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Abstract The Southern Ocean has complex spatial variability, characterized by sharp fronts, steeply
tilted isopycnals, and deep seasonal mixed layers. Methods of defining Southern Ocean spatial structures
traditionally rely on somewhat ad hoc combinations of physical, chemical, and dynamic properties. As
a step toward an alternative approach for describing spatial variability in temperature, here we apply
an unsupervised classification technique (i.e., Gaussian mixture modeling or GMM) to Southern Ocean
Argo float temperature profiles. GMM, without using any latitude or longitude information, automatically
identifies several spatially coherent circumpolar classes influenced by the Antarctic Circumpolar
Current. In addition, GMM identifies classes that bear the imprint of mode/intermediate water formation
and export, large-scale gyre circulation, and the Agulhas Current, among others. Because GMM is robust,
standardized, and automated, it can potentially be used to identify structures (such as fronts) in both
observational and model data sets, possibly making it a useful complement to existing classification
techniques.

Plain Language Summary The Southern Ocean is an important part of the climate system,
in part because it absorbs a large fraction of the heat and carbon that is added to the atmosphere/ocean
system by human-driven fossil fuel burning. In this work, we use a machine learning technique to
automatically sort Southern Ocean temperature measurements into groups based on how those
temperature measurements change with depth. Different groups have the fingerprints of different
large-scale circulation patterns, such as the powerful Antarctic Circumpolar Current that flows around
Antarctica. The groups that we identify are consistent with our understanding of the Southern Ocean,
which gives us confidence that our machine learning technique may be useful for automatically grouping
measurements and computer model data in the future. This matters because the climate science
community needs a new set of tools, possibly including the machine learning technique that we use in this
paper, to deal with a very large, ever-increasing volume of observational and computer model data.

1. Introduction
The Southern Ocean (SO) is a critical component of Earth's climate system, having thus far absorbed greater
than 75% of the energy added via anthropogenic emissions and 50% of the excess carbon (Fletcher et al., 2006;
Frölicher et al., 2015). Its ability to absorb heat and carbon comes in part from its unique spatial structure
and circulation, which features upwelling of cold, nutrient-rich waters and regions of dense water formation
(Lumpkin & Speer, 2007). Characterizing and understanding the spatial variability of the SO remains an
important and climatically relevant goal of modern oceanography.

Through decades of effort, the oceanographic community has converged on a description of ocean spatial
variability that uses temperature, salinity, dynamical, and biogeochemical patterns to define different spa-
tial structures (Emery, 2003; Talley, 2013, and references therein). For example, SO mode waters, located
equatorward of the Antarctic Circumpolar Current (ACC), are commonly identified using potential vor-
ticity minima and ranges of neutral density (Hanawa & Talley, 2001; Herraiz-Borreguero & Rintoul, 2011;
Sallée et al., 2008, 2010a). Such systematic approaches employ the understanding that structural properties
are “set” in their formation regions and modified by advection, mixing, and biogeochemical processes. In
the SO, classification in latitude-longitude has traditionally been centered around several fronts of the ACC,
defined by sharp transitions in sea surface height or neutral density (Kim & Orsi, 2014). The classical south-
ern boundary (SBDY) of the ACC marks the transition between subpolar, gyre-dominated circulations and
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lower latitude, more circumpolar flow. The ACC itself features three circumpolar fronts, namely, the South-
ern ACC Front (SACCF), the Polar Front (PF), and the Subantarctic Front (SAF; Orsi et al., 1995). These
three fronts separate the subpolar SO from the subtropical domain (Naveira-Garabato et al., 2011).

The modern, property-driven classification scheme is extremely useful and will continue to be useful well
into the future, but it is not necessarily ideal for every application. Many of the temperature, salinity, and
density values used to delimit one structure from another are somewhat ad hoc and very specific (e.g.,
boundaries between different types of mode water). These schemes are useful for observational data analy-
sis but difficult to apply to numerical models of the ocean, which do not necessarily feature exactly the same
structure as the observed ocean (Sallée et al., 2013). In addition, traditional classification approaches that
define structures by specific property ranges are limited by the fact that these properties may change over
time, either as long-term trends (e.g., the warming of Antarctic Bottom Water [AABW] observed by Purkey
& Johnson, 2010) or in terms of interannual variability (Naveira-Garabato et al., 2009). We suggest that it is
prudent to develop and test alternative methods for the classification of oceanic temperature, salinity, and
density structures, as a complement to existing expertise-driven methods.

Maze et al. (2017) have shown that Argo temperature profile data from the North Atlantic Ocean can be
usefully grouped into classes using Gaussian mixture modeling (GMM), an unsupervised classification tech-
nique. GMM describes the spatial structure of Argo profiles as a collection of Gaussian modes whose means
and standard deviations generally vary with pressure. In this work, we apply GMM to SO Argo temperature
profiles in the upper 1,000 m of the water column. We find that GMM identifies several circumpolar classes,
gyres, the Agulhas Current, and pathways broadly associated with the formation and export of mode and
intermediate waters. In section 2, we describe the Argo data set and the basics of GMM. In section 3, we
present the results of applying GMM to SO Argo data, and in sections 4 and 5 we offer a brief discussion and
summarize our conclusions.

2. Methods
We applied an unsupervised classification method (i.e., GMM) to Southern Ocean Argo float data. In this
section, we briefly describe the Argo data set and the basics of GMM. We use the scikit-learn machine learn-
ing library for Python (http://scikit-learn.org/), and the source code used for much of the analysis in this
paper is available via Github (Holt & Jones, 2018). We refer the reader to Maze et al. (2017) for further details
on applying GMM to Argo float data.

2.1. Argo Float Data Set
Argo floats are autonomous ocean instruments that measure, at minimum, the temperature and salinity of
the ocean by periodically taking vertical profiles. Every 10 days, starting at a “neutral” position of 1,000 m,
an Argo float dives down to 2,000 m before rising to the surface, taking a vertical profile of the water column
along the way. The measurements are transmitted via satellite and are ultimately made freely available via
the Argo Global Data Assembly Centers (GDACs) after some quality control checks. At the time of this writ-
ing, over 3,800 Argo floats are active in the global ocean, producing over 100,000 temperature and salinity
profiles per year with an average spacing of 3◦ (http://www.argo.ucsd.edu/).

For this study, we selected all available Argo profiles south of 30◦S that have been flagged by the GDACs as
“observation good” (i.e., quality control flag = 1) covering the time period from 2001 to early 2017. More
specifically, we used a vertically interpolated product with 400 equally spaced pressure levels ranging from
5 to 2,000 dbar in 5-dbar increments. After discarding profiles with greater than or equal to 6% NaN values
(2% of the initial number of profiles) and discarding pressure levels with greater than or equal to 3% NaN
values, we were left with 284,427 profiles, each with 192 pressure levels between 15 and 980 dbar. Most of
these initially removed NaN values came from interpolation below roughly 1,000 dbar, as opposed to gaps
in the original data set. We selected our NaN cutoff values based on the relatively large increase in the num-
ber of NaN values below 1,000 dbar. We replaced all remaining NaN values (≪1% of the total temperature
measurements) with linearly interpolated estimates using nearest neighbor values with respect to pressure.
We refer to the resulting data set as the cleaned data set.

Because of the autonomous and free-drifting nature of the floats, the profiles are not distributed evenly in
latitude/longitude (Figure 1). The profiles are more heavily concentrated in the Pacific sector (roughly 890
profiles per degree longitude, totalling 47% of profiles) and Indian sector (800 profiles per degree longitude,
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Figure 1. Distribution of Argo temperature profiles from the cleaned data set. (a) Number of profiles in 5◦ × 5◦ bins. Two equal-area boxes are shown for
reference (solid white lines). (b) Relative number of profiles by latitude, scaled by an area-weighting factor cos(φ), where 𝜑 is latitude. The temporal
distribution of profiles shown by (c) month and (d) year.

totalling 34% of profiles), with fewer profiles in the Atlantic sector (610 profiles per degree longitude, 19% of
total). When counted in equal-area bins and plotted by latitude, we see that the number or profiles decreases
toward Antarctica (Figure 1b), which is partly due to challenging operational conditions associated with
seasonal sea ice, which can extend to just north of 60◦S at maximum areal extent. The profiles are slightly
overrepresented in the austral summer and autumn (December–February and March–May, 52% of profiles)
and underrepresented in the Austral winter and spring (June–August and September–November, 48% of
profiles), and the number of profiles increases until 2013 (Figures 1c and 1d). Since we selected an Argo data
set that was created in early 2017, there are relatively few profiles from that year.

The profiles selected for this study display a large variety of vertical temperature structures (Figure 2). The
range of temperatures is wider in the surface and considerably narrower with increasing pressure, in part
reflecting the seasonal cycle in upper ocean temperatures. A large number of profiles feature colder tem-
peratures near the surface and warmer temperatures in the interior, a physical arrangement that would be
unstable to convection without the compensating effect of salinity. Profiles around Antarctica tend to be
fresher at the surface and saltier in the interior due to glacial melt, freshwater flux, and the balance of evap-
oration/precipitation. This arrangement of temperature and salinity can be stable to vertical mixing (called
“salt stratification”). In addition, the thermocline, that is, the region of the ocean that features a rapid change
in temperature with pressure, is visible in some temperature profiles.

2.2. GMM
GMM is a probabilistic approach for describing and classifying data. It attempts to fit (or “model” in the
statistical sense) the data as a linear combination of multidimensional Gaussian distributions with unknown
means and unknown standard deviations. Let X be the array of N vertical profiles, each with D pressure
levels, and let p(X) be the probability distribution function (PDF) representing the entire data set. GMM
represents the PDF as a weighted sum of K Gaussian classes, indexed by k; that is,

p(X) =
K∑

k=1
𝛌k (X;𝛍k,Σk). (1)
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Figure 2. Plot of 10% of the Argo temperature profiles, chosen at random, in the upper 1,000 dbar of the cleaned data
set, along with the mean (solid line) and the mean plus or minus one standard deviation (dashed lines) across the
entire data set.

Here  (x;𝛍k,𝚺k) is the multidimensional Gaussian PDF with a vector of means 𝜇k and covariance matrix
˝k; that is,

 (x;𝛍k,Σk) =
exp

[
− 1

2
(x − 𝛍k)TΣ−1

k (x − 𝛍k)
]

√
(2𝜋)D ||Σk

|| . (2)

The probability associated with class k is p(k) = 𝜆k. The probability of profile x being in class k is
p(k|x) = 𝜆k (x;𝜇k, 𝜎k)∕p(x), where the vector x is a single profile taken from the complete array X and
p(x) is equation (1) with a single profile x as the argument, that is, a normalizing factor. Both x and 𝜇k are
vectors of length D, and ˝k is a matrix of size D × D.

Starting with random initial guesses for the classes, GMM proceeds by iteratively adjusting the means 𝜇k
and standard deviations ˝k (i.e., the “parameters”) of the classes in order to maximize a logarithmic measure
of likelihood; that is,

log[p(X)] =
N∑

i=1
log

[ K∑
k=1

𝛌k (X;𝛍k,Σk)

]
. (3)

GMM uses an expectation-maximization approach, described in Maze et al. (2017). This algorithm monoton-
ically converges on a local maximum. GMM is a generalization of k-means clustering, which only attempts
to minimize in-group variance by shifting the means. By contrast, GMM attempts to identify means and
standard deviations, allowing for some variation about the centers of the Gaussian distributions.

In our instance of GMM, each pressure level is treated as a “dimension,” and the Gaussian parameters are
associated with each pressure level. However, we may not need all of these pressure levels to accurately
describe the data set, as ocean temperature changes much more rapidly in the mixed layer and thermocline
than in the interior. In order to reduce the computational complexity of the problem, we transform the profile
data from pressure space to an alternative space using principal component analysis (PCA). Specifically, we
calculate principal components (PCs) that capture a desired fraction of the vertical variability of the data
set. Each eigenvector may be thought of as a “profile type” that describes a certain amount of variance in
the data with pressure (note that this is not necessarily the same thing as a “typical profile”). We calculate J
PCs via the transformation:

X(z) =
J∑

𝑗=1
P(z, 𝑗)Y( 𝑗), (4)
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Figure 3. (a–f) Probability density functions for the (dimensionless) principal component amplitude coefficients associated with each profile, along with the
Gaussian functions generated by Gaussian mixture modeling with K = 8 classes. PC = principal component.

where z is the pressure level, J is the total number of PCs (index j), and P(z, j) is the transformation matrix
between pressure space and PC space. This strategy is an example of “dimensionality reduction,” which is
common in machine learning approaches.

We find that J = 6 captures 99.9% of the variance in the vertical structure, which greatly reduces the number
of dimensions needed to describe the Argo profile data used here, that is, from 194 pressure levels to 6 PCs.
We refer to this data set as the “cleaned, compressed” data set. Nearly 95% of the variance is explained by
the first PC (i.e., PC1), and the Gaussian functions associated with PC1 are relatively distinct, capturing the
broad shape of the temperature distribution (Figure 3). For higher indexed PCs, the Gaussians overlap more,
but their sum still makes up a representation of the temperature distribution that is sufficiently accurate for
our purposes. The fact that we only need six PCs to capture 99.9% of the variance is consistent with the strong
vertical coherence found in the SO, which is well described by an equivalent barotropic model (Karsten &
Marshall, 2002). For more information on the PCs that we used in this work, see the supporting information
(Figures S1 and S2).

We used a “training” data set, a subset of the cleaned, compressed data set, to estimate the parameters (i.e
the means and standard deviations) of the GMM classes. To generate the GMM training set, we randomly
selected a single profile from each 1◦ × 1◦ bin. Each training data set contains 12,286 profiles (roughly 4% of
the cleaned, compressed data set), distributed evenly in latitude/longitude space. Note that this subselection
is not related cross-validation analysis, in which there are training and “test” data sets (Maze et al., 2017).
Instead, we use a random subselection that is roughly uniform in latitude-longitude as our test data set, and
then we apply the GMM model to the entire cleaned, compressed data set. As discussed in the supporting
information, our results are not sensitive to our choice of test data set.

Once we have our test data set and calculate the optimized parameters (i.e., the means and standard devia-
tions of the Gaussians), we then statistically represent (i.e., model) the entire cleaned, compressed data set
with the fitted Gaussian model using optimized parameters. The end result is a probabilistic description of
the cleaned, compressed Argo temperature profile data set in terms of a linear combination of Gaussian dis-
tributions that vary with pressure. Each profile then has a probability distribution across the classes, and
the profile is assigned to the class with the highest probability. Our results are not sensitive to our choice of
training data set (see supporting information Table S1).

JONES ET AL. 394



Journal of Geophysical Research: Oceans 10.1029/2018JC014629

Figure 4. Bayesian information criteria (BIC) scores versus the specified number of classes K. For each K, we calculate
the BIC score 50 times using randomly selected profiles as discussed in the text. The means (solid blue line) and
standard deviations (error bars) are shown for each K. The range of the smallest mean K values is indicated by green
shading. GMM = Gaussian mixture modeling.

2.2.1. Selecting the Number of Classes
GMM does have one free parameter, that is, the maximum number of classes K. In order to determine the
most appropriate value for K, we applied a statistical test, namely, a Bayesian information criterion (BIC).
BIC uses an empirically formulated cost function that rewards likelihood and penalizes the number of
classes K:

BIC(K) = −2(K) + N𝑓 (K) log(n), (5)

where  is a measure of likelihood, n is the number of profiles used in the BIC test, and Nf is the number of
independent parameters to be estimated:

N𝑓 (K) = K − 1 + KD + KD(D − 1)
2

. (6)

In this framework, the optimum value of K minimizes the BIC score. We perform a number of BIC tests,
using different subsets of the data and different values of K, to estimate the distribution and variability of
BIC. Using the roughly 300-km decorrelation scale of the SO as guidance (Ninove et al., 2016), we randomly
select a profile from each 4◦ × 4◦ grid cell, returning 884 random profiles for each BIC test. We calculate BIC
scores for each set of 884 random profiles (in PC space) using a range of classes K from 1 to 19 (Figure 4).
For each value of K, we repeat the random selection and BIC process 50 times. BIC analysis does not feature
a clear minimum, but instead, it suggests that the optimum value of K lies between 6 and 10.

It may seem counterintuitive that BIC does not return a single optimum value for K, but this is consistent
with the nature of K as a weakly constrained free parameter that controls the level of complexity of the
statistical description of the data set. Oceanography has a rich history of expertise-driven clustering using
physical and biogeochemical criteria (e.g., potential vorticity minima and oxygen minima) and the finger-
prints of various processes (e.g., gyre circulation). These descriptions can be arranged into hierarchies, from
coarse/simple (e.g., two-layer quasi-geostrophic models) to rich and complex (e.g., the descriptions found in
Talley, 2013). The level of detail required in the description depends on the application at hand. For exam-
ple, a simple 𝛽-plane model is sufficient to explain the existence of gyres and western boundary currents;
it constitutes a first-order description of gyres. Algorithmic clustering offers a robust way to traverse this
hierarchy using a range of K values. Although statistical tests can be used as rough guides for choosing the
number of classes, there is not necessarily a single ideal value for K. We explore the impact of K on our
results in section 4.
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Figure 5. (a) Gaussian mixture modeling-derived class distribution for K = 8, shown with four fronts of the Antarctic
Circumpolar Current, that is, the Subantarctic Front (SAF), Polar Front (PF), Southern ACC Front (SACCF), and the
southern boundary (SBDY; Kim & Orsi, 2014). (b) Class distribution shown in dynamic height space (φ300 dbar

1,500 dbar).
Note that only points with posterior probability ≥0.9 are shown. The classes are sorted by mean temperature, from
coldest (k = 1) to warmest (k = 8).

3. Results
In order to identify patterns in the temperature structure of the SO, we describe the cleaned, compressed
Argo temperature profile data set as a linear combination of multidimensional Gaussian functions that vary
with pressure, using K = 8 different classes. Despite the fact that GMM does not have access to the lon-
gitudes and latitudes of the profiles, it identifies spatially coherent structures, some of which are roughly
demarcated by the fronts of the ACC as defined by Kim and Orsi (2014; Figure 5). For ease of interpretation,
we sorted the classes by mean temperature (Table 1).

The class nearest Antarctica (class 1) extends throughout the Weddell Gyre and coastal Antarctica
(Figure 5a). The mean temperature profile in this region is inverted; that is, it is colder near the surface
and warmer in the interior (Figure 6). This near-Antarctic class coincides with regions of AABW export
(Ohshima et al., 2013; Orsi et al., 1999), the subpolar Weddell and Ross Gyres, and its northern extent
approximately corresponds with the classical SBDY of the ACC (Kim & Orsi, 2014). This class occupies a
narrow range in dynamic height space, with a class mean and standard deviation of 3.3± 0.2 cm (φ300 dbar

1,500 dbar,
Figure 5b); it is fairly distinct from the other classes; that is, class 1 profiles are rarely found north of the
SBDY. For reference, Kim and Orsi (2014) associate the SBDY with the 3.1-cm dynamic height contour
(φ500 dbar

1,500 dbar). As their limits of integration over pressure are different than ours, this value of dynamic height

Table 1
Temperature Statistics for Each Class, Using Values From Every Pressure Level

Class Number of profiles Mean Standard deviation Minimum Maximum
1 10,680 0.48 0.81 −2.11 2.52
2 33,031 1.83 0.72 −1.87 8.89
3 40,268 3.38 1.50 −1.82 19.70
4 39,619 6.36 2.24 −1.85 17.17
5 48,252 7.32 2.56 2.76 25.37
6 48,770 8.22 4.49 −1.88 27.56
7 38,682 9.70 3.07 3.25 27.11
8 25,130 11.57 3.43 3.56 28.08

Note. All temperature statistics are shown in degrees Celsius. The classes have been sorted by mean
temperature, calculated using values from all pressure levels.
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Figure 6. Temperature profile statistics, separated by class, as functions of pressure. Shown are the mean (solid lines) and the mean plus or minus one standard
deviation (dashed lines) for all profiles in the indicated class.

is not directly applicable to our data, but it is roughly consistent with the gap between classes 1 and 2 in our
analysis (Figure 5b). Assuming that the data feature sufficiently uniform spatial coverage, gaps in dynamic
height space may be indicative of fronts, as they may suggest sharp gradients in dynamic height over rela-
tively short physical distances. We do not pursue this analysis further here. For an in-depth analysis of SO
front positions, see Sokolov and Rintoul (2009), for example.

The second coldest class (class 2) is a circumpolar class with profiles that sit north of the SBDY and south of
the PF across all longitudes; it is the dominant class in the dynamic height range 4–6 cm, with a class mean
value of 4.8 ± 0.7 cm (φ300 dbar

1,500 dbar, Figure 5). Its mean profile is also inverted, though not as sharply as the
mean profile of class 1 (Figure 6). A second circumpolar class (class 3) sits roughly north of the PF and south
of the SAF. In dynamic height space, class 3 is found between roughly 6–8 cm, except in the Atlantic sector,
where it extends to roughly 10 cm. For reference, Kim and Orsi (2014) associate the PF with the 5.0-cm
dynamic height contour and the SAF with the 7.0-cm dynamic height contour (φ500 dbar

1,500 dbar). These values
are roughly consistent with (but not directly comparable to) the gap positions in our data. Unlike the first
two classes, the mean profile of class 3 is not inverted; that is, it gets colder with pressure. The presence of
these two circumpolar classes is consistent with the homogenizing influence of the ACC, which typically
encourages mixing along the strong jets associated with fronts and suppresses mixing across them (Ferrari
& Nikurashin, 2010).

The profiles assigned to class 4 are mostly located north of the SAF in the Pacific and Indian sectors, roughly
coinciding with regions of Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW)
formation in the Pacific Ocean and south of Australia (Sallée et al., 2010b). Despite its relatively narrow
range in latitude, class 4 profiles occupy a broad, distinct range in dynamic height space in the Pacific sector,
with a class mean of 11 ± 1.5 cm. The mean vertical profile associated with class 4 changes relatively gently
with pressure, with no clear thermocline and a relatively large standard deviation across all pressures.

Profiles assigned to class 5 are mostly found in the Pacific sector, in a region associated with the export of
SAMW and AAIW from the surface ocean into the interior thermocline (Iudicone et al., 2007; Jones et al.,
2016). In contrast with class 4, class 5 occupies a relatively large range in latitude and a relatively small range
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Table 2
Posterior Probabilities for Each Class, Divided Into Four Unequal Intervals

Class [0.0, 0.50) [0.50, 0.75) [0.75, 0.9) [0.9, 1.0]
1 <1 4 4 91
2 <1 11 11 77
3 <1 14 16 70
4 1 18 20 61
5 <1 7 8 84
6 <1 9 8 82
7 <1 19 17 64
8 <1 13 12 75

Note. Each row shows the percentage of profiles assigned to that class with
posterior probabilities in the indicated range.

in dynamic height, with a mean and standard deviation of 12 ± 0.7 cm. The mean vertical profile has a clear
thermocline over the upper 400 dbar of the ocean, with a standard deviation that narrows considerably with
pressure. This class spatially coincides with the southern part of the South Pacific gyre, suggesting that gyre
circulation tends to homogenize properties in this region.

Class 6 highlights warmer subtropical waters and is mostly found in the Atlantic and Pacific sectors; it par-
tially extends into the Indian sector, where it sits just north of the SAF. From the surface to well into the
interior, class 6 features some of the largest standard deviations of any class, suggesting that class 6 con-
sists of a wide variety of profiles; it can potentially be split into a number of smaller classes. Classes 7 and
8 are also warmer subtropical classes, with class 7 found mostly near Australia and New Zealand and class
8 found almost exclusively in the Indian sector. Much of class 8 spatially coincides with the Indian Ocean
gyre. The spatial extent of class 8 near South Africa suggests that the Agulhas Current influences the tem-
perature structure in that region. The mean vertical profiles of classes 7 and 8 are similar, although class 7
features higher variability near the surface and class 8 features slightly warmer surface temperatures. The
higher variability in class 7 may be due to the overlap of profiles in this class with a wider range of sur-
face current features (e.g., boundary currents around Australia and New Zealand, whereas class 8 largely
overlaps with the Indian Ocean gyre.

For a selected temperature profile, GMM predicts the probability distribution across all K classes. That is,
it calculates the probabilities that the profile belongs to each class k. Next, the algorithm assigns the profile
to the class with the highest probability. Note that the sum of the posterior probabilities across all classes is
one. Since these probabilities are calculated with the full data set available, they are referred to as posterior
probabilities. The posterior probabilities are useful in their own right, as measures of confidence in GMM's
assignment of a profile to a particular class.

For our implementation of GMM on Argo temperature data, over 86% of the class assignments have posterior
probabilities greater than 0.75, and over 74% of all class assignments have posterior probabilities greater than
0.9 (Table 2). Class 1 features an especially high percentage of very high posterior probabilities; over 90%
of assignments into class 1 have posterior probabilities greater than or equal to 0.9. Outside of the Weddell
Gyre, we find the lowest posterior values in the Ross Sea and a few near-coastal areas (Figure 7). The low
posterior values could possibly be due to seasonal variability that is not well represented by a single class.
Classes 2 and 3 also feature high posterior probabilities, for which over 70% of assignments have values
greater than or equal to 0.9. For both of these classes, we find relatively low posterior probabilities upstream
of Kerguelen Island (KI), clustered around the PF. The area around KI is affected by upwelling, mixing, and
the confluence of the Agulhas Retroflection and the ACC (Sallée et al., 2010b), and it also features relatively
high eddy diffusivities (Klocker & Abernathey, 2014). The profiles in that area are influenced by a number of
competing processes and may be difficult to unambiguously separate into clear groups when using a value
of K appropriate for the entire SO.

Although over 60% class 4 profiles have posterior values greater than or equal to 0.9, class 4 features some
relatively low posterior values compared with the other classes, especially in the Indian sector north of the
SAF. In the Pacific sector, we find relatively low posteriors along the boundary between classes 4 and 5.

JONES ET AL. 398



Journal of Geophysical Research: Oceans 10.1029/2018JC014629

Figure 7. Posterior probabilities for each class assignment, given the full cleaned, compressed data set, shown together with the PF for reference (Kim & Orsi,
2014).

Class 5 has a core of profiles with posterior values greater than or equal to 0.9, with lower values all along its
boundary. We find similar patterns for classes 6–8, except in the Indian sector between 60–120◦E, north of
the SAF. This region, which is downstream of Kerguelen Plateau, is characterized by relatively low posterior
values for classes 4, 7, and 8. In general, although GMM performs well in all ocean basins, in terms of clear
class separation with high posterior probabilities, its performance is somewhat weaker in the Indian sector.

4. Discussion
Here we explore the sensitivity of our results to the maximum number of classes K. We also explore a possible
alternative to PCA that may be useful for incorporating salinity into our analysis, namely, functional PCA.

4.1. Sensitivity to Number of Classes K
In section 2, we estimated that the optimum number of classes K lies between 6 and 10. The weak constraint
suggested by BIC allows for some tuning depending on the desired level of complexity in the description of
the data set. Using K = 6 classes is sufficient to capture most of the large-scale structures identified in the
K = 8 case, but there are some significant differences (Figures 8a and 8b). Specifically, there is one fewer

Figure 8. Comparison of Gaussian mixture modeling-derived classes, shown for (a) 6 classes, (b) 8 classes, and (c) 10 classes, along with fronts of the Antarctic
Circumpolar Current (Kim & Orsi, 2014). SAF = Subantarctic Front; PF = Polar Front; SACCF = Southern ACC Front; SBDY = Southern Boundary.
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circumpolar class, as classes 1–3 are reduced to classes 1–2 that sit roughly on either side of the PF. In the
Pacific sector, classes 4 and 5 merge into the new class 4. In the Indian sector, classes 7–8 merge into the
new class 6 that sits north of the SAF and south of Australia. We see that the overall description of ocean
structure is simpler with K = 6; it is still a physically reasonable description of ocean temperature structure,
with circumpolar classes and clusters that span the major basins, but it lacks some of the subtleties found
in the K = 8 map.

As expected, the K = 10 case features more structure than the K = 8 case, and it is still a physically
reasonable distribution (Figures 8b and 8c). Classes 1–3 are still near Antarctic or circumpolar classes; the
additional structure all appears north of the SAF. In the Pacific basin, the boundary between the K = 8
classes 5 and 6 and the K = 10 classes 6 and 7 is shifted poleward, and a new class 5 is found along the
eastern Pacific, along the South American coast. The K = 10 class 8 is found south of Australia, which in the
K = 8 class is not a distinct class. Interestingly, in the K = 10 case we find more profiles above 0.9 posterior
probability in the Indian sector, specifically in the region north of the SAF and between the longitudes of
60–120◦E. Increasing K allowed for a more likely set of class assignments in this previously troublesome
region. So regions of low posterior probabilities may suggest a need for a higher value of K.

4.2. Including Additional Variables
In this work, we define classes using temperature profiles. A more general description of ocean structure may
include some combination of additional fields (e.g., salinity, density, potential vorticity, and biogeochemical
variables). Including additional variables in the GMM analysis is not necessarily trivial, as there are differ-
ent approaches, and each approach has advantages and limitations that need to be thoroughly evaluated.
Perhaps, the simplest approach is to standardize the additional variables in the same way as the temperature
fields, such that each field is expressed in terms of standard deviations relative to the mean at each depth
level. This approach has the potential disadvantage that a 1𝜎 variation in temperature has the same impact
on class structure as a 1𝜎 variation in salinity, which is not necessarily physically realistic. Statistically similar
variations in temperature and salinity need not have similar impacts on ocean structure. Another approach
is to scale by parameters from the linear equation of state (EOS), namely, the thermal expansion coefficient
𝛼 for temperature and the coefficient of haline contraction 𝛽 for salinity. Using this method, variations in
temperature and salinity would impact density in a manner that is physically constrained by the EOS, that
is, 𝜌 = 𝜌0

[
1 − 𝛼(T − T0) + 𝛽(S − S0)

]
. However, this approach would only be valid in the neighborhood of

the reference values (T0, S0) in T-S space, over which the linear EOS is a good approximation of the full, non-
linear EOS. This limitation would likely be problematic in the SO, where nonlinear terms in the EOS play
an important role in the formation and layering of AAIW and AABW (Nycander et al., 2015). Still, another
approach would be to classify profiles based on density, but there are a number of different approaches to
defining density that would need to be treated with care (e.g., 𝜎0, 𝜎1, and neutral density 𝛾n).

We used PCA to reduce the dimensionality of our Argo temperature profile data set. An alternative approach
is to use functional principal component analysis (fPCA), in which PCA is performed on functions instead
of the original data. In Pauthenet et al. (2017), the authors represent vertical temperature and salinity pro-
files from the Southern Ocean State Estimate (Mazloff et al., 2010) as linear combinations of B-spline basis
functions and apply fPCA to the resulting spline functions. They use the PCs to examine large-scale struc-
tures such as fronts in the SO. Their approach offers another objective way to define structural boundaries
and could be used in concert with the GMM approach outlined in this work. This could offer yet another
possible way to introduce salinity into the GMM analysis, which is especially relevant for stratification south
of the PF (Pollard et al., 2002).

5. Conclusions
We applied GMM, an unsupervised classification scheme, to SO Argo temperature data above 1,000 dbar.
Without using longitude or latitude information, GMM identified spatially coherent patterns in the vertical
temperature structure. The GMM-derived classes broadly coincide with large-scale circulation and stratifi-
cation features, including regions of AABW formation and upwelling (i.e., adjacent to Antarctica), the ACC,
formation and export pathways of SAMW and AAIW, subtropical gyre circulation, and the Agulhas Current
and associated retroflection. We may say that GMM identifies domains in oceanographic data, including
gyre-dominated domains and circumpolar domains. GMM can be used to define these domains in a method
that respects the structure of the data, as opposed the simpler but physically unrealistic process of defin-
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ing domains by simply drawing rectangular boxes in latitude-longitude space. GMM also makes use of the
interior structure of the data, as opposed to only using surface variables like sea surface height. The class
boundaries broadly coincide with several classically defined fronts of the ACC, and the circumpolar classes
mostly occupy distinct regions in dynamic height space, indicating that GMM has identified physically dis-
tinct profile types using only vertical temperature data. High posterior probability distributions indicate
regions where the classes are distinct and statistically separate, whereas regions with low posterior prob-
ability indicate boundaries between classes and/or regions of mixing influenced by a number of different
temperature structures. GMM may offer an alternative, complementary method for describing SO spatial
variability, and it is potentially useful for objectively and automatically comparing structures across different
observational and modeling data sets.

Acronyms
AABW —Antarctic Bottom Water
AAIW —Antarctic Intermediate Water
ACC —Antarctic Circumpolar Current
BIC —Bayesian information criterion
fPCA —Functional principal component analysis
GDAC —Global Data Assembly Center
GMM —Gaussian mixture modeling
PC—Principal component
PCA —Principal component analysis
PDF —Probability distribution function
SAMW —Subantarctic Mode Water
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