defined as large organized thunderstorm complexes
of at least 100 km across (Houze, 2004; Laurent et al., 1998; Mohr, 2004). The mechanisms by which MCSs
are initiated, organized, and maintained are manifold and range from atmospheric disturbances in the
monsoon dynamics and topography (Fink & Reiner, 2003; Mohr & Thorncroft, 2006; Zhang et al., 2016) to
surface conditions (Kohler et al., 2010; Taylor et al., 2011).

Most of our current knowledge about MCS circulations and their sensitivities is based on atmospheric
models. For example, idealized large-eddy simulations revealed that wind shear can foster convective
organization and therefore more intense rainfall (Alfaro & Khairoutdinov, 2015; Froidevaux et al., 2014).
Such findings highlighted the importance of storm dynamics for MCS intensification in addition to the
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expected thermodynamic sensitivity. However, on the larger scales it remains a challenge to evaluate these
mechanisms due to an insufficient representation of MCSs in global circulation models. Convective parame-
terizations are not yet able to implicitly include the effects of convective organization, leading to large uncer-
tainties in the projections of tropical rainfall extremes (Gorman, 2015).

In addition, observational evidence for supporting modeled findings is needed but often difficult to obtain.
In many regions where there is no ground-based radar network and where surface gauges are sparse, obser-
vational studies rely on satellite data. Spaceborne rainfall radar data such as from the Tropical Rainfall
Measuring Mission (TRMM) provide information intermittently every few days for a given location in West
Africa. Complementary microwave data are available every few hours. Both data sets are suitable for building
up an understanding of storm characteristics from snapshots taken from different MCSs that occurred over
different regions or at different times of day. However, infrequent sampling prohibits more detailed tracking
of individual MCS, while the relatively short data set produced by the TRMM satellite limits the possibilities for
longer-term trend detection.

On the other hand, geostationary satellites provide long-term subhourly records of cloud top temperatures
that provide indirect information on spatial characteristics and on the evolution of rainfall. The Meteosat
satellites cover a period of 35 years, allowing analyses on the climatological time scale. This was demon-
strated by Taylor et al. (2017), who used the data to reveal a positive trend in MCS intensity in the Sahel
for the period 1982–2016. Based on the relationship between colder storm temperatures and more intense
rainfall, they identified an increase in the frequency of very cold MCSs with the associated cooling of cloud
tops pointing to an intensification of convection. In line with idealized modeling results, they found this trend
to be most likely driven by increased wind shear in the region.

In that study, individual storms were analyzed as a single entity neglecting any information on storm struc-
ture. Mature MCSs can reach a considerable size (more than 100,000 km2) of which only a small areal fraction
is producing very intense rainfall. To be able to pinpoint these intensely precipitating convective cores
becomes of importance if trends in extreme rainfall are to be evaluated for specific locations. Local-scale
vegetation patterns or land use changes have the potential to directly modify rainfall amounts (Hartley
et al., 2016; Klein et al., 2017; Lauwaet et al., 2009). The associated change in MCS structure can only be
detected and related to these surface properties if the location of the convective area within the MCS
is known.

A common way for identifying intensely precipitating convective areas from infrared brightness temperature
images is to apply a temperature threshold, assuming that the coldest cloud top temperatures are associated
with highest vertical velocities. Since the ideal temperature threshold varies, this method must be carefully
adapted to different climatic regimes. Nevertheless, satellite infrared images are frequently used to evaluate
global and regional characteristics of deep convection (e.g., Adler & Negri, 1988; Fiolleau & Roca, 2013;
Goldenberg et al., 1990) and numerous rainfall products rely on indirect retrievals of rainfall rates from cloud
top temperatures (Ashouri et al., 2015; Joyce & Arkin, 1997; Wolters & Roebeling, 2011). Initiatives like the
“Tropical Applications of Meteorology using Satellite data and ground-based observations” (Maidment
et al., 2014) derive optimized regional temperature thresholds based on rain gauge records to identify pre-
cipitating clouds as well as to calibrate pixel-based rainfall amounts. A remaining problem with such rainfall
retrieval algorithms is their limited ability to distinguish convective regions from cirrus clouds or cold strati-
form anvils. Their suitable calibration therefore remains a challenge and might require compromise. For
example, the focus of Tropical Applications of Meteorology using Satellite data and ground-based observa-
tions on drought monitoring necessitates a high sensitivity to small rainfall amounts, which causes an under-
estimation of intense rainfall (Maidment et al., 2017).

Other, more complex rainfall retrieval algorithms employ neural networks to additionally classify cloud struc-
tures from thermal infrared images (e.g., Ashouri et al., 2015; Mahrooghy et al., 2012). Information on the
cloud texture and its temporal evolution improve the discrimination of convective, stratiform, and nonraining
cloud parts. This is because these cloud parts exhibit systematic differences not only in their vertical extent
but also in their horizontal structure. This was already shown by Vicente et al. (1998), who identified local tem-
perature gradients within kernels of 20 km2 in order to discriminate rain/no-rain areas for the application of a
cloud top temperature-precipitation regression relationship. They argued that pixels above the average
cloud top surface height should be associated with active convection and precipitation beneath. They
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found that weak cloud top temperature gradients are indeed helpful for screening out nonraining anvil cirrus
developing during the mature stage of storms. Currently existing techniques for the detection of convective
cloud areas from infrared imagery with little dependence on temperature thresholds, such as the window-
texture method (Bedka & Khlopenkov, 2016) or the brightness temperature method (Ai et al., 2017), were
explicitly developed for the detection of overshooting tops (OTs), that is, cloud areas where strong vertical
updrafts penetrate into the tropopause. OTs were found to often be associated with severe weather and
intense convective rainfall and hence are a useful indicator for potentially destructive storms in operational
applications (Dworak et al., 2012). Bothmethods therefore aim at a high predictive performance for individual
storms. In the case of the window-texture method, additional input from numerical weather prediction mod-
els and Moderate Resolution Imaging Spectroradiometer observations are integrated in the workflow.

In this study, we do not specifically focus on detecting OTs but are evaluating the general usefulness of
length scale information for the identification of intensely precipitating cloud parts. We further explore the
relationship between temperature gradients and rainfall via a scale analysis of the cloud structure applied
to West African MCSs. While the area of a convective core in a big storm can be extensive, it is of smaller scale
than the area of the stratiform cloud shield and is interspersed with individual intensive updrafts. This makes
the convective area more heterogeneous (i.e., featuring smaller scales), than areas with stratiform rainfall
where the cloud is dispersing and vertical velocities are low (Houze, 2004). Different from current applications
of texture scanning with neural networks, our aim is not a pixel-based rainfall retrieval, which necessitates
strict testing of forecast skill and temporal rainfall aggregation for improved accuracy. Instead, we assess
whether the length scales of subcloud features (SCFs) have the potential to give instantaneous information
on the localization of intensely precipitating convective cloud areas. A probabilistic link between SCF length
scales and the occurrence of convective rainfall could facilitate the detection of structural changes in MCSs,
which would be a valuable research tool for understanding dynamics within MCSs.

Following the findings of Taylor et al. (2017), the identification of such changes over climatological time
scales could be a useful tool for interpreting existing long-term trends in cloud top temperature. At the same
time, the analysis of convective-scale features may provide important evidence on how land surface proper-
ties influence rainfall within organized systems (e.g., Taylor & Lebel, 1998). For this, we developed a method
for scale decomposition of MCS cloud top temperatures into SCFs with continuous wavelets. The identified
SCFs are then linked to TRMM rainfall fields to evaluate the added value of that length scale information.
First, results for the relationship between SCFs and rainfall characteristics are presented and methodological
options are discussed.

2. Region and Data
2.1. Cloud Top Temperature and Rainfall Data

The study encompasses the whole West African region (Figure 1) and focuses on the monsoon months June–
September, when MCSs are most frequent.

We use thermal infrared brightness temperature data (10.8 μm, channel 9) from the Spinning Enhanced
Visible and Infrared Imager of the geostationary Meteosat Second Generation (MSG) satellites. The data are
freely available from the EUMETSAT website (http://www.eumetsat.int) every 15 min at an approximate
spatial resolution of 3 km over West Africa. We used lookup tables provided by EUMETSAT to convert the data
from effective radiances to brightness temperatures, hereafter referred to as “cloud top temperatures.” These
cloud top temperatures were then filtered for two temperature thresholds,<�10°C and�40°C, with contig-
uous pixel areas defining individual clouds. Only clouds of at least 350 km2 were kept for both thresholds.

In order to obtain information on surface rainfall characteristics at a relatively high spatial resolution, we use
the TRMM product 2A25 (Tropical Rainfall Measuring Mission, 2011). This rainfall radar product provides
snapshots of surface rainfall rates from 2 to 4 overpasses per day across our domain at a resolution of about
5 km. In the absence of surface radar or dense gauge observations, this provides the best observation of spa-
tial variations in precipitation over West Africa. Equally, it has already been used for analyzing life cycles and
the vertical structure of African MCSs (Futyan & Del Genio, 2007; Geerts & Dejene, 2005). Specifically for West
Africa, it has been, among others, applied as a reference for other rainfall products (Wolters & Roebeling,
2011), for compiling a climatology of MCS rainfall characteristics (Guy & Rutledge, 2012) and for identifying
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different rain types within MCSs (Schumacher & Houze, 2006). Validation studies report a likely underestima-
tion of intense convective rainfall rates of the product but overall find a realistic spatial rainfall distribution,
which allows to distinguish convective and stratiform storm areas (Iguchi et al., 2009; Rasmussen et al., 2013).

An individual TRMM swath is approximately 250 km wide (Figure 1b) and covers the same point on the sur-
face at a different local time every one to 4 days (23–46 days for a return at the same local time). In addition,
the data set provides a classification flag for convective rainfall, as diagnosed from the bright band vertical
and horizontal structure (Awaka et al., 1997). This flag is used in combination with a minimum rainfall thresh-
old of 8 mm h�1 to define convective rainfall pixels in TRMM. For all analyses presented here, the two data
sets were regridded onto a common grid of 5 km resolution for 2004 to 2014, the time period overlapping
with TRMM (cf. Figure 1a). We use temperature lapse rates from ERA-Interim (Dee et al., 2011) to correct
for parallax due to the difference in viewing angles of the two satellites (Mahani et al., 2000). For each
TRMM overpass, we identified MSG cloud structures containing at least three valid TRMM pixels. The MSG
image used was selected to be coincident or within a maximum of 30 min ahead of the TRMM overpass. In
the example shown (Figure 1b), the TRMM overpass samples two distinct cold clouds.

3. Bulk-Relationship of Cloud Top Temperatures and Extreme Rainfall

Before examining relationships between SCFs and associated local rainfall, following Taylor et al. (2017), we
consider how the probability of extreme rain varies with the minimum temperature and size of cloud sys-
tems. For exploring the general relationship of cloud top temperatures and rainfall at the cloud scale, we first
identified the minimum temperature and maximum rainfall within 13,845 clouds of a size of at least 350 km2

at a temperature threshold of �10°C. These size and temperature thresholds include smaller clouds that
would not be characterized as MCSs, but they allow us to evaluate their contribution to occurrences of
extreme rainfall. In the following, we define extreme rainfall as rain exceeding 30mmh�1, which corresponds
to the 99th percentile of all rainy TRMM pixels (>0.1 mm h�1) within contiguous clouds below �10°C.

Figure 1. Study domain showing an example for (a) the infrared temperature data derived from Meteosat Second
Generation and (b) identified clouds at a temperature threshold of �40°C with a minimum area threshold of 350 km2

(gray) and the overlapping Tropical Rainfall Measuring Mission swath (black) on the 5 km grid. Tropical Rainfall Measuring
Mission rainfall is indicated in blue.
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Figure 2a illustrates the tendency for maximum rainfall intensity per storm to increase with decreasing mini-
mum temperature, that is, a higher cloud top, as expected. In 86% of the cases where clouds produce any
extreme rain (points above the dashed line), they exhibit a minimum temperature below�60°C. Binning each
cloud according to its minimum temperature (Figure 2b), we found that 83.7% of the storms that reach a
minimum temperature below �80°C are associated with extreme rain. This probability drops to 1.5% for
clouds with a minimum temperature warmer than�40°C (Figure 2b). For all following analyses, we therefore
apply a temperature threshold of <�40°C in order to exclude cloud areas that are unlikely to produce any
extreme rainfall.

Alongside cloud top temperature, cloud size is expected to affect the maximum rainfall amount. As visible
from Figure 2a, large clouds are much more likely to produce extreme precipitation than the more numerous
small clouds. We quantify this effect in Figure 3 by applying increasing cloud area thresholds. The blue dotted
curve shows only a slight drop in the absolute number of extreme rainfall pixels when smaller clouds are
excluded, while there is a sharp decrease for very large clouds. Using a threshold of �40°C, 91% of the abso-
lute number of extreme rainfall pixels occur in only 33% of the clouds, that is, clouds larger than 15,000 km2.
This area threshold also increases the fraction of rainy clouds from 77% to 91% (Table 1). However, it should
be noted that while the threshold results in a considerable decrease in the number of clouds (67%), the
decrease in cloud area is only 13%. This illustrates that very large cloud clusters generally dominate the cold

cloud cover over the study region, which is in line with Mathon et al.
(2002). By combining Meteosat data with rain gauges, they found
mature organized MCSs to represent 80% of the cloud cover below
�40°C while only contributing 18% in cloud number.

Our results confirm that large, cold MCSs are responsible for the vast
majority of extreme rainfall in West Africa during the monsoon, as was
also shown by Taylor et al. (2017) for a Sahelian domain (11–18°N).
Cloud top temperature proves to be a useful characteristic for determin-
ing the probability of a storm to produce intense rain in a bulk approach.
The question we now consider is whether additional information about
intense rainfall can be obtained from subcloud temperature features.

4. Wavelet Analysis

We now use a 2-D continuous wavelet transform (CWT) approach to
decompose theMSG cloud top temperatures into a wavelet power spec-
trum representing scales between 15 and 180 km. The goal is to identify
contiguous subcloud features that are characterized by a temperature
gradient at their edges and a homogeneous interior relative to the
respective scale.

Figure 2. Relationship of June–September 2004–2014 minimum cloud top temperature and maximum precipitation
within contiguous clouds larger than 350 km2 above a temperature threshold of �10°C. Scatter plots of minimum
temperature versus (a) maximum precipitation and (b) probability for rainfall above 30 mm h�1 (99th percentile) per cloud.
The coloring in (a) indicates the total cloud area.

Figure 3. Cumulative fraction of retained extreme rainfall pixels (blue) and
cold clouds (red) for increasing area thresholds (km2, log scale) with
respect to the total number of extreme rainfall pixels and the total number of
cold clouds, respectively. Contiguous cold clouds are defined with a tem-
perature threshold of �40°C.
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The 2-D CWT is the method of choice because it is most commonly used for feature detection in images (e.g.,
Antoine, 2004). In atmospheric science, both continuous and discrete 2-D wavelet analyses have been con-
siderably less used than their 1-D counterparts. Raut et al. (2009) used 2-D discrete wavelet transform to
detect convective clouds in thermal imagery as features smaller than 40 km, and a few studies have used
it for spatial verification of numerical weather prediction models (Yano & Jakubiak, 2016; Weniger et al.,
2017, and references therein). Wang and Lu (2010) introduced and illustrated several examples of meteoro-
logical applications of 2-D CWT.

Two-dimensional CWT is a straightforward extension of one-dimensional CWT (e.g., Torrence & Compo,
1998) to two spatial dimensions. The 2-D CWT can in general be used to detect directionally oriented fea-
tures, provided an anisotropic wavelet function is used (e.g., Weniger et al., 2017). For simplicity, we here
choose an isotropic wavelet function and hence nondirectional 2-D CWT. Following the notation from
Wang and Lu (2010), the nondirectional 2-D CWT of a two-dimensional signal function f ∈ L2(R2) can be
expressed as

Wfð Þ a;bð Þ ¼ ∫R2 f xð Þψa;b xð Þdx;

ψa;b xð Þ ¼ a�1ψ
x-b
a

� �
;

where a is the wavelet scaling parameter, b ∈ R2 is the wavelet position (shifting) vector, ψ is the wavelet
mother function, x is the variable in two-dimensional vector space with the components (x, y), and the over-
bar indicates complex conjugate of a function. Note that the actual computations are performed in Fourier
space due to higher efficiency (e.g., Torrence & Compo, 1998; Wang & Lu, 2010). The wavelet power spectrum
is defined as |(Wf)(a,b)|2. High power values at a certain length scale indicate features with a relatively large
amplitude and high similarity to the shape of the mother wavelet at that length scale.

Based on the results from the bulk analysis of clouds, this length scale decomposition is conducted only for
the 4,530 contiguous clouds that exhibit a minimum area of 15,000 km2 at a temperature threshold of�40°C
(cf. Table 1). This means that we are focusing on well-organized, cold MCSs during their mature stage (Futyan
& Del Genio, 2007). This stage is typically reached several hours after convective initiation and is characterized
by an establishedmesoscale circulation throughout the system (e.g., Houze, 2004). Within a mature MCS, sev-
eral new, heavily precipitating convective cells coexist with a large anvil region with light stratiform rainfall as
well as with nonprecipitating anvil regions that stem from former convective cores. Furthermore, given the
chosen temperature and area threshold, our sampling inevitably includes stratiform anvils of decaying
MCSs without any active convection.

Table 1
Statistics of Detected Cold Clouds With TRMM/MSG Overlap Between June and September 2004–2014 at a Temperature
Threshold of �40°C

Clouds
> 350 km2

Clouds (MCSs)
> 15,000 km2

Subcloud
features

Cloud number 13,845 4,530 4,011
TRMM/MSG overlapping cloud area (106 km2) 169 147 60
Rainy cloud fraction (%) 76.8 91.3 92.1
Rainy pixel fraction (%) 27.7 28.5 40.3
Conditional mean rainfall (mm h�1) 5.86 5.87 6.69

Convective rain pixel fraction Pixelconvective
n (%) 3.8 4.1 7.3

Extreme rain pixel fraction Pixelextreme
n (%) 0.5 0.6 1.1

Fraction of excluded extreme pixels (%) / 8.7 18.2

Note. All measures consider the Tropical Rainfall Measuring Mission (TRMM)/Meteosat Second Generation (MSG) over-
lapping cloud areas only. Pixels with rain >1 mm h�1 are defined as rainy pixels. A cloud with at least one rainy pixel
is counted as rainy. Mean rainfall values are for rainy pixels only. N is the total number of overlapping pixels, including
those with zero rainfall. The threshold for extreme rainfall is 30 mm h�1. The reference for the fraction of excluded
extreme rainfall pixels due to respective filtering is the number of extreme rainfall pixels found in clouds >350 km2.
Refer to section 4 for the detailed definition of subcloud features. MCSs = mesoscale convective systems.
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Following Wang and Lu (2010), the applied wavelet mother function (ψ)
is the Laplacian of the 2-D Gaussian (LoG) function, also known as the
Mexican Hat or Marr wavelet:

ψ xð Þ ¼ 2� xj j2� �
e�

xj j2
2 :

The LoG is isotropic and is a widely used filter for the detection of
“blobs” and edges in images (e.g., Marr & Hildreth, 1980). With respect
to cloud structures, the LoG will identify sharp changes of cloud top
temperatures, either at the edges of the clouds or for cold features
within the clouds. Since we are only interested in the latter, edge effects
were reduced by setting the background temperature (the noncloud
area) to the 50th percentile temperature of each individual MCS. The
cloud edges were then smoothed with a Gaussian filter within a 3 × 3
pixel kernel before applying the wavelet transform.

Figure 4 illustrates the wavelet scale decomposition for a west-east
transect through an MCS that produced extreme rainfall, according to
TRMM (Figure 4a). The transect of cloud top temperature and rainfall
shows extreme rainfall coinciding with lowest temperatures at the loca-
tion between 360 km and 420 km (Figure 4b). At the same time, we
detect high wavelet power values down to the smallest length scales
in these areas (Figure 4c). Local power maxima are depicted in white in
Figure 4c and are identified per length scale in a moving window within
a 2-D footprint of 30 × 30 km2. For each individual cloud, only identified
maxima surpassing the 90th percentile of occurring power values within

the respective scale and above a minimum value of
ffiffiffiffiffiffiffiffiffiffi
scale

p
are consid-

ered significant. The scale-dependant minimum threshold favors the
identification of small SCFs but at the same time excludes those identi-
fied in predominantly homogeneous clouds.

The extracted power maxima represent the center points of SCFs

at the respective scale with a radius of scale
2 (cf. whiskers). Since

Figure 4c depicts only power maxima situated along the transect, they
are only visible up to 100 km before shifting toward the cloud center
for bigger scales.

The wavelet power values (and therefore power maxima) do not
depend on absolute temperature values but solely on the temperature
gradient between feature and background. Warm SCFs could theoreti-
cally exhibit a similar wavelet signal as cold SCFs if they were confined
by a temperature gradient of a similar margin, rendering the wavelet
signal dependant on the relative temperature structure only.

4.1. Temperature and Rainfall Structures in the Vicinity of Local Power Maxima

We now consider the performance of the wavelet approach in identifying extreme rain across our data set
of 4,011 clouds within which significant SCFs were detected (cf. cloud number in Table 1). Figure 5 shows
a composite of cloud top temperatures and associated likelihood of extreme rainfall for different length
scale ranges. The composites are centered on the wavelet power maximum of each SCF (cf. Figure 4c,
white dots), that is, on the center of a bump at the cloud top of the respective scale within a window
of 200 km × 200 km.

Based on the composite average, the wavelet decomposition picks up cold circular temperature structures
with a diameter corresponding to the expected length scales. It should be noted that this gives no informa-
tion on the shape of individual SCFs, which are naturally rarely circular. The composite circular feature is
produced by averaging noncircular temperature structures randomly oriented in space.

Figure 4. Illustration of the wavelet scale decomposition for a single mesos-
cale convective system. (a) Cloud top temperatures (gray shading) and
TRMM overpass (light blue). The blue lines show the edge of the Tropical
Rainfall Measuring Mission swath with blue dots indicating locations of
extreme rainfall. The black dashed linemarks the position of the cross section
for (b) temperature (red) and rainfall (blue) and (c) wavelet power values for
all length scales. White circles and whiskers in (c) indicate local wavelet
power maxima and the extent of the SCF.
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The lower panel of Figure 5 illustrates that it is indeed possible to relate the spatial distribution of extreme
rain to substructures of the cloud in a statistical sense: there is a preference for extreme rainfall in the vicinity
of the center of SCFs of all scales. Interestingly, for SCFs with a diameter above 60 km, highest probabilities for
extreme rain become displaced to the southwest of the SCF center point, indicating regions of convective
rainfall at the front of the storms. This southwestward displacement is caused by a propagation tendency
in the southwest direction of many MCSs, antiparallel to the monsoon winds, the direction of strongest
low-level moisture convergence (Corfidi, 2003; Hodges & Thorncroft, 1997).

4.2. Dominant-Scale Detection Versus Small-Scale Detection

For any point within a storm, the wavelet scale decomposition identifies multiple length scales that might be
considered significant depending on the application. Consequently, there are different approaches for defin-
ing a single length scale that a specific region of the cloud belongs to, given the maxima within the wavelet
power spectrum. One option is to further filter the local power maxima in the scale dimension (x, y, scale),
hence identifying the scale at which an SCF possesses the steepest temperature gradient at its edges. This
dominant-scale detection is suitable for measuring the overall extent of cold areas within an MCS. These
often reach scales of 50 km or more. However, with this method there can be a loss of information on
embedded smaller-scale perturbations where these do not exhibit a strong enough temperature decrease
with respect to the often already very low background temperature.

Instead, here, we are specifically interested in the localization of small-scale features at the cloud top. The
assumption is that relatively small “bumps” could indicate convective cores, even if the temperature gradient
with respect to their immediate surroundings is weaker than for the bigger cloud shield they are embedded
in. Analyses of the internal structure of MCSs based on rain radar have shown that convective rain areas con-
tain strong peaks in precipitation intensity at a horizontal scale of 1–10 km, indicating single convective cells,
which organize into bigger clusters or a band of convection within the MCSs (e.g., Cheng & Houze, 1979;
Houze et al., 2015; Parker & Johnson, 2000). If these confined areas of peak precipitation are colocated with
strong vertical updrafts, we should see a SCF at the cloud top of a comparable or somewhat larger scale (since
the cloud bump disperses horizontally) associated with that updraft.

We therefore employ a small-scale detection method that identifies the local power maxima of the 2-D
wavelet power spectrum for each individual scale in the space dimensions (x, y) only, as was presented in
Figure 4c for one transect. For simplicity, we then define each SCF area to be encompassed by circles with

the radius scale
2 . Starting at the maximum scale of 180 km, each pixel in these circles is assigned the value of

Figure 5. Composites centered on power maxima for SCFs at different scale ranges for (top row) the associated cloud top temperatures and (bottom row) the
probability for extreme rain (> 30 mm h�1) at location Δx, Δy from the composite center (red dot). The pixel probability is defined as the fraction of extreme rain
with respect to the number of valid pixels at each location.

10.1002/2017JD027432Journal of Geophysical Research: Atmospheres

KLEIN ET AL. 3042



that scale. The procedure is repeated for gradually smaller scales,
following the rule that signals for smaller scales overwrite larger
scales. The resulting image provides a map depicting the smallest
length scales associated with SCFs across the cloud. Figure 6 illustrates
the resulting image for one individual MCS with overlaid scale
identification: light colors indicate larger-scale SCFs in areas with a
homogeneous cloud top, while dark red circles mark the smallest
wavelet-identified SCFs where “bumps” that could indicate convection
are apparent. The SCFs can then be mapped back onto the cloud top
temperature image and TRMM overpasses. This allows us to assign
temperature and rainfall characteristics to SCFs at different scales.
For example, extreme rainfall pixels marked in Figure 6 are mostly
colocated with SCFs of scales smaller than 40 km. Note that only
SCF pixels with an overlap with the respective TRMM swath (indicated
by blue lines in the example in Figure 6) are considered.

The rationale for favoring the smallest scale with a signal is based on the
idea that existing bigger scales represent cloud levels with larger hori-
zontal extent, which are lower and warmer than towering smaller scales
on top. Small-scale features should in many cases be associated with
locally higher vertical velocities with respect to their surroundings,
which would be characteristic for convective updrafts. Consequently,
in the case of a scale overlap, we assign the temperature and rainfall
within the respective SCF to the smallest occurring scale, avoiding

double assignment. This approach also means that the cloud areas left assigned to large scales should be
relatively homogeneous, without considerable small-scale structure. When applied across the data set of
MCSs >15,000 km2 at �40°C, this method excludes about 60% of the overlapping TRMM/MSG pixels in
MCSs while still retaining 90% of the number of extreme rain occurrences. At the same time, the fraction
of rainy pixels (≥ 1 mm h�1) increases from 28.5% to 40.3% (Table 1).

The frequency distributions of individual pixel temperatures within SCFs derived with this method for three
length scale ranges are shown in Figure 7a. The ranges are chosen to ensure a similar sample size in terms of
valid overlapping temperature/rainfall pixels associated with the SCFs (approximately one million valid pixels
per length scale range). Comparing the different scales, SCFs above 90 km mainly pick up the edges and
homogeneous parts of the MCSs, causing their temperature distribution to be shifted toward warmer pixels
at lower altitudes. On the other hand, the smallest scales also show a slightly warmer distribution than inter-
mediate (35–90 km) scales. This indicates that small bumps in the cloud top are often found in warm as well

Figure 6. Illustration of the small-scale detection method for the same
mesoscale convective system as in Figure 4 with circles indicating the
assigned scales derived from local power maxima of the wavelet scale
decomposition. White dots indicate the wavelet power maxima (circle center
points) for the smallest scale of 15 km. Regions of the mesoscale convective
system without any scale assignment are ignored. Blue lines show the edge
of the Tropical Rainfall Measuring Mission swath with blue dots indicating
extreme rain.

Figure 7. Temperature distribution for pixels within subcloud features identified via small-scale detection for different
length scale ranges. (a) Normalized frequency and (b) the fraction of pixels per temperature bin.
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(Figure 7b), SCFs between 15 and 35 km contribute the biggest share (40%) of cold pixels below�80°C. At the
other end of the temperature scale, 55% of all pixels associated with an SCF with an average temperature
above �50°C belong to SCFs larger than 90 km. Given the established relationship of lower temperatures
with more intense rainfall (Figure 2a), the typically higher temperatures at larger scales suggest lower prob-
abilities for intense rain associated with these MCS regions.

5. Rainfall Characteristics Associated With Subcloud Features
5.1. Probability for Convective Rainfall

We now use the assigned scales to separate different cloud areas in order to evaluate their respective prob-
abilities for convective and extreme rain. The pixel probabilities in Figure 8a are computed from cloud top
temperature pixels within SCFs that overlap with valid TRMM pixels and are averaged over temperature
and scale bins. Overlaps with zero rainfall are explicitly included in all probability calculations to take into
account “false alarm” cases.

For the whole temperature range, SCFs smaller than 35 km show higher probabilities for convective rain than
those associated with larger scales. This suggests that actively convective parts of MCSs indeed produce
small-scale structures via vigorous vertical updrafts, which can be detected with the scale decomposition
subcloud features less than 35 km are closest to the scales at which convective cells and associated contig-
uous intense rainfall occurs within the MCSs (cf. section 4.2). On the other hand, larger scales are mostly iden-
tified in relatively homogeneous parts of the MCS where stratiform rainfall can be expected. Correspondingly,
temperatures below �90°C, which indicate deep convection in 79% of the cases, are only present for scales
below 35 km. Below�80°C, at least every third pixel is associated with convective rain for scales smaller than
35 km. The probability for the occurrence of extreme rain follows approximately the same relationships with
scale and temperature (Figure 8b). Below �60°C, the 35 km scale threshold increases the probability for
extreme rain by a factor between 1.5 and 3.5 compared to the larger scales.

5.2. Temperature Threshold Versus Added Scale Information

Given the promising results of using the small-scale detection to filter cloud parts that are more likely to pro-
duce intense rain, we nowwant to evaluate whether this approach adds any value compared to the common
method of applying a temperature threshold (e.g., Maidment et al., 2014). While temperature is the most
valuable indicator for cloud top height and therefore convective activity, the ideal threshold for identifying
the coldest cloud tops varies with climate region and season. In addition, a temperature threshold might
not be sufficient for excluding cold stratiform cloud parts. The length scale of SCFs on the other hand is inde-
pendent from absolute temperatures and therefore provides additional information on the type of feature
that is identified.

Figure 8. Dependence of the probability for intense rainfall on cloud top temperature and length scale. Probability per
pixel with respect to the number of valid pixels for (a) convective rainfall identified from the Tropical Rainfall Measuring
Mission convective rainfall flag with a minimum threshold of 8 mm h�1 and (b) extreme rainfall (> 30 mm h�1).
Uncertainty ranges indicate the 95% binomial confidence interval depending on the sample size. Points indicate the
center point of each temperature bin.
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We compare the small-scale detection method to a simple temperature-based approach where no SCFs are
defined. The entire overlapping area between TRMM and MSG from 4,011 MCSs is considered to derive the
relationship between cloud top temperature and the probability for convective rain. Figure 9a shows that the
additional application of a small-scale threshold increases the pixel probability for convective rainfall for all
temperatures. The two methods appear to converge for those very cold temperatures (below �90°C) that
are only reached by small scales in the first place. Considering all SCFs smaller than 35 km and below
�80°C, 40% of the rainfall pixels are marked as convective by the TRMM rainfall flag, while this is true for only
21% when only considering temperature. This confirms that scale information can be a useful addition to
information on cloud top temperature.

Figure 9. Comparison of the probability for convective rainfall derived by using a temperature threshold only (red) and by
additionally restricting the analyzed cloud areas to scales ≤35 km (blue). (a) Pixel probability as in Figure 8a. (b) Meridional
cross section of average pixel probabilities between 17°W and 30°E with a temperature threshold of �80°C and
average mesoscale convective system area based on all storms below �40°C (gray dots).

Figure 10. The diurnal cycle for 2-hourly bins of subcloud feature length scales and associated precipitation. (a) Relative
precipitation contribution per scale over the diurnal cycle and (b) deviation from the mean relative precipitation
distribution per scale. In (a), the sum over the diurnal cycle is 100% for every individual scale. In (b), the sum over all scales is
0% for every 2 h. (c and d) The number of rainy pixels (>1mm h�1) and average rainfall for given scale ranges, respectively.
The scale ranges in (c) and (d) were chosen to contain a similar number of rainy pixels.
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The impact of applying a small-scale SCF filter is particularly beneficial in geographical regions where storms
frequently produce very large, cold stratiform cloud shields, which are difficult to separate from cold convec-
tive features based on their temperature. Figure 9b suggests that information on the length scale of SCFs
could significantly help to reduce this detection problem across the Sahel. Between 8 and 14°N, the average
size of cold cloud systems exceeds 120,000 km2. Such systems typically comprise large stratiform areal
fractions during the peak monsoon. Compared to the application of a temperature threshold of �80°C, the
probability for convective rain remains more stable over the meridional cross section when a small-scale
threshold is applied.

5.3. Diurnal and Geographical Variability of Length Scales

The relative contribution to total rainfall associated with any length scale varies over the day depending
on the respective development stages of MCSs. In Figure 10a, we show this relative contribution for each
2-hourly period of the day for SCFs on scales from 15 to 180 km. For small scales, the diurnal peak occurs
in the afternoon (16–18 UTC). For SCFs greater than 80 km, maximum rainfall occurs in the evening and
overnight (Figure 10b). This is consistent with the well-established life cycle of long-lived MCSs, which are
triggered in the afternoon and reach their mature, fully grown phase with a developed stratiform anvil over-
night before dissipating in the morning (Mathon and Laurent, 2001).

The diurnal cycles in Figures 10a and 10b can be interpreted in terms of variations in rainfall intensity and
frequency per length scale. We find that the relative contribution to rainfall amounts is predominantly

Figure 11. Maps for June–September 2004–2014 showing the frequency of subcloud features in the late afternoon (1800 UTC) for (a) ≤35 km and (b) ≥80 km and the
difference in subcloud feature frequency between late afternoon and nighttime (1800 UTC to 0300 UTC) for (c) ≤35 km and (d) ≥80 km, irrespective of a
Tropical Rainfall Measuring Mission overpass. The topography is shown in (e) for comparison.
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determined by the frequency of SCFs at a given scale, that is, the number of pixels assigned to respective
scales per 2-hourly bin (Figure 10c) rather than by a change in rainfall intensity (Figure 10d). On the contrary,
the latter remains relatively constant throughout the day for each scale range: SCFs below 35 km show an
average rainfall intensity of 9 mm h�1 as compared to considerably weaker 4.5 mm h�1 for SCFs larger than
60 km (Figure 10d).

Finally, we consider the spatial distribution of SCFs across the region, based on the analysis of all available
MSG images for a given time of day, regardless of the availability of TRMM data (Figures 11a and 11b). In
almost all regions, SCF frequencies are higher in the afternoon and early evening than in early morning
(Figures 11c and 11d). This is consistent with the domain-mean late-afternoon peak in SCF frequency in
Figure 10c. The frequency of afternoon SCFs shows clear maxima over elevated terrain. A weaker but distinct
afternoon preference is also visible along the coastline, most likely linked to the sea breeze.

A dominance of nocturnal SCFs over land exists almost exclusively in regions devoid of, but downstream
from, significant topographical features, in line with the findings of Zhang et al. (2016). Based on TRMM rain-
fall data across the region, they identified nocturnal rainfall peaks 3°–10° of longitude to the west of regions
with afternoon rainfall maxima. The presence of these structures in Figure 11 suggests that our small-scale
detection methodology may provide a useful tool in understanding how other, more subtle features, such
as vegetation and soil moisture, also affect convective life cycles.

6. Discussion and Conclusion

Focusing on the West African region, this study has illustrated how wavelet-based scale decomposition can
be used to derive a relationship between rainfall intensity and the length scales of cloud top temperatures of
MCSs. By combining TRMM 2A25 surface rainfall with MSG thermal infrared images, we evaluated the poten-
tial in using length scale information in addition to cloud top temperatures for the identification of intensely
precipitating areas within MCSs.

Starting at the storm scale, we showed that higher rainfall intensities are strongly coupled to colder cloud top
temperatures; the probability for a storm to produce any extreme rainfall increases from less than 1.5% for
minimum temperatures above�40°C to over 80% when temperatures drop below�80°C. At the same time,
90% of extreme rainfall occurrences over the study region are related to very large MCSs with a cloud area
exceeding 15,000 km2. For assessing the temperature-precipitation relationship at a subcloud scale, we
therefore focused on 4,530 large MCSs below a temperature threshold of �40°C. The scale decomposition
was conducted for every single MCS using 2-D continuous wavelet analysis. This approach allowed us to iden-
tify individual subcloud features (SCFs) at different length scales. Compared to the cloud area at �40°C, the
defined SCFs encompass only 40% of the area while retaining 90% of all extreme rainfall pixels, and increas-
ing the percentage of rainy pixels from 28.5% to 40.3%. This illustrates that, even without any further differ-
entiation by scale or temperature, the method reduces the area of interest, that is, identifies cloud areas that
are most likely to produce intense rain.

On average, we find extreme rainfall to be centered on such SCFs up to scales of about 60 km, illustrating that
convective areas in the MCSs can be identified with this method. In accordance with the bulk analysis, the
probability for convective rainfall in a specific region of the storm increases with locally colder cloud top
temperatures. The most frequent occurrence of temperatures below�80°C can be attributed to SCFs smaller
than 35 km, coinciding with the highest probability for extreme rainfall compared to larger scales.
Furthermore, the presented scale decomposition revealed a good performance in excluding cloud pixels that
are most likely associated with stratiform cloud shields. These cloud shields can be cold but exhibit homoge-
neous features, which are assigned to larger scales. Consequently, the combination of temperature and scale
information provided consistently higher probabilities for convective rainfall detection for scales below
35 km as compared to a temperature-only approach.

Furthermore, we were able to identify a mean growth in length scales over the diurnal cycle consistent with
our knowledge of MCS life cycles. Interestingly, the average rainfall intensity for three different length scale
ranges remains relatively constant over the day, with the smallest scales reaching 8.8 mm h�1. This constant
relationship between rainfall intensity and SCF length scale at different phases of the MCS life cycle is an
appealing aspect of the approach, suggesting stable characteristics of the rainfall distribution per scale range.
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However, the statistical relationship between cloud top temperature and rainfall intensity proved to be more
robust for the initial bulk analysis at storm scale. At the subcloud (pixel) scale, the relationship is more chaotic.
Even for cloud top temperatures below�80°C embedded in small-scale features below 35 km, a combination
that should be predestined for the extraction of convective cloud parts, only 33% of the pixels are indeed
classified as convective in TRMM. However, it is worth to remember that the TRMM 2A25 product used here
tends to underestimate convective rainfall amounts over land (e.g., Iguchi et al., 2009; Nesbitt et al., 2006;
Rasmussen et al., 2013), which might reduce the actual correlation of cloud top temperatures and rainfall
intensities. This implies that the method presented here would have to be refined if it were to be used for
rainfall estimation techniques that aimed at combining temperature and scale information. Several
approaches for addressing the large false alarm rate could be explored. A more restrictive design of the
small-scale filtering could include a normalization of the wavelet power spectrum and using a common
wavelet power threshold for all storms rather than the storm-relative approach used here. Another option
might be the application of a pattern-matching algorithm to reduce the spatial offset that can occur between
associated cloud top temperature and rainfall patterns. Generally, the wavelet scale decomposition leaves
room for adjustment depending on the application and what kind of filtering is expected. In this sense,
the definition of a “feature” and hence of identified scales within a continuous, heterogeneous field like cloud
top temperature is not entirely objective.

Nevertheless, from a statistical point of view and given that the false alarm rate is a systematic bias, this
method is a powerful approach for analyses of temporal or spatial changes in convective features, explicitly
considering length scale dependencies, and could be a useful complement to more sophisticated OT detec-
tion algorithms. In addition, the dependence of a length scale approach on the relative structure of cloud top
temperature rather than on absolute values is appealing when considering trends from different sensors,
which can exhibit biases. Hence, the methodology can be applied as is to study trends at sub-MCS scales, fol-
lowing the findings of Taylor et al. (2017). It also allows us to look from a statistical perspective at feedbacks
between MCSs and the land surface; brightness temperature data have been used before in West Africa to
identify an important role of soil moisture heterogeneity in MCS initiation (Taylor et al., 2011). The small-scale
detection method presented here will allow us to better understand surface feedbacks associated with orga-
nized convection. Other infrared imagers such as the Advanced Baseline Imager on the Geostationary
Operational Environmental Satellites (Schmit et al., 2017) and the Advanced Himawari Imager (Bessho
et al., 2016) would allow an extension of such analyses to other regions. Just like the Flexible Combined
Imager on board the future Meteosat Third Generation (Durand et al., 2015), they provide information at a
higher spatial resolution of 2 km, which could further improve the accurate localization of convective cores
within MCSs.

Ultimately, our results demonstrate the basic suitability of 2-D wavelet scale decomposition for the analysis of
subcloud structures and their relation to rainfall characteristics. This kind of scale analysis opens up a wide
field of many further possible applications. Combining information on cloud top temperature and length
scale, the presented method can help to identify changes in the properties of MCSs and associated rainfall
over climatological time scales as well as for relatively small spatial scales.
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