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1 
2 1 Abstract 
3 
4 
5 2 Threats to global food security have generated the need for novel food production techniques 
6 
7 

8 3 to  feed  an  ever-expanding  population  with  ever-declining  land  resources.  Hydroponic 
9 
10 4 cultivation has been long recognised as a reliable, resilient and resource-use-efficient 
11 
12 5 alternative to soil-based agricultural practices. The aspiration for highly efficient systems and 
13 
14 6 even city-based vertical farms is starting to become realised using innovations such as 
15 
16 7 aeroponics and LED lighting technology. However, the ultimate challenge for any crop 
17 
18 8 production system is to be able to operate and help sustain human life in remote and extreme 
19 
20 9 locations, including the polar regions on Earth, and in space. Here we explore past research 
21 
22 10 and crop growth in such remote areas, and the scope to improve on the systems used in 
23 
24 

25 11 these  areas  to  date.  We  introduce  biointensive  agricultural  systems  and  3D  growing 
26 

27 12 environments, intercropping in hydroponics and the production of multiple crops from single 
28 
29 13 growth systems. To reflect the flexibility and adaptability of these approaches to different 
30 
31 14 environments we have called this type of enclosed system ‘pop-up agriculture’. The vision 
32 
33 15 here is built on sustainability, maximising yield from the smallest growing footprint, adopting 
34 
35 16 the principles of a circular economy, using local resources and eliminating waste. We explore 
36 
37 17 plant companions in intercropping systems to supply a diversity of plant foods. We argue 
38 
39 18 that it is time to consume all edible components of plants grown, highlighting that nutritious 
40 
41 plant parts are often wasted that could provide vitamins and antioxidants. Supporting human 
42 
43 

44 20 life via crop production in remote and isolated communities necessitates new levels of 
45 
46 21 efficiency, eliminating waste, minimising environmental impacts and trying to wean away 
47 
48 22 from our dependence on fossil fuels. This aligns well with tandem research emerging from 
49 
50 23 economically developing countries where lower technology hydroponic approaches are 
51 
52 24 being trialled reinforcing the need for ‘cross-pollination’ of ideas and research development 
53 
54 25 on pop-up agriculture that will see benefits across a range of environments. 
55 
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27 1. Introduction 

 
28 An expanding global population is the root cause of fundamental environmental 

 
29 challenges faced today. Global population estimates predict a 35% increase from 7.3 billion 

 
30 to 11.2 billion by 2100 (UNDESA, 2014). With increases in population come amplified 

 
31 anthropogenic pressures on the environment (Harte, 2007), increased pollution (Cole and 

 
32 Neumayer, 2004) and reduced per capita land and resource availability (Sheikh, 2006; 

 
33 Vörösmarty et al., 2000). The cumulative impact of these issues is likely to negatively affect 

 
34 the sustainability of global resources and in turn the longevity of the human population. 

 
35 By 2050 it is estimated that 66% of the global population will live in urban regions 

 
36 (UNDESA, 2014). In the UK, the Office for National Statistics documented an 8.1% increase 

 
37 in urban populations between 2001 and 2011 (Gower et al., 2013). Urbanisation in western 

 
38 societies further decreases available land as a result of developmental pressure from cities 

 
39 into surrounding agricultural areas (Despommier, 2010). 

 
40 Anthropogenic climate change compounds the above issues as many tropical and 

 
41 sub-tropical countries, more vulnerable to the impacts of global warming, may see reductions 

 
42 in viable arable land due to the consequences of desertification and sea level rise (Le 

 
43 Houérou, 1996; Rosenzweig et al., 1994; Zhang and Cai, 2011). It is therefore pertinent that 

 
44 innovative and efficient food production techniques are implemented at a significant scale in 

 
45 order to mitigate the disparity between population growth and food production. 

 
46 2. Closed Environment Agriculture 

 
47 Whilst efforts are being made globally to mitigate climate change, thus reducing the rate of 

 
48 arable land loss, additional research has been undertaken to actively increase the amount 

 
49 of available space for crop production. This novel thinking has led to the creation of Closed 

 
50 Environment Agriculture (CEA), a term which encompasses a broad range of methods for 

 
51 the production of food within an enclosed environment (Jensen, 2001). The use of closed 

 
52 environments allows for control of many factors in the aerial environment, the root zone, and 
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53 in irradiation (Rorabaugh et al., 2002). This can optimise plant growth and resource use 

 
54 efficiency whilst also enabling food production in previously unsuitable or unpredictable 

 
55 locations. Comprehensive control of the growing environment also allows for off-season 

 
56 production, eradicating seasonal time restrictions and generating multiple crops per year 

 
57 (Sabir and Singh, 2013). This technology may also provide an alternative agricultural output 

 
58 for areas affected by climate change, industrialisation and urbanisation, and may also reduce 

 
59 reliance on seasonal agricultural labour. 

 
60 Soil-less culture is enveloped within the umbrella term of CEA, and consists of 

 
61 aeroponic, aquaponic and hydroponic technologies. The latter pertains to a system of 

 
62 horticulture by which water is used as the primary growth medium, supplied with controlled 

 
63 concentrations of nutrient solution (Jensen and Collins, 1985). Hydroponics is not a novel 

 
64 technology, however, consistent and ongoing research is increasingly revealing the full 

 
65 potential  of  its  applications.  More  specifically,  hydroponics  has  been  identified  as  a 

 
66 technology for the future as a tool for long-duration space travel (MacElroy et al., 1987; Smith 

 
67 et  al.,  2005)  and  disaster  relief,  as  well  as  aiding  climate  change  mitigation  efforts 

 
68 (Despommier, 2013). 

 
69 Hydroponic techniques vary in design, though the general principles remain similar. 

 
70 As an alternative to soil, plants are cultivated in a water-based solution containing the 

 
71 nutrients essential for plant growth. Aggregate systems replace the traditional medium of 

 
72 soil, with an inert substrate used for structural support and its water retentive properties (e.g. 

 
73 coconut coir, Rockwool, vermiculite, sand, gravel) (Jensen, 1997). Alternatively, liquid (non- 

 
74 aggregate) systems have no supportive growing medium and roots are directly exposed to 

 
75 the nutrient solution (Marr, 1994). 

 
76 The most commonly employed hydroponic techniques include Deep Flow Techniques (DFT) 

 
77 and Nutrient Film Technique (NFT). Within DFT systems, crops are grown within raft-like 

 
78 structures on the surface of aerated nutrient solution, allowing for complete submersion of 
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79 the root zone (Rodríguez-Delfín, 2011). The benefit of this approach is the simplicity of the 

 
80 design  and  therefore  relative  ease  of  implementation.  DFT  is  an  ‘open  system’  of 

 
81 hydroponics where nutrient solutions are actively replaced at regular intervals. In contrast, 

 
82 NFT is referred to as a ‘closed system’ due to the automatic filtration and recirculation of 

 
83 nutrient solutions (Rodríguez-Delfín, 2011). Here we extend the concept of CEA and soil- 

 
84 less culture systems to develop the concept of pop-up agriculture. Such agriculture is flexible 

 
85 in  that  crops  can  be  grown  in  relatively  small  areas  as  determined  by  particular 

 
86 environmental limitations such as polar research stations, space capsules, remote offshore 

 
87 platforms or even school canteens, but the approach is not limited to small area agriculture. 

 
88 Pop-up agriculture embodies the aspiration to maximise the potential advantages of a more 

 
89 controlled environment to produce a more efficient circular system in which waste is limited 

 
90 and/or re-used where possible and crops are grown and utilised to achieve maximal nutrient 

 
91 output for minimal resource input. 

 
92 3. History of hydroponics 

 
93 Originally, hydroponic techniques were developed for use within botanical research, though 

 
94 not initially known by this name. William F. Gericke coined the term "hydroponics" in the 20th 

 
95 Century after successful cultivation of tomatoes within a simple system comprised of buckets 

 
96 filled with nutrient solution (Gericke, 1937). This innovation inspired the idea that food 

 
97 production via hydroponics was viable on a larger scale. The development of computerised 

 
98 systems during the 1980s allowed for the ultimate control of the enclosed environment, thus 

 
99 leading to the realisation of hydroponics as a commercially viable food production technique 

 
100 (Sardare and Admane, 2013; Sengupta and Banerjee, 2012). 

 
101 Today, the most common theme in hydroponic research is the development of the 

 
102 technology for efficient control of the microclimate in order to increase productivity and 

 
103 reduce costs (Jensen, 1997; Scoccianti et al., 2009). Nested within this general trend lies 

 
104 research regarding the specific elements of climatic control, including lighting systems 
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105 (Ebisawa et al., 2008; Genovese et al., 2008; Martineau et al., 2012; McAvoy and Janes, 

 
106 1983), nutrient solution composition and pH (Sardare and Admane, 2013; Tyson et al., 2008; 

 
107 Velázquez et al., 2013), aerial and root zone temperature (Bugbee and White, 1984; 

 
108 Papadopoulos and Tiessen, 1983; Sakamoto and Suzuki, 2015; Wu and Kubota, 2008) and 

 
109 electrical conductivity (Cornish, 1992; Velázquez et al., 2013; Wu and Kubota, 2008). This 

 
110 research couples technological advances with knowledge of plant physiology to produce the 

 
111 most efficient and productive systems. 

 
112 Use of an enclosed environment is both a strength and a weakness; the privilege of being 

 
113 able to control environmental variables exhaustively necessitates the use of advanced 

 
114 computer systems and sensory technology as well as provision of lighting, heating and/or 

 
115 cooling, potentially equating to high energy costs (Jensen, 1997). Careful and accurate 

 
116 regulation of environmental variables can produce yields of up to 20 times that of traditional 

 
117 Open Field Agriculture (OFA) (Jensen, 1997). However, in order to achieve the full benefits 

 
118 of ultimate environmental control, hydroponic systems require significant capital investment 

 
119 to deliver such high yields (Ferguson et al., 2014; Sengupta and Banerjee, 2012). There are, 

 
120 therefore, concerns that hydroponic systems may not currently be economically viable on a 

 
121 larger scale and cannot compete with OFA methods (Jensen, 1997; Martineau et al., 2012). 

 
122 However, OFA is not an option in certain areas of the world or in certain seasons. Hydroponic 

 
123 systems allow the growing of higher value horticultural produce in areas of otherwise poor 

 
124 quality land, or indoors. Also OFA and Hydroponics need to be compared in relation to their 

 
125 carbon footprint and environmental sustainability particularly as we try to wean away from 

 
126 our dependence on fossil fuels. 

 
127 4. Keeping Control of the Growing Environment 

 
128 Research  and  technological  advancements  ultimately  aim  to  offset  the  costs  of  such 

 
129 intensive systems via increases in efficiency, productivity and quality of produce (Jensen, 

 
130 1997; Scoccianti et al., 2009). Much research has been undertaken into how to control 
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131 individual variables most efficiently in order to generate the highest crop value (Buck et al., 

 
132 2004; Martineau et al., 2012; Park and Kurata, 2009). Artificial lighting systems are perhaps 

 
133 the most energy-demanding element of hydroponic cultivation (Martineau et al., 2012), and 

 
134 have generated a considerable body of research. In the past, High Pressure Sodium (HPS) 

 
135 light treatments were used to extend photoperiod and increase yields; however, a large 

 
136 amount of waste heat was generated (McAvoy and Janes, 1983). More recently, LED lighting 

 
137 systems have been highlighted as a means of reducing energy costs (Brown et al., 1995; 

 
138 Martineau et al., 2012) and may also benefit crop growth (Chin and Chong, 2012; Sabzalian 

 
139 et al., 2014). Martineau et al. (2012) reported energy savings of up to 33.8% being achieved 

 
140 through use  of LEDs.  The ability  to control light  intensity  and photoperiod  eliminates 

 
141 seasonality, allowing for year-round crop production (Rodríguez-Delfín, 2011). In addition, 

 
142 aerial  environmental  factors,  such  as  temperature  and  humidity,  must  be  regulated 

 
143 consistently to complement lighting regimes. The effective interaction of these elements can 

 
144 enhance crop quality, growth and yields (Buck et al., 2004). 

 
145 Containment has the additional benefit of considerably decreasing the chances of 

 
146 exposure to pests and diseases (Sardare and Admane, 2013). A lack of soil equates to a 

 
147 reduction in the risk of soil-borne plant pathogens (Biebel, 1960). In turn, pesticide and 

 
148 herbicide requirements are reduced, thus minimising environmental pollution and waste 

 
149 production (Sardare and Admane, 2013). However, counter to this, where containment and 

 
150 biosecurity procedures are breached, disease and pest outbreaks can spread rapidly within 

 
151 the facility, as well as leading in turn to risks of their release or escape into the neighbouring 

 
152 natural environment. In some parts of the world, such as in Antarctica, such introductions of 

 
153 alien species and pathogens into ecosystems that currently host no, or few, alien species, 

 
154 are recognised as one of the greatest threats to native biodiversity and ecosystem function, 

 
155 as  well  as  to  the  regulatory  framework  governing  the  continent  (Frenot  et  al.,  2005; 

 
156 Greenslade et al., 2006; Hughes and Convey, 2012). 
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157 The consistency and efficiency of regulation of the microclimate will be subject to the 

 
158 robustness of containment of the system. Such systems also often require ventilation and 

 
159 gas  exchange  to  the  outside  and  this  must  be  considered  when  implementing  such 

 
160 technologies in areas where the climate is considered to be unsuitable for food production. 

 
161 The design of the system will vary dependant on location as no one system is cost effective 

 
162 for  every  climate  (Jensen,  2001).  Its  structural  integrity  must  be  sufficient  to  provide 

 
163 protection from the elements, factors that are specific to each location. If inadequate 

 
164 consideration  is  given  to  maintaining  structural  integrity  and  optimum  environmental 

 
165 conditions, then the system will not be economically viable (Jensen, 2001). 

 

166 5. The Future of Hydroponics 
 
167 Maximising  efficiency  and  productivity  is  key  for  the  successful  future  of  hydroponic 

 
168 technology. Although primarily a technique for high value food production, applications are 

 
169 still expanding, providing solutions to issues far removed from the general principles of the 

 
170 technique. For instance, it has been suggested that hydroponic cultivation could be the key 

 
171 to large-scale implementation of urban vertical farms (Despommier, 2013; Martellozzo et al., 

 
172 2014). Vertical farming in itself is a novel concept whereby crops are grown within stacked 

 
173 hydroponic units, hence utilising the large amounts of vertical space within urban areas 

 
174 where ground space is limited (Martellozzo et al., 2014). This concept aims to provide an 

 
175 alternative source of food into the future and reduce, possibly drastically, the need for 

 
176 reliance on traditional agriculture (Despommier, 2013). Despommier (2010) also suggested 

 
177 that this approach may clear surplus agricultural land leading to increased biodiversity levels 

 
178 and attenuating global warming through higher carbon sequestration. 

 
179 A number of studies have also suggested that governmental inputs would benefit 

 
180 the advancement of hydroponic technology (Jensen, 1997; Sardare and Admane, 2013; 

 
181 Sengupta and Banerjee, 2012). Jensen (1997) explains the role of the US government in 

 
182 assisting co-generation projects where excess heat from power generation plants was 
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183 used to heat greenhouses. A number of facilities were considered but development was 

 
184 constrained by the complexity of such integration. 

 
185 6. Growing food in remote communities 

 
186 Each  natural  environment  presents  its  own  specific  challenges.  Therefore,  it  is  the 

 
187 overarching aim of CEA technology to be a sufficient and consistent method of food 

 
188 production within a range of environments. Current research ultimately aims to reduce 

 
189 resource  requirements  by  means  of  educated  system  design  and  integration  of  the 

 
190 technology with the surrounding environmental conditions. Capitalising on the beneficial 

 
191 aspects of a given climate (e.g. greater light intensity) and using these gains to offset and 

 
192 minimise  antagonistic  aspects  (e.g.  low  water  availability)  will  allow  development  of 

 
193 economically viable systems which may minimise resource use and, in turn, the associated 

 
194 environmental impacts. 

 
195 6.1 Pop-up food production in polar regions 

 
196 Conventional agriculture is not possible within the polar regions due to unfavourable soil 

 
197 conditions, temperature limitations and highly variable seasonal light conditions. Indigenous 

 
198 populations have survived within the Arctic on a hunter-gatherer diet since soon after the 

 
199 retreat of the northern ice sheets after the last ice age, living a more nomadic lifestyle to 

 
200 ensure the sustainability of food sources (Kuhnlein and Receveur, 1996). Nowadays, a shift 

 
201 in food availability and supply logistics has led to a divergence from a traditional diet to one 

 
202 which is mostly imported from lower latitudes, and traditional food sources now account for 

 
203 only 10-36% of the average adult diet (Kuhnlein et al., 2004). In the Canadian Arctic, this 

 
204 has been accredited to colonialism and the introduction of Hudson’s Bay stores in the late 

 
205 19th Century (Kuhnlein et al., 2004). In turn, there has been a lifestyle shift to a more 

 
206 sedentary way of living, also generating diet-related health concerns (Young, 1996). 

 
207 Unlike the Arctic, the Antarctic has no history of indigenous human population. Human 

 
208 exploration of the continent and surrounding isolated islands commenced in the last 1-3 
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209 centuries, with human occupation associated with research stations starting after the Second 

 
210 World War. Contemporary human presence on the continent relies entirely on imported food, 

 
211 including fresh fruit and vegetables. Due to extreme environmental conditions during the 

 
212 austral winter, resupply ships are only able to bring food and other resources to the continent 

 
213 within a maximum 5 month window during the summer (Bamsey et al., 2015). After the final 

 
214 resupply of the summer season, overwintering staff must survive on mostly frozen, canned 

 
215 and dried foods once fresh food stores have been depleted (Potter, 2010). In some stations, 

 
216 this diet is supplemented by greenhouse or hydroponically grown produce (Potter, 2010). 

 
217 Hydroponics systems in these stations not only provide benefits to physical health via the 

 
218 availability of fresh food, but also aid mental wellbeing during the dark isolated winter months 

 
219 (Bates et al., 2009). 

 
220 Hydroponics has been in use within Antarctica since the 1960s (Scoccianti et al., 

 
221 2009). Hill (1967) provides a description of an attempt to grow salad crops on the Brunt Ice 

 
222 shelf using hydroponics and motivated by what was possible. From the 1960s onwards more 

 
223 than 46 different crop growth facilities have been or are currently in operation in the Antarctic, 

 
224 with a total of nine research stations still operating hydroponics systems (Bamsey et al., 

 
225 2015). In the past, crops were also grown within traditional greenhouses and wooden 

 
226 structures, often affixed to the outside of existing buildings (Bamsey et al., 2015), although 

 
227 both these and more formal hydroponics systems have proved repeatedly to be a source of 

 
228 biosecurity concerns, both in terms of alien species being introduced to and existing 

 
229 synanthropically within the facilities, and instances of their escape into the surrounding 

 
230 environment, in some cases further becoming established (Frenot et al., 2005). A good 

 
231 example of a non-native micro-arthropod species being introduced via a hydroponic system 

 
232 and subsequently contained is that of Xenylla sp., a collembolan discovered in 2014 at Davis 

 
233 Station,  East  Antarctica  (Bergstrom  et  al.,  2017).  The  incursion  was  identified  and 

 
234 eradicated, but the event also highlighted the need for several levels of control. The Antarctic 
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235 Treaty System is the agreed legislative framework for the region. Alongside the Treaty itself, 

 
236 which says little about Antarctic conservation, the Protocol on Environmental Protection to 

 
237 the Antarctic Treaty (entered into force 1998) is the instrument concerned with general 

 
238 Antarctic protection and conservation (Blay, 1992). Mindful of the region’s pristine nature, 

 
239 the low level of species introductions at present, and its importance for scientific research, 

 
240 those negotiating the Protocol set some of the highest legislative standards found globally 

 
241 concerning non-native species (Hughes and Pertierra, 2016). Annex II ‘Conservation of 

 
242 Antarctic Fauna and Flora’ states that non-native plants and animals shall not be introduced 

 
243 to Antarctica without a permit (with the exception of imported foods) and that any species 

 
244 found shall be removed or disposed of unless it is shown that they pose no risk to native 

 
245 biota (ATS, 2009). However, it is not clear whether or how the Protocol applies to species 

 
246 introduced accidentally rather than deliberately, or where liability for consequential costs 

 
247 might lie (see Hughes and Convey, 2014, for discussion of these issues). To help with 

 
248 implementation of Annex II, the Treaty Parties developed the ‘Non-native Species Manual’ 

 
249 in 2011, which was substantially revised in 2017 (ATS, 2017). The manual provided Parties 

 
250 with advice on biosecurity issues generally, and included specific but basic guidelines on 

 
251 how to minimise and contain any biosecurity risks associated with hydroponic systems in 

 
252 Antarctica (Australia and France, 2012; Grewal et al., 2011). 

 
253 6.2. Food in Space 

 
254 During the 20th Century, it was suggested that hydroponics may be used within space travel 

 
255 and habitation (MacElroy et al., 1987). Food for crew members aboard the International 

 
256 Space Station (ISS) is pre-prepared, packaged and then sent in unmanned resupply vessels 

 
257 along with scientific equipment and other necessary supplies. It is vitally important that the 

 
258 nutritional requirements of crew members are met via a varied diet, especially for future long- 

 
259 duration space missions (Smith et al., 2005). Long-duration space missions will not have the 

 
260 luxury of regular resupply, and systems such as hydroponics will necessarily form part of 
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261 life-support systems, providing dietary support as well as water recycling, atmospheric 

 
262 regeneration and waste processing (Mitchell, 1994). Biosecurity, health and food standards 

 
263 are clearly implicit in the design and development of such systems to mitigating any possible 

 
264 risks. For plant production, hydroponic crop generation is integrated with supplementary life 

 
265 support systems, improving system sustainability and reliability (Wheeler et al., 1996). Such 

 
266 systems are known as Bioregenerative Life Support Systems (BLSS) and were initially 

 
267 studied by the U.S. Air Force during the 1950s and 1960s (Wheeler and Sager, 2006). The 

 
268 National Aeronautics and Space Administration (NASA) began conducting research within 

 
269 this  field  independently  during  the  1960s  and  by  1985  had  initiated  their  Controlled 

 
270 Ecological Life Support System (CELSS) project (Wheeler and Sager, 2006). The CELSS 

 
271 project involved the use of atmospherically sealed containers, formerly hypobaric test 

 
272 chambers, for simulated bio-regenerative crop production (Prince and Knott III, 1989) known 

 
273 as Biomass Production Chambers (BPCs). 

 
274 During the 1990s, NASA, in collaboration with the National Science Foundation Office 

 
275 of Polar Programmes, developed a testbed for the CELSS programme. The CELSS Antarctic 

 
276 Analog Project (CAAP) was undertaken at the Amundsen-Scott South Pole Station and was 

 
277 designed to determine feasibility and further develop the technologies for life support 

 
278 systems  (Straight  et  al.,  1994).  This  analogue  was  chosen  due  to  similarities  in 

 
279 developmental and design limitations between polar stations and spacecraft, including 

 
280 energy and resource constraints, biosecurity concerns, and isolation and space limitations 

 
281 (Bubenheim et al., 2003). BPCs contained 20 m2 of growing area and 113 m3 of atmospheric 

 
282 volume, which was designed to support only one individual (Wheeler and Sager, 2006). 

 
283 Though innovative at the time, this research highlighted issues surrounding space availability 

 
284 and area-use efficiency. The CAAP was primarily developed to investigate methods by which 

 
285 energy efficiency, productivity and area utilisation could be maximised (Bubenheim et al., 

 
286 2003). During the 2000s International Space Station crew members have grown edible 
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287 plants such as peas in a space garden, including in the Lada space greenhouse system in 

 
288 the Russian segment (Sychev et al., 2007). A range of crops for cultivation in space have 

 
289 been suggested including lettuce, tomato, cabbage, radish, carrot, chard, green onion, 

 
290 pepper, strawberry, mizuna and several herbs (Wheeler, 2009). Recently, NASA crew have 

 
291 used a plant growth system called Veggie (Massa et al., 2016) developed by Orbital 

 
292 Technologies Corporation (ORBITEC) to grow such edible plants. The Veggie system is 

 
293 designed  to  have  low  power  consumption,  low  launch  mass  and  minimal  operator 

 
294 intervention. In addition, therapeutic plant care is likely to be a benefit for crew member 

 
295 health and wellbeing through the restorative effect of contact with nature, as has been 

 
296 reported in studies on Earth (Schebella et al., 2017). 

 
297 7. What to Grow in Antarctica, and in Space? 

 
298 Few stations currently operate hydroponics units within Antarctica; however, between them 

 
299 a wide range of crops are cultivated. The Australian Antarctic Division (AAD) currently 

 
300 operate three of the nine existing hydroponics systems at their Casey, Mawson and Davis 

 
301 research stations. These facilities grow a range of crops including lettuce, celery, cucumbers, 

 
302 tomatoes, chilies, onions, silver beet and a variety of herbs (Bamsey et al., 2015). During 

 
303 the austral summer of 2012–2013, the Davis facility produced a total edible yield of 237 kg. 

 
304 However, 420 kg of green waste was also incinerated (Sheehy, 2013; as cited in Bamsey et 

 
305 al., 2015). 

 
306 At an Italian Station at Terra Nova Bay in Victoria Land, lettuce, zucchini and 

 
307 cucumber were grown during the original experiments and were cultivated only during the 

 
308 austral summer, as the station is not a wintering station (Bamsey et al., 2015). Lettuce plants 

 
309 performed well and, during the second trial season, approximately 2.5 kg/m2 was harvested 

 
310 (Campiotti et al., 2000). Zucchini and cucumber plants grew well but, due to the short period 

 
311 of cultivation (40 days), were unable to fruit (Campiotti et al., 2000). During the 2001–2002 
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312 summer  season,  fruit  crops,  such  as  tomatoes  and  strawberries,  were  successfully 

 
313 introduced to the system (Scoccianti et al., 2009). 

 
314 The vast majority of crops cultivated within Antarctica are tall fruiting crops, lettuce 

 
315 varieties, leafy greens and herbs, due to their ease of cultivation. Although these provide 

 
316 vital minerals and vitamins to staff, a lack of crops high in carbohydrates and fat means that 

 
317 current produce serves primarily as a supplement to a mostly canned and dry food diet. 

 
318 Though this does not pose much of an issue for staff on Antarctic research stations, in order 

 
319 for these systems be viable for space missions, further advances must be made in order to 

 
320 reduce the high inputs required for more nutritionally valuable crops. 

 
321 It is pertinent to cultivate 'staple' crops which are considered more nutritious and will 

 
322 contribute to a higher proportion of overall dietary requirements (Wheeler et al., 1996). 

 
323 However, higher output requires greater input and so a balance must be achieved between 

 
324 harvest index, nutritional requirements, processing and horticultural needs (Wheeler, 2017). 

 
325 During the course of the CELSS programme, researchers at the Kennedy Space Centre 

 
326 cultivated a mixture of leafy greens, starchy vegetables, grains and fruits. Most commonly 

 
327 used were wheat, rice, potato, sweet potato, soybean, peanut and lettuce (Hoff et al., 1982). 

 
328 Additional benefits of growing crop plants within the Biomass Production Chambers included 

 
329 removal of CO2, generation of O2 and waste water purification (Stutte, 2006). 

 
330 During the CAAP program, crops were chosen based on nutritional content, versatility 

 
331 and processing requirements (Bubenheim et al., 2003). Crop lists for these experiments 

 
332 varied slightly from previous BLS experiments, consisting primarily of leafy vegetables, herbs 

 
333 and salad vegetables with minimal carbohydrate contribution. Two hydroponic studies were 

 
334 undertaken  within  the  CAAP  testbed  crop  production  chamber  which  both  aimed  to 

 
335 demonstrate production capacity of the system; the first was a batched lettuce crop trial and 

 
336 the second a continuous mixed crop trial (Bubenheim et al., 2003). Results of these two 

 
337 studies suggested that although the lettuce crop had a greater production efficiency, the high 
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338 diversity of the mixed crop trial offered an increased calorific contribution, offsetting the lower 

 
339 yields (Bubenheim et al., 2003). This suggests that the nutritional benefits offered by a higher 

 
340 variety crop list would offset the reduced yields. 

 
341 8. Learning to produce more with less: a blueprint for the future 

 
 
342 8.1 Space availability 

 
343 Space is a major limitation for hydroponic systems in urban areas, and even more so in 

 
344 polar stations and spacecraft. In Antarctica, hydroponics units have ranged from a 0.8 m2 

 
345 benchtop system at Scott Base to the 50 m2 South Pole Food Growth Chamber (SPFGC) 

 
346 at Amundsen-Scott South Pole Station (Bamsey et al., 2015). Space available within the 

 
347 SPFGC was deemed sufficient to provide 100% of the vegetable requirements for 35 over- 

 
348 wintering station staff (Straight et al., 1994). The average size of current systems is 

 
349 approximately 24 m2 and, although this is not of sufficient size or efficiency to substantially 

 
350 influence a station's logistics, these systems are still considered beneficial (Bamsey et al., 

 
351 2015). 

 
352 In addition to the CAAP in Antarctica, research for agriculture in space has been 

 
353 undertaken by numerous countries, all aiming to provide sufficient life support systems within 

 
354 limited  space  (Wheeler,  2017).  During  the  1990s,  Japanese  scientists  developed  the 

 
355 Controlled Environment Experiment Facility which contained 150 m2  of growing space, 

 
356 providing sufficient food, air and water supplies for two people and two goats (Tako et al., 

 
357 2010). Most recently, Chinese researchers at Beihang University were able to provide 100% 

 
358 of oxygen needs and 55% of food requirements for three people using only 69 m2 of growing 

 
359 space (Fu et al., 2016). These advances in space utilisation were achieved via research into 

 
360 novel technologies such as LEDs, vertical farming, innovative water delivery systems and 

 
361 novel waste recycling processes (Wheeler, 2017). Research into hydroponics in space as 

 
362 well as in terrestrial systems is mutually beneficial for progress with regards to space 

 
363 utilisation practices for both applications (Wheeler, 2017). 
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364 8.2 Aeroponics 

 
365 A variation of hydroponics called aeroponics, in which the water and nutrient solution is 

 
366 delivered to the plant root system as an aerosol, was reviewed for crop growth by Gopinath 

 
367 et al. (2017). The advantage of such a system being that the root zone remains highly 

 
368 aerated and no separate aeration system is required. Aeroponics has received attention in 

 
369 areas such as the development of seed potatoes where aeroponics allows the advantages 

 
370 of hydroponics in developing tubers in a clean nutritious environment with fewer potential 

 
371 soil borne contaminants while not requiring tubers to be immersed in water (Buckseth et 

 
372 al., 2016; Margaret Chiipanthenga, 2012). Aeroponics shares the improvement in water 

 
373 use efficiency attributed to hydroponic systems (Barbosa et al., 2015), and of particular 

 
374 note for efficient production of crops in pop-up systems, aeroponics allows spatial flexibility 

 
375 in the design of growth areas with the possibility to improve crop density. In particular in 

 
376 combination with flexible point sources of illumination, such as that possible using LEDs, 

 
377 the delivery of water by aerosol allows plants to be grown across different shaped 

 
378 surfaces, for instance an early example of aeroponics illustrated growing plants on two 

 
379 sides of a triangle (Abou-Hadid et al., 1994). Such flexibility will allow different spatial 

 
380 orientations of plants and lights to be optimised, in particular such designs have the 

 
381 potential to provide highly novel solutions for crops grown under microgravity in space 

 
382 capsules. 

 

383 8.3 Bio-intensive Agriculture (BIA) 
 
384 BIA is one method which uses space-saving agricultural techniques and mixed planting to 

 
385 maximise space use efficiency (Jeavons, 2001). A similar approach is taken in SPIN (small 

 
386 plot intensive) farming for use in backyards and small (less than one acre) urban spaces 

 
387 (Christensen, 2007), and may be traced back to prehistoric intensive midden cultivation 

 
388 (Guttmann, 2005). Although BIA is a soil-based technique, several of the broader principles 

 
389 are transferable to hydroponics, including companion planting, intensive planting 
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390 arrangements and 3D structuring (Jeavons, 2001). This design has shown great potential, 

 
391 and was described by Glenn et al., (1990) during the Biosphere II trials. These principles are 

 
392 not novel and originated from Alan Chadwick's 'Biodynamic French Intensive Method' during 

 
393 the 1960's (Chadwick, 2008). 

 
394 8.4 Intercropping Systems 

 
395 An  additional  method  for  maximising  productivity  is  the  space  utilisation  method  of 

 
396 intercropping. This technique describes the cultivation of two or more crop species together 

 
397 in the same space (Li et al., 2014). Shorter crops, such as lettuce varieties, can be planted 

 
398 interspersed between taller crops, such as tomatoes, utilising the space between larger 

 
399 plants which  would  usually remain  unoccupied.  The interspecific interactions  between 

 
400 intercropped plants have been suggested to positively influence below-ground resource use 

 
401 efficiency (Hauggaard-Nielsen and Jensen, 2005) and pest management (Fagan et al., 

 
402 2014; Parker et al., 2013) in addition to space utilisation. However, the vast majority of 

 
403 investigations in this area has involved traditional soil-based systems, with little reference to 

 
404 hydroponics. 

 
405 Certain crops have been shown to either positively or negatively affect the growth and 

 
406 survival of neighbouring plants. Commercial horticultural texts provide basic information on 

 
407 which combinations of crops work best when planted together but do not provide the 

 
408 underlying scientific principles behind such companionships. Information is largely based on 

 
409 circumstantial evidence with little academic evidence. However, there has been an increase 

 
410 in research since the turn of the century to more comprehensively determine the credibility 

 
411 of these suggestions (Bomford, 2009; Li et al., 2014; Parolin et al., 2015). With regards to 

 
412 hydroponics, these effects may be encountered when utilising recirculating or dual-culture 

 
413 hydroponic systems. These systems reduce environmental and economic costs via recycling 

 
414 and recirculation of the nutrient solution (Bugbee, 2004). In some cases, the production of 

 
415 bioactive root exudates may offer the benefit of increased growth (Stutte, 2006). 
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416 Organic compounds exuded by plant roots may increase the uptake of micronutrients 
 
417 by other plants (Mackowiak et al., 2001); however, the mode of action of this process 
 
418 remains little understood (Stutte, 2006). For example, a bioactive compound produced in 
 
419 hydroponically  grown  potatoes,  known  as  TIF  (Tuber  Inducing  Factor),  was  found  to 
 
420 enhance the harvest index of several crop species, showing potential within dual culture 
 
421 systems (Edney et al., 2001). Similarly, research conducted by Schuerger and Laible (1994) 
 
422 on the biocompatibility of wheat and tomatoes within a dual-culture system showed that there 
 
423 were  no  significantly  adverse  effects  on  either  species.  Their  results  indicated  that 
 
424 intercropping of multiple species is a viable space utilisation method. It was also suggested 
 
425 that root zone competition may have led to a slight increase in wheat yield. Mixed cropping 
 
426 has also been assessed for space exploration and no negative effects detected when 
 
427 growing radish, lettuce and bunching onion together hydroponically (Edney et al., 2006). 
 
428 Alternatively,  bioactive  root  exudates  may  have  allelopathic  effects,  negatively 
 
429 affecting growth and productivity (Lee et al., 2006; Li et al., 2010; Mortley et al., 1998). 
 
430 Mortley et al. (1998) showed that allelopathic compounds released into the nutrient solution 
 
431 by sweet potato inhibited the growth and yield of peanut plants. Therefore, it is necessary to 
 
432 understand which species are viable companion species when considering multi-culture 
 
433 systems. This information is widely available for traditional agriculture (Cunningham, 2000), 
 
434 but it is yet to be determined whether it is transferrable to hydroponic systems, and so as 
 
435 multispecies  plant  systems  increase  in  popularity,  biocompatibility  must  be  carefully 
 
436 considered (Schuerger and Laible, 1994). 
 
437 8.5 Root-to-Shoot Diets 
 
438 In Antarctic hydroponic units a large proportion of green waste is produced, generating 
 
439 losses in productivity and additional practical challenges and costs in disposal (Bamsey et 
 
440 al., 2015). All waste (with the exception of sewage and grey water) must be either incinerated 
 
441 (which uses fuel) or stored and then removed from the Antarctic Treaty area. In order to 
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1004 
1005442 maximise the output it is beneficial to minimise biological waste via the cultivation of crops 
1006 
1007443 which are high in edible biomass. Cultivation of high edible value crops such as lettuce 
1008 
1009 

1010444 varieties, cabbages, leafy greens and herbs would maximise the productivity of hydroponic 
1011 
1012445 systems. However, as mentioned previously, these crops have a lower overall nutritional 
1013 
1014446 contribution to diets than fruiting crops and root vegetables (Bubenheim et al., 2003). 
1015 
1016447 Alternatively, green waste could be reduced via consumption of edible by-products which 
1017 
1018448 would traditionally be disposed of. This "Root to Shoot" ideology addresses the need to 
1019 
1020449 reduce commercial and domestic food waste, and aims to find novel uses for what are 
1021 
1022450 typically regarded as 'waste products' (Youngman, 2016). 
1023 
1024451 Many food crops have secondary edible parts in addition to the commonly edible 
1025 
1026 

1027452 portion, which are not generally consumed due to comparatively unfavourable flavour or 
1028 
1029453 texture  (Stephens,  2005).  This  includes  stems,  leaves,  flowers  and  roots.  Culinary 
1030 
1031454 professionals invent novel ways in which to incorporate these by-products into the common 
1032 
1033455 diet to increase their palatability (Youngman, 2016). However, some plant parts may be 
1034 
1035456 inedible  and  possibly  even  poisonous.  For  example,  vegetables  of  the  'Nightshade' 
1036 
1037457 (Solanaceae)  family,  including  tomato,  potato,  eggplants  and  peppers,  contain  toxic 
1038 
1039458 glycoalkaloids (Carman Jr et al., 1986). Also referred to as solanine, concentrations of this 
1040 
1041459 chemical are lowest in the fruits/tubers and so are non-toxic; however, high concentrations 
1042 
1043 

1044460 are present in the foliage which should therefore not be consumed (Slanina, 1990). In 
1045 
1046461 contrast, the phenolic compounds found in the roots, stalks and leaves of some plants are 
1047 
1048462 high in antioxidants (Otles and Yalcin, 2012). For example, nettle roots (Urtica dioica) have 
1049 
1050463 high phenolic and antioxidant activity (Otles and Yalcin, 2012). The same is true for the 
1051 
1052464 Indian pennywort (Centella asciatica), native to Asian wetlands and used to treat a range of 
1053 
1054465 ailments including kidney problems, cancer and bronchitis (Jaganath and Ng, 2000; Kan, 
1055 
1056466 1986; Zainol et al., 2003). 
1057 
1058 
1059 
1060 
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1063 
1064467 The "Root to Shoot" principle needs further investigation and is particularly attractive 
1065 
1066468 in hydroponics as all plant components are clean and accessible. During space exploration, 
1067 
1068 

1069469 uneaten plant parts could have considerable potential for conversion to bio-based materials 
1070 
1071470 or use as a feedstock for bioreactors. There is significant scope to harvest and utilise 
1072 
1073471 biomass and plant components that would otherwise be discarded, and even scope for 
1074 
1075472 bioprospecting novel compounds. However, detailed analyses of nutrition, potential toxicity 
1076 
1077473 and contamination are required in order to minimise any potential risks to human health. 
1078 
1079474 8.6 Circular economics 
1080 
1081475 Recent innovations in energy, nutrient solutions and lighting sensors can now be exploited 
1082 
1083476 to assemble automated crop growing systems based on the principles of the circular 
1084 
1085 

1086477 economy. Circular economics was first introduced by David Pearce and R. Kerry Turner in 
1087 
1088478 1990 (Pearce and Turner, 1990) and attempts to integrate the energy and resource cycling 
1089 
1090479 principles of natural systems into industrial and economic systems (Geng and Doberstein, 
1091 
1092480 2008) . A link is created between waste and primary resources in a similar way to that of 
1093 
1094481 natural systems; for example, nutrient recycling of waste plant biomass back into the soil. 
1095 
1096482 These techniques have been developed in an effort to promote resource minimisation and 
1097 
1098483 generate more environmentally sustainable development (Andersen, 2007). This principle 
1099 
1100484 revolves around the notion that a closed system is one in which resources can be more 
1101 
1102 

1103485 sustainably maintained than that of traditional linear industrial systems. 
1104 
1105486 Antarctic research stations operating during the austral winter represent the ideal 
1106 
1107487 model for closed systems. They have limited access to the outside world and the importing 
1108 
1109488 of goods and exporting of waste are both largely impossible. Circular economic principles 
1110 
1111489 implemented at the stations can optimise resource use during the winter, and this also 
1112 
1113490 applies within hydroponic facilities. For temperature control, intelligent building design 
1114 
1115491 could be used to exploit heat sources and sinks (Agoudjil et al., 2011). Waste water could 
1116 
1117492 be filtered recirculated using the Nutrient Film Technique (NFT) which is a closed system 
1118 
1119 
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1122 
1123493 of hydroponics (Rodríguez-Delfín, 2011). In addition, local precipitation could be harvested 
1124 
1125494 and recycled (Helmreich and Horn, 2009; Kurunthachalam, 2014) and even integrated 
1126 
1127 

1128495 energy could be captured locally (e.g. solar, wind). This can be combined with efficient 
1129 
1130496 LED technology which has high energy efficiency a long life-cycle and low maintenance 
1131 
1132497 costs (Singh et al., 2015) and provides a safe working environment with no glass 
1133 
1134498 coverings, low touch temperatures and no mercury to dispose (Massa et al., 2016). 
1135 
1136499 9.  How we share and exploit this knowledge to design crop production systems 
1137 
1138500 that respond to food security threats in economically developing countries? 
1139 
1140501 Growing crops using the minimum of resources to sustain human life clearly has the greatest 
1141 
1142502 value and potential impact in economically developing countries. Research is already 
1143 
1144 

1145503 emerging  within  such  countries  using  what  Orsini  et  al.  (2013)  describe  as  ‘simple 
1146 
1147504 hydroponics’. In stark contrast to polar and space research, access to advanced growing 
1148 
1149505 resources and strategies represents the most significant challenge here (McCartney and 
1150 
1151506 Lefsrud, 2018). However, charitable aid could and should be directed specifically towards 
1152 
1153507 plant growing facilities (e.g. seeds, containers, LEDs, solar power, indoor systems etc.) or 
1154 
1155508 even outdoor systems that use solar radiation. 
1156 
1157509 Hydroponics is space and water efficient but energy inefficient compared to soil- 
1158 
1159510 based horticulture (Barbosa et al., 2015). The balance of cost benefit in adopting popup 
1160 
1161 

1162511 systems  will  likely  depend  on  which  resources  are  limiting  and/or  costly  in  the  local 
1163 
1164512 environment and which can be provided, perhaps by sustainable technologies. Therefore 
1165 
1166513 equatorial regions with low water availability, degraded soils and high sunlight may favour a 
1167 
1168514 form of hydroponics/aeroponics if solar panels can be used for energy. McCartney and 
1169 
1170515 Lefsrud (2018) also recently reviewed protected agriculture systems in extreme 
1171 
1172516 environments and highlight the need for cooling and ventilation systems in tropical regions 
1173 
1174517 but heating in polar regions (McCartney and Lefsrud, 2018). 
1175 
1176 
1177 
1178 
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1181 
1182518 Social capital is high in economically developing countries so some technological 
1183 
1184519 aspects of plant husbandry might be by-passed via human collaboration. However, there is 
1185 
1186 

1187520 a need for knowledge to be communicated about the value of hydroponic systems. Also the 
1188 
1189521 control of such systems often relies on information and communications technology (ICT). 
1190 
1191522 There is evidence that mobile phones are being used widely as the core ICT in economically 
1192 
1193523 developing countries. For example, in a study of 202 South African universities, 36% of 
1194 
1195524 students tested used a mobile phone for health information (Cilliers et al., 2017). Also a study 
1196 
1197525 in Uganda showed that in women there was a link between mobile phone ownership and 
1198 
1199526 dietary diversity and empowerment (Sekabira and Qaim, 2017). Research is also emerging 
1200 
1201527 from developing countries on the use of mobile phones to operate sensors for hydroponics 
1202 
1203 

1204528 (Ibayashi et al., 2016; Peuchpanngarm et al., 2016; Ruengittinun et al., 2017; Sihombing et 
1205 
1206529 al.,  2018).  Hence,  mobile  phone  technology  may  be  a  central  vehicle  that  facilitates 
1207 
1208530 information about new crop production systems also useful for sensor and system control in 
1209 
1210531 economically developing countries. 
1211 
1212532 A further challenge to growing crops in economically developing countries is access 
1213 
1214533 to inorganic sources of fertilizer. This is not an issue for polar and space crop production but 
1215 
1216534 finding alternative sources of nutrients is a necessity if crop production systems are ever to 
1217 
1218535 become sustainable. Fertilizers from organic origin (animal and even human sources) 
1219 
1220 

1221536 represent a resource to grow plants and aligns well with the principle of circular economics 
1222 
1223537 promoted in this review. Research in economically developing countries already highlights 
1224 
1225538 the potential of exploiting animal manures in hydroponics for plant growth (Abd-Elmoniem et 
1226 
1227539 al., 2001; Capulín-Grande et al., 2000). Further, human urine may be exploitable as a plant 
1228 
1229540 fertilizer (Andersen, 2007; Andersson, 2015; Chrispim et al., 2017; Mnkeni et al., 2008). 
1230 
1231541 For both polar/space and economically developing countries there is a need to focus 
1232 
1233542 more  on  staple  crops.  Previously  the  CELLS  space  programme  tested  some  starchy 
1234 
1235543 vegetables including potato. Crops high in carbohydrate would also be particularly valuable 
1236 
1237 
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1240 
1241544 in economically developing countries and some research has already developed looking at 
1242 
1243545 potato and yam propagation in aeroponic systems (Margaret Chiipanthenga, 2012; Maroya 
1244 
1245 

1246546 et al., 2014). Further, research is also needed on the use of hydroponics to deliver high 
1247 
1248547 protein crops (e.g. pulses and legumes) and there may even be benefits if plants can fix their 
1249 
1250548 own nitrogen. For economically developing countries, crops high in proteins could potentially 
1251 
1252549 supplement the use of livestock maybe using manure as a plant resource. 
1253 
1254 
1255550 Conclusions 
1256 
1257 
1258551 Polar/space research on crop science versus ‘simple hydroponics’ in economically 
1259 
1260552 developing countries may be complete opposites in terms of access to resources and 
1261 
1262553 research investment. Clearly space and polar research activities have been historically well 
1263 
1264554 resourced but highlight the potential to grow crops in environments limited in resources. The 
1265 
1266 

1267555 challenge now is to build on this research, to develop technologies, systems and methods 
1268 
1269556 that are sustainable, inexpensive and more widely applicable. Hydroponic and LED efficacy 
1270 
1271557 and the application of circular economic principles, exploiting local renewable resources and 
1272 
1273558 valuing waste can bring new efficiency and opportunity into crop production. BIA principles 
1274 
1275559 and intensive planting of 3D arrangements combined with intercropping in hydroponics 
1276 
1277560 provides diversity of food and may increase community efficiency in terms of light, water and 
1278 
1279561 nutrient utilisation. Plant assemblages of course enhance the possibility of risks from pests 
1280 
1281562 and pathogens so this need to considered in relation to system design and operation. 
1282 
1283 

1284563 Tandem research emerging from economically developing countries highlights how 
1285 
1286564 some elements of technology could be by-passed or even replaced to grow soil-less crops 
1287 
1288565 in such regions. These including using human effort in place of automation, mobile phones 
1289 
1290566 for ICT and organic sources of nutrients. The time is now ripe to look for ‘cross-pollination’ 
1291 
1292567 of ideas on soilless crops, novel ‘pop up’ growing systems, finding value in all edible crop 
1293 
1294568 components, using simple and accessible technologies and turning our waste into resource. 
1295 
1296 
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1299 
1300569 Our future depends on our capacity to innovate, to challenge what we see as agriculture, 
1301 
1302570 and learn to get more from less by living and what we have. 
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